JP2012228811A - Synthetic resin laminate - Google Patents
Synthetic resin laminate Download PDFInfo
- Publication number
- JP2012228811A JP2012228811A JP2011098073A JP2011098073A JP2012228811A JP 2012228811 A JP2012228811 A JP 2012228811A JP 2011098073 A JP2011098073 A JP 2011098073A JP 2011098073 A JP2011098073 A JP 2011098073A JP 2012228811 A JP2012228811 A JP 2012228811A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- synthetic resin
- copolymer resin
- vinyl copolymer
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
Abstract
Description
本発明は、合成樹脂積層体に関し、詳しくは、透明性の基板材料や保護材料に使用され、スチレン構成単位を有するビニル共重合樹脂層と、特定の構造を有するビニル共重合樹脂層とからなり、表面硬度、加熱時や吸水時の形状安定性、および塗料密着性に優れる合成樹脂積層体に関する。 The present invention relates to a synthetic resin laminate, and more specifically, includes a vinyl copolymer resin layer having a styrene constituent unit and a vinyl copolymer resin layer having a specific structure, which is used for a transparent substrate material and a protective material. The present invention relates to a synthetic resin laminate excellent in surface hardness, shape stability during heating and water absorption, and paint adhesion.
メタクリル酸メチルを主成分とする樹脂(以下、メタクリル樹脂という)からなる透明板は、案内板や表示板、看板、額縁、ゴンドラ等の車両用窓、サンルーフ、建物窓、パーティション、室内ドアの窓、照明カバー、画像表示装置の前面板、計器類カバー、反射材、導光板、UVカットフィルター、電子機器のカバーなどとして利用されている。しかしながら、メタクリル樹脂は吸水率が高くて環境の湿度変化により寸法が変化したり反りが発生したりし、使用方法によっては問題となることがある。
吸水率を低減させる方法として、特許文献1には、メタクリル酸メチル−スチレン共重合体樹脂シートの両面にメタクリル樹脂層を有する透明多層シートが開示されているが、吸水率低減量が不足する場合があり、使用方法によっては問題となることがある。
また特許文献2には、中間層の飽和吸水率が0.4重量%未満であり、表層の飽和吸水率が0.4重量%以上であり、かつ中間層の飽和吸水率が表層の飽和吸水率と比較して0.05重量%以上低いプラスチックシートが開示されているが、場合によってはハードコート塗料の剥離を生じることがあり問題となることがある。
特許文献3には、特定の(メタ)アクリル酸エステル構成単位を含有するビニル共重合樹脂が熱可塑性樹脂の両面に積層された熱可塑性樹脂積層体が開示されているが、表層樹脂や中間層樹脂の組成によってはハードコート塗料の剥離や吸水による反りを生じることがあり問題となることがある。
Transparent plates made of resin containing methyl methacrylate as the main component (hereinafter referred to as methacrylic resin) are guide boards, display boards, signboards, frames, gondola and other vehicle windows, sunroofs, building windows, partitions, and indoor door windows. It is used as a lighting cover, a front plate of an image display device, an instrument cover, a reflector, a light guide plate, a UV cut filter, a cover of an electronic device, and the like. However, methacrylic resin has a high water absorption rate, and its dimensions change or warp due to changes in environmental humidity, which may be problematic depending on the method of use.
As a method for reducing the water absorption rate, Patent Document 1 discloses a transparent multilayer sheet having a methacrylic resin layer on both sides of a methyl methacrylate-styrene copolymer resin sheet, but the water absorption reduction amount is insufficient. There is a problem depending on the usage.
Patent Document 2 discloses that the saturated water absorption of the intermediate layer is less than 0.4% by weight, the saturated water absorption of the surface layer is 0.4% by weight or more, and the saturated water absorption of the intermediate layer is the saturated water absorption of the surface layer. Although a plastic sheet lower by 0.05% by weight or more than the rate is disclosed, in some cases, the hard coat paint may be peeled off, which may be a problem.
Patent Document 3 discloses a thermoplastic resin laminate in which a vinyl copolymer resin containing a specific (meth) acrylate structural unit is laminated on both sides of a thermoplastic resin. Depending on the resin composition, the hard coat paint may peel off or warp due to water absorption, which may be a problem.
