[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012503024A - ペプチド模倣大環状分子 - Google Patents

ペプチド模倣大環状分子 Download PDF

Info

Publication number
JP2012503024A
JP2012503024A JP2011528081A JP2011528081A JP2012503024A JP 2012503024 A JP2012503024 A JP 2012503024A JP 2011528081 A JP2011528081 A JP 2011528081A JP 2011528081 A JP2011528081 A JP 2011528081A JP 2012503024 A JP2012503024 A JP 2012503024A
Authority
JP
Japan
Prior art keywords
amino acid
peptidomimetic macrocycle
peptidomimetic
macrocycle
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011528081A
Other languages
English (en)
Other versions
JP2012503024A5 (ja
Inventor
ヒュー エム. ナッシュ,
ロザナ カペラー−リバーマン,
ジア−ウェン ハン,
トミ ケー. ソーヤー,
ジャスティン ノーエレ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rein Therapeutics Inc
Original Assignee
Aileron Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aileron Therapeutics Inc filed Critical Aileron Therapeutics Inc
Publication of JP2012503024A publication Critical patent/JP2012503024A/ja
Publication of JP2012503024A5 publication Critical patent/JP2012503024A5/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/56Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation not occurring through 2,4-diamino-butanoic acid

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、新規なペプチド模倣大環状分子および疾患の処置のためにこのような大環状分子を用いる方法を提供する。一局面では、本発明は、表1のアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも約60%、80%、90%または95%同一であるアミノ酸配列を含むペプチド模倣大環状分子を提供する。あるいは、上記ペプチド模倣大環状分子のアミノ酸配列は、本明細書に記載の表1のアミノ酸配列からなる群より選択される。

