JP2012230233A - Imaging lens, imaging apparatus and portable terminal - Google Patents
Imaging lens, imaging apparatus and portable terminal Download PDFInfo
- Publication number
- JP2012230233A JP2012230233A JP2011098134A JP2011098134A JP2012230233A JP 2012230233 A JP2012230233 A JP 2012230233A JP 2011098134 A JP2011098134 A JP 2011098134A JP 2011098134 A JP2011098134 A JP 2011098134A JP 2012230233 A JP2012230233 A JP 2012230233A
- Authority
- JP
- Japan
- Prior art keywords
- lens
- imaging
- conditional expression
- refractive power
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 220
- 230000014509 gene expression Effects 0.000 claims abstract description 41
- 238000006243 chemical reaction Methods 0.000 claims abstract description 22
- 239000002131 composite material Substances 0.000 claims abstract description 3
- 239000000758 substrate Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 abstract 4
- 230000004075 alteration Effects 0.000 description 50
- 238000010586 diagram Methods 0.000 description 43
- 201000009310 astigmatism Diseases 0.000 description 21
- 239000011521 glass Substances 0.000 description 17
- 230000003287 optical effect Effects 0.000 description 9
- 206010010071 Coma Diseases 0.000 description 6
- 238000012937 correction Methods 0.000 description 6
- 210000001747 pupil Anatomy 0.000 description 5
- 238000012545 processing Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 230000005499 meniscus Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 230000004304 visual acuity Effects 0.000 description 2
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
Landscapes
- Lenses (AREA)
Abstract
Description
本発明は、撮像レンズ及び撮像装置並びに携帯端末に関し、特に本発明は、CCD型イメージセンサあるいはCMOS型イメージセンサ等の固体撮像素子であって撮像面が湾曲してなる固体撮像素子に好適な撮像レンズ及び撮像装置並びにそれを用いた携帯端末に関する。 The present invention relates to an imaging lens, an imaging apparatus, and a portable terminal, and in particular, the present invention is a solid-state imaging device such as a CCD-type image sensor or a CMOS-type image sensor and suitable for a solid-state imaging device having a curved imaging surface. The present invention relates to a lens, an imaging device, and a portable terminal using the same.
近年、小型で薄型の撮像装置が、携帯電話機やPDA(Personal Digital Assistant)等の小型で薄型の電子機器である携帯端末に搭載されるようになり、これにより遠隔地へ音声情報だけでなく画像情報も相互に伝送することが可能となっている。 In recent years, small and thin imaging devices have been installed in portable terminals that are small and thin electronic devices such as mobile phones and PDAs (Personal Digital Assistants). Information can also be transmitted between each other.
これらの撮像装置に使用される撮像素子としては、CCD(Charge Coupled Device)型イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)型イメージセンサ等の固体撮像素子が使用されている。近年では、撮像素子の画素ピッチの小型化が進み、高画素化により、高解像、高性能化が図られてきている。一方で、高画素を維持しながらも、撮像素子の小型化が図られている。更には、撮像素子の撮像面を湾曲化させる試みも行われている。このような撮像素子に好適な、小型で高性能を有する撮像レンズが求められている。 As an image pickup element used in these image pickup apparatuses, a solid-state image pickup element such as a CCD (Charge Coupled Device) type image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) type image sensor is used. In recent years, the pixel pitch of the image sensor has been reduced, and higher resolution and higher performance have been achieved by increasing the number of pixels. On the other hand, downsizing of the image sensor has been achieved while maintaining high pixels. Furthermore, an attempt has been made to curve the imaging surface of the imaging element. There is a need for a compact and high-performance imaging lens suitable for such an imaging device.
ここで、小型で高性能を有する撮像レンズとしては、3枚レンズ構成のものが適している。撮像面が湾曲した3枚レンズ構成の撮像レンズは、特許文献1、2に開示されている。
また、固体撮像素子の撮像面が湾曲した1枚レンズ構成の撮像レンズは、特許文献3に開示されている。
Here, a three-lens configuration is suitable as a small and high-performance imaging lens. An imaging lens having a three-lens configuration with a curved imaging surface is disclosed in Patent Documents 1 and 2.
An imaging lens having a single lens configuration in which the imaging surface of a solid-state imaging device is curved is disclosed in Patent Document 3.
特許文献1および特許文献2には、コンパクトカメラやレンズ付きフィルムユニットに好適であり、撮影画角が77度程度、F5.7ないしF6.2の明るさを有する撮影レンズが記載されている。そのレンズ構成は、正の第1レンズ、負の第2レンズ、正の第3レンズおよび開口絞り、からなる後置絞りトリプレット型レンズである。 Patent Documents 1 and 2 describe a photographing lens that is suitable for a compact camera or a lens-equipped film unit and has a photographing field angle of about 77 degrees and a brightness of F5.7 to F6.2. The lens configuration is a rear stop triplet type lens including a positive first lens, a negative second lens, a positive third lens, and an aperture stop.
ここで、画素サイズの小さい固体撮像素子に使用される撮像レンズは、高細化された画素に対応するために高い解像力が要求されるという、フィルムカメラ用のレンズとは異なる特性が必要である。しかるに、レンズの解像力はF値により限界があり、F値の小さい明るいレンズの方が高解像力を得られるため、F値の小さい撮像レンズが求められる。 Here, an imaging lens used for a solid-state imaging device having a small pixel size needs to have a different characteristic from a lens for a film camera that requires high resolution in order to cope with a highly thinned pixel. . However, the resolving power of the lens is limited by the F value, and a bright lens with a small F value can obtain a high resolving power, so an imaging lens with a small F value is required.
又、特許文献1および特許文献2のレンズはF5より暗いF値を有するため、充分な性能を得ることができない。さらに、正の第1レンズは物体側に凸面を向けたメニスカス形状、正の第3レンズは両凸形状のトリプレット型であるため、第1レンズにくらべ第3レンズの正屈折力が強い構成になっている。そのため、バックフォーカスが長くなりやすく、撮影レンズおよび撮像装置が大型化してしまうという問題も有する。 Moreover, since the lenses of Patent Document 1 and Patent Document 2 have an F value that is darker than F5, sufficient performance cannot be obtained. Furthermore, since the positive first lens is a meniscus shape with a convex surface facing the object side, and the positive third lens is a double convex triplet type, the third lens has a stronger positive refractive power than the first lens. It has become. For this reason, there is a problem that the back focus tends to be long, and the photographic lens and the imaging device are increased in size.
さらに、特許文献1〜2に開示されているのは、フィルムカメラ用の撮影レンズであり、レンズで発生する像面湾曲にあわせて、フィルム面(撮像面)を湾曲させることにより、性能向上を図ったものである。しかし、いずれもロールフィルムを使用するカメラ用撮影レンズであるため、カメラの構造上、フィルム面は画面長辺方向のみに湾曲するいわゆるシリンドリカルな撮像面になっている。そのため、画面長辺方向は良好な性能が得られるものの、画面短辺方向の撮像面は平面のままなので、性能向上が図れないばかりか、像面湾曲の補正状況によっては劣化を招く場合もあり得る。つまり、特許文献1〜2のように撮像面の長辺方向のみの湾曲では、画面全体にわたり高性能を得ることは難しいといえる。 Furthermore, Patent Documents 1 and 2 disclose photographing lenses for film cameras, which improve performance by curving the film surface (imaging surface) in accordance with the curvature of field generated by the lens. It is intended. However, since both are camera-use photographic lenses that use a roll film, the film surface is a so-called cylindrical imaging surface that curves only in the direction of the long side of the screen due to the structure of the camera. Therefore, although good performance can be obtained in the long side direction of the screen, the imaging surface in the short side direction of the screen remains flat, so performance cannot be improved and deterioration may occur depending on the correction status of field curvature. obtain. That is, it can be said that it is difficult to obtain high performance over the entire screen by bending only the long side direction of the imaging surface as in Patent Documents 1 and 2.
さらに、特許文献1、2に開示されているのは、前述の通りフィルムカメラ用の撮影レンズであるため、撮像面に入射する光束の主光線入射角については、撮像面周辺部において必ずしも十分小さい設計にはなっていない。固体撮像素子の光電変換部に被写体像を結像させるための撮像レンズにおいては、撮像面に入射する光束の主光線入射角いわゆるテレセントリック特性が悪くなると、光束が固体撮像素子に対し斜めより入射し、撮像面周辺部において実質的な開口効率が減少する現象(シェーディング)が生じ、周辺光量不足を招く恐れがある。 Further, as disclosed in Patent Documents 1 and 2, as described above, since it is an imaging lens for a film camera, the principal ray incident angle of a light beam incident on the imaging surface is not necessarily sufficiently small in the periphery of the imaging surface. It is not designed. In an imaging lens for forming a subject image on the photoelectric conversion unit of a solid-state image sensor, when the chief ray incident angle of the light beam incident on the imaging surface, so-called telecentric characteristics, deteriorates, the light beam enters the solid-state image sensor obliquely. A phenomenon (shading) in which the substantial aperture efficiency decreases in the periphery of the imaging surface may occur, resulting in insufficient peripheral light amount.
一方、特許文献3には、携帯電話機等の撮影装置であって、固体撮像素子を多項式面形状に湾曲させることにより、レンズで発生する像面湾曲、歪曲収差をバランスよく補正し、小型で解像度の高い撮像装置が開示されている。しかしながら、固体撮像素子はCIFサイズ(352画素×288画素)であるのに対し、撮像レンズは1枚構成であるため、色収差が十分に補正されていないので、さらに高画素の固体撮像素子を用いた場合に、それに見合う高画質な画像の取得は望めない。 On the other hand, Patent Document 3 discloses a photographing device such as a mobile phone, which corrects the curvature of field and distortion generated by a lens in a well-balanced manner by curving a solid-state imaging device into a polynomial surface shape, and is small in size and resolution. An imaging device having a high value is disclosed. However, since the solid-state image sensor has a CIF size (352 pixels × 288 pixels), the image pickup lens has a single lens configuration, and thus the chromatic aberration is not sufficiently corrected. If there is, acquisition of high-quality images commensurate with it cannot be expected.
本発明はかかる問題に鑑みてなされたものであり、撮像面が湾曲した固体撮像素子を利用することにより、小型で高性能を有し、シェーディングを抑制でき、F値がF2.8よりも小さい撮像レンズおよびそれを用いた撮像装置並びに携帯端末を得ることを目的とする。 The present invention has been made in view of such a problem. By using a solid-state imaging device having a curved imaging surface, the invention has a small size, high performance, can suppress shading, and has an F value smaller than F2.8. An object is to obtain an imaging lens, an imaging device using the imaging lens, and a portable terminal.
請求項1に記載の撮像レンズは、光電変換部を備えた固体撮像素子と、前記固体撮像素子の前記光電変換部に被写体像を結像させる撮像レンズとを有する撮像装置の撮像レンズにおいて、
前記固体撮像素子の撮像面が湾曲しており、
前記撮像レンズが、物体側から順に正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正または負の屈折力を有する第3レンズからなり、
以下の条件式を満足することを特徴とする。
−0.9<f1/f23<−0.1 (1)
0.11<D5/f<0.5 (2)
但し、
f1 :前記第1レンズの焦点距離(mm)
f23:前記第2レンズと前記第3レンズとの合成焦点距離(mm)
D5 :前記第3レンズの軸上厚(mm)
f :前記撮像レンズ全系の焦点距離(mm)
The imaging lens according to claim 1, wherein the imaging lens includes a solid-state imaging device including a photoelectric conversion unit, and an imaging lens that forms a subject image on the photoelectric conversion unit of the solid-state imaging device.
The imaging surface of the solid-state imaging device is curved,
The imaging lens includes a first lens having a positive refractive power in order from the object side, a second lens having a negative refractive power, and a third lens having a positive or negative refractive power,
The following conditional expression is satisfied.