本発明は、以上のような状況から、透明性の基板材料や保護材料に使用される、表面硬度、加熱時や吸水時の形状安定性、および塗料密着性に優れる合成樹脂積層体を提供することを目的とする。 The present invention provides a synthetic resin laminate that is excellent in surface hardness, shape stability during heating and water absorption, and paint adhesion, which is used for transparent substrate materials and protective materials, from the above situation. For the purpose.
本発明者らは、上記の課題を解決するため鋭意研究を重ねた結果、スチレン構成単位を有するビニル共重合樹脂層の両面に特定の構造を有するビニル共重合樹脂を積層させた合成樹脂積層体とすることにより、これらの特性を備えた合成樹脂積層体が得られることを見出し、本発明に到達した。
すなわち、本発明は、以下の合成樹脂積層体および該合成樹脂積層体を用いた透明性材料を提供するものである。
As a result of intensive studies to solve the above problems, the present inventors have obtained a synthetic resin laminate in which vinyl copolymer resins having a specific structure are laminated on both sides of a vinyl copolymer resin layer having a styrene structural unit. As a result, it was found that a synthetic resin laminate having these characteristics can be obtained, and the present invention has been achieved.
That is, the present invention provides the following synthetic resin laminate and a transparent material using the synthetic resin laminate.
1.特定の構造を有するビニル共重合樹脂(A)層、及びスチレン構成単位を有するビニル共重合樹脂(B)層を有し、(B)層の両面に(A)層が積層された合成樹脂積層体であって、
前記(A)は、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)を含み、前記(a)の割合が前記(A)の全構成単位の合計に対して50〜80モル%であるビニル共重合樹脂であり、前記(B)は、スチレン構成単位の割合が前記(B)の全構成単位の合計に対して60〜90モル%であることを特徴とする合成樹脂積層体。
1. Synthetic resin laminate having a vinyl copolymer resin (A) layer having a specific structure and a vinyl copolymer resin (B) layer having a styrene structural unit, and the (A) layer being laminated on both sides of the (B) layer Body,
The (A) includes a (meth) acrylate structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2). It is a vinyl copolymer resin in which the proportion of (a) is 50 to 80 mol% with respect to the total of all the structural units of (A), and (B) has a proportion of styrene structural units of (B). It is 60-90 mol% with respect to the sum total of all the structural units of characterized by the above-mentioned.
2.ビニル共重合樹脂(A)が、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーを重合した後、芳香族二重結合の70%以上を水素化して得られたものであり、前記(A)のガラス転移温度が110〜140℃の範囲である上記1の合成樹脂積層体。
3.一般式(1)のR1及びR2がメチル基である上記1又は2の合成樹脂積層体。
4.一般式(2)のR3が水素であり、R4がシクロヘキシル基である上記1又は2の合成樹脂積層体。
5.スチレン構成単位を有するビニル共重合樹脂(B)がメタクリル酸メチル−スチレン共重合樹脂、あるいはアクリル酸ニトリル−スチレン共重合樹脂である上記1の合成樹脂積層体。
6.総厚みが0.1〜10.0mmの範囲であり、ビニル共重合樹脂(A)層の厚みが10〜500μmの範囲である上記1の合成樹脂積層体。
7.ビニル共重合樹脂(A)および/またはスチレン構成単位を有するビニル共重合樹脂(B)に紫外線吸収剤を含有する上記1〜6の合成樹脂積層体。
8.片面または両面にハードコート処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施した上記1〜7の合成樹脂積層体。
9.上記1〜8のいずれかの合成樹脂積層体からなる透明性基板材料。
10.上記1〜8のいずれかの合成樹脂積層体からなる透明性保護材料。
2. The vinyl copolymer resin (A) was obtained by polymerizing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, and then hydrogenating 70% or more of the aromatic double bonds. The synthetic resin laminate according to 1 above, wherein the glass transition temperature of (A) is in the range of 110 to 140 ° C.
3. The synthetic resin laminate according to 1 or 2, wherein R1 and R2 in the general formula (1) are methyl groups.
4). The synthetic resin laminate according to 1 or 2, wherein R3 in the general formula (2) is hydrogen and R4 is a cyclohexyl group.
5. The synthetic resin laminate according to 1 above, wherein the vinyl copolymer resin (B) having a styrene structural unit is a methyl methacrylate-styrene copolymer resin or an acrylonitrile-styrene copolymer resin.
6). The synthetic resin laminate according to 1 above, wherein the total thickness is in the range of 0.1 to 10.0 mm, and the thickness of the vinyl copolymer resin (A) layer is in the range of 10 to 500 μm.