Description

相互参照
本出願は、2008年9月22日に出願された、米国仮出願第61/099,172号(この出願は、本明細書に参考として援用される)の利益を主張する。
低酸素誘導性因子(HIF)は、細胞環境における利用可能な酸素の変化に、特に酸素の減少または低酸素症に応答する転写因子である。全てではなくてもほとんどの酸素呼吸種は、αサブユニットおよびβサブユニットから構成されるヘテロ二量体である(後者は、構成的に発現されるアリール炭化水素レセプター核トランスロケーター(aryl hydrocarbon receptor nuclear translocator)(ARNT)である)、高度に保存された転写複合体HIF−1を発現する。HIF−1は、転写因子の塩基性ヘリックス・ループ・ヘリックス(basic−helix−loop−helix)(bHLH)ファミリーのPER−ARNT−SIM(PAS)サブファミリーに属する。HIF−1のαサブユニットは、プロテアソームによる迅速な分解をもたらす、E3ユビキチンリガーゼ複合体による分解のための標的であるHIF−1αを作製する、HIFプロリル−ヒドロキシラーゼによるプロリル水酸化の標的である。これは、正常な酸素条件(normoxic condition)でのみ生じる。低酸素条件では、HIFプロリル−ヒドロキシラーゼは、それが補基質(cosubstrate)として酸素を利用するので、阻害される。
HIFは、グルコース取り込みおよび代謝、新脈管形成、赤血球新生、細胞増殖およびアポトーシスを含めて多くの細胞プロセスに関与する遺伝子の発現を調節することによって酸素送達および酸素欠乏に対する順応の両方を促進する(非特許文献1)。それらは、ARNTとしても公知である、酸素感受性αサブユニットおよび構成的に発現されるβサブユニットから構成される、ヘテロ二量体としてDNAに結合する塩基性ヘリックス・ループ・ヘリックス(bHLH)転写因子のPAS(PER−ARNT(アリール炭化水素レセプター核トランスロケーター)−SIM)ファミリーのメンバーである。現在まで、低酸素レベルに応答して転写プログラムを調節する3つのHIF類(HIF−1、−2、および−3)が特定されている。
HIF類は、酸素欠乏に対する細胞の適合を媒介する転写因子である。グルコース代謝、新脈管形成、赤血球新生、増殖および侵襲を含めていくつかの細胞プロセスを調節する100を超える直接HIF標的遺伝子が特定されている。HIFはまた、C−MycおよびNotchなどの他のシグナル伝達タンパク質との相互作用を通じて増殖および分化などの細胞プロセスを間接的に調節し得る(非特許文献2)。
慢性の低酸素は、多くの腫瘍の特徴であり、かつ新脈管形成およびさらに攻撃的な腫瘍表現型に関連している。HIF類は、腫瘍の形成、進行および治療に対する応答を含めて、腫瘍形成の複数の段階を調節する。HIFが活性化し得、かつ腫瘍進行を促進する、複数の機構が存在する。従って、HIFシステムの下方制御は、癌治療の魅力的な標的であることが明らかである。
Semenza GL.Curr Opin Cell Biol 2001;13:167〜171 Rankin EBおよびAJ Giaccia,Cell Death and Differtiation,15,2008
発明の要旨
一局面では、本発明は、表1のアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも約60%、80%、90%または95%同一であるアミノ酸配列を含むペプチド模倣大環状分子を提供する。あるいは、上記ペプチド模倣大環状分子のアミノ酸配列は、表1のアミノ酸配列からなる群より選択される。いくつかの実施形態では、ペプチド模倣大環状分子は、らせん、例えば、α−らせんを含む。他の実施形態では、このペプチド模倣大環状分子はα,α−二置換アミノ酸を含む。本発明のペプチド模倣大環状分子は、少なくとも2つのアミノ酸のα位置を連結する架橋剤を含んでもよい。このような2つのアミノ酸のうち少なくとも1つは、α,α−二置換アミノ酸であってもよい。
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、式:
を有し、
式中:
A、C、D、およびEはそれぞれ独立して、天然または非天然のアミノ酸であり;
Bは、天然もしくは非天然アミノ酸、アミノ酸アナログ、
、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
およびRは独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルであり;
は、必要に応じてRで置換される、水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであり;
Lは、式−L−L−の大環状分子形成リンカーであり;
およびLは独立して、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であり、それぞれ、必要に応じてRで置換され;
はそれぞれ、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
Kはそれぞれ、O、S、SO、SO、CO、CO、またはCONRであり;
はそれぞれ独立して、ハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体、または治療剤であり;
はそれぞれ独立して、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体、または治療剤であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリール、またはD残基を有する環状構造の一部であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリール、またはE残基を有する環状構造の一部であり;
vおよびwは独立して1〜1000の整数であり;
u、x、yおよびzは独立して0〜10の整数であり;かつ
nは1〜5の整数である。
他の実施形態では、このペプチド模倣大環状分子は、このペプチド模倣大環状分子内の第二のアミノ酸に対して第一のアミノ酸の骨格アミノ基を連結する架橋剤を含んでもよい。例えば、本発明は、式(IV)または(IVa)のペプチド模倣大環状分子を提供し、
式中、
A、C、D、およびEはそれぞれ独立して、天然または非天然アミノ酸であり;
Bは、天然もしくは非天然アミノ酸、アミノ酸アナログ、
、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
およびRは独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、もしくはヘテロシクロアルキル、またはE残基を有する環状構造の一部であり;
は、必要に応じてRで置換される、水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであり;
およびLは独立して、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であり、それぞれ、必要に応じてRで置換され;
はそれぞれ、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
Kはそれぞれ、O、S、SO、SO、CO、CO、またはCONRであり;
はそれぞれ、独立して、ハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体、または治療剤であり;
はそれぞれ、独立して、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体、または治療剤であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、またはヘテロシクロアリールであり;
vおよびwは独立して1〜1000の整数であり;
u、x、yおよびzは独立して0〜10の整数であり;かつ
nは1〜5の整数である。
さらに、本発明は、被験体において癌を処置する方法であって、本発明のペプチド模倣大環状分子を該被験体に投与する工程を包含する方法を提供する。また、被験体においてHIF1αの活性を調節する方法であって、本発明のペプチド模倣大環状分子を該被験体に投与する工程を包含する方法、または被験体においてCBP/p300タンパク質とHIF1αタンパク質との間の相互作用を拮抗する方法であって、このようなペプチド模倣大環状分子を該被験体に投与する工程を包含する方法も提供される。
文献の引用
本明細書において言及される全ての刊行物、特許、および特許出願は、各個々の刊行物、特許、または特許出願が、具体的にかつ個々に参照により組み込まれて示されるのと同程度まで、参照により本明細書に援用される。
本発明の新規な特徴は、添付の特許請求の範囲で詳細に説明される。本発明の特徴および利点は、本発明の原理を利用し、図面を伴った例示的な実施形態を説明する、以下の詳細な説明を参照することにより、さらに十分に理解される。
図1は、CBP/p300に対する本発明のHIF−1αらせんAおよびHIF−1αらせんBペプチド模倣大環状分子前駆体の可能な結合方式を図示する。HIF1αらせんAの残基796〜805は、TSYDEVNAPである。HIF−1αらせんBの残基814〜823はQGEELLRAである。架橋に利用可能な溶媒露出した側鎖には下線を付している。 図2は、CBP/p300に対する本発明のHIF−1αらせんAペプチド模倣大環状分子前駆体の可能性のある結合方式を図示する。HIF1aらせんAの残基796〜805はTSYDEVNAPである。架橋に利用可能な溶媒露出した側鎖には下線を付している。 図3は、CBP/p300に対する本発明のHIF−1αらせんBペプチド模倣大環状分子前駆体の可能性のある結合方式を図示する。HIF−1αらせんBの残基814〜823はQGEELLRAである。架橋に利用可能な溶媒露出した側鎖には下線を付している。 図4は、本発明の例示的なペプチド模倣大環状分子を示す。
発明の詳細な説明
本明細書において用いる場合、「大環状分子(macrocycle)」という用語は、少なくとも9個の共有結合された原子によって形成されるリングまたはサイクルを含む化学構造を有する分子を指す。
本明細書において用いる場合、「ペプチド模倣大環状分子」または「架橋ポリペプチド」という用語は、同じ分子内の第一の天然に存在するアミノ酸残基、または天然に存在しないアミノ酸残基(またはアナログ)および第二の天然に存在するアミノ酸残基、または天然に存在しないアミノ酸残基(またはアナログ)の間で大環状分子を形成する、複数のペプチド結合および少なくとも1つの大環状分子形成リンカーによって結合された複数のアミノ酸残基を含む化合物を指す。ペプチド模倣大環状分子は、大環状分子形成リンカーが、第一のアミノ酸残基(またはアナログ)のα炭素を第二のアミノ酸残基(またはアナログ)のα炭素に連結する実施形態を含む。ペプチド模倣大環状分子は必要に応じて、1つ以上のアミノ酸残基および/またはアミノ酸アナログ残基の間の1つ以上の非ペプチド結合を含み、そして必要に応じて、1つ以上の天然に存在しないアミノ酸残基またはアミノ酸アナログ残基を、大環状分子を形成する任意のものに加えて、含む。「対応する非架橋ポリペプチド」とは、ペプチド模倣大環状分子の状況で言及する場合、大環状分子と同じ長さのポリペプチドであって、この大環状分子に対応する野生型配列の等価な天然のアミノ酸を含むポリペプチドに関することが理解される。
本明細書において用いる場合、「安定性」という用語は、円二色性、NMR、または別の生物物理学的手段によって測定される、本発明のペプチド模倣大環状分子によって溶液中で規定される二次構造の維持、またはインビトロもしくはインビボにおけるタンパク質分解性の分解に対する抵抗性を指す。本発明において企図される二次構造の非限定的な例は、α−らせん、β−ターン、およびβ−プリーツシートである。
本明細書において用いる場合、「らせん(helical)安定性」という用語は、円二色性またはNMRによって測定される、本発明のペプチド模倣大環状分子によるαらせん構造の維持を指す。例えば、いくつかの実施形態において、本発明のペプチド模倣大環状分子は、R−置換基を欠いている対応する架橋されていない大環状分子と比較して、円二色性によって決定されるα−らせん度において、少なくとも1.25、1.5、1.75、または2倍の増大を示す。
「α−アミノ酸」または単に「アミノ酸」という用語は、α−炭素と呼ばれる炭素に結合したアミノ基およびカルボキシル基の両方を含有する分子を指す。適切なアミノ酸としては、限定するものではないが、天然に存在するアミノ酸のD−異性体およびL−異性体の両方、ならびに有機合成または他の代謝経路によって調製される天然に存在しないアミノ酸が挙げられる。文脈が具体的に別のことを示さない限り、本明細書において使用されるアミノ酸という用語は、アミノ酸アナログを含むものとする。
「天然に存在するアミノ酸」という用語は、自然界において合成されるペプチドにおいて一般に見つけられ、一文字の略語、A、R、N、C、D、Q、E、G、H、I、L、K、M、F、P、S、T、W、Y、およびVによって公知の20個のアミノ酸のうちのいずれか1つを指す。
「アミノ酸アナログ」または「非天然アミノ酸」という用語は、アミノ酸に構造的に類似しており、かつペプチド模倣大環状分子の形成においてアミノ酸の代わりに用いることができる分子を指す。アミノ酸アナログとしては、限定するものではないが、アミノ基とカルボキシル基の間に1つ以上の追加のメチレン基を包含すること(例えばα−アミノβ−カルボキシ酸)を除いて、または同様に反応性の基によってアミノ基もしくはカルボキシ基が置換されること(例えば第二級もしくは第三級アミンでの第一級アミンの置換またはエステルでのカルボキシ基の置換)を除いて、本明細書において規定されるアミノ酸と構造的に同一である化合物が挙げられる。
「非必須」アミノ酸残基は、その必須の生物学的または生化学的活性(例えばレセプター結合または活性化)を消失することも、実質的に改変することもなく、ポリペプチドの野生型配列から改変することができる残基である。「必須」アミノ酸残基とは、ポリペプチドの野生型配列から改変された場合に、結果として、ポリペプチドの必須の生物学的または生化学的活性を消失し、または実質的に消失することになる残基である。
「保存的アミノ酸置換」とは、アミノ酸残基が、類似した側鎖を有するアミノ酸残基と交換される置換である。類似した側鎖を有するアミノ酸残基のファミリーは、当該分野において規定されている。これらのファミリーとしては、塩基性側鎖(例えばK、R、H)、酸性の側鎖(例えば、D、E)、非荷電極性側鎖(例えば、G、N、Q、S、T、Y、C)、非極性側鎖(例えば、A、V、L、I、P、F、M、W)、β分枝側鎖(例えば、T、V、I)、および芳香族側鎖(例えば、Y、F、W、H)を有するアミノ酸が挙げられる。従って、BH3ポリペプチドにおける、予測される非必須アミノ酸残基は、例えば、好ましくは、同じ側鎖ファミリーからの別のアミノ酸残基と交換される。許容できる置換の他の例は、等比体積の(isosteric)考慮(例えば、メチオニンに対するノルロイシン)または他の特性(例えば、フェニルアラニンに対する2−チエニルアラニン)に基づく置換である。
大環状分子または大環状分子形成リンカーと組み合わせて、本明細書において用いられる「メンバー」という用語は、大環状分子を形成し、または大環状分子を形成することができる原子を指し、そして置換基または側鎖の原子を除外する。類推によって、シクロデカン、1,2−ジフルオロ−デカン、および1,3−ジメチルシクロデカンは全て、水素またはフルオロ置換基またはメチル側鎖が大環状分子の形成に参加しないので、10員の大環状分子と考えられる。
記号
は、分子構造の一部として用いられる場合、単結合またはトランスもしくはシス二重結合を指す。
「アミノ酸側鎖」という用語は、アミノ酸におけるα−炭素に結合した部分を指す。例えば、アラニンについてのアミノ酸側鎖は、メチルであり、フェニルアラニンについてのアミノ酸側鎖は、フェニルメチルであり、システインについてのアミノ酸側鎖は、チオメチルであり、アスパルテートについてのアミノ酸側鎖は、カルボキシメチルであり、チロシンについてのアミノ酸側鎖は、4−ヒドロキシフェニルメチルであるなどである。他の天然に存在しないアミノ酸側鎖、例えば、自然界において生じるもの(例えば、アミノ酸代謝物)または合成的に作製されるもの(例えば、α,α二置換アミノ酸)もまた含まれる。
用語「α,α二置換アミノ」酸という用語は、2つの天然または非天然アミノ酸側鎖に結合した炭素(α−炭素)に結合したアミノ基およびカルボキシル基の両方を含有する分子または部分を指す。
「ポリペプチド」という用語は、共有結合(例えば、アミド結合)によって結合した、2個以上の天然に存在するアミノ酸、または天然に存在しないアミノ酸を包含する。本明細書において記載されるポリペプチドとしては、完全長タンパク質(例えば、完全に処理された(processed)タンパク質)およびより短いアミノ酸配列(例えば、天然に存在するタンパク質の断片または合成ポリペプチド断片)が挙げられる。
本明細書において使用される場合、「大環状分子化試薬(macrocyclization reagent)」または「大環状分子形成試薬」という用語は、2つの反応基の間の反応を媒介することによって、本発明のペプチド模倣大環状分子を調製するために用いられ得る任意の試薬を指す。反応性の基は、例えば、アジドおよびアルキンであってもよく、この場合には、大環状分子化試薬としては、限定するものではないが、CuBr、CuI、またはCuOTfなどの反応性Cu(I)種、ならびにアスコルビン酸またはアスコルビン酸ナトリウムなどの還元剤の添加によってインサイチュにおいて活性Cu(I)試薬に変換することができる、Cu(COCH、CuSO、およびCuClなどのCu(II)塩を提供する試薬などのCu試薬が挙げられる。大環状分子化試薬としては、例えば、CpRuCl(PPh、[CpRuCl]、または反応性Ru(II)種を提供し得る他のRu試薬などの、当該分野において公知のRu試薬をさらに挙げることができる。他の場合において、反応基は、末端のオレフィンである。そのような実施形態において、大環状分子化試薬または大環状分子形成試薬は、第VIII族遷移金属カルベン触媒などの、安定した後遷移金属カルベン錯体触媒を含むが、これらに限定されないメタセシス(metathesis)触媒である。例えば、そのような触媒は、+2酸化状態を有し、16の電子数を有し、かつ五配位のRuおよびOs金属中心である。追加の触媒は、Grubbsら、「Ring Closing Metathesis and Related Processes in Organic Synthesis」Acc.Chem.Res.1995、28、446〜452頁および米国特許第5,811,515号において開示される。さらに他の場合において、反応基は、チオール基である。そのような実施形態において、大環状分子化試薬は、例えば、ハロゲン基などの2つのチオール反応性基で官能化されたリンカーである。
「ハロ」または「ハロゲン」という用語は、フッ素、塩素、臭素、もしくはヨウ素またはその基を指す。
「アルキル」という用語は、示された数の炭素原子を含有する、直鎖または分枝鎖である炭化水素鎖を指す。例えば、C〜C10は、基が、その中に1〜10個(両端を含む)の炭素原子を有することを示す。いかなる数の指示もない場合、「アルキル」とは、その中に1〜20個(両端を含む)の炭素原子を有する鎖(直鎖または分枝鎖)である。
「アルキレン」という用語は、二価アルキル(つまり−R−)を指す。
「アルケニル」という用語は、1つ以上の炭素−炭素二重結合を有する直鎖または分枝鎖である炭化水素鎖を指す。アルケニル部分は、示された数の炭素原子を含有する。例えば、C〜C10は、その基が、その中に2〜10個(両端を含む)の炭素原子を有することを示す。「低級アルケニル」という用語は、C〜Cアルケニル鎖を指す。いかなる数の指示もない場合、「アルケニル」とは、その中に2〜20個(両端を含む)の炭素原子を有する鎖(直鎖または分枝鎖)である。
「アルキニル」という用語は、1つ以上の炭素−炭素三重結合を有する直鎖または分枝鎖である炭化水素鎖を指す。アルキニル部分は、示された数の炭素原子を含有する。例えば、C〜C10は、その基が、その中に2〜10個(両端を含む)の炭素原子を有することを示す。「低級アルキニル」という用語は、C〜Cアルキニル鎖を指す。いかなる数の指示もない場合、「アルキニル」とは、その中に2〜20個(両端を含む)の炭素原子を有する鎖(直鎖または分枝鎖)である。
「アリール」という用語は、6個の炭素の単環式または10個の炭素の二環式芳香族環系を指し、ここで各々の環の0、1、2、3、または4個の原子は、置換基によって置換される。アリール基の例としては、フェニル、ナフチルなどが挙げられる。「アリールアルキル」という用語または「アラルキル」という用語は、アリールで置換されたアルキルを指す。「アリールアルコキシ(arylalkoxy)」という用語は、アリールで置換されたアルコキシを指す。
「アリールアルキル」とは、上記に規定されるアリール基であって、そのアリール基の水素原子のうちの1つが、上記に規定されるC〜Cアルキル基で置き換えられているものを指す。アリールアルキル基の代表的な例としては、限定するものではないが、2−メチルフェニル、3−メチルフェニル、4−メチルフェニル、2−エチルフェニル、3−エチルフェニル、4−エチルフェニル、2−プロピルフェニル、3−プロピルフェニル、4−プロピルフェニル、2−ブチルフェニル、3−ブチルフェニル、4−ブチルフェニル、2−ペンチルフェニル、3−ペンチルフェニル、4−ペンチルフェニル、2−イソプロピルフェニル、3−イソプロピルフェニル、4−イソプロピルフェニル、2−イソブチルフェニル、3−イソブチルフェニル、4−イソブチルフェニル、2−sec−ブチルフェニル、3−sec−ブチルフェニル、4−sec−ブチルフェニル、2−t−ブチルフェニル、3−t−ブチルフェニル、および4−t−ブチルフェニルが挙げられる。
「アリールアミド」とは、上記に規定されるアリール基であって、そのアリール基の水素原子のうちの1つが、1つ以上の−C(O)NH基で置き換えられているものを指す。アリールアミド基の代表的な例としては、2−C(O)NH2−フェニル、3−C(O)NH−フェニル、4−C(O)NH−フェニル、2−C(O)NH−ピリジル、3−C(O)NH−ピリジル、および4−C(O)NH−ピリジルが挙げられる。
「アルキルヘテロ環」とは、上記に規定されるC〜Cアルキル基であって、そのC〜Cアルキル基の水素原子のうちの1つが、ヘテロ環で置き換えられているものを指す。アルキルヘテロ環基の代表的な例としては、限定するものではないが、−CHCH−モルホリン、−CHCH−ピペリジン、−CHCHCH−モルホリン、および−CHCHCH−イミダゾールが挙げられる。
「アルキルアミド」とは、上記に規定されるC〜Cアルキル基であって、そのC〜Cアルキル基の水素原子のうちの1つが、−C(O)NH基で置き換えられているものを指す。アルキルアミド基の代表的な例としては、限定するものではないが、−CH−C(O)NH、−CHCH−C(O)NH、−CHCHCHC(O)NH、−CHCHCHCHC(O)NH、−CHCHCHCHCHC(O)NH、−CHCH(C(O)NH)CH、−CHCH(C(O)NH)CHCH、−CH(C(O)NH)CHCH、−C(CHCHC(O)NH、−CH−CH−NH−C(O)−CH、−CH−CH−NH−C(O)−CH−CH3、および−CH−CH−NH−C(O)−CH=CHが挙げられる。
「アルカノール」とは、上記に規定されるC〜Cアルキル基であって、そのC〜Cアルキル基の水素原子のうちの1つが、ヒドロキシル基で置き換えられているものを指す。アルカノール基の代表的な例としては、限定するものではないが、−CHOH、−CHCHOH、−CHCHCHOH、−CHCHCHCHOH、−CHCHCHCHCHOH、−CHCH(OH)CH、−CHCH(OH)CHCH、−CH(OH)CH、および−C(CHCHOHが挙げられる。
「アルキルカルボキシ」とは、上記に規定されるC〜Cアルキル基であって、そのC〜Cアルキル基の水素原子のうちの1つが、−−COOH基で置き換えられているものを指す。アルキルカルボキシ基の代表的な例としては、限定するものではないが、−CHCOOH、−CHCHCOOH、−CHCHCHCOOH、−CHCHCHCHCOOH、−CHCH(COOH)CH、−CHCHCHCHCHCOOH、−CHCH(COOH)CHCH、−CH(COOH)CHCH、および−C(CHCHCOOHが挙げられる。
「シクロアルキル」という用語は、本明細書において用いる場合、3〜12個の炭素、好ましくは3〜8個の炭素、およびより好ましくは3〜6個の炭素を有する飽和環式炭化水素基および部分的に不飽和の環式炭化水素基であって、ここでそのシクロアルキル基が、必要に応じてさらに置換されている環式炭化水素基を包含する。いくつかのシクロアルキル基としては、限定するものではないが、シクロプロピル、シクロブチル、シクロペンチル、シクロペンテニル、シクロヘキシル、シクロヘキセニル、シクロヘプチル、およびシクロオクチルが挙げられる。
「ヘテロアリール」という用語は、単環式である場合、1〜3個のヘテロ原子、二環式である場合、1〜6個のヘテロ原子、または三環式である場合、1〜9個のヘテロ原子を有する芳香族の5〜8員の単環式、8〜12員の二環式、または11〜14員の三環式環系を指し、このようなヘテロ原子は、O、N、またはSから選択され(例えば、炭素原子と、単環式、二環式、または三環式である場合、それぞれ、1〜3、1〜6、または1〜9個のO、N、またはSのヘテロ原子)、ここで各々の環の0、1、2、3、または4個の原子が、置換基によって置換されている。ヘテロアリール基の例としては、ピリジル、フリル、またはフラニル、イミダゾリル、ベンズイミダゾリル、ピリミジニル、チオフェニル、またはチエニル、キノリニル、インドリル、チアゾリルなどが挙げられる。
「ヘテロアリールアルキル」という用語または「ヘテロアラルキル」という用語は、ヘテロアリールで置換されたアルキルを指す。「ヘテロアリールアルコキシ」という用語は、ヘテロアリールで置換されたアルコキシを指す。
「ヘテロアリールアルキル」という用語または「ヘテロアラルキル」という用語は、ヘテロアリールで置換されたアルキルを指す。「ヘテロアリールアルコキシ」という用語は、ヘテロアリールで置換されたアルコキシを指す。
「ヘテロシクリル」という用語は、単環式である場合、1〜3個のヘテロ原子、二環式である場合、1〜6個のヘテロ原子、または三環式である場合、1〜9個のヘテロ原子を有する非芳香族の5〜8員の単環式、8〜12員の二環式、または11〜14員の三環式環系を指し、このようなヘテロ原子は、O、N、またはSから選択され(例えば、炭素原子と、単環式、二環式、または三環式である場合、それぞれ、1〜3、1〜6、または1〜9個のO、N、またはSのヘテロ原子)、各々の環の0、1、2、または3個の原子は、置換基によって置換される。ヘテロシクリル基の例としては、ピペラジニル、ピロリジニル、ジオキサニル(dioxanyl)、モルホリニル、テトラヒドロフラニルなどが挙げられる。
「置換基」という用語は、任意の分子、化合物、または部分の上の水素原子などの第2の原子または基を交換する基を指す。適切な置換基としては、限定するものではないが、ハロ、ヒドロキシ、メルカプト、オキソ、ニトロ、ハロアルキル、アルキル、アルカリル、アリール、アラルキル、アルコキシ、チオアルコキシ、アリールオキシ、アミノ、アルコキシカルボニル、アミド、カルボキシ、アルカンスルホニル、アルキルカルボニル、およびシアノ基が挙げられる。
いくつかの実施形態において、本発明の化合物は、1つ以上の不斉中心を含有し、従ってラセミ化合物およびラセミ混合物、単一の鏡像異性体、個々のジアステレオマー、ならびにジアステレオマー混合物として存在する。これらの化合物の全てのそのような異性体形態は、別段明確に規定されない限り、本発明に含まれる。いくつかの実施形態において、本発明の化合物はまた、複数の互変異性形態で表され、そのような事例において、本発明は、本明細書において記載される化合物の全ての互変異性形態を含む(例えば、環系のアルキル化が、複数の部位でアルキル化をもたらす場合、本発明は、全てのそのような反応産物を含む)。そのような化合物の全てのそのような異性体形態は、別段明確に規定されない限り、本発明に含まれる。本明細書において記載される化合物の全ての結晶形態は、明確に規定されない限り、本発明に含まれる。
本明細書において用いる場合、「増加」および「減少」という用語は、統計的に有意に(すなわち、p<0.1)、それぞれ、少なくとも5%の増加または減少を引き起こすことを意味する。
本明細書において用いる場合、変数についての数値的な範囲の記述は、本発明が、その範囲内の値のうちのいずれかに等しい変数で実行されてもよいことを伝えるように意図される。従って、本質的に不連続の変数については、変数は、その範囲の終点を含む数値的な範囲内の任意の整数値と等しい。同様に、本質的に連続の変数については、変数は、その範囲の終点を含む数値的な範囲内の任意の実際の値と等しい。例として、限定するものではないが、0および2の間の値を有するとして記載される変数は、その変数が本質的に不連続の場合、値0、1、または2をとり、その変数が本質的に連続の場合、値0.0、0.1、0.01、0.001、または任意の他の実際の値≧0かつ≦2をとる。
本明細書において用いる場合、具体的に別のことを示されない限り、「または(あるいは、もしくは)」という単語は、「いずれか/または」の排他的な意味ではなく、「および/または」の包括的な意味で用いられる。
「平均して」という用語は、各データポイントについての、少なくとも3回の独立した反復の実行に由来する平均値を表す。
「生物学的活性」という用語は、本発明の大環状分子の構造的および機能的特性を包含する。生物学的活性は、例えば、構造的安定性、α−らせん度、標的に対する親和性、タンパク質分解性の分解に対する抵抗性、細胞透過性、細胞内安定性、インビボ安定性、またはその任意の組合せである。
本発明の1つ以上の特定の実施形態の詳細は、添付の図面および下記の説明において記載される。本発明の他の特徴、目的、および利点は、本明細書本文および図面からならびに本特許請求の範囲から明白となる。
いくつかの実施態様では、本発明のペプチド模倣大環状分子は、低酸素誘導性因子(HIF)タンパク質に関連する。慢性の低酸素症は、多くの腫瘍の特徴であり、新脈管形成およびさらに攻撃的な表現型に関連している。低酸素症に対する適合は、CBPおよびp300転写活性化補助因子と複合体化した低酸素誘導性因子−1(HIF−1)により、低酸素応答性遺伝子(VEGF、Glut−1など)のトランス活性化によって媒介される。低酸素誘導性因子(HIF)は、腫瘍形成および新脈管形成に関与する特定の遺伝子の転写を活性化し、これによって、酸素送達、血糖値(glucose level)、代謝活性、新脈管形成、赤血球新生、細胞増殖およびアポトーシスを調節することによって、低酸素濃度に対する応答を媒介するα,β−ヘテロ二量体転写因子である。αサブユニットは、低レベルの酸素に応答して発現されると考えられるが、βサブユニットは構成的に発現される。
HIF応答性遺伝子の活性化は、p300、CBP、またはSRC−1などの転写活性化補助因子の補充を必要とする。CBPおよびp300は、多くの転写因子のトランス活性化ドメインを結合することによって、および一般的な転写装置の構成要素を結合することによって転写活性化補助因子として機能する、パラロガスマルチドメインタンパク質である。さらに、それらは、ヒストンアセチルトランスフェラーゼ(HAT)活性を有する。
正常酸素下では、HIF類は、フォン・ヒッペル・リンドウ(VHL)腫瘍抑制因子pVHLによるプロテアソーム分解の標的である。pVHLは、酸素依存性の方式でHIF−αと相互作用するE3ユビキチンリガーゼ複合体の基質認識構成要素であることが示されている。プロリル−4−ヒドロキシラーゼドメイン(PHD)含有タンパク質によるHIF−αODD内の保存されたプロリン残基の水酸化は、pVHLの結合および分解を媒介する。低酸素症下では、HIF−αサブユニットは安定化されて、核に移行し、ここでそれらはARNTとヘテロ二量体化して、HIF標的遺伝子の調節性エレメント内に位置するHRE類に結合する(Jaakkola P,ら、Science 2001;292:468〜472)。HIF安定化およびDNA結合活性は、6%未満という酸素濃度の酸素で誘導され、0.5%の酸素張度で最大である。一旦安定化されれば、HIF−α/ARNTヘテロ二量体は、転写活性化因子p300およびCBPを補充することによって転写を活性化する。HIFとp300/CBPとの間の相互作用はまた、2−オキソグルタレートおよびFe(II)−依存性オキシゲナーゼスーパーファミリーのメンバーであるHIF−1(FIH−1)を阻害する因子によって酸素依存性の方式で調節される。FIHは、HIF−α C−末端トランス活性化ドメイン(CTAD)内に位置するアスパラギン残基を水酸化し、かつp300/CBP結合を防止する(Mahon PC,ら、Genes Dev 2001;15:2675〜2686)。
HIF−1αタンパク質発現のレベルの増大は、膀胱腫瘍、乳房腫瘍、結腸腫瘍、神経膠腫、肝細胞腫瘍、卵巣腫瘍、膵臓腫瘍、前立腺腫瘍および腎臓腫瘍を含む多くの固形腫瘍型と正に関連する(Cancer Res.1999,59:5830−5835;Talksら、Am J Pathol 2000;157:411〜421)。HIF−1αはまた、頭頸部癌、上咽頭癌、結腸直腸癌、膵臓癌、乳癌、子宮頸癌、骨肉腫、子宮内膜癌、卵巣癌、膀胱癌、グリア芽細胞腫および胃癌に関与していると考えられる(Rankinら、Cell Death and Differentiation (2008) 15,678〜685)。同時の化学放射線療法(chemoradiotherapy)で処置された局所的に進行した手術不能な頭頸部扁平上皮癌(HNSCC)におけるHIF−1α過剰発現は、生存の減少と関連しており(Koukourakisら、2002)、治療目的で一次手術で処置したHNSCCにおけるHIF−1α過剰発現も同様であった(Winterら、2006)。放射線療法で処置した中咽頭の扁平上皮癌では、HIF−1α過剰発現は、局所的な無障害生存率(failure−free survival)、無病生存率および全生存と反比例した(Aebersoldら、2001)。高レベルのHIF−1αは、リンパ節陽性の乳癌(Gruberら、2004;Schindlら、2002)およびリンパ節陰性の乳癌(Bosら、2003)の患者における生存の短縮と関連していた。食道の癌では、高レベルのHIF−1αは、アジュバント療法での処置が有無の患者において生存率の減少と関連していた(Kurokawaら、2003)。
異種移植された免疫欠損マウスでの実験で、HIF−1αの損失は、マウスの胚性線維芽細胞由来の線維肉腫(Ryanら、2000)、およびマウス胚性幹細胞由来の奇形癌腫(Ryanら、1998)の増殖を低減したことが実証された。これは、ケトミン(chetomin)(その転写活性化補助因子p300に対するHIF結合の撹乱物質である)によるHIF−1αの薬理学的阻害が、HCT116腫瘍異種移植片内の低酸素誘導性転写を阻害し、かつそれらの増殖を阻害したという報告と一致する(Kungら、2004)。膵臓腺管腺癌細胞株由来のドミナントネガティブHIF−1αトランスフェクト体(transfectant)は、重症複合免疫不全(SCID)マウスにおける異種移植片モデルで腫瘍形成能の低下を示した(Chenら、2003)。ヌードマウスにおける機能研究の進歩において、HIF−1αについて陰性の膵臓癌細胞株由来のHIF−1αトランスフェクト体は、一致して、腫瘍形成能の増大を示した(Akakuraら、2001)。対照的に、マウス胚性幹細胞由来のHIF−1αノックアウト腫瘍は、低酸素誘発性アポトーシスの減少およびストレス誘発性増殖の増大に起因するヌードマウスでの増殖の加速を示した(Carmelietら、1998)。