−0.9 <f1 / f23 <−0.1 (1)
0.11 <D5 / f <0.5 (2)
However,
f1: Focal length (mm) of the first lens
f23: Composite focal length (mm) of the second lens and the third lens
D5: Axial thickness (mm) of the third lens
f: Focal length (mm) of the entire imaging lens system
前記固体撮像素子の撮像面は湾曲している。このように前記固体撮像素子の撮像面が湾曲しているので、前記撮像装置の小型化と高性能化を両立させることができる。より具体的には、撮像面は、撮像レンズ側に湾曲させると、撮像面に入射する光束の主光線入射角いわゆるテレセントリック特性の補正が有利になる。撮像面が平面の場合より、撮像レンズ側に湾曲している場合の方が、撮像面に入射する光束の主光線入射角が小さくなるため、前記撮像レンズでテレセントリック特性の補正を十分に行わなくても、開口効率が減少せず、シェーディングの発生を抑えることができる。また、歪曲収差やコマ収差の補正が容易になり、前記撮像装置の小型化も可能になる。さらに、撮像面は球面状に湾曲させると良い。球面状に湾曲させると、画面の長辺方向と短辺方向のどちらも同様に湾曲し、撮像レンズの像面湾曲にあわせることができるので、画面全体にわたり性能を向上させることが可能になる。さらに、撮像レンズで像面湾曲の補正を十分に行わなくてもよいので、ペッツバール和を小さくする必要がなくなり、各面の屈折力を比較的弱く設定できるため、色収差やコマ収差の発生も抑えることができる。 The imaging surface of the solid-state imaging device is curved. As described above, since the imaging surface of the solid-state imaging device is curved, it is possible to achieve both downsizing and high performance of the imaging device. More specifically, if the imaging surface is curved toward the imaging lens side, it becomes advantageous to correct the chief ray incident angle of the light beam incident on the imaging surface, so-called telecentric characteristics. When the imaging surface is curved rather than flat, the chief ray incident angle of the light beam incident on the imaging surface is smaller, so the imaging lens does not sufficiently correct the telecentric characteristics. However, the aperture efficiency does not decrease, and the occurrence of shading can be suppressed. Further, distortion and coma can be easily corrected, and the image pickup apparatus can be downsized. Furthermore, the imaging surface is preferably curved into a spherical shape. When curved in a spherical shape, both the long side direction and the short side direction of the screen are curved in the same manner and can be adjusted to the curvature of field of the imaging lens, so that the performance can be improved over the entire screen. Furthermore, since it is not necessary to sufficiently correct the curvature of field with the imaging lens, it is not necessary to reduce the Petzval sum, and the refractive power of each surface can be set relatively weak, so that the occurrence of chromatic aberration and coma is also suppressed. be able to.
前記撮像レンズは、物体側より順に、正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正または負の屈折力を有する第3レンズとから構成される。第1レンズからなる正群と、第2レンズ及び第3レンズからなる負群の配置となる、いわゆるテレフォトタイプのこのレンズ構成は、撮像レンズ全長の小型化に有利な構成である。また、前記第2レンズが負の屈折力を有するので、色収差の補正ができるので、高性能化を実現できる。 The imaging lens includes, in order from the object side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens having a positive or negative refractive power. This so-called telephoto type lens configuration in which a positive group consisting of a first lens and a negative group consisting of a second lens and a third lens are arranged is advantageous in reducing the overall length of the imaging lens. In addition, since the second lens has a negative refractive power, chromatic aberration can be corrected, so that high performance can be realized.
条件式(1)は、第1レンズの正レンズ群の焦点距離と、第2レンズと第3レンズによる負の焦点距離を適切に設定し、小型化と収差補正をバランスよく行うための条件式である。条件式(1)の値が上限を下回ることで、レンズ全長の小型化及び像面湾曲や軸外諸収差の補正を良好に行うことができる。一方、条件式(1)の値が下限を上回ることで、歪曲収差やコマ収差の補正を良好に行うことができる。また、より望ましくは下式の範囲がよい。
−0.8<f1/f23<−0.15 (1’)
さらに、望ましくは下式の範囲がよい。
−0.7<f1/f23<−0.2 (1”)
Conditional expression (1) is a conditional expression for appropriately setting the focal length of the positive lens group of the first lens and the negative focal length of the second lens and the third lens so as to balance downsizing and aberration correction. It is. When the value of conditional expression (1) is less than the upper limit, it is possible to satisfactorily reduce the overall lens length and correct field curvature and off-axis aberrations. On the other hand, if the value of conditional expression (1) exceeds the lower limit, distortion and coma can be corrected well. More preferably, the range of the following formula is good.
−0.8 <f1 / f23 <−0.15 (1 ′)
Furthermore, the range of the following formula is desirable.
−0.7 <f1 / f23 <−0.2 (1 ″)
条件式(2)は、第3レンズの厚みを適切に設定するための条件式である。条件式(2)の値が下限を上回ることで、第3レンズが薄くなり過ぎて、加工性の難易度が上がるのを抑えることができる。一方、条件式(2)の値が上限を下回ることで、第3レンズが厚くなり過ぎず、倍率色収差の発生を抑えられ、レンズ全長の短縮が容易になり、撮像レンズおよび撮像装置の小型化が図れる。また、より望ましくは下式の範囲がよい。
0.12<D5/f<0.4 (2’)
さらに、望ましくは下式の範囲がよい。
0.14<D5/f<0.3 (2”)
Conditional expression (2) is a conditional expression for appropriately setting the thickness of the third lens. When the value of conditional expression (2) exceeds the lower limit, it is possible to prevent the third lens from becoming too thin and increase the difficulty of workability. On the other hand, if the value of conditional expression (2) is below the upper limit, the third lens will not be too thick, the occurrence of lateral chromatic aberration can be suppressed, the overall length of the lens can be easily reduced, and the imaging lens and imaging apparatus can be made smaller. Can be planned. More preferably, the range of the following formula is good.
0.12 <D5 / f <0.4 (2 ′)
Furthermore, the range of the following formula is desirable.
0.14 <D5 / f <0.3 (2 ")
請求項2に記載の撮像レンズは、請求項1に記載の発明において、以下の条件式を満足することを特徴とする。
−50.0<RI/Y<−2.0 (3)
但し、
RI :前記固体撮像素子の撮像面の曲率半径(mm)
Y :最大像高(mm)
The imaging lens described in claim 2 is characterized in that, in the invention described in claim 1, the following conditional expression is satisfied.
−50.0 <RI / Y <−2.0 (3)
However,
RI: radius of curvature (mm) of the imaging surface of the solid-state imaging device
Y: Maximum image height (mm)
条件式(3)は、撮像面の湾曲を適切に設定するための条件式である。条件式(3)の値が上限を下回れば、撮像面の湾曲が大きくなり、撮像レンズでのテレセントリック特性や像面湾曲の補正負担を増大することを防げるため、ペッツバール和が小さくなり過ぎず、コマ収差や色収差を良好に補正できる。一方、条件式(3)の値が下限を上回ると、撮像面の湾曲が小さくなり、像面湾曲の補正過剰を防ぐことができる。また、撮像レンズの最終面と撮像面とが近づきすぎるのを防ぎ、IRカットフィルタ一等を挿入するための空気間隔を充分に確保できる。また、より望ましくは下式の範囲がよい。但し、撮像面は湾曲していれば足り、必ずしも球面状である必要はない。
−30<RI/Y<−5 (3’)
Conditional expression (3) is a conditional expression for appropriately setting the curvature of the imaging surface. If the value of conditional expression (3) is less than the upper limit, the curvature of the imaging surface becomes large, and it is possible to prevent an increase in the telecentric characteristics and the correction burden of the curvature of field in the imaging lens. Coma and chromatic aberration can be corrected well. On the other hand, when the value of conditional expression (3) exceeds the lower limit, the curvature of the imaging surface becomes small, and overcorrection of the curvature of field can be prevented. Further, it is possible to prevent the final surface of the imaging lens from being too close to the imaging surface, and to sufficiently secure an air space for inserting an IR cut filter or the like. More preferably, the range of the following formula is good. However, it is sufficient that the imaging surface is curved, and it is not always necessary to have a spherical shape.
−30 <RI / Y <−5 (3 ′)
請求項3に記載の撮像レンズは、請求項1又は2に記載の発明において、以下の条件式を満足することを特徴とする。
0.5<Pair23/P<5.0 (4)
但し、
P:撮像レンズ全系の屈折力(焦点距離の逆数)
Pair23:前記第2レンズの像側面と前記第3レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
Pair23=(1−N2)/R4+(N3−1)/R5−{((1−N2)・(N3−1))/(R4・R5)}・D4
但し、
N2:前記第2レンズのd線に対する屈折率
N3:前記第3レンズのd線に対する屈折率
R4:前記第2レンズの像側面の曲率半径
R5:前記第3レンズの物体側面の曲率半径
D4:前記第2レンズと前記第3レンズの軸上の空気間隔
The imaging lens described in claim 3 is characterized in that, in the invention described in claim 1 or 2, the following conditional expression is satisfied.
0.5 <P air23 /P<5.0 (4)
However,
P: Refractive power of the entire imaging lens system (reciprocal of focal length)
P air23 is the refractive power of a so-called air lens formed by the image side surface of the second lens and the object side surface of the third lens, and is determined by the following conditional expression.
P air23 = (1-N2) / R4 + (N3-1) / R5-{((1-N2) · (N3-1)) / (R4 · R5)} · D4
However,
N2: Refractive index with respect to d line of the second lens N3: Refractive index with respect to d line of the third lens R4: Radius of curvature of the image side surface of the second lens R5: Radius of curvature of the object side surface of the third lens D4: Air spacing on the axis of the second lens and the third lens
条件式(4)は、第2レンズと第3レンズで形成される空気レンズの屈折力を適切にすることにより、テレセントリック特性と軸外収差をバランス良く補正するための条件式である。撮像面を湾曲させることで、撮像レンズでのテレセントリック特性の補正負担を軽減できるため、空気レンズの屈折力は比較的弱い正の屈折力に設定できる。条件式(4)の値が上限を下回ることで、空気レンズによる正の屈折力を適度に確保できるため、第3レンズで発生する軸外諸収差を良好に補正することができる。一方、条件式(4)の値が下限を上回ることで、空気レンズによる正の屈折力が強くなり過ぎず、軸外光束のコマフレアや歪曲収差の発生を抑制することができる。また、より望ましくは下式の範囲がよい。
0.6 <Pair23/P< 3.5 (4’)
さらに、望ましくは下式の範囲がよい。
0.7 <Pair23/P< 2.5 (4”)
Conditional expression (4) is a conditional expression for correcting the telecentric characteristic and off-axis aberration in a well-balanced manner by making the refractive power of the air lens formed by the second lens and the third lens appropriate. By curving the imaging surface, the burden of correcting the telecentric characteristic in the imaging lens can be reduced, so that the refractive power of the air lens can be set to a relatively weak positive refractive power. When the value of conditional expression (4) is below the upper limit, the positive refracting power by the air lens can be appropriately secured, so that various off-axis aberrations occurring in the third lens can be corrected well. On the other hand, when the value of conditional expression (4) exceeds the lower limit, the positive refractive power by the air lens does not become too strong, and the occurrence of coma flare and distortion of off-axis light flux can be suppressed. More preferably, the range of the following formula is good.
0.6 <P air23 /P<3.5 (4 ′)
Furthermore, the range of the following formula is desirable.
0.7 <P air23 /P<2.5 (4 ")
請求項4に記載の撮像レンズは、請求項1〜3のいずれかに記載の発明において、前記第2レンズは、以下の条件式を満足することを特徴とする。
−40<(R3+R4)/(R3−R4)< 0 (5)
但し
R3:前記第2レンズの物体側面の曲率半径(mm)
R4:前記第2レンズの像側面の曲率半径(mm)
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the second lens satisfies the following conditional expression.
−40 <(R3 + R4) / (R3-R4) <0 (5)
Where R3: radius of curvature of object side surface of the second lens (mm)
R4: radius of curvature of the image side surface of the second lens (mm)
条件式(5)は、第2レンズのシェーピングファクターに関する条件式である。条件式(5)の範囲を満足すると、物体側面の方が、像側面より屈折力が強い形状となり、小型化と収差補正を両立することができる。条件式(5)の値が上限を下回ることで、レンズ系の主点の位置が像面側に移動してバックフォーカスが長くなることを防ぎ、撮像レンズの小型化を実現することできる。一方、条件式(5)の値が下限を上回ることで、物体側面の曲率半径が小さくなり過ぎて、コマ収差が発生することを抑制することができ、良好な結像性能を得ることが可能になる。また、より望ましくは下式の範囲がよい。
−30<(R3+R4)/(R3−R4)<−0.3 (5’)
さらに、望ましくは下式の範囲がよい。
−20<(R3+R4)/(R3−R4)<−0.6 (5”)
Conditional expression (5) is a conditional expression related to the shaping factor of the second lens. If the range of the conditional expression (5) is satisfied, the object side surface has a shape having a stronger refractive power than the image side surface, and both size reduction and aberration correction can be achieved. When the value of conditional expression (5) is below the upper limit, the position of the principal point of the lens system is prevented from moving to the image plane side and the back focus is lengthened, and the imaging lens can be reduced in size. On the other hand, if the value of conditional expression (5) exceeds the lower limit, the curvature radius of the object side surface becomes too small and the occurrence of coma aberration can be suppressed, and good imaging performance can be obtained. become. More preferably, the range of the following formula is good.
−30 <(R3 + R4) / (R3−R4) <− 0.3 (5 ′)
Furthermore, the range of the following formula is desirable.