7). The synthetic resin laminate according to any one of 1 to 6 above, wherein the vinyl copolymer resin (A) and / or the vinyl copolymer resin (B) having a styrene structural unit contains an ultraviolet absorber.
8). The synthetic resin laminate according to any one of 1 to 7 above, wherein one or more of hard coating treatment, antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment are applied to one side or both sides.
9. The transparent substrate material which consists of a synthetic resin laminated body in any one of said 1-8.
10. The transparency protective material which consists of a synthetic resin laminated body in any one of said 1-8.
本発明によれば、表面硬度、加熱時や吸水時の形状安定性、および塗料密着性に優れる合成樹脂積層体が提供され、該合成樹脂積層体は透明性基板材料、透明性保護材料として用いられる。具体的には案内板や表示板、看板、額縁、ゴンドラ等の車両用窓、サンルーフ、建物窓、パーティション、グレージング材、照明カバー、画像表示装置の前面板、計器類カバー、反射材、導光板、拡散板、UVカットフィルター、電子機器のカバーなどに使用され、特に携帯電話端末、携帯型電子遊具、携帯情報端末、モバイルPCいった携帯型のディスプレイデバイスや、ノート型PC、デスクトップ型PC液晶モニター、液晶テレビといった設置型のディスプレイデバイスなどに好適に使用される。 According to the present invention, there is provided a synthetic resin laminate excellent in surface hardness, shape stability during heating and water absorption, and paint adhesion, and the synthetic resin laminate is used as a transparent substrate material and a transparent protective material. It is done. Specifically, information boards, display boards, signs, frames, gondola and other vehicle windows, sunroofs, building windows, partitions, glazing materials, lighting covers, image display device front panels, instrument covers, reflectors, light guide plates , Diffuser plates, UV cut filters, electronic device covers, etc. Especially portable display devices such as mobile phone terminals, portable electronic play equipment, portable information terminals, mobile PCs, notebook PCs, desktop PC liquid crystals It is suitably used for stationary display devices such as monitors and liquid crystal televisions.
本発明の合成樹脂積層体は、特定の構造を有するビニル共重合樹脂(A)層、及びスチレン構成単位を有するビニル共重合樹脂(B)層を有し、(B)層の両面に(A)層が積層された合成樹脂積層体であって、
前記(A)は、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)を含み、前記(a)の割合が前記(A)の全構成単位の合計に対して50〜85モル%であり、前記(B)は、スチレン構成単位の割合が前記(B)の全構成単位の合計に対して60〜90モル%であるビニル共重合樹脂であることを特徴とするものである。
The synthetic resin laminate of the present invention has a vinyl copolymer resin (A) layer having a specific structure and a vinyl copolymer resin (B) layer having a styrene structural unit, and (A) ) A synthetic resin laminate in which layers are laminated,
The (A) includes a (meth) acrylate structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2). The proportion of (a) is 50 to 85 mol% with respect to the total of all the structural units of (A), and (B) is the sum of all the structural units of (B) with the proportion of styrene structural units. It is characterized by being a vinyl copolymer resin in an amount of 60 to 90 mol% based on the weight.
本発明の合成樹脂積層体は、スチレン構成単位を有するビニル共重合樹脂(B)層の両面に特定の構造を有するビニル共重合樹脂(A)層が積層される。両面に(A)が積層されることにより、表裏の吸水率差をなくし、環境の湿度変化による反りを生じることが少ない。一方、(B)層の片面に(A)層を積層させた積層体は、その表裏で吸水率差があることにより、環境の湿度変化による反りを生じ易く好ましくない。 In the synthetic resin laminate of the present invention, a vinyl copolymer resin (A) layer having a specific structure is laminated on both sides of a vinyl copolymer resin (B) layer having a styrene structural unit. By laminating (A) on both sides, the difference in water absorption between the front and back sides is eliminated, and warping due to environmental humidity changes is less likely to occur. On the other hand, the laminate in which the (A) layer is laminated on one side of the (B) layer is not preferred because of the difference in water absorption between the front and back surfaces, which tends to cause warpage due to changes in environmental humidity.