低酸素に対する適応応答におけるHIF−1αの中心的な役割およびその予後不良との関連によって、HIF−1αは抗癌薬開発のための可能性のある標的となる。HIF−1αに対するアンチセンス療法は、HIF−1α発現および転写活性を減らすことが示されている;しかし、現在の技術では、これは細胞培養における実験的な関係に過ぎず、臨床的にあてはめることは困難である(Yeoら、2004)。従って、癌治療の標的としてのHIF−1αの能力は、HIF−1の低分子インヒビターの開発に依拠する。HIF−1αを阻害する化合物を特定および開発すること、ならびにそれらの作用機序を確立することがかなり推進されている。いくつかの抗癌薬が、HIFを阻害することが示されているが、それらの薬物のうちHIF−1を直接かつ特異的に標的するものは示されていない(Giacciaら、2003,Semenza 2003,2006,Powis & Kirkpatrick 2004,Yeoら、2004,Belozerov & Van Meir 2005,Escuinら、2005,Wiedmann & Caca 2005,Generaliら、2006)。この特異性がないことで、これらの薬物の如何なる抗腫瘍形成効果をHIF−1αの阻害に明確に帰することがますます困難になる。国立癌研究所(National Cancer Institute)の化学的貯蔵所(chemical repository)の「多様性セット(Diversity Set)」を示す2000個の化合物のハイスループットスクリーニングによって、4つの特異的なHIF−1インヒビターが特定された(Rapisardaら、2002)。p300とHIF−1αの相互作用を破壊するいくつかのインヒビターが腫瘍内の低酸素誘導性の転写を阻害することが公知であり、腫瘍増殖を阻害するが(Nat.Med.2000,6:1335〜1340 & Cancer Cell 2004,6:33〜43)、HIF−1αとp300との間の広範な相互作用によって、低分子インヒビターが有効であることが困難になる。従って、この相互作用を破壊する新規な方法は、極めて望ましい。
CBP/p300とのHIF−1αの複合体の構造は、低酸素応答の分子基礎をもたらすという洞察だけが目的ではなく、抗癌剤の設計の潜在的な標的も目的としている。HIF−1αとp300との間の相互作用はマッピングされている(Kung A L,ら、(2000)Nat Med 6:1335〜1340)。HIF−1αによる転写調節は、HIF−1αのC−末端活性化ドメイン(CTAD)とCBP/p300のCH1ドメイン(TAZ1ドメインとしても公知)との間の相互作用に全体的に依存する(Kallio PJ,ら、EMBO 17,1998)。HIF−1αはまた、CTAD単独よりもトランス活性化の有効性が低いN−末端トランス活性化ドメイン(NTAD)を含む;しかし、NTADおよびCTADは一緒になって相乗的に機能する。CH1およびCH3は、多数のシステインおよびヒスチジン残基を含むCBP/p300の相同性Zn2+−結合ドメインである。CH2ドメインはまた、Zn2+に結合するが、CH1およびCH3ドメインには構造的に関連しない。HIF−1αのCTADに結合するp300のCH1ドメインの構造は、決定されている(Freedman SJ.ら、PNAS vol 99,2002)。この構造によって、CH1ドメインが、HIF−1α CTADの折り畳みを誘導する足場を提供することが示される。さらに詳細には、p300 CH1ドメインは、HCCC配列モチーフによって形成される4つのα−らせんおよび3つのZn2+−配位部位から構成される。HIF−1α CTADは、以下の4つの構造エレメントを含む:N−末端伸長領域、2つのらせん、αAおよびαB、ならびに介在するループ。伸長したN−末端セグメントおよびC−末端らせんαBの両方が、CH1の3つの主ならせんの各々で、ただし三角形ドメインの反対側で残基と接触する。らせん間のループは、CH1中のα3に跨っており、かつαAおよびαBは、溝の中に、そのいずれかの側で、ほぼ平行の配置で埋まっている。らせんαAおよびαBは、CH1ドメイン中のα3の周囲を固定する(clamp)。ランダム変異導入スクリーニングによって、4つのHIF−1α残基(Leu−795、Cys−800、Leu−818、およびLeu−822)がp300補充に重要であると確認された。これらの残基の全てが複合体のコアに埋められている。4つのp300残基はまた、HIF−1α(残基Leu−344、Leu−345、Cys−388、およびCys−393)との相互作用に重要であると確認された。2つのロイシンがHIF−1αの境界で見出され、2つのシステインがZn2+配位に関与し、従ってHIF−1α結合に間接的に必要である。HIF−1αのCTADにおける40個の残基のうち3/4より多くがp300のCH1ドメインに接触し、2つのタンパク質がもつれあって、共通の疎水性コアを有する単一の構造ドメインを形成する。保存されたAsn−803は、低酸素スイッチとして機能する。正常酸素条件下のAsn−803の水酸化によって、CBPに対するHIF−1α CADの結合の抑止が生じる(Lando D,ら、Science 295,2002)。Asn−803は、α−らせんに位置し、かつタンパク質−タンパク質の境界に深く埋まっており、Ile−353およびLys−349側鎖の疎水性部分に対してパッキングされている(Dames SA,ら、PNAS vol 99,2002)。これはまた、α−らせんおよび複合体の安定化に重要な役割をおそらく果たす側鎖水素結合相互作用のネットワークを形成する。このような構造的決定によって、HIF−1αとCBP/p300との間の相互作用を破壊するインヒビターの設計の基礎が得られる。
本発明は、CBP/p300活性化補助因子とのHIF1αの会合を妨害し得るペプチド模倣大環状分子を提供する。本発明における使用のために適切なHIF1α/CBP/p300ペプチドの非限定的な例示的な列挙を下に示す:
本発明のペプチド模倣大環状分子
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、式(I):
を有し、
式中:
A、C、D、およびEはそれぞれ独立して、天然または非天然のアミノ酸であり;
Bは、天然もしくは非天然アミノ酸、アミノ酸アナログ、
、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
およびRは独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルであり;
は、必要に応じてRで置換される、水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであり;
Lは、式−L−L−の大環状分子形成リンカーであり;
およびLは独立して、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であり、それぞれ、必要に応じてRで置換され;
はそれぞれ、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
Kはそれぞれ、O、S、SO、SO、CO、CO、またはCONRであり;
はそれぞれ独立して、ハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体、または治療剤であり;
はそれぞれ独立して、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体、または治療剤であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリール、またはD残基を有する環状構造の一部であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリール、またはE残基を有する環状構造の一部であり;
vおよびwは独立して1〜1000の整数であり;
u、x、yおよびzは独立して0〜10の整数であり;かつ
nは1〜5の整数である。
一例において、RおよびRの少なくとも1つは、非置換であるかまたはハロ−で置換されるアルキルである。別の例において、RおよびRの両方は、独立して、非置換であるかまたはハロ−で置換されるアルキルである。いくつかの実施形態において、RおよびRの少なくとも1つは、メチルである。他の実施形態において、RおよびRは、メチルである。
本発明のいくつかの実施形態において、x+y+zは、少なくとも3である。本発明のいくつかの実施形態において、x+y+zは、1、2、3、4、5、6、7、8、9、または10である。本発明の大環状分子または大環状分子前駆体における、A、B、C、D、またはEの各出現(occurrence)は、独立して選択される。例えば、式[A]によって表される配列は、xが3である場合、アミノ酸が同一でない、例えばGln−Asp−Alaである実施形態、および、アミノ酸が同一である、例えばGln−Gln−Glnである実施形態を包含する。これは、示される範囲におけるx、y、またはzの任意の値に適用される。同様に、uが1より大きい場合、本発明の各々の化合物は、同じであるかまたは異なるペプチド模倣大環状分子を包含し得る。例えば、本発明の化合物は、異なるリンカー長または化学組成を含むペプチド模倣大環状分子を含んでもよい。
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、α−らせんである二次構造を含み、Rは、−Hであり、らせん内水素結合を可能にする。いくつかの実施形態において、A、B、C、D、またはEの少なくとも1つは、α,α−二置換アミノ酸である。一例において、Bは、α,α−二置換アミノ酸である。例えば、A、B、C、D、またはEの少なくとも1つは、2−アミノイソ酪酸である。他の実施形態において、A、B、C、D、またはEの少なくとも1つは、
である。
他の実施形態において、第1のCαから第2のCαまで測定される大環状分子形成リンカーLの長さは、第1のCαから第2のCαまでの間のものを含むが、必ずしもこれらに限定されない、上記ペプチド模倣大環状分子の残基によって形成されるα−らせんなどの所望の二次ペプチド構造を安定させるために選択される。
一実施形態において、式(I)のペプチド模倣大環状分子は:
である。
ここで、RおよびRは各々独立して、独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、もしくはヘテロシクロアルキルである。
関連する実施形態において、式(I)のペプチド模倣大環状分子は:
である。
他の実施形態において、式(I)のペプチド模倣大環状分子は、下記に示される任意の式の化合物:
であり、
式中、「AA」は、任意の天然または非天然アミノ酸側鎖を表し、かつ
は、上記で定義した[D]、[E]であり、nは、0および20、50、100、200、300、400、または500の間の整数である。いくつかの実施形態において、nは、0である。他の実施形態において、nは、50未満である。
大環状分子形成リンカーLの例示的な実施形態は、下記に示される。
いくつかの実施形態では、本発明のペプチド模倣大環状分子は、式(II):
を有しており、
式中:
A、C、DおよびEはそれぞれ独立して、天然または非天然のアミノ酸であり;
Bは、天然もしくは非天然のアミノ酸、アミノ酸アナログ、
、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
およびRは独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルであり;
は、必要に応じてRで置換される、水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであり;
Lは、式
の大環状分子形成リンカーであり;
、L、およびLは独立して、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であり、それぞれ、必要に応じてRで置換され;
はそれぞれ、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
Kはそれぞれ、O、S、SO、SO、CO、CO、またはCONRであり;
はそれぞれ、独立して、ハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体、または治療剤であり;
はそれぞれ、独立して、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体、または治療剤であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリール、またはD残基を有する環状構造の一部であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリールまたはE残基を有する環状構造の一部であり;
vおよびwは独立して1〜1000の整数であり;
u、x、yおよびzは独立して0〜10の整数であり;かつ
nは1〜5の整数である。
一例では、RおよびRの少なくとも1つは、非置換であるかまたはハロ−で置換されるアルキルである。別の例において、RおよびRの両方とも、独立して、非置換であるかまたはハロ−で置換されるアルキルである。いくつかの実施形態において、RおよびRの少なくとも1つは、メチルである。他の実施形態において、RおよびRは、メチルである。
本発明のいくつかの実施形態において、x+y+zは、少なくとも3である。本発明の他の実施形態において、x+y+zは、1、2、3、4、5、6、7、8、9、または10である。本発明の大環状分子または大環状分子前駆体における、A、B、C、D、またはEの各出現は、独立して選択される。例えば、式[A]によって表される配列は、xが3である場合、アミノ酸が同一でない、例えばGln−Asp−Alaである実施形態、および、アミノ酸が同一である、例えばGln−Gln−Glnである実施形態を包含する。これは、示される範囲におけるx、y、またはzの任意の値に適用される。
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、α−らせんである二次構造を含み、Rは、−Hであり、これによってらせん内水素結合が可能になる。いくつかの実施形態において、A、B、C、D、またはEの少なくとも1つは、α,α−二置換アミノ酸である。一例において、Bは、α,α−二置換アミノ酸である。例えば、A、B、C、D、またはEの少なくとも1つは、2−アミノイソ酪酸である。他の実施形態において、A、B、C、D、またはEの少なくとも1つは、
である。
他の実施形態において、第1のCαから第2のCαまで測定される大環状分子形成リンカーLの長さは、第1のCαから第2のCαまでの間のものを含むが、必ずしもこれらに限定されない、上記ペプチド模倣大環状分子の残基によって形成されるα−らせんなどの所望の二次ペプチド構造を安定させるために選択される。
大環状分子形成リンカーLの例示的な実施形態は、下記に示される。
他の実施形態において、本発明は、式(III)のペプチド模倣大環状分子:
を提供し、
式中:
A、C、D、およびEはそれぞれ独立して、天然または非天然アミノ酸であり;
Bは、天然もしくは非天然アミノ酸、アミノ酸アナログ、
、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
およびRは独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルであり;
は、非置換であるかもしくはRで置換される、水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであり;
、L、L、およびLは、独立して、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であって、それぞれ、非置換であるかまたはRで置換され;
Kは、O、S、SO、SO、CO、CO、またはCONRであり;
はそれぞれ、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
はそれぞれ、独立して、ハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体、または治療剤であり;
はそれぞれ、独立して、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体、または治療剤であり;
は、非置換であるかもしくはRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリールまたはD残基を有する環状構造の一部であり;
は、非置換であるかもしくはRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、もしくはヘテロシクロアリールまたはE残基を有する環状構造の一部であり;
vおよびwは独立して1〜1000の整数であり;
u、x、yおよびzは独立して0〜10の整数であり;かつ
nは1〜5の整数である。
一例において、RおよびRの少なくとも1つは、非置換であるかまたはハロ−で置換されるアルキルである。別の例において、RおよびRの両方は、独立して、非置換であるかまたはハロ−で置換されるアルキルである。いくつかの実施形態において、RおよびRの少なくとも1つは、メチルである。他の実施形態において、RおよびRは、メチルである。
本発明のいくつかの実施形態において、x+y+zは、少なくとも3である。本発明の他の実施形態において、x+y+zは、3、4、5、6、7、8、9、または10である。本発明の大環状分子または大環状分子前駆体における、A、B、C、D、またはEの各々の出現は、独立して選択される。例えば、式[A]によって表される配列は、xが3である場合、アミノ酸が同一でない、例えばGln−Asp−Alaである実施形態、および、アミノ酸が同一である、例えばGln−Gln−Glnである実施形態を包含する。これは、示される範囲におけるx、y、またはzの任意の値に適用される。
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、α−らせんである二次構造を含み、Rは、−Hであり、これによってらせん内水素結合が可能になる。いくつかの実施形態において、A、B、C、D、またはEの少なくとも1つは、α,α−二置換アミノ酸である。一例において、Bは、α,α−二置換アミノ酸である。例えば、A、B、C、D、またはEの少なくとも1つは、2−アミノイソ酪酸である。他の実施形態において、A、B、C、D、またはEの少なくとも1つは、
である。
他の実施形態において、第1のCαから第2のCαまで測定される大環状分子形成リンカー[−L−S−L−S−L−]の長さは、第1のCαから第2のCαまでの間のものを含むが、必ずしもこれらに限定されない、上記ペプチド模倣大環状分子の残基によって形成されるα−らせんなどの所望の二次ペプチド構造を安定させるために選択される。
大環状分子または大環状分子前駆体は、例えば液相法または固相法によって合成され、天然に存在するアミノ酸および天然に存在しないアミノ酸の両方を含むことができる。例えばChemistry and Biochemistry of the Amino Acids、G.C.Barrett編、Chapman and Hall、1985の中のHunt、「The Non−Protein Amino Acids」を参照のこと。いくつかの実施形態では、チオール部分は、アミノ酸残基L−システイン、D−システイン、α−メチル−Lシステイン、α−メチル−D−システイン、L−ホモシステイン、D−ホモシステイン、α−メチル−L−ホモシステイン、またはα−メチル−D−ホモシステインの側鎖である。ビスアルキル化試薬は、一般式X−L−Yで表されるものであり、式中、Lは、リンカー部分であり、XおよびYは、Lとの結合を形成するために−SH部分によって置き換えられる脱離基である。いくつかの実施形態において、XおよびYは、I、Br、またはClなどのハロゲンである。
他の実施形態において、式I、II、またはIIIの化合物におけるDおよび/またはEは、細胞の取り込みを促進するためにさらに改変される。いくつかの実施形態において、ペプチド模倣大環状分子の脂質付加(lipidating)またはペグ化(PEGylating)は、細胞の取り込みを促進し、バイオアベイラビリティを増大させ、血液循環を増加させ、薬物動態を改変し、免疫原性を低下させ、および/または必要とされる投与の頻度を減少させる。
他の実施形態において、式I、II、またはIIIの化合物における、[D]および[E]の少なくとも1つは、上記ペプチド模倣大環状分子が、少なくとも2つの大環状分子形成リンカーを含むような、追加の大環状分子形成リンカーを含む部分を表す。特定の実施形態において、ペプチド模倣大環状分子は、2つの大環状分子形成リンカーを含む。
本発明のペプチド模倣大環状分子では、本明細書に記載されている任意の大環状分子形成リンカーは、表1〜4に示される任意の配列との任意の組み合わせで、および本明細書において示される任意のR−置換基との任意の組合せでも、用いられてもよい。
いくつかの実施形態において、上記ペプチド模倣大環状分子は、少なくとも1つのα−らせんモチーフを含む。例えば、式I、II、またはIIIの化合物におけるA、B、および/またはCは、1つ以上のα−らせんを含む。一般的な問題として、α−らせんは、1ターンあたり3〜4個のアミノ酸残基を含む。いくつかの実施形態において、上記ペプチド模倣大環状分子のα−らせんは、1〜5個のターン、および従って3〜20個のアミノ酸残基を含む。特定の実施形態において、α−らせんは、1個のターン、2個のターン、3個のターン、4個のターン、または5個のターンを含む。いくつかの実施形態において、大環状分子形成リンカーは、上記ペプチド模倣大環状分子内に含まれるα−らせんモチーフを安定化させる。従って、いくつかの実施形態において、第1のCαから第2のCαまでの大環状分子形成リンカーLの長さは、α−らせんの安定性を増加させるために選択される。いくつかの実施形態において、大環状分子形成リンカーは、α−らせんの1ターン〜5ターンまでの間に架かる(span)。いくつかの実施形態において、大環状分子形成リンカーは、α−らせんの約1ターン、2ターン、3ターン、4ターン、または5ターンに架かる。いくつかの実施形態において、大環状分子形成リンカーの長さは、α−らせんの1ターンあたり約5Å〜9Åまたはα−らせんの1ターンあたり約6Å〜8Åである。大環状分子形成リンカーが、α−らせんの約1ターンに架かる場合、その長さは、約5個の炭素−炭素結合〜13個の炭素−炭素結合、約7個の炭素−炭素結合〜11個の炭素−炭素結合、または約9個の炭素−炭素結合に等しい。大環状分子形成リンカーが、α−らせんの約2ターンに架かる場合、その長さは、約8個の炭素−炭素結合〜16個の炭素−炭素結合、約10個の炭素−炭素結合〜14個の炭素−炭素結合、または約12個の炭素−炭素結合に等しい。大環状分子形成リンカーが、α−らせんの約3ターンに架かる場合、その長さは、約14個の炭素−炭素結合〜22個の炭素−炭素結合、約16個の炭素−炭素結合〜20個の炭素−炭素結合、または約18個の炭素−炭素結合に等しい。大環状分子形成リンカーが、α−らせんの約4ターンに架かる場合、その長さは、約20個の炭素−炭素結合〜28個の炭素−炭素結合、約22個の炭素−炭素結合〜26個の炭素−炭素結合、または約24個の炭素−炭素結合に等しい。大環状分子形成リンカーが、α−らせんの約5ターンに架かる場合、その長さは、約26個の炭素−炭素結合〜34個の炭素−炭素結合、約28個の炭素−炭素結合〜32個の炭素−炭素結合、または約30個の炭素−炭素結合に等しい。大環状分子形成リンカーが、α−らせんの約1ターンに架かる場合、その連結は、約4個の原子〜12個の原子、約6個の原子〜10個の原子、または約8個の原子を含む。大環状分子形成リンカーが、上記α−らせんの約2ターンに架かる場合、その連結は、約7個の原子〜15個の原子、約9個の原子〜13個の原子、または約11個の原子を含む。大環状分子形成リンカーが、上記α−らせんの約3ターンに架かる場合、その連結は、約13個の原子〜21個の原子、約15個の原子〜19個の原子、または約17個の原子を含む。大環状分子形成リンカーが、上記α−らせんの約4ターンに架かる場合、その連結は、約19個の原子〜27個の原子、約21個の原子〜25個の原子、または約23個の原子を含む。大環状分子形成リンカーが、上記α−らせんの約5ターンに架かる場合、その連結は、約25個の原子〜33個の原子、約27個の原子〜31個の原子、または約29個の原子を含む。大環状分子形成リンカーが、上記α−らせんの約1ターンに架かる場合、得られる大環状分子は、約17員〜25員、約19員〜23員、または約21員を含有する環を形成する。大環状分子形成リンカーが、上記α−らせんの約2ターンに架かる場合、得られる大環状分子は、約29員〜37員、約31員〜35員、または約33員を含有する環を形成する。大環状分子形成リンカーが、上記α−らせんの約3ターンに架かる場合、得られる大環状分子は、約44員〜52員、約46員〜50員、または約48員を含有する環を形成する。大環状分子形成リンカーが、上記α−らせんの約4ターンに架かる場合、得られる大環状分子は、約59員〜67員、約61員〜65員、または約63員を含有する環を形成する。大環状分子形成リンカーが、上記α−らせんの約5ターンに架かる場合、得られる大環状分子は、約74員〜82員、約76員〜80員、または約78員を含有する環を形成する。
他の実施形態において、本発明は、式(IV)または(IVa)のペプチド模倣大環状分子を提供し、
式中、
A、C、D、およびEはそれぞれ独立して、天然または非天然アミノ酸であり;
Bは、天然もしくは非天然アミノ酸、アミノ酸アナログ、
、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
およびRは独立して、非置換であるかもしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、もしくはヘテロシクロアルキル、またはE残基を有する環状構造の一部であり;
は、必要に応じてRで置換される、水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであり;
Lは、式−L−L−の大環状分子形成リンカーであり;
およびLは独立して、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であり、それぞれ、必要に応じてRで置換され;
はそれぞれ、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
Kはそれぞれ、O、S、SO、SO、CO、CO、またはCONRであり;
はそれぞれ、独立して、ハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体、または治療剤であり;
はそれぞれ、独立して、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体、または治療剤であり;
は、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、またはヘテロシクロアリールであり;
vおよびwは独立して1〜1000の整数であり;
u、x、yおよびzは独立して0〜10の整数であり;かつ
nは1〜5の整数である。
一例において、RおよびRの少なくとも1つは、非置換であるかまたはハロ−で置換されるアルキルである。別の例において、RおよびRの両方は、独立して、非置換であるかまたはハロ−で置換されるアルキルである。いくつかの実施形態において、RおよびRの少なくとも1つは、メチルである。他の実施形態において、RおよびRは、メチルである。
本発明のいくつかの実施形態において、x+y+zは、少なくとも1である。本発明の他の実施形態において、x+y+zは、少なくとも2である。本発明の他の実施形態において、x+y+zは、1、2、3、4、5、6、7、8、9、または10である。本発明の大環状分子または大環状分子前駆体における、A、B、C、D、またはEの各々の出現は、独立して選択される。例えば、式[A]によって表される配列は、xが3である場合、アミノ酸が同一でない、例えばGln−Asp−Alaである実施形態、および、アミノ酸が同一である、例えばGln−Gln−Glnである実施形態を包含する。これは、示される範囲におけるx、y、またはzの任意の値に適用される。
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、α−らせんである二次構造を含み、かつRは、−Hであり、これによってらせん内水素結合が可能になる。いくつかの実施形態において、A、B、C、D、またはEの少なくとも1つは、α,α−二置換アミノ酸である。一例において、Bは、α,α−二置換アミノ酸である。例えば、A、B、C、D、またはEの少なくとも1つは、2−アミノイソ酪酸である。他の実施形態において、A、B、C、D、またはEの少なくとも1つは、
である。
他の実施形態において、第1のCαから第2のCαまで測定される大環状分子形成リンカーLの長さは、第1のCαから第2のCαまでの間のものを含むが、必ずしもこれらに限定されない、上記ペプチド模倣大環状分子の残基によって形成されるα−らせんなどの所望の二次ペプチド構造を安定させるために選択される。
大環状分子形成リンカー−L−L−の例示的な実施形態は、下記に示される。
ペプチド模倣大環状分子の調製
本発明のペプチド模倣大環状分子は、当技術分野において公知の任意の種々の方法によって調製され得る。例えば、表1、2、3または4において「X」で示される任意の残基が、同じ分子中の第2の残基またはそのような残基の前駆体と架橋剤を形成し得る残基で置換されてもよい。
ペプチド模倣大環状分子の形成をもたらすための種々の方法が、当技術分野において公知である。例えば、式Iのペプチド模倣大環状分子の調製は、Schafmeisterら、J.Am.Chem.Soc.122:5891〜5892(2000);Schafmeister&Verdine、J.Am.Chem.Soc.122:5891(2005);Walenskyら、Science 305:1466〜1470(2004);および米国特許第7,192,713号;ならびにPCT出願WO2008/121767において記載されている。引用文献において開示されているα,α−二置換アミノ酸およびアミノ酸前駆体を、ペプチド模倣大環状分子前駆体ポリペプチドの合成において使用してもよい。例えば、「S5−オレフィンアミノ酸」は(S)−α−(2’−ペンテニル)アラニンであり、そして「R8オレフィンアミノ酸」は(R)−α−(2’−オクテニル)アラニンである。このようなアミノ酸を前駆体ポリペプチド中に組み込んだ後、末端オレフィンをメタセシス触媒と反応させ、これによって上記ペプチド模倣大環状分子の形成をもたらす。
他の実施形態において、本発明のペプチド模倣大環状分子は、式IVまたはIVaである。このような大環状分子の調製のための方法は、例えば、米国特許第7,202,332号において記載されている。
いくつかの実施形態において、これらのペプチド模倣大環状分子の合成は、アジド部分およびアルキン部分を含有するペプチド模倣物前駆体の合成;その後ペプチド模倣物前駆体を大環状分子化試薬と接触させて、トリアゾール結合ペプチド模倣大環状分子を生成させることを特徴とする複数段階工程を含む。このような工程(process)は、例えば、2008年2月25日に出願された米国出願第12/037,041号に記載される。大環状分子または大環状分子前駆体は、例えば、液相法または固相法によって合成され、天然に存在するおよび天然に存在しないアミノ酸の両方を含有することができる。例えば、Chemistry and Biochemistry of the Amino Acids、G.C.Barrett編、Chapman and Hall、1985年の中のHunt、「The Non−Protein Amino Acids」を参照のこと。
いくつかの実施形態において、アジドはある残基のα−炭素に結合しており、アルキンは別の残基のα−炭素に結合している。いくつかの実施形態において、アジド部分は、アミノ酸L−リジン、D−リジン、α−メチル−L−リジン、α−メチル−D−リジン、L−オルニチン、D−オルニチン、α−メチル−L−オルニチンまたはα−メチル−D−オルニチンのアジド−アナログである。別の実施形態において、アルキン部分は、L−プロパルギルグリシンである。さらに別の実施形態において、アルキン部分は、L−プロパルギルグリシン、D−プロパルギルグリシン、(S)−2−アミノ−2−メチル−4−ペンチン酸、(R)−2−アミノ−2−メチル−4−ペンチン酸、(S)−2−アミノ−2−メチル−5−ヘキシン酸、(R)−2−アミノ−2−メチル−5−ヘキシン酸、(S)−2−アミノ−2−メチル−6−ヘプチン酸、(R)−2−アミノ−2−メチル−6−ヘプチン酸、(S)−2−アミノ−2−メチル−7−オクチン酸、(R)−2−アミノ−2−メチル−7−オクチン酸、(S)−2−アミノ−2−メチル−8−ノニン酸および(R)−2−アミノ−2−メチル−8−ノニン酸からなる群より選択されるアミノ酸である。
いくつかの実施形態において、本発明は、ペプチド模倣大環状分子を合成するための方法であって、式Vまたは式VI:
であって、
式中、v、w、x、y、z、A、B、C、D、E、R、R、R、R、LおよびLは式(II)で定義されたとおりであり、大環状分子化試薬がCu試薬である場合R12は−Hであり、大環状分子化試薬がRu試薬である場合R12は−Hまたはアルキルである、ペプチド模倣物前駆体を、大環状分子化試薬と接触させる工程を含み、さらにこの接触させる工程が、式IIIまたは式IVにおいてアルキンとアジド部分との間に形成される共有結合をもたらす、方法を提供する。例えば、大環状分子化試薬がRu試薬である場合、R12はメチルであってもよい。
本発明のペプチド模倣大環状分子において、RおよびRの少なくとも1つは、非置換であるかもしくはハロ−で置換される、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルである。いくつかの実施形態において、RおよびRの両方が独立して、非置換であるかもしくはハロ−で置換される、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルである。いくつかの実施形態において、A、B、C、DまたはEの少なくとも1つは、α,α−二置換アミノ酸である。1つの例では、Bはα,α−二置換アミノ酸である。例えば、A、B、C、DまたはEの少なくとも1つは、2−アミノイソ酪酸である。
例えば、RおよびRの少なくとも1つは、非置換であるかまたはハロ−で置換される、アルキルである。別の例において、RおよびRの両方が独立して、非置換であるかまたはハロ−で置換される、アルキルである。いくつかの実施形態において、RおよびRの少なくとも1つはメチルである。他の実施形態において、RおよびRはメチルである。大環状分子化試薬は、Cu試薬であっても、またはRu試薬であってもよい。
いくつかの実施形態において、ペプチド模倣物前駆体は、接触工程の前に精製される。他の実施形態において、上記ペプチド模倣大環状分子は、接触工程の後に精製される。さらに他の実施形態において、上記ペプチド模倣大環状分子は、接触工程の後に再折り畳み(リフォールディング)される。この方法は溶液中で行われてもよいし、または、あるいは、この方法は固体支持体上で行われてもよい。
上記結合に有利な条件下でペプチド模倣物前駆体またはペプチド模倣大環状分子に結合する、標的高分子の存在下で本発明の方法を行うこともまた、本発明において想定される。いくつかの実施形態において、この方法は、上記結合に有利な条件下でペプチド模倣物前駆体またはペプチド模倣大環状分子に優先的に結合する標的高分子の存在下で行われる。またこの方法を適用して、ペプチド模倣大環状分子のライブラリーを合成してもよい。
いくつかの実施形態において、式Vまたは式VIのペプチド模倣物前駆体のアルキン部分は、L−プロパルギルグリシン、D−プロパルギルグリシン、(S)−2−アミノ−2−メチル−4−ペンチン酸、(R)−2−アミノ−2−メチル−4−ペンチン酸、(S)−2−アミノ−2−メチル−5−ヘキシン酸、(R)−2−アミノ−2−メチル−5−ヘキシン酸、(S)−2−アミノ−2−メチル−6−ヘプチン酸、(R)−2−アミノ−2−メチル−6−ヘプチン酸、(S)−2−アミノ−2−メチル−7−オクチン酸、(R)−2−アミノ−2−メチル−7−オクチン酸、(S)−2−アミノ−2−メチル−8−ノニン酸、および(R)−2−アミノ−2−メチル−8−ノニン酸からなる群より選択されるアミノ酸の側鎖である。他の実施形態において、式Vまたは式VIのペプチド模倣物前駆体のアジド部分は、ε−アジド−L−リジン、ε−アジド−D−リジン、ε−アジド−α−メチル−L−リジン、ε−アジド−α−メチル−D−リジン、δ−アジド−α−メチル−L−オルニチン、およびδ−アジド−α−メチル−D−オルニチンからなる群より選択されるアミノ酸の側鎖である。
いくつかの実施形態において、x+y+zは3であり、A、BおよびCは独立して、天然または非天然のアミノ酸である。他の実施形態において、x+y+zは6であり、A、BおよびCは独立して天然または非天然のアミノ酸である。
いくつかの実施形態において、接触工程は、プロトン性溶媒(protic solvent)、水性溶媒、有機溶媒、およびこれらの混合物からなる群より選択される溶媒において行われる。例えば、溶媒は、HO、THF、THF/HO、tBuOH/HO、DMF、DIPEA、CHCNまたはCHCl、ClCHCHClまたはこれらの混合物からなる群から選択されてもよい。溶媒は、らせん形成に有利な溶媒であってもよい。