−20 <(R3 + R4) / (R3−R4) <− 0.6 (5 ″)
請求項5に記載の撮像レンズは、請求項1〜4のいずれかに記載の発明において、前記第3レンズは、負の屈折力を有し、以下の条件式を満足することを特徴とする。
−0.8<f/f3<0 (6)
但し、
f : 全レンズ系の焦点距離
f3 : 前記第3レンズの焦点距離
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the third lens has negative refractive power and satisfies the following conditional expression: .
−0.8 <f / f3 <0 (6)
However,
f: focal length of all lens systems f3: focal length of the third lens
第3レンズを負レンズにすると、テレフォトタイプの構成にできるため、小型化しやすくなる。条件式(6)の値が上限を下回ることで、光学系の全長の増大を防ぐことができる。一方、条件式(6)の値が下限を上回ることで、収差劣化、特に歪曲収差と像面湾曲の劣化を抑えることができる。さらに、第3レンズは物体側に凸面を向けたメニスカス形状を有することが望ましい。第3レンズの物体側面が凸面で像側面が凹面であれば、レンズ系の主点位置をより物体側に配置できるため、バックフォーカスが長くなることを防ぎ、撮像レンズの小型化に有利になる。また、より望ましくは下式の範囲がよい。
−0.7<f/f3<0 (6’)
さらに、望ましくは下式の範囲がよい。
−0.6<f/f3<0 (6”)
If the third lens is a negative lens, a telephoto type configuration can be obtained, which facilitates downsizing. When the value of conditional expression (6) is below the upper limit, an increase in the total length of the optical system can be prevented. On the other hand, when the value of conditional expression (6) exceeds the lower limit, it is possible to suppress the deterioration of aberrations, particularly the distortion and curvature of field. Furthermore, it is desirable that the third lens has a meniscus shape with a convex surface facing the object side. If the object side surface of the third lens is convex and the image side surface is concave, the principal point position of the lens system can be arranged closer to the object side, which prevents the back focus from becoming long and is advantageous for downsizing of the imaging lens. . More preferably, the range of the following formula is good.
−0.7 <f / f3 <0 (6 ′)
Furthermore, the range of the following formula is desirable.
-0.6 <f / f3 <0 (6 ")
請求項6に記載の撮像レンズは、請求項1〜4のいずれかに記載の発明において、前記第3レンズは、正の屈折力を有し、以下の条件式を満足することを特徴とする。
0<f/f3<0.8 (7)
但し、
f : 全レンズ系の焦点距離
f3 : 前記第3レンズの焦点距離
An imaging lens according to a sixth aspect of the invention is characterized in that, in the invention according to any one of the first to fourth aspects, the third lens has a positive refractive power and satisfies the following conditional expression: .
0 <f / f3 <0.8 (7)
However,
f: focal length of all lens systems f3: focal length of the third lens
第3レンズを正レンズにすると、トリプレットタイプの構成にできるため、レンズ全系が対称に近い構成になり、収差補正がしやすくなる。条件式(7)の値が上限を下回ることで、光学系の全長の増大を防ぐことができる。一方、条件式(7)の値が下限を上回ることで、収差劣化、特に歪曲収差と像面湾曲の劣化を抑えることができる。さらに、第3レンズは物体側に凸面を向けたメニスカス形状を有することが望ましい。第3レンズの物体側面が凸面で像側面が凹面であれば、レンズ系の主点位置をより物体側に配置できるため、バックフォーカスが長くなることを防ぎ、撮像レンズの小型化に有利になる。また、より望ましくは下式の範囲がよい。
0<f/f3<0.7 (7’)
さらに、望ましくは下式の範囲がよい。
0<f/f3<0.6 (7”)
If the third lens is a positive lens, a triplet type configuration can be obtained, so that the entire lens system has a configuration close to symmetry, and aberration correction is easy. When the value of conditional expression (7) is less than the upper limit, an increase in the total length of the optical system can be prevented. On the other hand, when the value of conditional expression (7) exceeds the lower limit, it is possible to suppress aberration deterioration, in particular, distortion and field curvature. Furthermore, it is desirable that the third lens has a meniscus shape with a convex surface facing the object side. If the object side surface of the third lens is convex and the image side surface is concave, the principal point position of the lens system can be arranged closer to the object side, which prevents the back focus from becoming long and is advantageous for downsizing of the imaging lens. . More preferably, the range of the following formula is good.
0 <f / f3 <0.7 (7 ')
Furthermore, the range of the following formula is desirable.
0 <f / f3 <0.6 (7 ")
請求項7に記載の撮像レンズは、請求項1〜6のいずれかに記載の発明において、前記第1レンズと前記第2レンズの間に開口絞りを配置したことを特徴とする。 According to a seventh aspect of the present invention, in the invention of any one of the first to sixth aspects, an aperture stop is disposed between the first lens and the second lens.
テレセントリック特性の補正を撮像レンズで十分に行う必要がある場合は、開口絞りはできるだけ撮像面から離れた位置に配置するほうが有利であるが、本発明のように撮像面を湾曲させた撮像レンズではほぼ不要なので、開口絞りを前記第1レンズと前記第2レンズの間に配置すると、倍率色収差や歪曲収差が補正し易い構成になり望ましい。 When it is necessary to sufficiently correct the telecentric characteristics with the imaging lens, it is advantageous to dispose the aperture stop as far away from the imaging surface as possible, but with an imaging lens with a curved imaging surface as in the present invention. Since it is almost unnecessary, it is desirable to arrange an aperture stop between the first lens and the second lens because it is easy to correct lateral chromatic aberration and distortion.
請求項8に記載の撮像レンズは、請求項1〜6のいずれかに記載の発明において、前記第1レンズの有効径内で前記第1レンズ周辺部の物体側面位置より物体側に、開口絞りを配置したことを特徴とする。 An imaging lens according to an eighth aspect of the present invention is the imaging lens according to any one of the first to sixth aspects, wherein the aperture stop is located closer to the object side than the object side surface position in the periphery of the first lens within the effective diameter of the first lens. It is characterized by arranging.
開口絞りを前記第1レンズの物体側に配置する、いわゆる前置絞りにすると、射出瞳位置が像面から離れる構成になるため、テレセントリック特性の補正に有利である。本発明のように、撮像面を湾曲させることにより、テレセントリック特性を十分に補正する必要のない撮像レンズにおいても、前置絞り構成にすると、テレセントリック特性の補正はほぼ不要になり、その分他の収差を十分補正できるため、高性能化を実現できる。さらに、機械的なシャッタを必要とする場合においても、最も物体側に配置する構成とでき有利である。 A so-called front stop in which the aperture stop is disposed on the object side of the first lens is advantageous in correcting telecentric characteristics because the exit pupil position is separated from the image plane. Even in an imaging lens that does not need to sufficiently correct the telecentric characteristics by curving the imaging surface as in the present invention, the correction of the telecentric characteristics becomes almost unnecessary if the front aperture configuration is used. Since the aberration can be corrected sufficiently, high performance can be realized. Furthermore, even when a mechanical shutter is required, it can be advantageously arranged at the most object side.
請求項9に記載の撮像レンズは、請求項1〜8のいずれかに記載の発明において、実質的にパワーを持たないレンズを更に有することを特徴とする。つまり、請求項1の構成に、実質的にパワーを持たないダミーレンズを付与した場合でも本発明の適用範囲内である。 An imaging lens according to a ninth aspect is the invention according to any one of the first to eighth aspects, further comprising a lens having substantially no power. That is, even when a dummy lens having substantially no power is added to the configuration of claim 1, it is within the scope of application of the present invention.
請求項10に記載の撮像装置は、光電変換部を備えた固体撮像素子と、前記固体撮像素子を保持すると共に、電気信号の送受を行うための接続用端子部が形成された基板と、請求項1〜9のいずれかに記載の撮像レンズと、該撮像レンズを内包し、物体側からの光入射用の開口部を有する遮光性材料で形成された筐体とを有することを特徴とする。 An imaging device according to claim 10 is a solid-state imaging device including a photoelectric conversion unit, a substrate on which the solid-state imaging device is held and a connection terminal unit for transmitting and receiving electrical signals is formed, and Item 10. The image pickup lens according to any one of Items 1 to 9, and a housing formed of a light-shielding material that includes the image pickup lens and has an opening for light incidence from the object side. .
本発明の撮像レンズを用いることで、より小型かつ高性能な撮像装置を得ることができる。 By using the imaging lens of the present invention, a smaller and higher performance imaging device can be obtained.
請求項11に記載の携帯端末は、請求項10記載の撮像装置を備えることを特徴とする。 A portable terminal according to an eleventh aspect includes the imaging device according to the tenth aspect.
本発明の撮像装置を用いることで、より小型かつ高性能な携帯端末を得ることができる。 By using the imaging device of the present invention, a smaller and higher performance portable terminal can be obtained.
本発明によれば、撮像面が湾曲した固体撮像素子を利用することにより、小型で高性能を有し、シェーディングを抑制でき、F値がF2.8よりも小さい撮像レンズおよびそれを用いた撮像装置並びに携帯端末を得ることができる。 According to the present invention, by using a solid-state imaging device having a curved imaging surface, an imaging lens having a small size, high performance, suppressing shading, and having an F value smaller than F2.8 and imaging using the imaging lens An apparatus and a portable terminal can be obtained.
以下、本発明の実施の形態を図面に基づいて説明する。図1は、本実施の形態にかかる撮像装置50の上面図であり、図2は、図1の構成を、光軸を含む断面で切断してなる断面図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a top view of an imaging apparatus 50 according to the present embodiment, and FIG. 2 is a cross-sectional view obtained by cutting the configuration of FIG. 1 along a cross section including an optical axis.
図1又は図2に示すように、撮像装置50は光電変換部51aを有する固体撮像素子としてのCMOS型撮像素子51と、この撮像素子51上の光電変換部51aに被写体像を撮像する撮像レンズ10と、物体側からの光入射用の開口部を有する遮光部材からなる筐体53とを備え、これらが一体的に形成されている。 As illustrated in FIG. 1 or FIG. 2, the imaging device 50 includes a CMOS type imaging device 51 as a solid-state imaging device having a photoelectric conversion unit 51 a and an imaging lens that captures a subject image on the photoelectric conversion unit 51 a on the imaging device 51. 10 and a casing 53 made of a light shielding member having an opening for light incidence from the object side, and these are integrally formed.
図2に示すように、撮像素子51は、所定の曲率半径で球状に湾曲しており、その湾曲した受光側の面の中央部に画素(光電変換素子)が2次元的に配置され、受光部としての光電変換部51aが形成され、その周囲には信号処理回路51bか形成されている。この信号処理回路51bは、各画素を順次駆動し信号電荷を得る駆動回路部と、各信号電荷をデジタル信号に変換するA/D変換部と、このデジタル信号を用い画像信号出力を形成する信号処理部等から構成されている。なお、撮像素子は、上述のCMOS型のイメージセンサに限るものでなく、CCD等の他のものを適用したものでもよい。 As shown in FIG. 2, the image sensor 51 is spherically curved with a predetermined radius of curvature, and a pixel (photoelectric conversion element) is two-dimensionally arranged at the center of the curved light receiving side surface. A photoelectric conversion unit 51a as a unit is formed, and a signal processing circuit 51b is formed around the photoelectric conversion unit 51a. The signal processing circuit 51b includes a driving circuit unit that sequentially drives each pixel to obtain a signal charge, an A / D conversion unit that converts each signal charge into a digital signal, and a signal that forms an image signal output using the digital signal. It consists of a processing unit and the like. Note that the image pickup element is not limited to the above-described CMOS type image sensor, and may be one to which another one such as a CCD is applied.
撮像素子51の光電変換部51a側には、スペーサBを介しシールガラスCが固着され、更に、シールガラスC或いは撮像素子51の側面部が筐体53に固着されている。シールガラスCは、ここでは平板であるが、光電変換部51aに合わせて湾曲していても良い。 The seal glass C is fixed to the photoelectric conversion unit 51 a side of the image sensor 51 through the spacer B, and the seal glass C or the side surface of the image sensor 51 is fixed to the housing 53. The seal glass C is a flat plate here, but may be curved in accordance with the photoelectric conversion unit 51a.
撮像素子51の他方の面(光電変換部51aと反対側の面)には、外部回路との接続に用いられる複数の外部電極52が形成されている。外部電極52と不図示の外部回路(例えば、撮像装置を実装した上位装置が有する制御回路)とが接続されて、外部回路から撮像素子51を駆動するための電圧やクロック信号の供給を受けたり、また、デジタルYUV信号を外部回路へ出力したりすることを可能としている。 A plurality of external electrodes 52 used for connection to an external circuit are formed on the other surface of the image sensor 51 (surface opposite to the photoelectric conversion unit 51a). The external electrode 52 and an external circuit (not shown) (for example, a control circuit included in a host device on which the imaging device is mounted) are connected to receive a voltage or a clock signal for driving the imaging device 51 from the external circuit. In addition, it is possible to output a digital YUV signal to an external circuit.