一般式(1)で表される(メタ)アクリル酸エステル構成単位のR2は炭素数1〜16の炭化水素基であり、具体的にはメチル基、エチル基、ブチル基、ラウリル基、ステアリル基、シクロヘキシル基、イソボルニル基などのアルキル基類、2-ヒドロキシエチル基、2−ヒドロキシプロピル基、2−ヒドロキシ−2−メチルプロピル基などのヒドロキシアルキル基類、2−メトキシエチル基、2−エトキシエチル基などのアルコキシアルキル基類、ベンジル基、フェニル基などのアリール基類などが挙げられる。これらは1種類単独かあるいは2種類以上を併せて使用することができる。これらのうち好ましいのはR2がメチル基および/またはエチル基の(メタ)アクリル酸エステル構成単位であり、さらに好ましいのはR1がメチル基、R2がメチル基のメタクリル酸エステル構成単位である。 R2 of the (meth) acrylic acid ester structural unit represented by the general formula (1) is a hydrocarbon group having 1 to 16 carbon atoms, specifically a methyl group, an ethyl group, a butyl group, a lauryl group, a stearyl group. , Alkyl groups such as cyclohexyl group and isobornyl group, hydroxyalkyl groups such as 2-hydroxyethyl group, 2-hydroxypropyl group and 2-hydroxy-2-methylpropyl group, 2-methoxyethyl group, 2-ethoxyethyl And alkoxyalkyl groups such as a group, and aryl groups such as a benzyl group and a phenyl group. These can be used alone or in combination of two or more. Of these, a (meth) acrylic acid ester structural unit in which R2 is a methyl group and / or an ethyl group is preferable, and a methacrylic acid ester structural unit in which R1 is a methyl group and R2 is a methyl group is more preferable.
本発明に用いられる式(2)で表される脂肪族ビニル構成単位としては、例えば、R3が水素またはメチル基で、R4がシクロヘキシル基、炭素数1〜4の炭化水素基を有するシクロヘキシル基であるものが挙げられる。これらは1種類単独かあるいは2種類以上を併せて使用することができる。これらのうち好ましいのはR3が水素、R4がシクロヘキシル基の脂肪族ビニル構成単位である。 As the aliphatic vinyl structural unit represented by the formula (2) used in the present invention, for example, R3 is hydrogen or a methyl group, R4 is a cyclohexyl group or a cyclohexyl group having a hydrocarbon group having 1 to 4 carbon atoms. Some are listed. These can be used alone or in combination of two or more. Of these, preferred are aliphatic vinyl structural units in which R3 is hydrogen and R4 is a cyclohexyl group.
本発明で用いる特定の構造を有するビニル共重合樹脂(A)は、主として一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、一般式(2)で表される脂肪族ビニル構成単位(b)とからなる。前記(a)と前記(b)との合計割合は前記(A)の全構成単位の合計に対して90〜100モル%であり、好ましくは95〜100モル%、より好ましくは98〜100モル%である。
本発明における式(1)で表される(メタ)アクリル酸エステル構成単位(a)の割合は、特定の構造を有するビニル共重合樹脂(A)の全構成単位の合計に対して50〜85モル%の範囲である。
特定の構造を有するビニル共重合樹脂(A)の全構成単位の合計に対する(メタ)アクリル酸エステル構成単位(a)の割合が50%未満であるとハードコート塗料との密着性が下がったり、表面硬度が下がったりして実用的でない場合が生じることがある。また85%を超える範囲であると吸水により形状安定性が下がったりして実用的でない場合が生じることがある。
The vinyl copolymer resin (A) having a specific structure used in the present invention is mainly represented by the (meth) acrylate structural unit (a) represented by the general formula (1) and the general formula (2). It consists of an aliphatic vinyl structural unit (b). The total ratio of (a) and (b) is 90 to 100 mol%, preferably 95 to 100 mol%, more preferably 98 to 100 mol%, based on the total of all the structural units of (A). %.
The proportion of the (meth) acrylic ester structural unit (a) represented by the formula (1) in the present invention is 50 to 85 with respect to the total of all the structural units of the vinyl copolymer resin (A) having a specific structure. It is in the range of mol%.
When the ratio of the (meth) acrylic ester structural unit (a) to the total of all the structural units of the vinyl copolymer resin (A) having a specific structure is less than 50%, the adhesion with the hard coat paint may be reduced, There are cases where the surface hardness is lowered and is not practical. On the other hand, if it is in the range exceeding 85%, shape stability may be lowered due to water absorption, which may be impractical.