代替であるが等価な保護基、脱離基または試薬は置換され、かつ特定の合成工程は、代替の順番または所望の化合物を生成する順序で行われる。本明細書に記載の化合物の合成において有用な、合成化学による変換および保護基の方法論(保護および脱保護)としては、例えば、Larock、Comprehensive Organic Transformations、VCH Publishers(1989);GreeneおよびWuts、Protective Groups in Organic Synthesis、第2版、John Wiley and Sons(1991);FieserおよびFieser、Fieser and Fieser’s Reagents for Organic Synthesis、John Wiley and Sons(1994);およびPaquette編、Encyclopedia of Reagents for Organic Synthesis、John Wiley and Sons(1995)、ならびにこれらの後続の版において記載されているものなどを含む。
本発明のペプチド模倣大環状分子は、例えば、Fieldsら、Synthetic Peptides:A User’s Guideの第3章、Grant編、W.H.Freeman&Co.、New York、N.Y.、1992年、77頁において記載されているものなどの化学合成法によって製造される。従って、例えば、ペプチドは、固相合成の自動化メリフィールド(Merrifield)技術を用いて、側鎖保護アミノ酸を用いてtBocまたはFmoc化学のいずれかによって保護されたアミンを用いて、例えば、自動ペプチド合成機(例えば、Applied Biosystems(Foster City、CA)、430A、431、または433型)において合成される。
本明細書に記載のペプチド模倣物前駆体およびペプチド模倣大環状分子を製造する1つの方法は、固相ペプチド合成(SPPS)を用いる。C末端アミノ酸は、リンカー分子との酸不安定結合を介して架橋ポリスチレン樹脂に結合している。この樹脂は、合成に用いられる溶媒において不溶性であり、このため比較的簡単にかつ迅速に過剰な試薬および副産物を洗い流すようになる。N末端は、Fmoc基で保護されており、酸において安定であるが塩基によって除去することができる。側鎖官能基は、必要に応じて塩基に安定だが酸に不安定な基で保護されている。
より長いペプチド模倣物前駆体は、例えば、自然な化学的ライゲーション(native chemical ligation)を用いて個々の合成ペプチドを結合することによって作製される。あるいは、より長い合成ペプチドは、周知の組換えDNA技術およびタンパク質発現技術によって生合成される。このような技術は、周知の標準的マニュアルにおいて詳細なプロトコールとともに提供されている。本発明のペプチド模倣物前駆体をコードする遺伝子を構築するために、アミノ酸配列を逆翻訳して、好ましくは遺伝子が発現される生物体に最適なコドンを有する、アミノ酸配列をコードする核酸配列を得る。次に、合成遺伝子を、典型的には、必要であればペプチドおよび任意の調節エレメントをコードするオリゴヌクレオチドを合成することによって作製する。合成遺伝子を適切なクローニングベクター中に挿入し、宿主細胞中にトランスフェクトする。次いでペプチドを、選択した発現系および宿主に適した適切な条件下で発現させる。ペプチドを標準的な方法によって精製し特徴付ける。
ペプチド模倣物前駆体は、例えば、ハイスループット多チャンネルコンビナトリアル合成装置(例えば、CreoSalus、Louisville、KY製のThuramed TETRASマルチチャンネルペプチド合成装置またはAAPPTEC、Inc.、Louisville、KY製のModel Apex 396マルチチャンネルペプチド合成装置)を用いるハイスループットなコンビナトリアル法において、例えば作製される。
以下の合成スキームは、本発明を例示するためだけに提供され、本明細書に記載の本発明の範囲を限定することを意図するものではない。図面を簡略化するために、例示的なスキームは、アジドアミノ酸アナログであるε−アジド−α−メチル−L−リジンおよびε−アジド−α−メチル−D−リジン、ならびにアルキンアミノ酸アナログであるL−プロパルギルグリシン、(S)−2−アミノ−2−メチル−4−ペンチン酸、および(S)−2−アミノ−2−メチル−6−ヘプチン酸を表す。従って、以下の合成スキームにおいて、各々のR、R、RおよびRは、−Hであり;各々のLは−(CH−であり;各々のLは−(CH)−である。しかしながら、上記の詳細な説明の全体にわたって述べたように、多くの他のアミノ酸アナログを使用することが可能で、ここでR、R、R、R、LおよびLは、本明細書に開示されている種々の構造から独立して選択することができる。
合成スキーム1は、本発明のいくつかの化合物の調製を示す。キラル補助基(S)−2−[N−(N’−ベンジルプロリル)アミノ]ベンゾフェノン(BPB)およびグリシンまたはアラニンなどのアミノ酸に由来するシッフ塩基のNi(II)複合体は、Belokonら(1998)、Tetrahedron Asymm.9:4249〜4252において記載されているとおり調製する。得られた複合体を引き続き、アジドまたはアルキニル部分を含むアルキル化試薬と反応させて、鏡像異性的に濃縮された本発明の化合物を得る。必要に応じて、ペプチド合成において使用するために、得られた化合物を保護してもよい。
合成スキーム2に示されるペプチド模倣大環状分子の合成のための一般的な方法において、ペプチド模倣物前駆体は、アジド部分およびアルキン部分を含み、市販のアミノ酸N−α−Fmoc−L−プロパルギルグリシンならびにアミノ酸(S)−2−アミノ−2−メチル−4−ペンチン酸、(S)−2−アミノ−6−ヘプチン酸、(S)−2−アミノ−2−メチル−6−ヘプチン酸、N−メチル−ε−アジド−L−リジン、およびN−メチル−ε−アジド−D−リジンのN−α−Fmoc保護形態を用いる、液相または固相ペプチド合成(SPPS)によって合成される。次いでペプチド模倣物前駆体は、標準的な条件(例えば、95%TFAなどの強酸)によって脱保護され、固相樹脂から切断される。ペプチド模倣物前駆体を、粗混合物として反応させるか、または有機溶液もしくは水性溶液においてCu(I)などの大環状分子化試薬との反応の前に精製する(Rostovtsevら(2002)、Angew.Chem.Int.Ed.41:2596〜2599;Tornoeら(2002)、J.Org.Chem.67:3057〜3064;Deitersら(2003)、J.Am.Chem.Soc.125:11782〜11783;Punnaら(2005)、Angew.Chem.Int.Ed.44:2215〜2220)。一実施形態において、トリアゾール形成反応は、α−らせん形成に有利な条件下で行われる。一実施形態において、大環状分子化工程は、HO、THF、CHCN、DMF、DIPEA、tBuOHまたはこれらの混合物からなる群より選択される溶媒において行われる。別の実施形態において、大環状分子化工程はDMFにおいて行われる。いくつかの実施形態において、大環状分子化工程は、緩衝化された水性の溶媒または部分的に水性の溶媒において行われる。
合成スキーム3に示されるペプチド模倣大環状分子の合成のための一般的な方法において、ペプチド模倣物前駆体は、アジド部分およびアルキン部分を含み、市販のアミノ酸N−α−Fmoc−L−プロパルギルグリシンならびにアミノ酸(S)−2−アミノ−2−メチル−4−ペンチン酸、(S)−2−アミノ−6−ヘプチン酸、(S)−2−アミノ−2−メチル−6−ヘプチン酸、N−メチル−ε−アジド−L−リジン、およびN−メチル−ε−アジド−D−リジンのN−α−Fmoc保護形態を用いた、固相ペプチド合成(SPPS)によって合成される。ペプチド模倣物前駆体を、樹脂上で粗混合物としてCu(I)試薬などの大環状分子化試薬と反応させる(Rostovtsevら(2002)、Angew.Chem.Int.Ed.41:2596〜2599;Tornoeら(2002)、J.Org.Chem.67:3057〜3064;Deitersら(2003)、J.Am.Chem.Soc.125:11782〜11783;Punnaら(2005)、Angew.Chem.Int.Ed.44:2215〜2220)。次いで、得られたトリアゾール含有ペプチド模倣大環状分子を、標準的な条件(例えば、95%TFAなどの強酸)によって脱保護して、固相樹脂から切断する。いくつかの実施形態において、大環状分子化工程は、CHCl、ClCHCHCl、DMF、THF、NMP、DIPEA、2、6−ルチジン、ピリジン、DMSO、HOまたはこれらの混合物からなる群より選択される溶媒において行われる。いくつかの実施形態において、大環状分子化工程は、緩衝化された水性の溶媒または部分的に水性の溶媒において行われる。
合成スキーム4に示されるペプチド模倣大環状分子の合成のための一般的な方法において、ペプチド模倣物前駆体は、アジド部分およびアルキン部分を含み、市販のアミノ酸N−α−Fmoc−L−プロパルギルグリシンならびにアミノ酸(S)−2−アミノ−2−メチル−4−ペンチン酸、(S)−2−アミノ−6−ヘプチン酸、(S)−2−アミノ−2−メチル−6−ヘプチン酸、N−メチル−ε−アジド−L−リジン、およびN−メチル−ε−アジド−D−リジンのN−α−Fmoc保護形態を用いる、液相または固相ペプチド合成(SPPS)によって合成される。次いでペプチド模倣物前駆体は、標準的な条件(例えば、95%TFAなどの強酸)によって脱保護され、固相樹脂から切断される。ペプチド模倣物前駆体は、粗混合物として反応させるか、またはRu(II)試薬、例えば、CpRuCl(PPhもしくは[CpRuCl]などの大環状分子化試薬と反応させる前に精製する(Rasmussenら(2007)、Org.Lett.9:5337〜5339;Zhangら(2005)、J.Am.Chem.Soc.127:15998〜15999)。いくつかの実施形態において、大環状分子化工程は、DMF、CHCNおよびTHFからなる群より選択される溶媒において行われる。
合成スキーム5に示されるペプチド模倣大環状分子の合成のための一般的な方法において、ペプチド模倣物前駆体は、アジド部分およびアルキン部分を含み、かつ市販のアミノ酸N−α−Fmoc−L−プロパルギルグリシンならびにアミノ酸(S)−2−アミノ−2−メチル−4−ペンチン酸、(S)−2−アミノ−6−ヘプチン酸、(S)−2−アミノ−2−メチル−6−ヘプチン酸、N−メチル−ε−アジド−L−リジン、およびN−メチル−ε−アジド−D−リジンのN−α−Fmoc保護形態を用いる、固相ペプチド合成(SPPS)によって合成される。ペプチド模倣物前駆体を、粗混合物として樹脂上でRu(II)試薬などの大環状分子化試薬と反応させる。例えば、試薬はCpRuCl(PPhまたは[CpRuCl]であってもよい(Rasmussenら(2007)、Org.Lett.9:5337〜5339;Zhangら(2005)、J.Am.Chem.Soc.127:15998〜15999)。いくつかの実施形態において、大環状分子化工程は、CHCl、ClCHCHCl、CHCN、DMF、およびTHFからなる群より選択される溶媒において行われる。
本発明は、本明細書に記載されるペプチド模倣大環状分子の合成における天然に存在しないアミノ酸およびアミノ酸アナログの使用を想定する。ペプチド模倣大環状分子を含む安定なトリアゾールの合成のために使用される合成方法に対して適合する任意のアミノ酸またはアミノ酸アナログを本発明に用いてもよい。例えば、L−プロパルギルグリシンは、本発明において有用なアミノ酸として想定される。しかし、異なるアミノ酸側鎖を含む他のアルキン含有アミノ酸も本発明において有用である。例えば、L−プロパルギルグリシンは、アミノ酸のα−炭素とアミノ酸側鎖のアルキンとの間に1つのメチレン単位を含む。本発明はまた、α−炭素とアルキンとの間に複数のメチレン単位を有するアミノ酸の使用を想定する。また、アミノ酸L−リジン、D−リジン、α−メチル−L−リジン、およびα−メチル−D−リジンのアジド−アナログは、本発明において有用なアミノ酸として想定される。しかし、異なるアミノ酸側鎖を含む他の末端アジドアミノ酸も本発明で有用である。例えば、L−リジンのアジド−アナログは、アミノ酸のα−炭素とアミノ酸側鎖の末端アジドとの間に4つのメチレン単位を含む。本発明はまた、α炭素と末端アジドとの間に4つより少ないかまたは4つより多いメチレン単位を有するアミノ酸の使用を想定する。表2は、本発明のペプチド模倣大環状分子の調製に有用ないくつかのアミノ酸を示す。
表2は、本発明のペプチド模倣大環状分子の調製に有用な例示的アミノ酸を示す。
いくつかの実施形態において、アミノ酸およびアミノ酸アナログはD−配置のものである。他の実施形態において、アミノ酸およびアミノ酸アナログはL−配置のものである。いくつかの実施形態において、ペプチド模倣物中に含有されるアミノ酸およびアミノ酸アナログの一部はD−配置のものであるが、アミノ酸およびアミノ酸アナログの一部はL−配置のものである。いくつかの実施形態においてアミノ酸アナログは、α−メチル−L−プロパルギルグリシン、α−メチル−D−プロパルギルグリシン、ε−アジド−α−メチル−L−リジン、およびε−アジド−α−メチル−D−リジンなどのα,α−二置換のものである。いくつかの実施形態においてアミノ酸アナログは、N−アルキル化、例えば、N−メチル−L−プロパルギルグリシン、N−メチル−D−プロパルギルグリシン、N−メチル−ε−アジド−L−リジン、およびN−メチル−ε−アジド−D−リジンである。
いくつかの実施形態において、そのアミノ酸の−NH部分は、−Fmocおよび−Bocを含むがこれらに限定されない保護基を用いて保護される。他の実施形態において、そのアミノ酸は、ペプチド模倣大環状分子の合成の前には保護されていない。
他の実施形態において、式IIIのペプチド模倣大環状分子が合成される。このような大環状分子の調製は、例えば、2007年12月17日に出願された米国出願第11/957,325号に記載される。以下の合成スキームは、そのような化合物の調製を記載する。図面を簡略化するために、例示的なスキームは、LおよびLが両方とも−(CH)−であるL−システインまたはD−システインに由来するアミノ酸アナログを示す。しかしながら、上記の詳細な説明の全体にわたって述べたように、多くの他のアミノ酸アナログを使用することができ、LおよびLは、本明細書に開示されている種々の構造から独立して選択することができる。「[AA]」、「[AA]」、「[AA]」という記号は、天然または非天然アミノ酸などのアミド結合による結合部分の配列を表す。以前に記述されているとおり、「AA」のそれぞれの出現は任意の他の「AA」の出現とは無関係であり、「[AA]」などの式は、例えば、同一ではないアミノ酸の配列ならびに同一なアミノ酸の配列を包含する。
スキーム6において、ペプチド模倣物前駆体は2つの−SH部分を含み、かつN−α−Fmoc−S−トリチル−L−システインまたはN−α−Fmoc−S−トリチル−D−システインなどの市販のN−α−Fmocアミノ酸を用いる固相ペプチド合成(SPPS)によって合成される。D−システインまたはL−システインのα−メチル化バージョンは、公知の方法(Seebachら(1996)、Angew.Chem.Int.Ed.Engl.35:2708〜2748、およびその参照文献)によって作製され、次いで公知の方法(その内容全体が参照により本明細書に組み込まれる、「Bioorganic Chemistry:Peptides and Proteins」、Oxford University Press、New York:1998)によって適切に保護されたN−α−Fmoc−S−トリチルモノマーに変換される。次いで前駆体ペプチド模倣物は、標準的な条件(例えば、95%TFAなどの強酸)によって脱保護され、固相樹脂から切断される。前駆体ペプチド模倣物は、粗混合物として反応されるか、または有機溶液もしくは水性溶液においてX−L−Yとの反応の前に精製される。いくつかの実施形態においてアルキル化反応は、大環状分子化を容易にし、重合を回避するために希釈条件下(すなわち0.15mmol/L)で行われる。いくつかの実施形態において、アルキル化反応は、液体NH(Mosbergら(1985)、J.Am.Chem.Soc.107:2986−2987;Szewczukら(1992)、Int.J.Peptide Protein Res.40:233−242)、NH/MeOH、またはNH/DMF(Orら(1991)、J.Org.Chem.56:3146−3149)などの有機溶液中で行われる。他の実施形態において、アルキル化は、6MのグアニジニウムHCL、pH8などの水性溶液中で行われる(Brunelら(2005)、Chem.Commun.(20):2552〜2554)。他の実施形態において、アルキル化反応に使用される溶媒はDMFまたはジクロロエタンである。
スキーム7において、前駆体ペプチド模倣物は2つ以上の−SH部分を含んでおり、その2つは特別に保護されていて、それにより大環状分子形成のためのその選択的な脱保護およびその後のアルキル化が可能になる。前駆体ペプチド模倣物は、N−α−Fmoc−S−p−メトキシトリチル−L−システインまたはN−α−Fmoc−S−p−メトキシトリチル−D−システインなどの市販のN−α−Fmocアミノ酸を用いる固相ペプチド合成(SPPS)によって合成される。D−システインまたはL−システインのα−メチル化バージョンは、公知の方法(Seebachら(1996)、Angew.Chem.Int.Ed.Engl.35:2708−2748、およびその参照文献)によって作製され、次いで公知の方法(その内容全体が参照により本明細書に組み込まれる、「Bioorganic Chemistry:Peptides and Proteins」、Oxford University Press、New York:1998)によって、適切に保護されたN−α−Fmoc−S−p−メトキシトリチルモノマーに変換される。次いでペプチド模倣物前駆体のMmt保護基は、標準的な条件(例えば、DCM中1%TFAなどの弱酸)によって選択的に切断される。次いで前駆体ペプチド模倣物を、樹脂上で有機溶液においてX−L−Yと反応させる。例えば、この反応は、ジイソプロピルエチルアミンなどの立体障害塩基の存在下で起こる。いくつかの実施形態において、アルキル化反応は、液体NH(Mosbergら(1985)、J.Am.Chem.Soc.107:2986−2987;Szewczukら(1992)、Int.J.Peptide Protein Res.40:233−242)、NH/MeOH、またはNH/DMF(Orら(1991)、J.Org.Chem.56:3146−3149)などの有機溶液中で行われる。他の実施形態において、アルキル化反応は、DMFまたはジクロロエタン中で行われる。次いでペプチド模倣大環状分子は、標準的な条件(例えば、95%TFAなどの強酸)によって脱保護され、固相樹脂から切断される。
スキーム8において、ペプチド模倣物前駆体は2つ以上の−SH部分を含んでおり、その2つが特別に保護されており、大環状分子形成のため、その選択的な脱保護およびその後のアルキル化が可能になる。ペプチド模倣物前駆体は、N−α−Fmoc−S−p−メトキシトリチル−L−システイン、N−α−Fmoc−S−p−メトキシトリチル−D−システイン、N−α−Fmoc−S−S−t−ブチル−L−システイン、およびN−α−Fmoc−S−S−t−ブチル−D−システインなどの市販のN−α−Fmocアミノ酸を用いる固相ペプチド合成(SPPS)によって合成される。D−システインまたはL−システインのα−メチル化バージョンは、公知の方法(Seebachら(1996)、Angew.Chem.Int.Ed.Engl.35:2708−2748、およびその参照文献)によって作製され、次いで公知の方法(その内容全体が参照により本明細書に組み込まれる、「Bioorganic Chemistry:Peptides and Proteins」、Oxford University Press、New York:1998)によって、適切に保護されたN−α−Fmoc−S−p−メトキシトリチルまたはN−α−Fmoc−S−S−t−ブチルモノマーに変換される。ペプチド模倣物前駆体のS−S−tブチル保護基は、公知の条件によって選択的に切断される(例えば、DMF中20%2−メルカプトエタノール、参照:Galandeら(2005)、J.Comb.Chem.7:174−177)。次いで前駆体ペプチド模倣物を、樹脂上で、有機溶液においてモル過剰のX−L−Yと反応させる。例えば、反応は、ジイソプロピルエチルアミンなどの立体障害塩基の存在下で起こる。次いでペプチド模倣物前駆体のMmt保護基は、標準的な条件(例えば、DCM中1%TFAなどの弱酸)によって選択的に切断される。次いでペプチド模倣物前駆体は、樹脂上で有機溶液における立体障害塩基による処理によって環化される。いくつかの実施形態において、アルキル化反応は、NH/MeOHまたはNH/DMF(Orら(1991)、J.Org.Chem.56:3146−3149)などの有機溶液中で行われる。次いでペプチド模倣大環状分子は、標準的な条件(例えば、95%TFAなどの強酸)によって脱保護され、固相樹脂から切断される。
スキーム9において、ペプチド模倣物前駆体は、2つのL−システイン部分を含む。ペプチド模倣物前駆体は、生きた細胞中で公知の生物学的発現系によって、または公知のインビトロの無細胞発現方法によって合成される。前駆体ペプチド模倣物は、粗混合物として反応されるか、または有機溶液もしくは水性溶液においてX−L2−Yとの反応の前に精製される。いくつかの実施形態においてアルキル化反応は、大環状分子化を容易にし、重合を回避するために希釈条件下(すなわち0.15mmol/L)で行われる。いくつかの実施形態において、アルキル化反応は、液体NH(Mosbergら(1985)、J.Am.Chem.Soc.107:2986−2987;Szewczukら(1992)、Int.J.Peptide Protein Res.40 :233−242)、NH/MeOH、またはNH/DMF(Orら(1991)、J.Org.Chem.56:3146−3149)などの有機溶液中で行われる。他の実施形態において、アルキル化は、6MグアニジニウムHCL、pH8(Brunelら(2005)、Chem.Commun.(20):2552−2554)などの水性溶液中で行われる。他の実施形態において、アルキル化は、DMFまたはジクロロエタン中で行われる。別の実施形態において、アルキル化は非変性水溶液中で実行され、さらに別の実施形態においてアルキル化は、α−らせん構造形成に有利な条件下で行われる。さらに別の実施形態において、アルキル化は、前駆体ペプチド模倣物が別のタンパク質に結合するのに有利な条件下で行われ、その結果、アルキル化の間に結合α−らせん高次構造の形成がもたらされる。
チオール基との反応に適切な、XおよびYについての種々の実施形態が想定される。一般に、各々のXまたはYは独立して、表5に示す一般的なカテゴリーから選択される。例えば、XおよびYは、−Cl、−Brまたは−Iなどのハロゲン化物である。本明細書に記載の任意の大環状分子形成リンカーを、表1〜4に示す任意の配列との任意の組合せ、そしてまた、本明細書に示す任意のR−置換基との任意の組合せでも用いてもよい。
本発明は、式(III)のペプチド模倣大環状分子の合成における天然に存在するおよび天然に存在しない、アミノ酸およびアミノ酸アナログの両方の使用を想定している。安定なビス−スルフヒドリル含有ペプチド模倣大環状分子の合成に使用される合成方法を行い易い任意のアミノ酸またはアミノ酸アナログを、本発明において用いてもよい。例えば、システインが、本発明における有用なアミノ酸として想定される。しかし、異なるアミノ酸側鎖を含むシステイン以外の含硫アミノ酸もまた、有用である。例えば、システインは、アミノ酸のα−炭素とアミノ酸側鎖の末端−SHとの間に1つのメチレン単位を含む。本発明はまた、α−炭素と末端−SHの間に複数のメチレン単位を有するアミノ酸の使用も想定する。非限定的な例としては、α−メチル−L−ホモシステインおよびα−メチル−D−ホモシステインが挙げられる。いくつかの実施形態において、アミノ酸およびアミノ酸アナログは、D−配置のものである。他の実施形態において、アミノ酸およびアミノ酸アナログはL−配置のものである。いくつかの実施形態において、ペプチド模倣物に含有されるアミノ酸およびアミノ酸アナログの一部はD−配置のものであるが、アミノ酸およびアミノ酸アナログの一部はL−配置のものである。いくつかの実施形態において、アミノ酸アナログは、α−メチル−L−システインおよびα−メチル−D−システインなどのα,α−二置換のものである。
本発明は、大環状分子形成リンカーを用いてペプチド模倣物前駆体内の2つ以上の−SH部分を連結させて本発明のペプチド模倣大環状分子が形成される、大環状分子を包含する。上述したように、大環状分子形成リンカーは、立体構造の剛性、代謝安定性の増加および/または細胞透過性の増加を付与する。さらに、いくつかの実施形態において、大環状形成の連結は、ペプチド模倣物の大環状分子のα−らせん二次構造を安定化させる。大環状分子形成リンカーは式X−L−Yのものであり、ここで、上記で定義したとおりXおよびYは両方とも同じ部分または異なる部分である。XおよびYは両方とも、1つの大環状分子形成リンカー−L−によるビス−スルフヒドリル含有ペプチド模倣物前駆体のビスアルキル化を可能にするという化学的特性を有する。上記で定義されているとおり、リンカー−L−は、上記で定義されているとおり、全てが必要に応じてR基で置換することができる、アルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレンもしくはヘテロシクロアリーレン、または−R−K−R−を含む。さらに、スルフヒドリル含有アミノ酸の−SHに結合している炭素以外の、大環状分子形成リンカー−L−内の1〜3個の炭素原子は、N、SまたはOなどのヘテロ原子で必要に応じて置換される。
大環状分子形成リンカーX−L−YのL成分は、とりわけ、ペプチド模倣大環状分子を形成するために用いられる2つのアミノ酸アナログの位置の間の距離に依存して、長さが変化し得る。さらに、大環状分子形成リンカーのL成分および/またはL成分の長さが変化するので、安定なペプチド模倣大環状分子の形成に適切な全長のリンカーを生み出すために、Lの長さもまた変化し得る。例えば、使用されるアミノ酸アナログがさらなるメチレン単位をLおよびLのそれぞれに付加することによって変化する場合、Lの長さは、LおよびLの増加した長さを相殺するために約2メチレン単位に相当する(equivalent)長さだけ減少する。
いくつかの実施形態において、Lは、式−(CH−のアルキレン基であり、nは約1〜約15の整数である。例えば、nは1、2、3、4、5、6、7、8、9または10である。他の実施形態において、Lはアルケニレン基である。さらに別の実施形態において、Lはアリール基である。
表4は、X−L−Y基のさらなる実施形態を示す。
本発明を実行するために適切であると想定される、ペプチド模倣大環状分子を形成するためのさらなる方法としては、Mustapa,M.Firouz Mohdら、J.Org.Chem(2003)、68、8193〜8198頁;Yang、Binら Bioorg Med.Chem.Lett.(2004)、14、1403〜1406頁;米国特許第5,364,851号;米国特許第5,446,128号;米国特許第5,824,483号;米国特許第6,713,280号;および米国特許第7,202,332号によって開示されているものが挙げられる。そのような実施形態において、α位にさらなる置換基R−を含有しているアミノ酸前駆体が用いられる。そのようなアミノ酸は、架橋剤が置換される位置、または、あるいは、大環状分子前駆体の配列中のどこか他の場所であってもよい所望の位置で、大環状分子前駆体中に組み込まれる。次いで前駆体の環化を、示される方法に従って達成する。
本発明のペプチド模倣大環状分子のいくつかの実施態様では、大環状分子は、非らせんリンカーによって接続される2つのα−らせんペプチド模倣大環状分子を含む。有用なリンカーとしては限定するものではないが、ペプチドリンカーを含むポリマー配列、ポリアルキレングリコールまたは下に示される任意のリンカーが挙げられる。一実施形態では、この非らせんリンカーは、ポリエチレングリコール基、例えば、ポリエチレングリコール(1、2、3、4、5、6、7、8、9、または10個のモノマー単位を含む)である。別の実施態様では、このリンカーは短いペプチド配列(1、2、3、4、5、6、7、8、9、または10個の天然または非天然のアミノ酸を含む)である。
非らせんリンカーの調製のための例示的な前駆体化合物は、下に示され、ここでXおよびYは、第二のペプチド模倣大環状分子に対してこのリンカーによって接続される第一のペプチド模倣大環状分子の、それぞれ、末端のカルボン酸または末端のアミンと反応性である部分である。この前駆体化合物と第一のペプチド模倣大環状分子との反応によって、第二の反応性部分を含むコンジュゲートが生じ、これを次に第二のペプチド模倣大環状分子とさらに反応させて、非らせんリンカーによって接続される2つのα−らせんを含むペプチド模倣大環状分子を作製してもよい。
アッセイ
本発明のペプチド模倣大環状分子の特性は、例えば、下に記載される方法を用いることによってアッセイされる。いくつかの実施形態では、本発明のペプチド模倣大環状分子は、本明細書に記載の置換基を欠く対応するポリペプチドに対して生物学的特性が改善されている。
α−ヘリシティを決定するためのアッセイ
溶液中で、α−らせんドメインを有するポリペプチドの二次構造は、ランダムコイル構造とα−らせん構造との間の動的平衡に到達し、「ヘリシティパーセント(percent helicity)」として表される場合が多い。従って、例えば、非改変α−らせんドメインは大部分が、溶液中で通常25%未満のα−らせん含量を有するランダムコイルである。一方、最適化されたリンカーを有するペプチド模倣大環状分子は、例えば、対応する架橋されていないポリペプチドのそれよりも少なくとも2倍高いα−ヘリシティを有する。いくつかの実施形態において、本発明の大環状分子は、50%より高いα−ヘリシティを有する。本発明のペプチド模倣大環状分子のヘリシティをアッセイするために、上記化合物を、水性溶液(例えば、pH7の50mMのリン酸カリウム溶液、または蒸留水(distilled HO)、25〜50μMの濃度まで)に溶解する。標準的な測定パラメーター(例えば、温度、20℃;波長、190〜260nm;ステップ分解能、0.5nm;速度、20nm/秒;蓄積、10;応答、1秒;帯域幅、1nm;光路長(path length)、0.1cm)を用いて、分光偏光計(例えば、Jasco J−710)において円二色性(CD)スペクトルを得る。平均残基楕円率(例えば、[Φ]222obs)をらせんデカペプチドモデル(Yangら(1986)、Methods Enzymol.130:208)について報告されている値で割ることによって、各ペプチドのα−らせん含量を計算する。
融解温度(Tm)を決定するためのアッセイ
α−らせんなどの二次構造を含む本発明のペプチド模倣大環状分子は、例えば、対応する架橋されていないポリペプチドよりも高い融解温度を示す。代表的には、本発明のペプチド模倣大環状分子は、水性溶液中で高度に安定な構造を表す60℃超のTmを示す。融解温度に対する大環状分子形成の影響をアッセイするために、ペプチド模倣大環状分子または非改変ペプチドを、蒸留水中に溶解(例えば、50μMの最終濃度で)し、分光偏光計(例えば、Jasco J−710)において標準的なパラメーター(例えば、波長222nm;ステップ解像度、0.5nm;速度、20nm/秒;蓄積、10;応答、1秒;帯域幅、1nm;温度上昇速度:1℃/分;光路長、0.1cm)を用いて、ある温度範囲(例えば、4〜95℃)にわたって楕円率の変化を測定することによって、Tmを決定する。
プロテアーゼ耐性アッセイ
ペプチド骨格のアミド結合は、プロテアーゼによる加水分解を受けやすく、そのためペプチド性化合物は、インビボでの急速な分解に対して脆弱になる。しかし、ペプチドらせん形成は、代表的にはアミド骨格を埋没させ、従って、タンパク質分解性の切断からアミド骨格を保護することができる。本発明のペプチド模倣大環状分子をインビトロのトリプシンタンパク質分解に供して、対応する架橋されていないポリペプチドと比較した分解速度の変化について評価し得る。例えば、ペプチド模倣大環状分子および対応する架橋されていないポリペプチドを、トリプシンアガロースでインキュベートし、遠心分離によって種々の時点で反応をクエンチして、その後HPLC注入して、280nmでの紫外線吸収により残存基質を定量する。簡潔に述べると、ペプチド模倣大環状分子およびペプチド模倣物前駆体(5μg(mcg))を、トリプシンアガロース(Pierce)(S/E約125)で0、10、20、90、および180分間インキュベートする。高速での卓上遠心分離によって反応をクエンチし、HPLCによる280nmでのピーク検出によって単離した上清中の残存している基質を定量する。タンパク質分解反応は一次反応速度式(first−order kinetics)を示し、時間に対するln[S](k=−1X勾配)のプロットから速度定数、kを決定する。
エキソビボ安定性アッセイ
最適化されたリンカーを有するペプチド模倣大環状分子は、例えば、対応する架橋されていないポリペプチドのそれよりも少なくとも2倍高いエキソビボ半減期を有し、かつ12時間以上のエキソビボ半減期を有する。エキソビボの血清安定性研究には、種々のアッセイを用いてもよい。例えば、ペプチド模倣大環状分子および対応する架橋されていないポリペプチド(2μg)を、新鮮なマウス血清、ラット血清および/またはヒト血清(2mL)とともに、37℃で0、1、2、4、8、および24時間インキュベートする。インタクトな化合物のレベルを決定するために、以下の手順を用いてもよい:100μlの血清を2mlの遠心管に移すこと、その後に10μLの50%ギ酸および500μLのアセトニトリルを添加し、4±2℃で10分間、14,000RPMで遠心分離することによって、サンプルを抽出する。次いで上清を新しい2mlのチューブに移し、TurbovapにおいてN<10psi下、37℃でエバポレートさせる。サンプルを100μLのアセトニトリル:水(50:50)中で再構成し、LC−MS/MS分析にかける。
インビトロ結合アッセイ
アクセプタータンパク質に対するペプチド模倣大環状分子およびペプチド模倣物前駆体の結合および親和性を評価するために、例えば、蛍光偏光アッセイ(FPA)を用いる。FPA技術は、偏光および蛍光トレーサーを用いて分子の配向および運動性を測定する。偏光によって励起されると、高い見かけの分子量を有する分子に結合している蛍光トレーサー(例えば、FITC)(例えば、大きなタンパク質に結合したFITC標識ペプチド)は、より小さい分子に結合している蛍光トレーサー(例えば、溶液中で遊離しているFITC標識ペプチド)と比較してそのより遅い回転速度のために、より高いレベルの偏光蛍光を発する。
例えば、フルオレセイン化(fluoresceinated)ペプチド模倣大環状分子(25nM)を、結合緩衝液(140mMのNaCl、50mMのTris−HCL、pH7.4)中で、アクセプタータンパク質(25〜1000nM)と一緒に室温で30分間インキュベートする。結合活性を、例えば、ルミネッセンス分光光度計(例えば、Perkin−Elmer LS50B)において蛍光偏光によって測定する。Kd値は、例えば、Graphpad Prismソフトウェア(GraphPad Software,Inc.、San Diego、CA)を用いて、非線形回帰分析によって決定し得る。本発明のペプチド模倣大環状分子は、場合によっては、対応する架橋されていないポリペプチドと同様のまたはそれより低いKdを示す。
ペプチド−タンパク質相互作用のアンタゴニストを特徴付けるためのインビトロ置換アッセイ
ペプチドとアクセプタータンパク質との間の相互作用をアンタゴナイズする化合物の結合および親和性を評価するために、例えば、ペプチド模倣物前駆体配列に由来するフルオレセイン化ペプチド模倣大環状分子を利用する蛍光偏光アッセイ(FPA)を用いる。このFPA技術は、偏光および蛍光トレーサーを用いて分子の配向および運動性を測定する。偏光によって励起されるとき、高い見かけの分子量を有する分子に結合している蛍光トレーサー(例えば、FITC)(例えば、大きなタンパク質に結合したFITC標識ペプチド)は、より小さい分子に結合している蛍光トレーサー(例えば、溶液中で遊離しているFITC標識ペプチド)と比較してそのより遅い回転速度のために、より高いレベルの偏光蛍光を発する。フルオレセイン化ペプチド模倣大環状分子とアクセプタータンパク質との間の相互作用をアンタゴナイズする化合物は、競合的結合FPA実験において検出される。
例えば、推定アンタゴニスト化合物(1nM〜1mM)およびフルオレセイン化ペプチド模倣大環状分子(25nM)を、結合緩衝液(140mMのNaCl、50mMのTris−HCL、pH7.4)中で、アクセプタータンパク質(50nM)と一緒に室温で30分間インキュベートする。アンタゴニスト結合活性を、例えば、ルミネッセンス分光光度計(例えば、Perkin−Elmer LS50B)において蛍光偏光によって測定する。Kd値は、例えば、Graphpad Prismソフトウェア(GraphPad Software,Inc.、San Diego、CA)を用いて非線形回帰分析によって決定することができる。