なお、図示しないが、撮像素子51の光電変換部51aと反対側の面に基板を配置し、該基板と撮像素子51をワイヤボンディングで接続し、該基板の撮像素子と反対側の面に外部回路との接続に用いられる複数の外部電極を形成してもよい。 Although not shown, a substrate is disposed on the surface opposite to the photoelectric conversion unit 51a of the image sensor 51, the substrate and the image sensor 51 are connected by wire bonding, and an external surface is connected to the surface of the substrate opposite to the image sensor. A plurality of external electrodes used for connection with a circuit may be formed.
図2に示したように、遮光部材からなる筐体53は、撮像素子51の光電変換部51a側において、撮像レンズ10を保持する鏡枠55に螺合しており、これにより撮像レンズ10は光軸方向に調整可能となっている。 As shown in FIG. 2, the housing 53 made of a light-shielding member is screwed into a lens frame 55 that holds the imaging lens 10 on the photoelectric conversion unit 51 a side of the imaging element 51, whereby the imaging lens 10 is Adjustable in the optical axis direction.
撮像レンズ10は、物体側より順に、正の第1レンズL1、開口絞りS、正の第2レンズL2、負の第3レンズL3からなり、撮像素子51の光電変換面51aに、被写体像が結像されるよう構成されている。なお、図2における一点鎖線が各レンズL1〜L3の光軸である。 The imaging lens 10 includes, in order from the object side, a positive first lens L1, an aperture stop S, a positive second lens L2, and a negative third lens L3. A subject image is captured on the photoelectric conversion surface 51a of the imaging element 51. It is configured to form an image. In addition, the dashed-dotted line in FIG. 2 is an optical axis of each lens L1-L3.
第1レンズL1、第2レンズL2、第3レンズL3、シールガラスCのいずれか一つの面には赤外光カットコートがなされている。なお、図示しないが、赤外カットコートのかわりにシールガラスより前方に赤外光カットフィルタを配置してもよい。 Any one surface of the first lens L1, the second lens L2, the third lens L3, and the seal glass C is coated with an infrared light cut coat. Although not shown, an infrared light cut filter may be disposed in front of the seal glass instead of the infrared cut coat.
撮像レンズ10を構成する各レンズL1〜L3は、遮光部材からなる鏡枠55に保持されている。各レンズL1〜L3は、物体側から像側に向かうに連れて外径が拡大しており、レンズL1,L2のフランジ部間には、中央に開口絞りSを形成した円盤状の遮光部材SH1が配置されている。又、レンズL2の像側フランジ部に当接するようにして、遮光部材SH2が鏡枠55に固着されている。不要光をカットする遮光部材SH1、SH2の表面は、階段状又は粗し面として良い。又、第3レンズL3とシールガラスCの間に遮光部材を配置しても良い。光線経路の外側に遮光部材を配置することで、ゴースト、フレアの発生を抑えることができる。なお、図2に示す撮像装置の場合、図示Hが撮像装置の撮像レンズ光軸方向の高さとなる。 Each lens L1 to L3 constituting the imaging lens 10 is held by a lens frame 55 made of a light shielding member. Each of the lenses L1 to L3 has an outer diameter that increases from the object side toward the image side, and a disc-shaped light shielding member SH1 having an aperture stop S formed in the center between the flange portions of the lenses L1 and L2. Is arranged. Further, the light shielding member SH2 is fixed to the lens frame 55 so as to contact the image side flange portion of the lens L2. The surfaces of the light shielding members SH1 and SH2 that cut unnecessary light may be stepped or roughened. Further, a light shielding member may be disposed between the third lens L3 and the seal glass C. By arranging the light shielding member outside the light beam path, it is possible to suppress the occurrence of ghost and flare. In the case of the imaging apparatus shown in FIG. 2, H in the figure is the height of the imaging lens in the optical axis direction of the imaging apparatus.
図3は、本実施の形態に係る撮像装置50を備えた携帯端末の一例である携帯電話機100の外観図である。同図に示す携帯電話機100は、表示画面D1及びD2を備えたケースとしての上筐体71と、入力部である操作ボタン60を備えた下筐体72とがヒンジ73を介して連結されている。撮像装置50は、上筐体71内の表示画面D2の下方に内蔵されており、撮像装置50が上筐体71の外表面側から光を取り込めるよう配置されている。なお、この撮像装置の位置は上筐体71内の表示画面D2の上方や側面に配置してもよい。また携帯電話機は折りたたみ式に限るものではないのは、勿論である。 FIG. 3 is an external view of a mobile phone 100 that is an example of a mobile terminal including the imaging device 50 according to the present embodiment. In the mobile phone 100 shown in the figure, an upper casing 71 as a case having display screens D1 and D2 and a lower casing 72 having an operation button 60 as an input unit are connected via a hinge 73. Yes. The imaging device 50 is built below the display screen D <b> 2 in the upper casing 71, and is arranged so that the imaging device 50 can capture light from the outer surface side of the upper casing 71. Note that the position of the imaging device may be disposed above or on the side of the display screen D2 in the upper casing 71. Of course, the mobile phone is not limited to a folding type.
(実施例)
次に、上述した実施の形態に好適な実施例について説明する。但し、以下に示す実施例により本発明が限定されるものではない。各実施例に使用する記号は下記の通りである。
f :撮像レンズ全系の焦点距離
fB :バックフォーカス
F :Fナンバー
Y :固体撮像素子の撮像面対角最大像高
R :曲率半径
D :軸上面間隔
Nd :レンズ材料のd線に対する屈折率
νd :レンズ材料のアッベ数
ENTP:入射瞳位置(第1面から入射瞳位置までの距離)
EXTP:射出瞳位置(撮像面から射出瞳位置までの距離)
H1 :前側主点位置(第1面から前側主点位置までの距離)
H2 :後側主点位置(最終面から後側主点位置までの距離)
(Example)
Next, examples suitable for the above-described embodiment will be described. However, the present invention is not limited to the following examples. Symbols used in each example are as follows.
f: Focal length of the entire imaging lens system fB: Back focus F: F number Y: Imaging surface diagonal maximum image height R of solid-state imaging device R: Radius of curvature D: Axis upper surface distance Nd: Refractive index νd of lens material with respect to d-line : Abbe number of lens material
ENTP: Entrance pupil position (distance from first surface to entrance pupil position)
EXTP: Exit pupil position (distance from imaging surface to exit pupil position)
H1: Front principal point position (distance from the first surface to the front principal point position)
H2: Rear principal point position (distance from the final surface to the rear principal point position)
各実施例において、各面番号の後に「*」が記載されている面が非球面形状を有する面であり、非球面の形状は、面の頂点を原点とし、光軸方向にX軸をとり、光軸と垂直方向の高さをhとして以下の「数1」で表す。 In each embodiment, the surface described with “*” after each surface number is a surface having an aspheric shape, and the shape of the aspheric surface has the vertex of the surface as the origin and the X axis in the optical axis direction. The height in the direction perpendicular to the optical axis is represented by the following “Equation 1”.
ただし、
Ai:i次の非球面係数
R :曲率半径
K :円錐定数
However,
Ai: i-order aspheric coefficient R: radius of curvature K: conic constant
(実施例1)
レンズデータを表1に示す。なお、これ以降(表のレンズデータを含む)において、10のべき乗数(たとえば2.5×10-02)を、E(たとえば2.5E−02)を用いて表すものとする。図4は実施例1のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図5(a)は実施例1の球面収差図、図5(b)は非点収差図、図5(c)は歪曲収差図である。ここで、球面収差図及びコマ収差図において、gはg線、dはd線に対する球面収差量をそれぞれ表す。また、非点収差図において、実線Sはサジタル面、点線Mはメリディオナル面をそれぞれ表す(以下同じ)。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
Example 1
Lens data is shown in Table 1. In the following (including the lens data in the table), a power of 10 (for example, 2.5 × 10 −02 ) is expressed using E (for example, 2.5E-02). 4 is a sectional view of the lens of Example 1. FIG. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 5A is a spherical aberration diagram of Example 1, FIG. 5B is an astigmatism diagram, and FIG. 5C is a distortion diagram. Here, in the spherical aberration diagram and the coma aberration diagram, g represents the amount of spherical aberration with respect to the g line, and d represents the amount of spherical aberration with respect to the d line. In the astigmatism diagram, the solid line S represents the sagittal plane, and the dotted line M represents the meridional plane (the same applies hereinafter). The aperture stop S is between the first lens L1 and the second lens L2.
[表 1 ]
実施例 1
f=2.88mm fB=0.45mm F=2.6 2Y=3.7mm
ENTP=0.62mm EXTP=-1.6mm H1=-0.54mm H2=-2.42mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 0.974 0.64 1.54400 55.9 0.73
2* 3.524 0.05 0.48
3(絞り) ∞ 0.36 0.43
4* -0.955 0.40 1.63200 23.4 0.51
5* -1.357 0.35 0.74
6* 2.186 0.60 1.54400 55.9 1.27
7* 1.858 0.31 1.48
8 ∞ 0.15 1.51680 64.0 1.69
9 ∞ 1.73
撮像面 -25.000 1.85
非球面係数
第1面 第5面
K=-0.43992E+00 K=0.10351E+01
A4=0.53794E-01 A4=-0.29740E+00
A6=0.12150E+00 A6=0.61980E+00
A8=-0.40448E+00 A8=-0.59821E-02
A10=0.11427E+01 A10=0.73533E+00
A12=-0.15870E+01 A12=-0.36864E+00
第2面 第6面
K=0.21492E+02 K=-0.14647E+02
A4=-0.10440E+00 A4=-0.40002E+00
A6=-0.72296E+00 A6=0.31165E+00
A8=0.38550E+01 A8=-0.10105E+00
A10=-0.25472E+02 A10=0.15343E-01
A12=0.51252E+02 A12=-0.98196E-03
第4面 第7面
K=-0.74767E+00 K=-0.42546E+01
A4=-0.53444E+00 A4=-0.31361E+00
A6=-0.11355E+00 A6=0.19485E+00
A8=-0.53639E+01 A8=-0.99285E-01
A10=0.33212E+02 A10=0.26513E-01
A12=-0.85556E+02 A12=-0.25007E-02
単レンズデータ
レンズ 始面 焦点距離(mm)
1 1 2.27
2 4 -8.33
3 6 -64.13
[table 1 ]
Example 1
f = 2.88mm fB = 0.45mm F = 2.6 2Y = 3.7mm
ENTP = 0.62mm EXTP = -1.6mm H1 = -0.54mm H2 = -2.42mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 0.974 0.64 1.54400 55.9 0.73
2 * 3.524 0.05 0.48
3 (Aperture) ∞ 0.36 0.43
4 * -0.955 0.40 1.63200 23.4 0.51
5 * -1.357 0.35 0.74
6 * 2.186 0.60 1.54400 55.9 1.27
7 * 1.858 0.31 1.48
8 ∞ 0.15 1.51680 64.0 1.69
9 ∞ 1.73
Imaging surface -25.000 1.85
Aspheric coefficient
1st side 5th side
K = -0.43992E + 00 K = 0.10351E + 01
A4 = 0.53794E-01 A4 = -0.29740E + 00
A6 = 0.12150E + 00 A6 = 0.61980E + 00
A8 = -0.40448E + 00 A8 = -0.59821E-02
A10 = 0.11427E + 01 A10 = 0.73533E + 00
A12 = -0.15870E + 01 A12 = -0.36864E + 00
2nd side 6th side
K = 0.21492E + 02 K = -0.14647E + 02
A4 = -0.10440E + 00 A4 = -0.40002E + 00
A6 = -0.72296E + 00 A6 = 0.31165E + 00
A8 = 0.38550E + 01 A8 = -0.10105E + 00
A10 = -0.25472E + 02 A10 = 0.15343E-01
A12 = 0.51252E + 02 A12 = -0.98196E-03
4th surface 7th surface
K = -0.74767E + 00 K = -0.42546E + 01
A4 = -0.53444E + 00 A4 = -0.31361E + 00