特定の構造を有するビニル共重合樹脂(A)は、特に限定されないが、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを共重合した後、芳香環を水素化して得られたものが好適である。なお、(メタ)アクリル酸とは、メタクリル酸及び/又はアクリル酸を示す。
この際に使用される芳香族ビニルモノマーとしては、具体的にスチレン、α−メチルスチレン、p−ヒドロキシスチレン、アルコキシスチレン、クロロスチレンなど、およびそれらの誘導体が挙げられる。これらの中で好ましいのはスチレンである。
The vinyl copolymer resin (A) having a specific structure is not particularly limited, but is preferably obtained by copolymerizing a (meth) acrylic acid ester monomer and an aromatic vinyl monomer and then hydrogenating the aromatic ring. is there. In addition, (meth) acrylic acid shows methacrylic acid and / or acrylic acid.
Specific examples of the aromatic vinyl monomer used at this time include styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, chlorostyrene, and derivatives thereof. Of these, styrene is preferred.
(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、例えば、塊状重合法や溶液重合法により製造することができる。
溶液重合法では、モノマー、連鎖移動剤、および重合開始剤を含むモノマー組成物を完全混合槽に連続的に供給し、100〜180℃で連続重合する方法などにより行われる。
A known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, and for example, it can be produced by a bulk polymerization method or a solution polymerization method.
In the solution polymerization method, a monomer composition including a monomer, a chain transfer agent, and a polymerization initiator is continuously supplied to a complete mixing tank and continuously polymerized at 100 to 180 ° C.
この際に用いられる溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 Examples of the solvent used in this case include hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, tetrahydrofuran and dioxane. And ether solvents such as methanol, and alcohol solvents such as methanol and isopropanol.
(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーを重合した後の水素化反応は適当な溶媒中で行われる。この水素化反応に用いられる溶媒は前記の重合溶媒と同じであっても異なっていても良い。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒、酢酸エチル、イソ酪酸メチルなどのエステル系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒、メタノール、イソプロパノールなどのアルコール系溶媒などが挙げられる。 The hydrogenation reaction after polymerizing the (meth) acrylic acid ester monomer and the aromatic vinyl monomer is carried out in a suitable solvent. The solvent used for the hydrogenation reaction may be the same as or different from the polymerization solvent. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane, ester solvents such as ethyl acetate and methyl isobutyrate, ketone solvents such as acetone and methyl ethyl ketone, ether solvents such as tetrahydrofuran and dioxane, alcohol solvents such as methanol and isopropanol A solvent etc. are mentioned.
水素化の方法は特に限定されず、公知の方法を用いることができる。例えば、水素圧力3〜30MPa、反応温度60〜250℃でバッチ式あるいは連続流通式で行うことができる。温度を60℃以上とすることにより反応時間がかかり過ぎることがなく、また250℃以下とすることにより分子鎖の切断やエステル部位の水素化を起すことが少ない。 The method for hydrogenation is not particularly limited, and a known method can be used. For example, it can be carried out in a batch system or a continuous flow system at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. By setting the temperature to 60 ° C. or higher, the reaction time does not take too long, and by setting the temperature to 250 ° C. or lower, molecular chain scission and ester site hydrogenation are less likely to occur.
水素化反応に用いられる触媒としては、例えば、ニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属またはそれら金属の酸化物あるいは塩あるいは錯体化合物を、カーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土などの多孔性担体に担持した固体触媒などが挙げられる。 Examples of the catalyst used in the hydrogenation reaction include metals such as nickel, palladium, platinum, cobalt, ruthenium and rhodium or oxides or salts or complex compounds of these metals, carbon, alumina, silica, silica / alumina, diatomaceous earth. And a solid catalyst supported on a porous carrier.
特定の構造を有するビニル共重合樹脂(A)は芳香族ビニルモノマー中の芳香環の70%以上が水素化されたものであることが好ましい。即ち、芳香族ビニル構成単位中の芳香環の未水素化部位の割合は30%未満であることが好ましく、30%を越える範囲であると前記(A)の透明性が低下する場合がある。より好ましくは10%未満の範囲であり、さらに好ましくは5%未満の範囲である。 The vinyl copolymer resin (A) having a specific structure is preferably one in which 70% or more of the aromatic ring in the aromatic vinyl monomer is hydrogenated. That is, the ratio of the unhydrogenated portion of the aromatic ring in the aromatic vinyl structural unit is preferably less than 30%, and if it exceeds 30%, the transparency of (A) may be lowered. More preferably, it is the range of less than 10%, More preferably, it is the range of less than 5%.