有機低分子、ペプチド、オリゴヌクレオチドまたはタンパク質などの任意のクラスの分子を、このアッセイにおいて推定アンタゴニストとして検査してもよい。
インタクトな細胞における結合アッセイ
インタクトな細胞における、それらの天然アクセプターに対するペプチドまたはペプチド模倣大環状分子の結合は、免疫沈降実験によって測定することが可能である。例えば、インタクトな細胞を、血清の非存在において、フルオレセイン化(fluoresceinated)(FITC標識)化合物とともに4時間インキュベートし、その後血清補充(serum replacement)を行い、さらに4〜18時間の範囲でインキュベートする。次いで細胞をペレットにして、溶解緩衝液(50mMのTris[pH7.6]、150mMのNaCl、1%CHAPSおよびプロテアーゼ阻害剤カクテル)中で、10分間4℃でインキュベートする。抽出物を14,000rpmで15分間遠心分離にかけ、上清を回収して10μlのヤギ抗FITC抗体と4℃で回転させながら2時間インキュベートし、その後さらに4℃で2時間、プロテインA/Gセファロース(50μlの50%ビーズスラリー)とインキュベートする。短時間の遠心分離の後、ペレットを、漸増する塩濃度(例えば、150、300、500mM)を含有する溶解緩衝液中で洗浄する。次いで、ビーズを、150mMのNaClで再平衡化させて、その後SDS含有サンプル緩衝液の添加および煮沸を行う。遠心分離後、上清を必要に応じて、4%〜12%勾配Bis−Trisゲルを用いて電気泳動し、その後Immobilon−Pメンブレンに移す。ブロッキング後、必要に応じて、ブロットを、FITCを検出する抗体と、また、ペプチド模倣大環状分子に結合するタンパク質を検出する1つ以上の抗体とともに、インキュベートする。
細胞透過性アッセイ
ペプチド模倣大環状分子は、例えば、対応する非架橋の大環状分子に比較してさらに細胞透過性である。最適化されたリンカーを有するペプチド模倣大環状分子は例えば、対応する非架橋大環状分子よりも少なくとも2倍大きい細胞透過性を保有し、かつ適用した(applied)ペプチド模倣大環状分子のうち20%以上が4時間後に細胞を透過したことが観察される場合が多い。ペプチド模倣大環状分子および対応する非架橋大環状分子の細胞透過性を測定するために、インタクトな細胞を、フルオレセイン化したペプチド模倣大環状分子または対応する架橋されていない大環状分子(10μM)とともに4時間、無血清培地中で37℃でインキュベートし、培地を用いて2回洗浄し、トリプシン(0.25%)とともに10分間37℃でインキュベートする。細胞を再度洗浄し、PBS中に再懸濁する。細胞の蛍光を、例えば、FACSCaliburフローサイトメーター、またはCellomics’KineticScan(登録商標)HCS Readerのいずれかを用いることによって分析する。
細胞効力アッセイ
特定のペプチド模倣大環状分子の効力は、例えば、ヒトまたはマウス細胞集団に由来する種々の腫瘍形成性および非腫瘍形成性の細胞系統ならびに初代細胞を用いる細胞ベースの死滅アッセイにおいて決定される。細胞生存率を、例えば、ペプチド模倣大環状分子(0.5〜50μM)による24〜96時間のインキュベーションにわたってモニターして、EC50<10μMで死滅させるペプチド模倣大環状分子を特定する。細胞生存率を測定するいくつかの標準的なアッセイが市販されており、ペプチド模倣大環状分子の効力を評価するために必要に応じて用いられる。さらに、ペプチド模倣大環状分子がアポトーシス機構を活性化することによって細胞を死滅させるか否かを評価するために、アネキシンVおよびカスパーゼ活性化を測定するアッセイが必要に応じて用いられる。例えば、細胞内ATP濃度の関数として細胞生存率を決定するCell Titer−gloアッセイが用いられる。
インビボ安定性アッセイ
ペプチド模倣大環状分子のインビボ安定性を検討するために、化合物を、例えば、マウスおよび/またはラットに、IV、IP、POまたは吸入経路によって0.1〜50mg/kgの範囲の濃度で投与し、注入後0分、5分、15分、30分、1時間、4時間、8時間および24時間で血液検体を採取する。次いで25μLの新鮮血清中のインタクトな化合物のレベルをLC−MS/MSによって上記のとおり測定する。
動物モデルにおけるインビボ効力
インビボでの本発明のペプチド模倣大環状分子の抗腫瘍形成活性を決定するために、化合物を、例えば、単独で(IP、IV、PO、吸入または鼻腔内経路によって)または最適以下の用量の関連する化学療法(例えば、シクロフォスファミド、ドキソルビシン、エトポシド)と組み合わせて投与する。一例において、ルシフェラーゼを安定に発現する5×10個のRS4;11細胞(急性リンパ芽球性白血病患者の骨髄から樹立した)を、NOD−SCIDマウスの尾静脈内に、全身照射を受けてから3時間後に注入する。治療しないまま放置した場合、この形態の白血病はこのモデルにおいて3週間以内に死に至る。白血病は、例えば、マウスにD−ルシフェリン(60mg/kg)を注入し、麻酔をかけた動物をイメージングする(例えば、Xenogen In Vivo Imaging System、Caliper Life Sciences、Hopkinton、MA)ことによって、容易にモニターされる。全身の生物発光を、Living Image Software(Caliper Life Sciences、Hopkinton、MA)による光子フラックス(光子/秒)の積分によって定量する。単独のまたは最適以下の用量の関連する化学療法剤と組み合わせたペプチド模倣大環状分子を、例えば、白血病マウス(注入の10日後/実験の1日目、14〜16の生物発光範囲内)に尾静脈またはIP経路で0.1mg/kg〜50mg/kgの範囲の用量で7〜21日間投与する。必要に応じて、実験中1日おきにマウスをイメージングし、実験期間中、毎日生存をモニターする。死亡したマウスを必要に応じて、実験終了の時点で解剖する。別の動物モデルは、ルシフェラーゼを安定に発現する、ヒト濾胞性リンパ腫に由来する細胞系統DoHH2の、NOD−SCIDマウスへの移植である。これらのインビボ試験では必要に応じて、予備的な薬物動態的、薬力学的および毒性データを作成する。
臨床試験
ヒトの治療に対する本発明のペプチド模倣大環状分子の適合を決定するために、臨床試験を行う。例えば、癌と診断されかつ治療を必要とする患者を選択して、治療群および1つ以上のコントロール群に分け、治療群には本発明のペプチド模倣大環状分子を投与し、一方コントロール群には、プラセボ、または公知の抗癌剤を与える。従って、本発明のペプチド模倣大環状分子の治療の安全性および効力は、生存およびクオリティー・オブ・ライフなどの因子に関して患者群の比較を行うことによって評価することができる。この例において、ペプチド模倣大環状分子で治療した患者群は、プラセボで治療した患者コントロール群と比較して長期生存の改善を示す。
医薬組成物および投与経路
本発明のペプチド模倣大環状分子はまた、薬学的に受容可能な誘導体またはそのプロドラッグも含む。「薬学的に受容可能な誘導体」とは、レシピエントへの投与の際、本発明の化合物を(直接的または間接的に)提供することができる、本発明の化合物の任意の薬学的に受容可能な塩、エステル、エステルの塩、プロドラッグまたは他の誘導体を意味する。特に好ましい薬学的に受容可能な誘導体は、哺乳動物に投与される場合、本発明の化合物のバイオアベイラビリティを増加させる(例えば、経口投与された化合物の血液中への吸収を増加させることによって)か、またはその親種と比較して生物学的区画(例えば、脳またはリンパ系)への活性な化合物の送達を増加させるものである。いくつかの薬学的に受容可能な誘導体は、水溶解度(aqueous solubility)または胃腸粘膜の能動輸送を増大する化学基を含む。
いくつかの実施形態において、本発明のペプチド模倣大環状分子は、選択的な生物学的特性を増強するために、適切な官能基を共有結合または非共有結合で結合することによって改変される。そのような改変としては、所与の生物学的コンパートメント(例えば、血液、リンパ系、中枢神経系)への生物学的浸透性を増大させる、経口の利用可能性を増加させる、可溶性を増大させて注入による投与を可能にする、代謝を変化させる、および排泄率を変化させる改変が挙げられる。
本発明の化合物の薬学的に受容可能な塩としては、薬学的に受容可能な無機の酸および塩基に由来する塩ならびに有機の酸および塩基に由来する塩が挙げられる。適切な酸塩(acid salt)の例としては、酢酸塩、アジピン酸塩、安息香酸塩、ベンゼンスルホン酸塩、酪酸塩、クエン酸塩、二グルコン酸塩、ドデシル硫酸塩、ギ酸塩、フマル酸塩、グリコール酸塩、ヘミ硫酸塩、ヘプタン酸塩、ヘキサン酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、乳酸塩、マレイン酸塩、マロン酸塩、メタンスルホン酸塩、2−ナフタレンスルホン酸塩、ニコチン酸塩、硝酸塩、パルモエート、リン酸塩、ピクリン酸塩、ピバル酸塩、プロピオン酸塩、サリチル酸塩、コハク酸塩、硫酸塩、酒石酸塩、トシル酸塩およびウンデカン酸塩が挙げられる。適切な塩基に由来する塩としては、アルカリ金属(例えば、ナトリウム)塩、アルカリ土類金属(例えば、マグネシウム)塩、アンモニウム塩およびN−(アルキル) 塩が挙げられる。
本発明の化合物から医薬組成物を調製するために、薬学的に受容可能なキャリアとしては固体または液体のいずれかのキャリアが挙げられる。固体形態の調製物としては、粉末剤、錠剤、丸剤、カプセル剤、カシェ剤、坐剤、および分散性粒剤が挙げられる。固体キャリアは、希釈剤、着香剤、結合剤、防腐剤、錠剤崩壊剤、またはカプセル化材料としても機能する1つ以上の物質であってもよい。処方および投与のための技術に関する詳細は、科学文献および特許文献において十分に記述されており、例えば、Remington’s Pharmaceutical Sciences、Maack Publishing Co、Easton PAの最新版を参照のこと。
粉末剤においては、キャリアとは、微粉化した(finely divided)活性成分と混合されている微粉化した固体である。錠剤において、活性成分は、必要な結合特性を有するキャリアと適切な割合で混合され、所望の形状および大きさに圧縮される。
適切な固体賦形剤は炭水化物またはタンパク質増量剤(filler)であり、これには、限定するものではないが、糖、例としては、ラクトース、スクロース、マンニトール、またはソルビトール;トウモロコシ、小麦、米、ジャガイモ、または別の植物由来のデンプン;セルロース、例えば、メチルセルロース、ヒドロキシプロピルメチル−セルロース、またはカルボキシメチルセルロースナトリウム;ならびにアラビアゴムおよびトラガカントゴムを含むゴム;ならびにゼラチンおよびコラーゲンなどのタンパク質が挙げられる。所望であれば、架橋ポリビニルピロリドン、寒天、アルギン酸、またはアルギン酸ナトリウムなどのこれらの塩のような崩壊剤または可溶化剤を加える。
液体形態の調製物としては、液剤、懸濁剤、および乳剤、例えば、水または水/プロピレングリコール溶液が挙げられる。非経口注入用に、液体調製物は、水性ポリエチレングリコール溶液中の溶液に処方することができる。
薬学的調製物は、好ましくは単位剤形である。このような形態では、調製物は、適切な量の活性成分を含有する単位用量に小分割される。単位剤形は、バイアルまたはアンプル中に、小分けされた錠剤、カプセル、および粉末など、個別量の調製物を収容しているパッケージであるパッケージ調製物であってもよい。また、単位剤形は、それ自体カプセル剤、錠剤、カシェ剤、またはロゼンジであってもよく、または、適切な数の任意のこれらのパッケージ化形態であってもよい。
本発明の組成物がペプチド模倣大環状分子と1つ以上のさらなる治療剤または予防剤の組合せを含む場合、化合物およびさらなる薬剤の両方は、単独療法レジメンにおいて通常投与される投薬量の約1〜100%、およびより好ましくは約5〜95%の投薬量レベルで存在するべきである。いくつかの実施形態において、さらなる薬剤は、反復投与レジメンの一部として、本発明の化合物とは別々に投与される。あるいは、これらの薬剤は1つの剤形の一部であり、1つの組成物中で本発明の化合物と一緒に混合される。
使用の方法
一局面では、本発明は、ペプチド模倣大環状分子がモデリングされる、タンパク質またはペプチドの天然のリガンド(単数または複数)に結合する剤を特定するために競合的結合アッセイで有用な新規なペプチド模倣大環状分子を提供する。例えば、HIF−1α/CBP/p300の系では、HIF−1αに基づく標識されたペプチド模倣大環状分子を、CBP/p300に競合的に結合する低分子と一緒にCBP/p300結合アッセイで用いてもよい。競合的な結合研究によって、HIF−1α/CBP/p300の系に特異的である薬物候補の迅速なインビトロでの評価および決定が可能になる。このような結合研究を、本明細書に開示される任意のペプチド模倣大環状分子およびそれらの結合パートナーで行ってもよい。
本発明はさらに、ペプチド模倣大環状分子に対する抗体の生成を提供する。いくつかの実施形態では、これらの抗体は、ペプチド模倣大環状分子およびそのペプチド模倣大環状分子が関連する前駆体ペプチド(例えば、HIF−1α)の両方に特異的に結合する。このような抗体は、例えば、天然のタンパク質−タンパク質の相互作用、例えば、HIF−1αとCBP/p300との間の結合を破壊する。
他の局面では、本発明は、HIF−1αのようなHIFファミリータンパク質を含む分子の異常な(例えば、不十分なまたは過剰な)発現または活性に関連する障害のリスクがある(または障害に罹患しやすい)かまたはその障害を有する被験体を処置する予防方法および治療方法の両方を提供する。
別の実施形態では、障害は、少なくとも一部は、異常なレベルのHIF1−α(例えば、過剰発現または過小発現)によって、または異常な活性を示すHIF1−αの存在によって生じる。そのようなものとして、HIF1−αに由来するペプチド模倣大環状分子による、HIF1−αのレベルおよび/もしくは活性の減少、またはHIF1−αのレベルおよび/もしくは活性の増強を用いて、例えば、障害の有害な症状を緩和または軽減する。
別の局面では、本発明は、例えば、HIF−1αとCBP/p300との間の結合パートナーの間の相互作用または結合を妨害することによって、過剰増殖性疾患および炎症性障害を含む疾患を処置または予防するための方法を提供する。これらの方法は、ヒトを含む温血動物に対して本発明の化合物の有効量を投与する工程を包含する。いくつかの実施形態では、本発明の化合物の投与は、細胞増殖停止またはアポトーシスを誘導する。
本明細書において使用される場合、「処置」という用語は、疾患、疾患の症状または疾患に対する素因を、回復させる、治癒する、軽減する、緩和する、変化させる、治す、改善する、好転させる、または影響を与えるという目的で、その疾患、疾患の症状または疾患に対する素因を有する患者への治療剤の適用もしくは投与、または、その患者から単離した組織もしくは細胞系統への治療剤の適用もしくは投与として定義される。
いくつかの実施形態において、本発明のペプチド模倣大環状分子を用いて、癌および腫瘍性の状態を処置、予防、および/または診断する。本明細書において用いる場合、「癌」、「過剰増殖性」および「腫瘍性」という用語は、自律的増殖能、すなわち、急速に増殖する細胞増殖によって特徴付けられる異常な状況または状態を有する細胞のことをいう。過剰増殖性疾患および腫瘍性疾患の状況は、病的なもの、すなわち、疾患状況を特徴付けているかまたは構成しているものとして分類してもよいし、または非病的なもの、すなわち、正常な状況から逸脱しているが疾患状況を伴わないものとして分類してもよい。この用語は、組織病理学的タイプまたは侵襲性のステージに関係なく、全てのタイプの癌増殖または腫瘍形成過程、転移組織または悪性形質転換した細胞、組織、もしくは器官を含むことを意味する。転移性腫瘍は、乳房、肺、肝臓、結腸および卵巣の起源の腫瘍を含むがこれらに限定されない、複数の原発性腫瘍型から生じる可能性がある。「病的過剰増殖性」細胞は、悪性腫瘍増殖によって特徴付けられる疾患状況において発生する。非病的な過剰増殖性細胞の例としては、創傷回復に伴う細胞の増殖が挙げられる。細胞増殖性障害および/または分化性障害の例としては、癌、例えば、癌腫、肉腫、または転移性障害が挙げられる。いくつかの実施形態において、ペプチド模倣大環状分子は、乳癌、卵巣癌、結腸癌、肺癌、そのような癌の転移などを制御するための新規な治療剤である。
癌または腫瘍形成病態の例としては、限定するものではないが、線維肉腫、筋肉腫、脂肪肉腫、軟骨肉腫、骨原性肉腫、脊索腫、血管肉腫、内皮肉腫(endotheliosarcoma)、リンパ管肉腫、リンパ管内皮肉腫、滑膜腫、中皮腫、ユーイング腫瘍、平滑筋肉腫、横紋筋肉腫、胃癌、食道癌、直腸癌、膵臓癌、卵巣癌、前立腺癌、子宮癌、頭頸部癌、皮膚癌、脳腫瘍、扁平上皮癌、皮脂腺腺癌(sebaceous gland carcinoma)、乳頭状癌、乳頭状腺癌、嚢胞腺癌、髄様癌、気管支原性癌、腎細胞癌、肝癌、胆管癌、絨毛癌、精上皮腫、胎児性癌、ウィルムス腫瘍、子宮頸癌、精巣癌、小細胞肺癌、非小細胞肺癌、膀胱癌、上皮癌、グリオーマ、星状膠細胞腫、髄芽腫、頭蓋咽頭腫、上衣腫、松果体腫、血管芽腫、聴神経腫、乏突起膠腫、髄膜腫、メラノーマ、神経芽腫、網膜芽腫、白血病、リンパ腫、またはカポジ肉腫が挙げられる。
増殖性障害の例としては、造血性新形成障害が挙げられる。本明細書において用いられる場合、「造血性新形成障害」という用語は、造血起源の、例えば、骨髄系、リンパ系または赤血球系、またはこれらの前駆体細胞から生じる、過形成/新形成細胞を伴う疾患を包含する。好ましくは、その疾患は、低分化急性白血病、例えば、赤芽球性白血病および急性巨核芽球性白血病から生じる。さらなる例示的な骨髄障害としては、急性前骨髄性白血病(APML)、急性骨髄性白血病(AML)および慢性骨髄性白血病(CML)(Vaickus(1991)、Crit Rev.Oncol./Hemotol.11:267〜97に概説されている)が挙げられるがこれらに限定されず;リンパ性悪性疾患としては、限定するものではないが、B細胞系ALLおよびT細胞系ALLを含む急性リンパ芽球性白血病(ALL)、慢性リンパ性白血病(CLL)、前リンパ性白血病(PLL)、ヘアリー細胞白血病(HLL)およびワルデンストロームマクログロブリン血症(WM)が挙げられる。悪性リンパ腫のさらなる形態としては、限定するものではないが、非ホジキンリンパ腫およびその変種、末梢T細胞リンパ腫、成人T細胞白血病/リンパ腫(ATL)、皮膚T細胞リンパ腫(CTCL)、大顆粒リンパ性白血病(LGF)、ホジキン病およびReed−Stemberg病が挙げられる。
乳房の細胞増殖障害および/または細胞分化障害の例としては、限定するものではないが、増殖性乳房疾患、例としては、例えば、上皮過形成、硬化性腺症、および小管乳頭腫;腫瘍、例えば、線維腺腫、葉状腫瘍、および肉腫などの間質性腫瘍、ならびに大管乳頭腫などの上皮腫瘍;上皮内腺管癌(ductal carcinoma in situ)(パジェット病を含む)および上皮内小葉癌を含む上皮内(非侵襲性)癌を含む乳房の癌、ならびに、侵襲性腺管癌、侵襲性小葉癌、髄様癌、膠様(粘液性)癌、管状癌、および侵襲性乳頭状癌を含むがこれらに限定されない侵襲性(浸潤性)癌、ならびに混合型悪性新生物が挙げられる。男性乳房における障害としては、女性化乳房および癌腫を含むがこれらに限定されない。
肺の細胞増殖障害および/または細胞分化障害の例としては、限定するものではないが、気管支原性癌、例としては、腫瘍随伴症候群、細気管支肺胞癌、神経内分泌腫瘍、例えば、気管支カルチノイド、混合型腫瘍、および転移性腫瘍;肋膜の病理、例としては、炎症性胸水、非炎症性胸水、気胸、および胸膜腫瘍、例としては、孤立性線維性腫瘍(胸膜線維腫)および悪性中皮腫が挙げられる。
結腸の細胞増殖障害および/または細胞分化障害の例としては、限定するものではないが、非新形成ポリープ、腺腫、家族性症候群、結腸直腸発癌、結腸直腸がん、およびカルチノイド腫瘍が挙げられる。
肝臓の細胞増殖障害および/または細胞分化障害の例としては、限定するものではないが、結節性過形成、腺腫、ならびに悪性腫瘍、例としては、肝臓の原発性がんおよび転移性腫瘍が挙げられる。
卵巣の細胞増殖障害および/または細胞分化障害の例としては、限定するものではないが、卵巣腫瘍、例えば、体腔上皮の腫瘍、漿液性腫瘍、粘液性腫瘍、子宮内膜性腫瘍、明細胞腺癌、嚢胞性線維腺腫(cystadenofibroma)、ブレンナー腫瘍、表層上皮腫瘍;胚細胞腫瘍、例えば、成熟型(良性)奇形腫、単胚葉性奇形腫(monodermal teratoma)、未熟型悪性奇形腫、未分化胚細胞種、内胚葉洞腫瘍、絨毛癌;性索間質性腫瘍、例えば、顆粒膜夾膜細胞腫、莢膜細胞腫線維腫(thecomafibroma)、アンドロブラストーマ、ヒル(hill)細胞腫瘍、および性腺芽腫;ならびに転移性腫瘍、例えば、クルーケンベルグ腫瘍が挙げられる。
他の実施形態またはさらなる実施形態では、本明細書に記載のペプチド模倣大環状分子を用いて、過活動性細胞死または生理的傷害などによる細胞死によって特徴付けられる病態を処置、予防または診断する。早発性のまたは望ましくない細胞死によって特徴付けられる病態、またはあるいは望ましくないまたは過剰な細胞増殖のいくつかの例としては、限定するものではないが、細胞低形成性(hypocellular)/低形成性、無細胞性/無形成性、または細胞過形成性(hypercellular)/過形成性の病態が挙げられる。いくつかの例としては、血液系の障害、例としては、限定するものではないが、ファンコニ−貧血、再生不良性貧血、サラセミア、先天性好中球減少症、および骨髄異形成が挙げられる。
他の実施形態またはさらなる実施形態において、アポトーシスを減少させるように作用する本発明のペプチド模倣大環状分子を用いて、望ましくないレベルの細胞死に関連する障害を処置する。従って、いくつかの実施形態において、本発明の抗アポトーシスペプチド模倣大環状分子を用いて、ウイルス感染、例えば、ヒト免疫不全ウイルス(HIV)の感染に関連する感染に伴う細胞死を引き起こすものなどの障害を処置する。広範な神経系の疾患が、特定のセットのニューロンの逐次の消失によって特徴付けられる。1つの例はアルツハイマー病(AD)である。アルツハイマー病は、大脳皮質および特定の皮質下領域におけるニューロンおよびシナプスの喪失によって特徴付けられる。この喪失の結果、罹患した領域全体の委縮が生じる。アミロイド斑および神経原線維変化の両方がADに罹患した脳に現れる。アルツハイマー病は、脳における異常に折り畳まれたA−βおよびτタンパク質の蓄積に起因する、タンパク質の誤って折り畳まれた疾患(protein misfolding disease)として特定されている。斑は、β−アミロイドから形成される。β−アミロイドは、アミロイド前駆体タンパク質(APP)と呼ばれるさらに大きいタンパク質由来のフラグメントである。APPはニューロンの成長、生存および損傷後の修復に重要である。ADでは、未知のプロセスによってAPPが、酵素によるタンパク質分解を通じてより小さいフラグメントに切断される。これらのフラグメントのうち1つは、β−アミロイドの原線維であり、これは老人斑として公知の、密集した形成物(dense formation)としてニューロンの外側に沈着する集塊を形成する。斑は、タングル(tangle)と呼ばれることも多い、神経細胞内で不溶性のねじれた線維へと成長し続ける。従って、β−アミロイドとその天然のレセプターとの間の相互作用の破壊はADの処置に重要である。本発明の抗アポトーシス性ペプチド模倣大環状分子を、いくつかの実施形態では、ADおよび細胞アポトーシスに関連する他の神経学的障害の処置に用いる。そのような神経学的障害としては、アルツハイマー病、パーキンソン病、筋委縮性側索硬化症(ALS)色素性網膜炎、脊髄性筋委縮症、および種々の形態の小脳変性症が挙げられる。これらの疾患における細胞消失は、炎症応答を引き起こさず、アポトーシスが細胞死の機構であるようである。
加えて、いくつかの血液系疾患が、血球の産生減少と関連している。これらの障害としては、慢性疾患に伴う貧血、再生不良性貧血、慢性好中球減少症、および骨髄異形成症候群が挙げられる。骨髄異形成症候群および一部の形態の再生不良性貧血などの血球産生の障害は、骨髄内のアポトーシス細胞死の増加と関連している。これらの障害は、アポトーシスを促進する遺伝子の活性化、間質細胞もしくは造血性生存因子の後天性欠乏、または毒素および免疫応答のメディエーターの直接的作用に起因する可能性がある。細胞死と関連する2つのよく見られる障害は、心筋梗塞および脳卒中(stroke)である。両方の障害において、急激な血流の喪失という事象において生じる虚血の中心部内の細胞は、壊死の結果として急速に死滅するように見える。しかしながら、中心虚血領域の外部では、細胞はより長い期間にわたって死滅し、形態学的にはアポトーシスによって死滅するように見える。他の実施形態またはさらなる実施形態では、本発明の抗アポトーシスペプチド模倣大環状分子を用いて、望ましくない細胞死に関連する全てのこのような障害を処置する。
本明細書に記載のペプチド模倣大環状分子で処置される神経障害のいくつかの例としては限定するものではないが、アルツハイマー病、ダウン症候群、オランダ型遺伝性脳出血アミロイドーシス、反応性アミロイドーシス、蕁麻疹および難聴を伴う家族性アミロイド腎症、マックルウェルズ症候群、特発性骨髄腫;マクログロブリン血症随伴性骨髄腫、家族性アミロイド多発性神経炎、家族性アミロイド心筋症、孤立性心アミロイド、全身性老人性アミロイドーシス、成人発症糖尿病、インスリノーマ、孤立性心房性アミロイド、甲状腺の髄様癌、家族性アミロイドーシス、アミロイドーシスを伴う遺伝性脳出血、家族性アミロイド性多発性ニューロパシー、スクレイピー、クロイツフェルトヤコブ病、ゲルストマンストロイスラー−シャインカー症候群、ウシ海綿状脳症、プリオン媒介疾患、およびハンチントン病が挙げられる。
別の実施形態では、本明細書に記載されるペプチド模倣大環状分子を、炎症性障害の処置、予防または診断に用いる。多くの種類の炎症性障害が存在する。特定の炎症性疾患は、免疫系、例えば、自己免疫疾患に関連する。自己免疫疾患は、身体に正常に存在する物質および組織、すなわち自己抗原に対して身体の過度の免疫応答を生じる。言いかえれば、免疫系が自己の細胞を攻撃する。自己免疫疾患は免疫媒介性疾患の主な原因である。関節リウマチは、自己免疫疾患の例であり、ここでは免疫系が関節を攻撃し、これが炎症(すなわち、関節炎)および破壊を生じる。これはまた、肺および皮膚などのいくつかの器官を損傷し得る。関節リウマチは、機能性(functioning)および運動性の実質的な喪失をもたらし得る。関節リウマチは、血液検査、特にリウマチ因子試験で診断される。本明細書に記載のペプチド模倣大環状分子で処置される自己免疫疾患のいくつかの例としては、限定するものではないが、急性散在性脳脊髄炎(ADEM)、アジソン病、強直性脊椎炎、抗リン脂質抗体症候群(APS)、自己免疫溶血性貧血、自己免疫性肝炎、自己免疫性内耳疾患、ベーチェット病、水疱性類天疱瘡、セリアック病(coeliac disease)、シャーガス病、チャーグ・ストラウス症候群、慢性閉塞性肺疾患(COPD)、クローン病、皮膚筋炎、1型糖尿病、子宮内膜症、グッドパスチャー症候群、グレーブス病、ギラン・バレー症候群(GBS)、橋本病、化膿性汗腺炎、特発性血小板減少性紫斑病、炎症性腸疾患(IBD)、間質性膀胱炎、紅斑性狼蒼、限局性強皮症、多発性硬化症、重症筋無力症、ナルコレプシー、神経ミオトニー(neuromyotonia)、尋常性天疱瘡、悪性貧血、多発性筋炎、リウマチ性多発筋痛、原発性胆汁性肝硬変症、乾癬、関節リウマチ、統合失調症、強皮症、シェーグレン症候群、側頭動脈炎(「巨細胞性動脈炎」としても公知)、高安動脈炎、脈管炎、白斑およびウェゲナー肉芽腫症が挙げられる。
本明細書に記載されるペプチド模倣大環状分子で処置される炎症性障害の他のタイプのいくつかの例としては、限定するものではないが、アレルギー、例としては、アレルギー性鼻炎/副鼻腔炎、皮膚アレルギー(蕁麻疹(urticaria)/じんましん(hives)、血管性浮腫、アトピー性皮膚炎)、食物アレルギー、薬物アレルギー、昆虫アレルギーおよび、肥満細胞症などのまれなアレルギー障害、喘息、関節炎、例としては、変形性関節炎、関節リウマチおよび脊椎関節症、CNSの原発性血管炎、サルコイドーシス、器官移植片拒絶、線維筋痛症、線維症、膵炎および骨盤の炎症性疾患が挙げられる。
本発明のペプチド模倣大環状分子で処置または予防される心臓血管障害(例えば、炎症性障害)の例としては、限定するものではないが、大動脈弁狭窄、アテローム性動脈硬化症、心筋梗塞、発作(stroke)、血栓症、動脈瘤、心不全、虚血性心疾患、狭心症、心臓突然死、高血圧性心疾患;細動脈硬化症、小血管疾患、腎症、高グリセリド血症、高コレステロール血症、高脂血症、黄色腫症、喘息、高血圧症、気腫および慢性肺疾患などの非冠動脈疾患;あるいは新脈管形成術後の再狭窄、シャント、ステント、合成もしくは天然切除移植片、留置カテーテル、弁または別の移植可能なデバイスの留置などの介入処置を伴う心臓血管状態(「処置による血管外傷」)が挙げられる。好ましい心臓血管障害としては、アテローム性動脈硬化症、心筋梗塞、動脈瘤、および発作が挙げられる。
処置または予防され得る他の障害としては、例えば、網膜虚血、肺高血圧症、子宮内発育遅延、糖尿病性網膜症、加齢性黄斑変性症、および糖尿病性黄斑浮腫が挙げられる。本発明のこの局面のさらに別の実施形態は、組織中の新脈管形成を軽減または予防する方法に関する。
別の局面では、本発明の組成物を用いて、遺伝子の転写がHIF−1αとCBPおよび/またはp300との相互作用などのHIF−1αの相互作用によって媒介される、細胞中の遺伝子の転写を軽減してもよい。遺伝子の転写がHIF−1αとCBPおよび/またはp300との相互作用によって媒介される遺伝子としては、アデニレートキナーゼ3、アルドラーゼA、アルドラーゼC、エノラーゼ1、グルコーストランスポーター1、グルコーストランスポーター3、グリセルアルデヒド−3−リン酸デヒドロゲナーゼ、ヘキソキナーゼ1、ヘキソキナーゼ2、インスリン様成長因子2、IGF結合タンパク質1、IGF結合タンパク質3、乳酸脱水素酵素A、ホスホグリセリン酸キナーゼ1、ピルビン酸キナーゼM、p21、トランスフォーミング成長因子β3、セルロプラスミン、エリスロポエチン、トランスフェリン、トランスフェリンレセプター、alB−アドレナリン作動性レセプター、アドレノメデュリン、エンドセリン−1、ヘム・オキシゲナーゼ1、一酸化窒素シンターゼ2、プラスミノーゲン活性化因子インヒビター1、血管内皮成長因子、血管内皮成長因子レセプターFLT−1、血管内皮成長因子レセプターKDR/Flk−1、およびp35srgが挙げられる。
実施例1
式(I)のペプチド模倣大環状分子の設計
図1〜3は、HIF−1αらせんAの残基796〜805を示す、野生型配列フラグメントのペプチドTSYDCEVNAPのCBP/p300に対する可能性のある結合方式;およびHIF−1αらせんBの残基814〜823を示す、野生型配列フラグメントペプチドQGEELLRALDのCBP/p300に対する可能性のある結合方式を示す。本発明のペプチド模倣大環状分子は、配列TSYDCEVNAPおよびQGEELLRALDで開始して、各々の配列の3番目および7番目のアミノ酸を、α,α−二置換アミノ酸(例えば、S5オレフィンアミノ酸)で置換することによって調製される。オレフィンメタセシス反応を行い、i〜i+4の架橋を含むペプチド模倣大環状分子を生じる。
実施例2
式(I)のペプチド模倣大環状分子の合成
α−らせん状架橋ポリペプチドを、以前に記載(Schafmeisterら、(2000),J.Am.Chem.Soc.122:5891〜5892;Walenskyら(2004)Science 305:1466〜70;Walenskyら(2006)Mol Cell 24:199〜210)のとおり、および下に示されるとおり、合成し、精製して、分析する。ヒトHIF−1αらせんAまたはらせんBのペプチド配列由来の以下の大環状分子をこの研究に用いる:
上記の配列では、Nleは、ノルロイシンを示し、Aibは2−アミノイソ酪酸を示し、Abuは、(S)−2−アミノ酪酸を示し、AcはN−末端アセチルを示し、かつNH2はC−末端アミドを示し、PEG3は、NH−(PEG)−COOH(16原子)リンカー(Novabiochemカタログ番号01−63−0199)を示し、PEG4はNH−(PEG)−COOH(19原子)リンカー(Novabiochemカタログ番号01−63−0200)を示し、そしてPEG5はNH−(PEG)−COOH(22原子)リンカー(Novabiochemカタログ番号01−63−0204)を示す。$として示されるアミノ酸は(S)−α−(2’−ペンテニル)アラニン(「S5−オレフィンアミノ酸」)であり、$r8として示されるアミノ酸は(R)−α−(2’−オクテニル)アラニン(「R8オレフィンアミノ酸」)である。前駆体ポリペプチドへのこのようなアミノ酸の組み込み後、末端のオレフィンをメタセシス触媒と反応させて、ペプチド模倣大環状分子の形成をもたらす。2つの$アミノ酸を接続する大環状分子は、全てが炭素の架橋剤を保有し、この架橋剤は、4番目の炭素原子と5番目の炭素原子との間に二重結合を有する各々のアミノ酸のα炭素の間に8つの炭素原子を含んでおり、ここで架橋剤が結合される各々のα炭素原子はさらに、メチル基で置換される。1つの$アミノ酸に対して1つの$r8アミノ酸を接続する大環状分子は、全てが炭素の架橋剤を保有し、この架橋剤は、7番目の炭素原子と8番目の炭素原子との間に二重結合を有する各々のアミノ酸のα炭素の間に11個の炭素原子を含んでおり、ここで架橋剤が結合される各々のα炭素原子はさらに、メチル基で置換される。メタセシス反応が行われないならば、得られたポリペプチド中のオレフィンアミノ酸は、$/および$r8/として表示され、それぞれ、修飾されていない(S)−α−(2’−ペンテニル)アラニン(「S5−オレフィンアミノ酸」)または修飾されていない(R)−α−(2’−オクテニル)アラニンを含む架橋されていないペプチドを意味する。予測したm/zスペクトルおよび測定したm/zスペクトルを示す。
引用文献に開示されるα,α−二置換アミノ酸およびアミノ酸前駆体は、ペプチド模倣大環状分子前駆体ポリペプチドの合成に使用され得る。オレフィン側鎖を含む、α,α−二置換の非天然アミノ酸を、Williamsら、(1991)J.Am.Chem.Soc.113:9276;およびSchafmeisterら、(2000)J.Am.Chem Soc.122:5891に従って合成する。架橋ポリペプチドは、対応する合成のアミノ酸で2つの天然に存在するアミノ酸(上記を参照)を置き換えることによって設計される。置換は、iおよびi+4位置で、ならびにiおよびi+7位置で行う。
非天然アミノ酸(五炭素のオレフィンアミノ酸のRおよびS鏡像異性体ならびに八炭素のオレフィンアミノ酸のS鏡像異性体)を、核磁気共鳴(NMR)分光法(Varian Mercury 400)および質量分析法(Micromass LCT)により特徴付ける。ペプチド合成を、固相条件、リンクアミドAM樹脂(rink amide AM resin)(Novabiochem)およびFmoc主鎖保護基化学を用いて、手作業または自動ペプチド合成装置(Applied Biosystems,model 433A)のいずれかで行う。天然Fmoc保護アミノ酸(Novabiochem)のカップリングのために、10当量のアミノ酸および1:1:2モル比のカップリング試薬HBTU/HOBt(Novabiochem)/DIEAを使用する。非天然のアミノ酸(4当量)を、1:1:2モル比のHATU(Applied Biosystems)/HOBt/DIEAを用いてカップリングする。オレフィンメタセシスを、脱気したジクロロメタンに溶解した10mMのGrubbs触媒(Blackewellら,1994、上記)(Materia)を用いて、固相において行い、室温において2時間反応させる。メタセシスされた化合物の単離は、トリフルオロ酢酸が媒介する脱保護および切断、粗生成物を得るためのエーテル沈殿、ならびに純粋な化合物を得るための逆相C18カラム(Varian)における高性能液体クロマトグラフィー(HPLC)(Varian ProStar)により達成する。純粋な生成物の化学組成は、LC/MS質量分析(Agilent 1100 HPLCシステムとインターフェース接続したMicromass LCT)およびアミノ酸分析(Applied Biosystems、モデル420A)により確認する。
本発明の好ましい実施形態を本明細書に示し、記載しているが、このような実施形態が例示目的のみで提供されていることは当業者には明らかであろう。多くの変形、改変および置き換えが、本発明から逸脱することなく当業者には思い浮かぶであろう。本明細書に記載される本発明の実施形態の種々の代替は、本発明の実践に使用可能であると理解されるべきである。以下の特許請求の範囲が本発明の範囲を定義しており、そして本特許請求の範囲内の方法および構造、ならびにそれらの同等物が本発明の範囲に包含されるものとする。