A6 = -0.11355E + 00 A6 = 0.19485E + 00
A8 = -0.53639E + 01 A8 = -0.99285E-01
A10 = 0.33212E + 02 A10 = 0.26513E-01
A12 = -0.85556E + 02 A12 = -0.25007E-02
Single lens data
Lens Start surface Focal length (mm)
1 1 2.27
2 4 -8.33
3 6 -64.13
(実施例2)
レンズデータを表2に示す。図6は実施例2のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図7(a)は実施例2の球面収差図、図7(b)は非点収差図、図7(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
(Example 2)
Table 2 shows the lens data. 6 is a sectional view of the lens of Example 2. FIG. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 7A is a spherical aberration diagram of Example 2, FIG. 7B is an astigmatism diagram, and FIG. 7C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 2 ]
実施例 2
f=2.78mm fB=0.55mm F=2.6 2Y=3.7mm
ENTP=0.4mm EXTP=-1.76mm H1=-0.17mm H2=-2.23mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.197 0.52 1.53100 56.0 0.68
2* -14.789 0.00 0.54
3(絞り) ∞ 0.39 0.48
4* -0.731 0.31 1.58500 30.0 0.54
5* -0.872 0.48 0.67
6* -82.140 0.57 1.53100 56.0 1.18
7* 5.440 0.30 1.42
8 ∞ 0.15 1.51680 64.0 1.65
9 ∞ 1.69
撮像面 -15.000 1.85
非球面係数
第1面 第5面
K=-0.18303E+01 K=-0.30761E+00
A4=0.62003E-01 A4=0.41580E+00
A6=-0.16896E+00 A6=0.71327E+00
A8=0.16086E+00 A8=0.16358E+01
A10=-0.13208E+01 A10=-0.23811E+01
第2面 第6面
K=0.30000E+02 K=0.30000E+02
A4=-0.23751E+00 A4=-0.50950E-01
A6=-0.18949E+00 A6=0.73309E-02
A8=-0.82802E+00 A8=-0.28154E-01
A10=0.15113E+01 A10=0.13538E-01
A12=0.14274E-02
第4面 第7面
K=0.18560E+00 K=0.37104E+01
A4=0.35837E+00 A4=-0.13004E+00
A6=0.18806E+01 A6=0.32925E-01
A8=0.27267E+00 A8=-0.22771E-01
A10=-0.10674E+01 A10=0.51155E-02
A12=-0.12556E-02
単レンズデータ
レンズ 始面 焦点距離(mm)
1 1 2.11
2 4 -38.76
3 6 -9.59
[Table 2]
Example 2
f = 2.78mm fB = 0.55mm F = 2.6 2Y = 3.7mm
ENTP = 0.4mm EXTP = -1.76mm H1 = -0.17mm H2 = -2.23mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.197 0.52 1.53 100 56.0 0.68
2 * -14.789 0.00 0.54
3 (Aperture) ∞ 0.39 0.48
4 * -0.731 0.31 1.58500 30.0 0.54
5 * -0.872 0.48 0.67
6 * -82.140 0.57 1.53100 56.0 1.18
7 * 5.440 0.30 1.42
8 ∞ 0.15 1.51680 64.0 1.65
9 ∞ 1.69
Imaging surface -15.000 1.85
Aspheric coefficient
1st side 5th side
K = -0.18303E + 01 K = -0.30761E + 00
A4 = 0.62003E-01 A4 = 0.41580E + 00
A6 = -0.16896E + 00 A6 = 0.71327E + 00
A8 = 0.16086E + 00 A8 = 0.16358E + 01
A10 = -0.13208E + 01 A10 = -0.23811E + 01
2nd side 6th side
K = 0.30000E + 02 K = 0.30000E + 02
A4 = -0.23751E + 00 A4 = -0.50950E-01
A6 = -0.18949E + 00 A6 = 0.73309E-02
A8 = -0.82802E + 00 A8 = -0.28154E-01
A10 = 0.15113E + 01 A10 = 0.13538E-01
A12 = 0.14274E-02
4th surface 7th surface
K = 0.18560E + 00 K = 0.37104E + 01
A4 = 0.35837E + 00 A4 = -0.13004E + 00
A6 = 0.18806E + 01 A6 = 0.32925E-01
A8 = 0.27267E + 00 A8 = -0.22771E-01
A10 = -0.10674E + 01 A10 = 0.51155E-02
A12 = -0.12556E-02
Single lens data
Lens Start surface Focal length (mm)
1 1 2.11
2 4 -38.76
3 6 -9.59
(実施例3)
レンズデータを表3に示す。図8は実施例3のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図9(a)は実施例3の球面収差図、図9(b)は非点収差図、図9(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
(Example 3)
Table 3 shows lens data. FIG. 8 is a sectional view of the lens of Example 3. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 9A is a spherical aberration diagram of Example 3, FIG. 9B is an astigmatism diagram, and FIG. 9C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 3 ]
実施例 3
f=4.44mm fB=0.44mm F=2.55 2Y=5.7mm
ENTP=0.78mm EXTP=-2.5mm H1=-1.47mm H2=-4mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.453 0.82 1.54400 55.9 1.06
2* 4.153 0.07 0.73
3(絞り) ∞ 0.55 0.72
4* -1.621 0.47 1.63200 23.4 0.82
5* -1.806 1.14 1.06
6* 7.272 0.70 1.54400 55.9 2.06
7* 2.920 0.48 2.34
8 ∞ 0.15 1.51680 64.0 2.68
9 ∞ 2.71
撮像面 -32.000 2.85
非球面係数
第1面 第5面
K=-0.37205E+00 K=0.96128E+00
A4=0.18906E-01 A4=-0.14916E-03
A6=0.12902E-01 A6=0.55779E-01
A8=-0.14259E-01 A8=0.16898E-01
A10=0.26454E-01 A10=0.36031E-01
A12=-0.14837E-01 A12=-0.16621E-01
第2面 第6面
K=0.19190E+02 K=-0.18767E+02
A4=-0.26221E-01 A4=-0.10405E+00
A6=-0.73608E-01 A6=0.31575E-01
A8=0.15641E+00 A8=-0.43589E-02
A10=-0.38623E+00 A10=0.34824E-03
A12=0.21325E+00 A12=-0.14702E-04
第4面 第7面
K=-0.46694E+00 K=-0.47722E+01
A4=-0.10720E+00 A4=-0.86264E-01
A6=0.42561E-01 A6=0.21598E-01
A8=-0.19032E+00 A8=-0.41827E-02
A10=0.57203E+00 A10=0.44784E-03
A12=-0.61258E+00 A12=-0.18107E-04
単レンズデータ
レンズ 始面 焦点距離(mm)
1 1 3.71
2 4 -1231.2
3 6 -9.51
[Table 3]
Example 3
f = 4.44mm fB = 0.44mm F = 2.55 2Y = 5.7mm
ENTP = 0.78mm EXTP = -2.5mm H1 = -1.47mm H2 = -4mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.453 0.82 1.54400 55.9 1.06
2 * 4.153 0.07 0.73
3 (Aperture) ∞ 0.55 0.72
4 * -1.621 0.47 1.63200 23.4 0.82
5 * -1.806 1.14 1.06
6 * 7.272 0.70 1.54400 55.9 2.06
7 * 2.920 0.48 2.34
8 ∞ 0.15 1.51680 64.0 2.68
9 ∞ 2.71
Imaging surface -32.000 2.85
Aspheric coefficient
1st side 5th side
K = -0.37205E + 00 K = 0.96128E + 00
A4 = 0.18906E-01 A4 = -0.14916E-03
A6 = 0.12902E-01 A6 = 0.55779E-01
A8 = -0.14259E-01 A8 = 0.16898E-01
A10 = 0.26454E-01 A10 = 0.36031E-01
A12 = -0.14837E-01 A12 = -0.16621E-01
2nd side 6th side
K = 0.19190E + 02 K = -0.18767E + 02
A4 = -0.26221E-01 A4 = -0.10405E + 00
A6 = -0.73608E-01 A6 = 0.31575E-01
A8 = 0.15641E + 00 A8 = -0.43589E-02
A10 = -0.38623E + 00 A10 = 0.34824E-03
A12 = 0.21325E + 00 A12 = -0.14702E-04
4th surface 7th surface
K = -0.46694E + 00 K = -0.47722E + 01
A4 = -0.10720E + 00 A4 = -0.86264E-01
A6 = 0.42561E-01 A6 = 0.21598E-01
A8 = -0.19032E + 00 A8 = -0.41827E-02
A10 = 0.57203E + 00 A10 = 0.44784E-03
A12 = -0.61258E + 00 A12 = -0.18107E-04
Single lens data
Lens Start surface Focal length (mm)
1 1 3.71
2 4 -1231.2
3 6 -9.51
(実施例4)
レンズデータを表4に示す。図10は実施例4のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図11(a)は実施例4の球面収差図、図11(b)は非点収差図、図11(c)は歪曲収差図である。開口絞りSは、第1レンズL1の有効径内で第1レンズL1周辺部の物体側面位置より物体側にある。
Example 4
Table 4 shows the lens data. FIG. 10 is a sectional view of the lens of Example 4. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 11A is a spherical aberration diagram of Example 4, FIG. 11B is an astigmatism diagram, and FIG. 11C is a distortion diagram. The aperture stop S is located closer to the object side than the object side surface position around the first lens L1 within the effective diameter of the first lens L1.
[表 4 ]
実施例 4
f=4.39mm fB=0.83mm F=2.6 2Y=5.7mm
ENTP=0.83mm EXTP=-2.52mm H1=-0.53mm H2=-3.55mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.521 0.85 1.54400 55.9 1.09
2* 5.366 0.09 0.77
3(絞り) ∞ 0.59 0.69
4* -1.531 0.63 1.63200 23.4 0.81
5* -2.089 0.63 1.15
6* 2.987 0.82 1.54400 55.9 1.96
7* 2.691 0.48 2.26
8 ∞ 0.15 1.51680 64.0 2.55
9 ∞ 2.58
撮像面 -54.000 2.85
非球面係数
第1面 第5面
K=-0.39791E+00 K=0.14301E+01
A4=0.19030E-01 A4=-0.60056E-01
A6=-0.11186E-02 A6=0.70505E-01
A8=0.10310E-02 A8=0.92140E-03
A10=0.10578E-01 A10=0.16126E-01
A12=-0.12271E-01 A12=-0.35495E-02
第2面 第6面
K=0.25689E+02 K=-0.11266E+02
A4=-0.28205E-01 A4=-0.10426E+00
A6=-0.72881E-01 A6=0.33284E-01
A8=0.18176E+00 A8=-0.48234E-02
A10=-0.47201E+00 A10=0.32590E-03
A12=0.34730E+00 A12=-0.73648E-05
第4面 第7面
K=-0.15864E+00 K=-0.34531E+01
A4=-0.11698E+00 A4=-0.88353E-01
A6=0.41218E-01 A6=0.22243E-01
A8=-0.23839E+00 A8=-0.44999E-02
A10=0.59113E+00 A10=0.51161E-03
A12=-0.58359E+00 A12=-0.25313E-04
単レンズデータ
レンズ 始面 焦点距離(mm)
1 1 3.62
2 4 -16.14
3 6 -2445.8
[Table 4]
Example 4
f = 4.39mm fB = 0.83mm F = 2.6 2Y = 5.7mm
ENTP = 0.83mm EXTP = -2.52mm H1 = -0.53mm H2 = -3.55mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.521 0.85 1.54400 55.9 1.09
2 * 5.366 0.09 0.77
3 (Aperture) ∞ 0.59 0.69
4 * -1.531 0.63 1.63200 23.4 0.81
5 * -2.089 0.63 1.15
6 * 2.987 0.82 1.54400 55.9 1.96
7 * 2.691 0.48 2.26
8 ∞ 0.15 1.51680 64.0 2.55
9 ∞ 2.58
Imaging surface -54.000 2.85
Aspheric coefficient
1st side 5th side
K = -0.39791E + 00 K = 0.14301E + 01
A4 = 0.19030E-01 A4 = -0.60056E-01
A6 = -0.11186E-02 A6 = 0.70505E-01
A8 = 0.10310E-02 A8 = 0.92140E-03
A10 = 0.10578E-01 A10 = 0.16126E-01
A12 = -0.12271E-01 A12 = -0.35495E-02
2nd side 6th side
K = 0.25689E + 02 K = -0.11266E + 02
A4 = -0.28205E-01 A4 = -0.10426E + 00
A6 = -0.72881E-01 A6 = 0.33284E-01
A8 = 0.18176E + 00 A8 = -0.48234E-02
A10 = -0.47201E + 00 A10 = 0.32590E-03
A12 = 0.34730E + 00 A12 = -0.73648E-05
4th surface 7th surface
K = -0.15864E + 00 K = -0.34531E + 01
A4 = -0.11698E + 00 A4 = -0.88353E-01
A6 = 0.41218E-01 A6 = 0.22243E-01
A8 = -0.23839E + 00 A8 = -0.44999E-02
A10 = 0.59113E + 00 A10 = 0.51161E-03
A12 = -0.58359E + 00 A12 = -0.25313E-04
Single lens data
Lens Start surface Focal length (mm)
1 1 3.62
2 4 -16.14
3 6 -2445.8
(実施例5)
レンズデータを表5に示す。図12は実施例5のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は正の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図13(a)は実施例5の球面収差図、図13(b)は非点収差図、図13(c)は歪曲収差図である。開口絞りSは、第1レンズL1の有効径内で第1レンズL1周辺部の物体側面位置より物体側にある。
(Example 5)
Table 5 shows the lens data. 12 is a sectional view of the lens of Example 5. FIG. In the figure, L1 is a first lens, L2 is a second lens, L3 is a positive third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. FIG. 13A is a spherical aberration diagram of Example 5, FIG. 13B is an astigmatism diagram, and FIG. 13C is a distortion diagram. The aperture stop S is located closer to the object side than the object side surface position around the first lens L1 within the effective diameter of the first lens L1.