Claims (19)

  1. 表1のアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも約60%同一であるアミノ酸配列を含むペプチド模倣大環状分子。
  2. 前記ペプチド模倣大環状分子の前記アミノ酸配列が、表1のアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも約80%同一である、請求項1に記載のペプチド模倣大環状分子。
  3. 前記ペプチド模倣大環状分子の前記アミノ酸配列が、表1のアミノ酸配列からなる群より選択されるアミノ酸配列に対して少なくとも約90%同一である、請求項1に記載のペプチド模倣大環状分子。
  4. 前記ペプチド模倣大環状分子の前記アミノ酸配列が、表1のアミノ酸配列からなる群より選択される、請求項1に記載のペプチド模倣大環状分子。
  5. 前記ペプチド模倣大環状分子がらせんを含む、請求項1に記載のペプチド模倣大環状分子。
  6. 前記ペプチド模倣大環状分子がα−らせんを含む、請求項1に記載のペプチド模倣大環状分子。
  7. 前記ペプチド模倣大環状分子が非らせんリンカー(non−helical linker)によって接続された2つ以上のα−らせんを含む、請求項1に記載のペプチド模倣大環状分子。
  8. 2つ以上のα−らせんペプチド模倣大環状分子が非らせんリンカーによって接続される、請求項1に記載のペプチド模倣大環状分子。
  9. 前記ペプチド模倣大環状分子がα,α−二置換アミノ酸を含む、請求項1に記載のペプチド模倣大環状分子。
  10. 前記ペプチド模倣大環状分子が少なくとも2つのアミノ酸のα位置を連結する架橋剤を含む、請求項1に記載のペプチド模倣大環状分子。
  11. 前記2つのアミノ酸のうちの少なくとも1つがα,α−二置換アミノ酸である、請求項10に記載のペプチド模倣大環状分子。
  12. 前記ペプチド模倣大環状分子が式:
    を有し、
    式中:
    A、C、D、およびEがそれぞれ独立して、天然または非天然のアミノ酸であり;
    Bが天然または非天然のアミノ酸、アミノ酸アナログ、