[表 5 ]
実施例 5
f=4.46mm fB=0.76mm F=2.35 2Y=5.7mm
ENTP=0.88mm EXTP=-2.52mm H1=-0.73mm H2=-3.7mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1* 1.577 0.90 1.54400 55.9 1.16
2* 4.936 0.09 0.81
3(絞り) ∞ 0.61 0.77
4* -3.163 0.94 1.63200 23.4 0.92
5* -5.633 0.48 1.40
6* 2.618 0.80 1.54400 55.9 1.94
7* 2.575 0.48 2.27
8 ∞ 0.15 1.51680 64.0 2.59
9 ∞ 2.63
撮像面 -23.000 2.85
非球面係数
第1面 第5面
K=-0.40406E+00 K=0.36262E+01
A4=0.17428E-01 A4=-0.11078E+00
A6=0.77360E-02 A6=0.10071E+00
A8=-0.92800E-03 A8=-0.54276E-01
A10=0.36961E-02 A10=0.20639E-01
A12=-0.40512E-03 A12=-0.31412E-02
第2面 第6面
K=0.13059E+02 K=-0.10640E+02
A4=0.94873E-03 A4=-0.12188E+00
A6=-0.28710E-01 A6=0.34921E-01
A8=0.87757E-01 A8=-0.44350E-02
A10=-0.14267E+00 A10=0.32210E-03
A12=0.75649E-01 A12=-0.15758E-04
第4面 第7面
K=-0.22747E+01 K=-0.13336E+01
A4=-0.10395E+00 A4=-0.10934E+00
A6=0.14309E+00 A6=0.26685E-01
A8=-0.43730E+00 A8=-0.52002E-02
A10=0.56034E+00 A10=0.59289E-03
A12=-0.31438E+00 A12=-0.31402E-04
単レンズデータ
レンズ 始面 焦点距離(mm)
1 1 3.89
2 4 -13.38
3 6 51.48
[Table 5]
Example 5
f = 4.46mm fB = 0.76mm F = 2.35 2Y = 5.7mm
ENTP = 0.88mm EXTP = -2.52mm H1 = -0.73mm H2 = -3.7mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 * 1.577 0.90 1.54400 55.9 1.16
2 * 4.936 0.09 0.81
3 (Aperture) ∞ 0.61 0.77
4 * -3.163 0.94 1.63200 23.4 0.92
5 * -5.633 0.48 1.40
6 * 2.618 0.80 1.54400 55.9 1.94
7 * 2.575 0.48 2.27
8 ∞ 0.15 1.51680 64.0 2.59
9 ∞ 2.63
Imaging surface -23.000 2.85
Aspheric coefficient
1st side 5th side
K = -0.40406E + 00 K = 0.36262E + 01
A4 = 0.17428E-01 A4 = -0.11078E + 00
A6 = 0.77360E-02 A6 = 0.10071E + 00
A8 = -0.92800E-03 A8 = -0.54276E-01
A10 = 0.36961E-02 A10 = 0.20639E-01
A12 = -0.40512E-03 A12 = -0.31412E-02
2nd side 6th side
K = 0.13059E + 02 K = -0.10640E + 02
A4 = 0.94873E-03 A4 = -0.12188E + 00
A6 = -0.28710E-01 A6 = 0.34921E-01
A8 = 0.87757E-01 A8 = -0.44350E-02
A10 = -0.14267E + 00 A10 = 0.32210E-03
A12 = 0.75649E-01 A12 = -0.15758E-04
4th surface 7th surface
K = -0.22747E + 01 K = -0.13336E + 01
A4 = -0.10395E + 00 A4 = -0.10934E + 00
A6 = 0.14309E + 00 A6 = 0.26685E-01
A8 = -0.43730E + 00 A8 = -0.52002E-02
A10 = 0.56034E + 00 A10 = 0.59289E-03
A12 = -0.31438E + 00 A12 = -0.31402E-04
Single lens data
Lens Start surface Focal length (mm)
1 1 3.89
2 4 -13.38
3 6 51.48
(実施例6)
レンズデータを表6に示す。図14は実施例6のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図15(a)は実施例6の球面収差図、図15(b)は非点収差図、図15(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
(Example 6)
Table 6 shows the lens data. FIG. 14 is a sectional view of the lens of Example 6. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 15A is a spherical aberration diagram of Example 6, FIG. 15B is an astigmatism diagram, and FIG. 15C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 6 ]
実施例 6
f=2.95mm fB=0.41mm F=2.45 2Y=3.7mm
ENTP=0mm EXTP=-1.89mm H1=-0.84mm H2=-2.54mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.02 0.60
2* 1.419 0.71 1.53070 55.7 0.67
3* -3.008 0.17 0.78
4* -1.321 0.31 1.63200 23.4 0.79
5* -2.321 0.60 0.77
6* 4.911 0.72 1.53070 55.7 0.96
7* 2.152 0.34 1.44
8 ∞ 0.20 1.51680 64.0 1.67
9 ∞ 1.72
撮像面 -15.000 1.85
非球面係数
第2面 第5面
K=-0.90615E+00 K=-0.56919E+01
A4=-0.56222E-01 A4=-0.13553E+00
A6=0.27445E-01 A6=0.11690E+01
A8=-0.52694E+00 A8=-0.10166E+01
A10=0.60681E+00
第3面 第6面
K=0.53380E+01 K=0.68098E+01
A4=-0.37723E+00 A4=-0.38157E+00
A6=0.14693E+00 A6=0.11876E+00
A8=0.24964E+00 A8=0.13363E-01
A10=-0.38344E+00 A10=-0.11322E+00
第4面 第7面
K=-0.19639E+00 K=-0.10669E+02
A4=-0.30451E+00 A4=-0.13106E+00
A6=0.15848E+01 A6=0.36011E-01
A8=-0.12818E+01 A8=-0.10160E-01
A10=0.42197E+00 A10=-0.92068E-03
単レンズデータ
レンズ 始面 焦点距離(mm)
1 2 1.92
2 4 -5.53
3 6 -7.94
[Table 6]
Example 6
f = 2.95mm fB = 0.41mm F = 2.45 2Y = 3.7mm
ENTP = 0mm EXTP = -1.89mm H1 = -0.84mm H2 = -2.54mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.02 0.60
2 * 1.419 0.71 1.53070 55.7 0.67
3 * -3.008 0.17 0.78
4 * -1.321 0.31 1.63200 23.4 0.79
5 * -2.321 0.60 0.77
6 * 4.911 0.72 1.53070 55.7 0.96
7 * 2.152 0.34 1.44
8 ∞ 0.20 1.51680 64.0 1.67
9 ∞ 1.72
Imaging surface -15.000 1.85
Aspheric coefficient
2nd side 5th side
K = -0.90615E + 00 K = -0.56919E + 01
A4 = -0.56222E-01 A4 = -0.13553E + 00
A6 = 0.27445E-01 A6 = 0.11690E + 01
A8 = -0.52694E + 00 A8 = -0.10166E + 01
A10 = 0.60681E + 00
3rd side 6th side
K = 0.53380E + 01 K = 0.68098E + 01
A4 = -0.37723E + 00 A4 = -0.38157E + 00
A6 = 0.14693E + 00 A6 = 0.11876E + 00
A8 = 0.24964E + 00 A8 = 0.13363E-01
A10 = -0.38344E + 00 A10 = -0.11322E + 00
4th surface 7th surface
K = -0.19639E + 00 K = -0.10669E + 02
A4 = -0.30451E + 00 A4 = -0.13106E + 00
A6 = 0.15848E + 01 A6 = 0.36011E-01
A8 = -0.12818E + 01 A8 = -0.10160E-01
A10 = 0.42197E + 00 A10 = -0.92068E-03
Single lens data
Lens Start surface Focal length (mm)
1 2 1.92
2 4 -5.53
3 6 -7.94
(実施例7)
レンズデータを表7に示す。図16は実施例7のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図17(a)は実施例7の球面収差図、図17(b)は非点収差図、図17(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
(Example 7)
Table 7 shows the lens data. FIG. 16 is a sectional view of the lens of Example 7. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. FIG. 17A is a spherical aberration diagram of Example 7, FIG. 17B is an astigmatism diagram, and FIG. 17C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 7 ]
実施例 7
f=4.6mm fB=0.86mm F=2.45 2Y=5.7mm
ENTP=0mm EXTP=-2.79mm H1=-1.2mm H2=-3.74mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.21 0.94
2* 1.802 1.20 1.54400 55.9 0.97
3* -8.657 0.32 1.08
4* -1.419 0.45 1.63200 23.4 1.03
5* -2.104 0.63 1.08
6* -14.028 1.22 1.54400 55.9 1.38
7* 11.028 0.30 2.10
8 ∞ 0.30 1.51680 64.0 2.48
9 ∞ 2.55
撮像面 -26.000 2.85
非球面係数
第2面 第5面
K=0.96101E+00 K=0.17813E+00
A4=-0.30464E-01 A4=0.41957E-01
A6=-0.30975E-01 A6=0.12565E+00
A8=0.20609E-01 A8=0.24136E-02
A10=0.73083E-01 A10=-0.72912E-02
A12=-0.34494E+00 A12=-0.79590E-02
A14=0.40348E+00 A14=0.42734E-02
A16=-0.16106E+00 A16=0.19315E-02
第3面 第6面
K=0 K=-0.34059E+01
A4=-0.96403E-01 A4=-0.95550E-01
A6=-0.20038E-01 A6=0.65995E-01
A8=-0.68920E-01 A8=-0.82791E-01
A10=0.17892E+00 A10=0.50952E-01
A12=-0.18264E+00 A12=-0.55373E-02
A14=0.90883E-01 A14=-0.10261E-01
A16=-0.19855E-01 A16=0.36169E-02
第4面 第7面
K=0.29763E+00 K=-0.25000E+02
A4=-0.28669E-01 A4=-0.41828E-01
A6=0.29589E+00 A6=0.51563E-02
A8=-0.43217E+00 A8=-0.97269E-03
A10=0.66262E+00 A10=-0.48945E-04
A12=-0.59652E+00 A12=-0.90677E-05
A14=0.25357E+00 A14=0.10625E-04
A16=-0.33712E-01 A16=-0.18936E-05
単レンズデータ
レンズ 始面 焦点距離(mm)
1 2 2.86
2 4 -9.29
3 6 -11.16
[Table 7]
Example 7
f = 4.6mm fB = 0.86mm F = 2.45 2Y = 5.7mm
ENTP = 0mm EXTP = -2.79mm H1 = -1.2mm H2 = -3.74mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.21 0.94
2 * 1.802 1.20 1.54400 55.9 0.97
3 * -8.657 0.32 1.08
4 * -1.419 0.45 1.63200 23.4 1.03
5 * -2.104 0.63 1.08
6 * -14.028 1.22 1.54400 55.9 1.38
7 * 11.028 0.30 2.10
8 ∞ 0.30 1.51680 64.0 2.48
9 ∞ 2.55
Imaging surface -26.000 2.85
Aspheric coefficient
2nd side 5th side
K = 0.96101E + 00 K = 0.17813E + 00
A4 = -0.30464E-01 A4 = 0.41957E-01
A6 = -0.30975E-01 A6 = 0.12565E + 00
A8 = 0.20609E-01 A8 = 0.24136E-02
A10 = 0.73083E-01 A10 = -0.72912E-02
A12 = -0.34494E + 00 A12 = -0.79590E-02
A14 = 0.40348E + 00 A14 = 0.42734E-02
A16 = -0.16106E + 00 A16 = 0.19315E-02
3rd side 6th side
K = 0 K = -0.34059E + 01
A4 = -0.96403E-01 A4 = -0.95550E-01
A6 = -0.20038E-01 A6 = 0.65995E-01
A8 = -0.68920E-01 A8 = -0.82791E-01
A10 = 0.17892E + 00 A10 = 0.50952E-01
A12 = -0.18264E + 00 A12 = -0.55373E-02
A14 = 0.90883E-01 A14 = -0.10261E-01
A16 = -0.19855E-01 A16 = 0.36169E-02
4th surface 7th surface
K = 0.29763E + 00 K = -0.25000E + 02
A4 = -0.28669E-01 A4 = -0.41828E-01
A6 = 0.29589E + 00 A6 = 0.51563E-02
A8 = -0.43217E + 00 A8 = -0.97269E-03
A10 = 0.66262E + 00 A10 = -0.48945E-04
A12 = -0.59652E + 00 A12 = -0.90677E-05
A14 = 0.25357E + 00 A14 = 0.10625E-04
A16 = -0.33712E-01 A16 = -0.18936E-05
Single lens data
Lens Start surface Focal length (mm)
1 2 2.86
2 4 -9.29
3 6 -11.16
(実施例8)
レンズデータを表8に示す。図18は実施例8のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図19(a)は実施例8の球面収差図、図19(b)は非点収差図、図19(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
(Example 8)
Table 8 shows the lens data. FIG. 18 is a sectional view of the lens of Example 8. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 19A is a spherical aberration diagram of Example 8, FIG. 19B is an astigmatism diagram, and FIG. 19C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 8 ]
実施例 8
f=4.71mm fB=0.78mm F=2.5 2Y=5.7mm
ENTP=0mm EXTP=-2.97mm H1=-1.21mm H2=-3.93mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.08 0.94
2* 2.246 1.08 1.53070 55.7 1.02
3* -5.224 0.27 1.17
4* -2.187 0.48 1.63200 23.4 1.19
5* -3.777 1.00 1.18
6* 8.210 1.06 1.53070 55.7 1.51
7* 3.772 0.50 2.19
8 ∞ 0.30 1.51680 64.0 2.51
9 ∞ 2.60
撮像面 -19.000 2.85
非球面係数
第2面 第5面
K=-0.93908E+00 K=-0.77045E+01
A4=-0.14550E-01 A4=-0.31389E-01
A6=0.26017E-02 A6=0.11856E+00
A8=-0.21725E-01 A8=-0.40692E-01
A10=0.95579E-02
第3面 第6面
K=0.62562E+01 K=0.21235E+02
A4=-0.97980E-01 A4=-0.92826E-01
A6=0.14790E-01 A6=0.95645E-02
A8=0.10052E-01 A8=0.91524E-03
A10=-0.62898E-02 A10=-0.18899E-02
第4面 第7面
K=-0.22145E+00 K=-0.12380E+02
A4=-0.76017E-01 A4=-0.33846E-01
A6=0.15934E+00 A6=0.35036E-02
A8=-0.51468E-01 A8=-0.33362E-03
A10=0.67174E-02 A10=-0.32608E-04
単レンズデータ
レンズ 始面 焦点距離(mm)
1 2 3.12
2 4 -9.32
3 6 -14.33
[Table 8]
Example 8
f = 4.71mm fB = 0.78mm F = 2.5 2Y = 5.7mm
ENTP = 0mm EXTP = -2.97mm H1 = -1.21mm H2 = -3.93mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.08 0.94
2 * 2.246 1.08 1.53070 55.7 1.02
3 * -5.224 0.27 1.17
4 * -2.187 0.48 1.63200 23.4 1.19
5 * -3.777 1.00 1.18
6 * 8.210 1.06 1.53070 55.7 1.51
7 * 3.772 0.50 2.19
8 ∞ 0.30 1.51680 64.0 2.51
9 ∞ 2.60
Imaging surface -19.000 2.85
Aspheric coefficient
2nd side 5th side
K = -0.93908E + 00 K = -0.77045E + 01
A4 = -0.14550E-01 A4 = -0.31389E-01
A6 = 0.26017E-02 A6 = 0.11856E + 00
A8 = -0.21725E-01 A8 = -0.40692E-01
A10 = 0.95579E-02
3rd side 6th side
K = 0.62562E + 01 K = 0.21235E + 02
A4 = -0.97980E-01 A4 = -0.92826E-01
A6 = 0.14790E-01 A6 = 0.95645E-02
A8 = 0.10052E-01 A8 = 0.91524E-03
A10 = -0.62898E-02 A10 = -0.18899E-02
4th surface 7th surface
K = -0.22145E + 00 K = -0.12380E + 02
A4 = -0.76017E-01 A4 = -0.33846E-01
A6 = 0.15934E + 00 A6 = 0.35036E-02
A8 = -0.51468E-01 A8 = -0.33362E-03
A10 = 0.67174E-02 A10 = -0.32608E-04
Single lens data
Lens Start surface Focal length (mm)
1 2 3.12
2 4 -9.32
3 6 -14.33
(実施例9)
レンズデータを表9に示す。図20は実施例9のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は負の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図21(a)は実施例9の球面収差図、図21(b)は非点収差図、図21(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
Example 9
Table 9 shows the lens data. FIG. 20 is a sectional view of the lens of Example 9. In the drawing, L1 is a first lens, L2 is a second lens, L3 is a negative third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. 21A is a spherical aberration diagram of Example 9, FIG. 21B is an astigmatism diagram, and FIG. 21C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 9 ]
実施例 9
f=3.47mm fB=0.36mm F=2.55 2Y=4.5mm
ENTP=0mm EXTP=-2.23mm H1=-1.18mm H2=-3.11mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.24 0.68
2* 1.090 0.60 1.56910 71.3 0.69
3* 2.743 0.46 0.66
4* -3.932 0.37 1.81360 25.7 0.69
5* -6.759 0.49 0.88
6* 11.503 0.81 1.58310 59.4 1.31
7* 5.563 0.30 1.70
8 ∞ 0.50 1.51680 64.0 2.04
9 ∞ 2.17
撮像面 -17.000 2.25
非球面係数
第2面 第5面
K=-0.18983E+00 K=-0.15930E+02
A4=0.23954E-01 A4=-0.98706E-01
A6=0.85038E-01 A6=0.19297E+00
A8=-0.78502E-01 A8=-0.10888E-01
A10=0.12026E+00 A10=-0.20295E-01
A12=-0.32767E-01 A12=-0.28850E-01
A14=0.11575E+00 A14=0.61487E-01
A16=-0.53866E-01
第3面 第6面
K=0.13783E+01 K=0.30000E+02
A4=0.69790E-01 A4=-0.20589E+00
A6=-0.17257E+00 A6=0.58786E-01
A8=0.63615E+00 A8=0.32575E-02
A10=0.28402E+00 A10=0.22747E-02
A12=-0.36635E+01 A12=-0.70891E-03
A14=0.38575E+01 A14=-0.75545E-03
A16=0.15234E-03
第4面 第7面
K=0.30000E+02 K=0.41037E+01
A4=-0.96590E-01 A4=-0.12092E+00
A6=0.22546E+00 A6=0.25132E-01
A8=-0.24496E+00 A8=-0.91638E-02
A10=0.76711E-02 A10=0.17836E-02
A12=-0.55121E+00 A12=0.49635E-04
A14=0.32520E+01 A14=-0.13264E-03
A16=-0.52433E+01 A16=0.80524E-05
単レンズデータ
レンズ 始面 焦点距離(mm)
1 2 2.81
2 4 -12.29
3 6 -19.45
[Table 9]
Example 9
f = 3.47mm fB = 0.36mm F = 2.55 2Y = 4.5mm
ENTP = 0mm EXTP = -2.23mm H1 = -1.18mm H2 = -3.11mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.24 0.68
2 * 1.090 0.60 1.56910 71.3 0.69
3 * 2.743 0.46 0.66
4 * -3.932 0.37 1.81360 25.7 0.69
5 * -6.759 0.49 0.88
6 * 11.503 0.81 1.58310 59.4 1.31
7 * 5.563 0.30 1.70
8 ∞ 0.50 1.51680 64.0 2.04
9 ∞ 2.17
Imaging surface -17.000 2.25
Aspheric coefficient
2nd side 5th side
K = -0.18983E + 00 K = -0.15930E + 02
A4 = 0.23954E-01 A4 = -0.98706E-01
A6 = 0.85038E-01 A6 = 0.19297E + 00
A8 = -0.78502E-01 A8 = -0.10888E-01
A10 = 0.12026E + 00 A10 = -0.20295E-01
A12 = -0.32767E-01 A12 = -0.28850E-01
A14 = 0.11575E + 00 A14 = 0.61487E-01
A16 = -0.53866E-01
3rd side 6th side
K = 0.13783E + 01 K = 0.30000E + 02
A4 = 0.69790E-01 A4 = -0.20589E + 00
A6 = -0.17257E + 00 A6 = 0.58786E-01
A8 = 0.63615E + 00 A8 = 0.32575E-02
A10 = 0.28402E + 00 A10 = 0.22747E-02
A12 = -0.36635E + 01 A12 = -0.70891E-03
A14 = 0.38575E + 01 A14 = -0.75545E-03
A16 = 0.15234E-03
4th surface 7th surface
K = 0.30000E + 02 K = 0.41037E + 01
A4 = -0.96590E-01 A4 = -0.12092E + 00
A6 = 0.22546E + 00 A6 = 0.25132E-01
A8 = -0.24496E + 00 A8 = -0.91638E-02
A10 = 0.76711E-02 A10 = 0.17836E-02
A12 = -0.55121E + 00 A12 = 0.49635E-04
A14 = 0.32520E + 01 A14 = -0.13264E-03
A16 = -0.52433E + 01 A16 = 0.80524E-05
Single lens data
Lens Start surface Focal length (mm)
1 2 2.81
2 4 -12.29
3 6 -19.45
(実施例10)
レンズデータを表10に示す。図22は実施例10のレンズの断面図である。図中L1は第1レンズ、L2は第2レンズ、L3は正の第3レンズ、Sは開口絞り、Fはシールガラス又は赤外線カットフィルタ、Iは撮像面を示す。図23(a)は実施例10の球面収差図、図23(b)は非点収差図、図23(c)は歪曲収差図である。開口絞りSは、第1レンズL1と第2レンズL2との間にある。
(Example 10)
Table 10 shows the lens data. FIG. 22 is a sectional view of the lens of Example 10. In the figure, L1 is a first lens, L2 is a second lens, L3 is a positive third lens, S is an aperture stop, F is a seal glass or an infrared cut filter, and I is an imaging surface. FIG. 23A is a spherical aberration diagram of Example 10, FIG. 23B is an astigmatism diagram, and FIG. 23C is a distortion diagram. The aperture stop S is between the first lens L1 and the second lens L2.
[表 10 ]
実施例 10
f=3.42mm fB=0.24mm F=2.5 2Y=4.5mm
ENTP=0mm EXTP=-2.16mm H1=-1.45mm H2=-3.18mm
面番号 R(mm) D(mm) Nd νd 有効半径(mm)
1(絞り) ∞ -0.22 0.68
2* 1.156 0.59 1.56910 71.3 0.69
3* 3.195 0.74 0.69
4* -4.132 0.42 1.81360 25.7 0.76
5* 20.000 0.28 1.09
6* 1.794 0.84 1.58310 59.4 1.52
7* 2.169 0.30 1.85
8 ∞ 0.50 1.51680 64.0 2.09
9 ∞ 2.20
撮像面 -56.000 2.25
非球面係数
第2面 第5面
K=-0.23799E+00 K=0.19859E+02
A4=0.22448E-01 A4=-0.32906E+00
A6=0.29793E-01 A6=0.24696E+00
A8=-0.17199E-01 A8=-0.74258E-01
A10=0.12708E+00 A10=-0.36370E-01
A12=-0.25518E+00 A12=-0.24702E-01
A14=0.23565E+00 A14=0.11207E+00
A16=-0.53866E-01
第3面 第6面
K=-0.17722E+01 K=-0.90473E+01
A4=0.47896E-01 A4=-0.23358E+00
A6=-0.47641E-01 A6=0.63544E-01
A8=0.11659E+00 A8=0.54789E-02
A10=0.35654E+00 A10=0.11664E-02
A12=-0.14238E+01 A12=-0.98560E-03
A14=0.13272E+01 A14=-0.60566E-03
A16=0.17977E-03
第4面 第7面
K=0.28265E+02 K=-0.17157E+01
A4=-0.16886E+00 A4=-0.16749E+00
A6=-0.94800E-01 A6=0.44510E-01
A8=0.23805E+00 A8=-0.10801E-01
A10=-0.36824E+00 A10=0.12616E-02
A12=-0.11076E+01 A12=0.16269E-03
A14=0.37419E+01 A14=-0.10473E-03
A16=-0.38976E+01 A16=0.12797E-04
単レンズデータ
レンズ 始面 焦点距離(mm)
1 2 2.88
2 4 -4.18
3 6 9.76
[Table 10]
Example 10
f = 3.42mm fB = 0.24mm F = 2.5 2Y = 4.5mm
ENTP = 0mm EXTP = -2.16mm H1 = -1.45mm H2 = -3.18mm
Surface number R (mm) D (mm) Nd νd Effective radius (mm)
1 (Aperture) ∞ -0.22 0.68
2 * 1.156 0.59 1.56910 71.3 0.69
3 * 3.195 0.74 0.69
4 * -4.132 0.42 1.81360 25.7 0.76
5 * 20.000 0.28 1.09
6 * 1.794 0.84 1.58310 59.4 1.52
7 * 2.169 0.30 1.85
8 ∞ 0.50 1.51680 64.0 2.09
9 ∞ 2.20
Imaging surface -56.000 2.25
Aspheric coefficient
2nd side 5th side
K = -0.23799E + 00 K = 0.19859E + 02
A4 = 0.22448E-01 A4 = -0.32906E + 00
A6 = 0.29793E-01 A6 = 0.24696E + 00
A8 = -0.17199E-01 A8 = -0.74258E-01
A10 = 0.12708E + 00 A10 = -0.36370E-01
A12 = -0.25518E + 00 A12 = -0.24702E-01
A14 = 0.23565E + 00 A14 = 0.11207E + 00
A16 = -0.53866E-01
3rd side 6th side
K = -0.17722E + 01 K = -0.90473E + 01
A4 = 0.47896E-01 A4 = -0.23358E + 00
A6 = -0.47641E-01 A6 = 0.63544E-01
A8 = 0.11659E + 00 A8 = 0.54789E-02
A10 = 0.35654E + 00 A10 = 0.11664E-02
A12 = -0.14238E + 01 A12 = -0.98560E-03
A14 = 0.13272E + 01 A14 = -0.60566E-03
A16 = 0.17977E-03
4th surface 7th surface
K = 0.28265E + 02 K = -0.17157E + 01
A4 = -0.16886E + 00 A4 = -0.16749E + 00
A6 = -0.94800E-01 A6 = 0.44510E-01
A8 = 0.23805E + 00 A8 = -0.10801E-01
A10 = -0.36824E + 00 A10 = 0.12616E-02
A12 = -0.11076E + 01 A12 = 0.16269E-03
A14 = 0.37419E + 01 A14 = -0.10473E-03
A16 = -0.38976E + 01 A16 = 0.12797E-04
Single lens data
Lens Start surface Focal length (mm)
1 2 2.88
2 4 -4.18
3 6 9.76
請求項に記載の条件式の値を表11にまとめて示す。 Table 11 summarizes the values of the conditional expressions described in the claims.