    、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
    およびRが独立して、非置換またはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルであって、;
    が水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであって、必要に応じてRで置換されており;
    Lが式−L−L−の大環状分子形成リンカーであり;
    およびLが独立してアルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であって、各々が必要に応じてRで置換され;
    がそれぞれアルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
    KがそれぞれO、S、SO、SO、CO、COまたはCONRであり;
    がそれぞれ独立してハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体または治療剤であり;
    がそれぞれ独立して−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体または治療剤であり;
    が、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリールまたはヘテロシクロアリールであるか、またはD残基を有する環状構造の一部であり;
    が、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリール、またはヘテロシクロアリールであるか、またはE残基を有する環状構造の一部であり;
    vおよびwが独立して1〜1000の整数であり;
    u、x、yおよびzが独立して0〜10の整数であり;かつ
    nが1〜5の整数である、請求項10に記載のペプチド模倣大環状分子。
  13. 前記ペプチド模倣大環状分子が、該ペプチド模倣大環状分子内の第二のアミノ酸に対して第一のアミノ酸の骨格アミノ基を連結する架橋剤を含む、請求項1に記載のペプチド模倣大環状分子。
  14. 前記ペプチド模倣大環状分子が式(IV)または(IVa):
    を有し、
    式中:
    A、C、D、およびEがそれぞれ独立して天然または非天然のアミノ酸であり;
    Bが天然または非天然のアミノ酸、アミノ酸アナログ、
    、[−NH−L−CO−]、[−NH−L−SO−]、または[−NH−L−]であり;
    およびRが独立して、非置換もしくはハロ−で置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、シクロアルキルアルキル、ヘテロアルキル、またはヘテロシクロアルキルであるか、またはE残基を有する環状構造の一部であり;
    が水素、アルキル、アルケニル、アルキニル、アリールアルキル、ヘテロアルキル、シクロアルキル、ヘテロシクロアルキル、シクロアルキルアルキル、シクロアリール、またはヘテロシクロアリールであって、必要に応じてRで置換されており;
    およびLが独立してアルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、シクロアリーレン、ヘテロシクロアリーレン、または[−R−K−R−]であって、各々が必要に応じてRで置換され;
    がそれぞれアルキレン、アルケニレン、アルキニレン、ヘテロアルキレン、シクロアルキレン、ヘテロシクロアルキレン、アリーレン、またはヘテロアリーレンであり;
    KがそれぞれO、S、SO、SO、CO、COまたはCONRであり;
    がそれぞれ独立してハロゲン、アルキル、−OR、−N(R、−SR、−SOR、−SO、−CO、蛍光性部分、放射性同位体または治療剤であり;
    がそれぞれ独立して−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、蛍光性部分、放射性同位体または治療剤であり;
    が、必要に応じてRで置換される、−H、アルキル、アルケニル、アルキニル、アリールアルキル、シクロアルキル、ヘテロアルキル、シクロアルキルアルキル、ヘテロシクロアルキル、シクロアリールまたはヘテロシクロアリールであり;
    vおよびwが独立して1〜1000の整数であり;
    u、x、yおよびzが独立して0〜10の整数であり;かつ
    nが1〜5の整数である、請求項13に記載のペプチド模倣大環状分子。
  15. 被験体において癌を処置する方法であって、請求項1に記載のペプチド模倣大環状分子を該被験体に投与する工程を包含する、方法。
  16. 被験体において加齢性黄斑変性症または糖尿病性網膜症を処置する方法であって、請求項1に記載のペプチド模倣大環状分子を該被験体に投与する工程を包含する、方法。
  17. 被験体における過剰な新脈管形成によって引き起こされる障害を処置する方法であって、請求項1に記載のペプチド模倣大環状分子を該被験体に投与する工程を包含する、方法。
  18. 被験体においてHIF1αの活性を調節する方法であって、請求項1に記載のペプチド模倣大環状分子を該被験体に投与する工程を包含する、方法。
  19. 被験体においてCBP/p300タンパク質とHIF1αタンパク質との間の相互作用に対して拮抗する方法であって、請求項1に記載のペプチド模倣大環状分子を該被験体に投与する工程を包含する、方法。
JP2011528081A 2008-09-22 2009-09-22 ペプチド模倣大環状分子 Withdrawn JP2012503024A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US9917208P 2008-09-22 2008-09-22
US61/099,172 2008-09-22
PCT/US2009/057927 WO2010034028A1 (en) 2008-09-22 2009-09-22 Peptidomimetic marcrocycles