なお、特許請求の範囲及び実施例に記載の近軸曲率半径の意味合いについて、実際のレンズ測定の場面においては、レンズ中央近傍(具体的には、レンズ外径に対して10%以内の中央領域)での形状測定値を最小自乗法でフィッティングした際の近似曲率半径を近軸曲率半径であるとみなすことができる。また、例えば2次の非球面係数を使用した場合には、非球面定義式の基準曲率半径に2次の非球面係数も勘案した曲率半径を近軸曲率半径とみなすことができる(例えば参考文献として、松居吉哉著「レンズ設計法」(共立出版株式会社)のP41〜42を参照のこと)。 Regarding the meaning of the paraxial radius of curvature described in the claims and the examples, in the actual lens measurement scene, in the vicinity of the center of the lens (specifically, the central region within 10% of the lens outer diameter) ) Can be regarded as the paraxial curvature radius when fitting the shape measurement value in the least square method. For example, when a secondary aspherical coefficient is used, a curvature radius that takes into account the secondary aspherical coefficient in the reference curvature radius of the aspherical definition formula can be regarded as a paraxial curvature radius (for example, reference literature). (See pages 41 to 42 of “Lens Design Method” by K. Matsui, Kyoritsu Publishing Co., Ltd.).
本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。例えば、実質的にパワーを持たないダミーレンズを更に付与した場合でも本発明の適用範囲内である。 The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is. For example, even when a dummy lens having substantially no power is further provided, it is within the scope of the present invention.
10 撮像レンズ
50 撮像装置
51a 光電変換部
51b 信号処理回路
52 外部電極
53 筐体
55 鏡枠
60 操作ボタン
71 上筐体
72 下筐体
73 ヒンジ
100 携帯電話機
B スペーサ
C シールガラス
D1,D2 表示画面
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
S 開口絞り
SH1 遮光部材
SH2 遮光部材
DESCRIPTION OF SYMBOLS 10 Imaging lens 50 Imaging device 51a Photoelectric conversion part 51b Signal processing circuit 52 External electrode 53 Housing | casing 55 Mirror frame 60 Operation button 71 Upper housing | casing 72 Lower housing | casing 73 Hinge 100 Mobile phone B Spacer C Seal glass D1, D2 Display screen L1 First lens L2 Second lens L3 Third lens S Aperture stop SH1 Light blocking member SH2 Light blocking member
Claims (11)
前記固体撮像素子の撮像面が湾曲しており、
前記撮像レンズが、物体側から順に正の屈折力を有する第1レンズと、負の屈折力を有する第2レンズと、正または負の屈折力を有する第3レンズからなり、
以下の条件式を満足することを特徴とする撮像レンズ。
−0.9<f1/f23<−0.1 (1)
0.11<D5/f<0.5 (2)
但し、
f1 :前記第1レンズの焦点距離(mm)
f23:前記第2レンズと前記第3レンズとの合成焦点距離(mm)
D5 :前記第3レンズの軸上厚(mm)
f :前記撮像レンズ全系の焦点距離(mm) In an imaging lens of an imaging apparatus, comprising: a solid-state imaging device including a photoelectric conversion unit; and an imaging lens that forms a subject image on the photoelectric conversion unit of the solid-state imaging device.
The imaging surface of the solid-state imaging device is curved,
The imaging lens includes a first lens having a positive refractive power in order from the object side, a second lens having a negative refractive power, and a third lens having a positive or negative refractive power,
An imaging lens satisfying the following conditional expression:
−0.9 <f1 / f23 <−0.1 (1)
0.11 <D5 / f <0.5 (2)
However,
f1: Focal length (mm) of the first lens
f23: Composite focal length (mm) of the second lens and the third lens
D5: Axial thickness (mm) of the third lens
f: Focal length (mm) of the entire imaging lens system
−50.0<RI/Y<−2.0 (3)
但し、
RI :前記固体撮像素子の撮像面の曲率半径(mm)
Y :最大像高(mm) The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
−50.0 <RI / Y <−2.0 (3)
However,
RI: radius of curvature (mm) of the imaging surface of the solid-state imaging device
Y: Maximum image height (mm)
0.5<Pair23/P<5.0 (4)
但し、
P:撮像レンズ全系の屈折力(焦点距離の逆数)
Pair23:前記第2レンズの像側面と前記第3レンズの物体側面とにより形成されるいわゆる空気レンズの屈折力であり、以下の条件式で求める。
Pair23=(1−N2)/R4+(N3−1)/R5−{((1−N2)・(N3−1))/(R4・R5)}・D4
但し、
N2:前記第2レンズのd線に対する屈折率
N3:前記第3レンズのd線に対する屈折率
R4:前記第2レンズの像側面の曲率半径
R5:前記第3レンズの物体側面の曲率半径
D4:前記第2レンズと前記第3レンズの軸上の空気間隔 The imaging lens according to claim 1, wherein the following conditional expression is satisfied.
0.5 <P air23 /P<5.0 (4)
However,
P: Refractive power of the entire imaging lens system (reciprocal of focal length)
P air23 is the refractive power of a so-called air lens formed by the image side surface of the second lens and the object side surface of the third lens, and is determined by the following conditional expression.
P air23 = (1-N2) / R4 + (N3-1) / R5-{((1-N2) · (N3-1)) / (R4 · R5)} · D4
However,
N2: Refractive index with respect to d line of the second lens N3: Refractive index with respect to d line of the third lens R4: Radius of curvature of the image side surface of the second lens R5: Radius of curvature of the object side surface of the third lens D4: Air spacing on the axis of the second lens and the third lens
−40<(R3+R4)/(R3−R4)< 0 (5)
但し
R3:前記第2レンズの物体側面の曲率半径(mm)
R4:前記第2レンズの像側面の曲率半径(mm) The imaging lens according to claim 1, wherein the second lens satisfies the following conditional expression.
−40 <(R3 + R4) / (R3-R4) <0 (5)
Where R3: radius of curvature of object side surface of the second lens (mm)
R4: radius of curvature of the image side surface of the second lens (mm)
−0.8<f/f3<0 (6)
但し、
f : 全レンズ系の焦点距離
f3 : 前記第3レンズの焦点距離 The imaging lens according to claim 1, wherein the third lens has negative refractive power and satisfies the following conditional expression.
−0.8 <f / f3 <0 (6)
However,
f: focal length of all lens systems f3: focal length of the third lens
0<f/f3<0.8 (7)
但し、
f : 全レンズ系の焦点距離
f3 : 前記第3レンズの焦点距離 The imaging lens according to claim 1, wherein the third lens has positive refractive power and satisfies the following conditional expression.
0 <f / f3 <0.8 (7)
However,
f: focal length of all lens systems f3: focal length of the third lens
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011098134A JP2012230233A (en) | 2011-04-26 | 2011-04-26 | Imaging lens, imaging apparatus and portable terminal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011098134A JP2012230233A (en) | 2011-04-26 | 2011-04-26 | Imaging lens, imaging apparatus and portable terminal |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012230233A true JP2012230233A (en) | 2012-11-22 |
Family
ID=47431832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011098134A Withdrawn JP2012230233A (en) | 2011-04-26 | 2011-04-26 | Imaging lens, imaging apparatus and portable terminal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012230233A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013044784A (en) * | 2011-08-22 | 2013-03-04 | Optical Logic Inc | Imaging lens |
US20150358516A1 (en) * | 2013-01-30 | 2015-12-10 | Sony Corporation | Imaging apparatus and electronic device |
JP2016110071A (en) * | 2014-12-05 | 2016-06-20 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | Downsized image-formation lens system |
JP2017053887A (en) * | 2015-09-07 | 2017-03-16 | 株式会社ニコン | Imaging lens and imaging system |
JPWO2017082287A1 (en) * | 2015-11-12 | 2018-08-30 | コニカミノルタ株式会社 | Lens unit, imaging device, and mobile device |
US10488633B2 (en) | 2015-01-09 | 2019-11-26 | Nikon Corporation | Imaging lens and image capturing device |
-
2011
- 2011-04-26 JP JP2011098134A patent/JP2012230233A/en not_active Withdrawn
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013044784A (en) * | 2011-08-22 | 2013-03-04 | Optical Logic Inc | Imaging lens |
US20150358516A1 (en) * | 2013-01-30 | 2015-12-10 | Sony Corporation | Imaging apparatus and electronic device |
US9661199B2 (en) * | 2013-01-30 | 2017-05-23 | Sony Corporation | Imaging apparatus and electronic device which can be reduced in height |
JP2016110071A (en) * | 2014-12-05 | 2016-06-20 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | Downsized image-formation lens system |
US10488633B2 (en) | 2015-01-09 | 2019-11-26 | Nikon Corporation | Imaging lens and image capturing device |
JP2017053887A (en) * | 2015-09-07 | 2017-03-16 | 株式会社ニコン | Imaging lens and imaging system |
JPWO2017082287A1 (en) * | 2015-11-12 | 2018-08-30 | コニカミノルタ株式会社 | Lens unit, imaging device, and mobile device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5839038B2 (en) | Imaging lens and imaging apparatus | |
JP5304117B2 (en) | Imaging lens, imaging device, and portable terminal | |
US9013809B2 (en) | Image capturing lens and image capturing apparatus provided with the image capturing lens | |
JP6175903B2 (en) | Imaging lens, imaging device, and portable terminal | |
US9128267B2 (en) | Imaging lens and imaging apparatus including the imaging lens | |
CN106054355B (en) | Capture lens, lens unit, filming apparatus, digital still camera and portable terminal | |
US8810924B2 (en) | Image capturing lens and image capturing apparatus provided with the image capturing lens | |
CN204256243U (en) | Pick-up lens and possess the camera head of this pick-up lens | |
US8558939B2 (en) | Image pickup lens and image pickup apparatus | |
WO2013008862A1 (en) | Imaging lens and imaging device | |
WO2013137312A1 (en) | Image pickup lens, image pickup device, and portable terminal | |
WO2013039035A1 (en) | Image pick-up lens, image pick-up device, portable terminal and digital instrument | |
JP2014115431A (en) | Imaging lens, imaging apparatus, and portable terminal | |
JP5644681B2 (en) | Imaging device and portable terminal | |
CN112684594B (en) | Optical lens and imaging apparatus | |
WO2012114970A1 (en) | Imaging lens, imaging device, and portable terminal | |
JP2011095301A (en) | Imaging lens, imaging apparatus and portable terminal | |
JP2013092584A (en) | Imaging lens, imaging apparatus and portable terminal | |
US20150168688A1 (en) | Imaging lens and imaging apparatus equipped with the imaging lens | |
JP2012230233A (en) | Imaging lens, imaging apparatus and portable terminal | |
JP2013024892A (en) | Image pickup lens and image pickup apparatus | |
WO2013145989A1 (en) | Image capture lens, image capture device, and portable terminal | |
WO2013054791A1 (en) | Imaging lens and imaging device | |
JP2008145805A (en) | Imaging lens and imaging apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20130415 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140701 |