Publications (2)

Publication Number Publication Date
JP2012503024A true JP2012503024A (ja) 2012-02-02
JP2012503024A5 JP2012503024A5 (ja) 2012-05-24

Family

ID=41581947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011528081A Withdrawn JP2012503024A (ja) 2008-09-22 2009-09-22 ペプチド模倣大環状分子

Country Status (8)

Country Link
US (1) US20120115783A1 (ja)
EP (1) EP2342214A1 (ja)
JP (1) JP2012503024A (ja)
CN (1) CN102197046A (ja)
AU (1) AU2009294871A1 (ja)
BR (1) BRPI0918833A2 (ja)
CA (1) CA2737916A1 (ja)
WO (1) WO2010034028A1 (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094721B1 (en) 2006-12-14 2018-02-14 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
CN109627287A (zh) 2007-02-23 2019-04-16 爱勒让治疗公司 三唑大环系统
WO2008121767A2 (en) 2007-03-28 2008-10-09 President And Fellows Of Harvard College Stitched polypeptides
US9399666B2 (en) 2008-09-18 2016-07-26 New York University Inhibiting interaction between the HIF-1ALPHA and p300/CBP with hydrogen bond surrogate-based helices
CA2737922A1 (en) 2008-09-22 2010-03-25 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
CN102223891A (zh) 2008-11-24 2011-10-19 爱勒让治疗公司 具有改善性质的拟肽大环化合物
JP2012515172A (ja) 2009-01-14 2012-07-05 エルロン・セラピューティクス・インコーポレイテッド ペプチド模倣大環状分子
JP2013505300A (ja) 2009-09-22 2013-02-14 エルロン・セラピューティクス・インコーポレイテッド ペプチド模倣大環状分子
KR102104762B1 (ko) 2010-08-13 2020-04-24 에일러론 테라퓨틱스 인코포레이티드 펩티도미메틱 거대고리
US9169295B2 (en) 2010-10-13 2015-10-27 Bristol-Myers Squibb Company Macrocycles and macrocycle stabilized peptides
EP2768518A4 (en) 2011-10-18 2015-05-27 Aileron Therapeutics Inc PEPTIDOMIMETIC MACROCYCLES
SG10201606775YA (en) 2012-02-15 2016-10-28 Aileron Therapeutics Inc Peptidomimetic macrocycles
EP2819688A4 (en) 2012-02-15 2015-10-28 Aileron Therapeutics Inc PEPTIDOMIMETIC MACROCYCLES CROSS-LINKED WITH TRIAZOLE AND THIOETHER
CA2887285A1 (en) 2012-11-01 2014-05-08 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9605026B2 (en) 2013-01-19 2017-03-28 New York University Hydrogen-bond surrogate peptides and peptidomimetics for p53 reactivation
WO2014138429A2 (en) * 2013-03-06 2014-09-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and use thereof in regulating hif1alpha
JP2018503595A (ja) 2014-09-24 2018-02-08 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. ペプチド模倣大環状分子およびその製剤
CN112245565A (zh) 2014-09-24 2021-01-22 艾瑞朗医疗公司 拟肽大环化合物及其用途
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
WO2017004548A1 (en) 2015-07-01 2017-01-05 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
JP2018528217A (ja) 2015-09-10 2018-09-27 エルロン・セラピューティクス・インコーポレイテッドAileron Therapeutics,Inc. Mcl−1のモジュレーターとしてのペプチド模倣大環状分子
EP4023295A1 (en) 2020-12-29 2022-07-06 IDP Discovery Pharma, S.L. Vegf-regulating peptides

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2332967B1 (en) * 2003-11-05 2016-04-20 Dana-Farber Cancer Institute, Inc. Stabilized alpha helical peptides and uses thereof
WO2006038208A2 (en) * 2004-07-12 2006-04-13 Medical Research Fund Of Tel Aviv Sourasky Medical Center Agents capable of downregulating an msf-a - dependent hif-1α and use thereof in cancer treatment
CA2665186A1 (en) * 2006-10-05 2008-04-17 New York Blood Center, Inc. Stabilized therapeutic small helical antiviral peptides
EP2094721B1 (en) * 2006-12-14 2018-02-14 Aileron Therapeutics, Inc. Bis-sulfhydryl macrocyclization systems
CN109627287A (zh) * 2007-02-23 2019-04-16 爱勒让治疗公司 三唑大环系统

Also Published As

Publication number Publication date
EP2342214A1 (en) 2011-07-13
CN102197046A (zh) 2011-09-21
AU2009294871A1 (en) 2010-03-25
WO2010034028A1 (en) 2010-03-25
BRPI0918833A2 (pt) 2015-12-08
CA2737916A1 (en) 2010-03-25
US20120115783A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
US11008366B2 (en) Peptidomimetic macrocycles
JP2012503024A (ja) ペプチド模倣大環状分子
JP6067626B2 (ja) ペプチド模倣大環状分子
JP6194325B2 (ja) 改善された特性を有するペプチド模倣大環状分子
JP6259861B2 (ja) ビス−スルフヒドリル大環状化系
US10300109B2 (en) Peptidomimetic macrocycles
US10246491B2 (en) Peptidomimetic macrocycles and use thereof in regulating HIF1alpha
JP4997293B2 (ja) トリアゾール大環状系
JP2012510430A (ja) ペプチド模倣大環状分子
US20120115793A1 (en) Peptidomimetic macrocycles
JP2013507927A (ja) 改善されたペプチド模倣大環状分子
WO2012173846A2 (en) Peptidomimetic macrocycles
HK1162181A (en) Peptidomimetic macrocycles

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20130812

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130903