特定の構造を有するビニル共重合樹脂(A)には、透明性を損なわない範囲で他の樹脂をブレンドすることができる。例えば、メタクリル酸メチル−スチレン共重合樹脂、ポリメタクリル酸メチルなどが挙げられる。 The vinyl copolymer resin (A) having a specific structure can be blended with other resins as long as the transparency is not impaired. Examples thereof include methyl methacrylate-styrene copolymer resin and polymethyl methacrylate.
特定の構造を有するビニル共重合樹脂(A)のガラス転移温度は110〜140℃の範囲であるであることが好ましい。ガラス転移温度が110℃以上であることにより本発明で提供される積層体が熱環境あるいは湿熱環境において変形や割れを生じることが少なく、また140℃以下であることにより鏡面ロールや賦形ロールによる連続式熱賦形、あるいは鏡面金型や賦形金型によるバッチ式熱賦形などの加工性に優れる。なお、本発明におけるガラス転移温度とは、示差走査熱量測定装置を用い、試料10mg、昇温速度10℃/分で測定し中点法で算出したときの温度である。 The glass transition temperature of the vinyl copolymer resin (A) having a specific structure is preferably in the range of 110 to 140 ° C. When the glass transition temperature is 110 ° C. or higher, the laminate provided by the present invention is less likely to be deformed or cracked in a thermal environment or a moist heat environment, and is 140 ° C. or lower due to a mirror roll or a shaping roll. Excellent workability such as continuous heat forming or batch-type heat forming using mirror molds or forming molds. In addition, the glass transition temperature in this invention is a temperature when using a differential scanning calorimetry apparatus and measuring by 10 mg of samples and the temperature increase rate of 10 degree-C / min, and calculating by the midpoint method.
本発明で用いるスチレン構成単位を有するビニル共重合樹脂(B)は、主としてスチレン構成単位(c)と、スチレンと共重合が可能なビニル構成単位(d)とからなる。
本発明におけるスチレン構成単位(c)の割合は、スチレン構成単位を有するビニル共重合樹脂(B)の全構成単位の合計に対して60〜90モル%の範囲である。前記(c)の割合が60モル%未満であると吸水により形状安定性が下がったりして実用的でない場合が生じることがある。また90モル%を超える範囲であると特定の構造を有するビニル共重合樹脂(A)との密着性が下がったりして実用的でない場合が生じることがある。
スチレンと共重合が可能なビニル構成単位(d)としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸シクロヘキシル、アクリル酸ニトリルなどが挙げられる。これらの中で好ましいのはメタクリル酸メチル、アクリル酸ニトリルである。
The vinyl copolymer resin (B) having a styrene structural unit used in the present invention mainly comprises a styrene structural unit (c) and a vinyl structural unit (d) capable of copolymerization with styrene.
The ratio of the styrene structural unit (c) in the present invention is in the range of 60 to 90 mol% with respect to the total of all the structural units of the vinyl copolymer resin (B) having a styrene structural unit. If the proportion of (c) is less than 60 mol%, shape stability may be reduced due to water absorption, which may be impractical. Moreover, when it is in the range exceeding 90 mol%, the adhesiveness with the vinyl copolymer resin (A) having a specific structure may be lowered and may not be practical.
Examples of the vinyl structural unit (d) that can be copolymerized with styrene include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cyclohexyl (meth) acrylate, and nitrile acrylate. Is mentioned. Among these, methyl methacrylate and acrylonitrile are preferred.
本発明における特定の構造を有するビニル共重合樹脂(A)および/またはスチレン構成単位を有するビニル共重合樹脂(B)には紫外線吸収剤を混合して使用することができる。紫外線吸収剤としては、例えば、2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−ドデシロキシベンゾフェノン、2−ヒドロキシ−4−オクタデシロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノンなどのベンゾフェノン系紫外線吸収剤、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)ベンゾトリアゾール、2−(2−ヒドロキシ−3−t−ブチル−5−メチルフェニル)ベンゾトリアゾール、(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノールなどのベンゾトリアゾール系紫外線吸収剤、サリチル酸フェニル、2,4−ジ−t−ブチルフェニル−3,5−ジ−t−ブチル−4−ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤、ビス(2,2,6,6−テトラメチルピペリジン−4−イル)セバケートなどのヒンダードアミン系紫外線吸収剤、2,4−ジフェニル−6−(2−ヒドロキシ−4−メトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−エトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−プロポキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−(2−ヒドロキシ−4−ブトキシフェニル)1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ブトキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ヘキシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−オクチルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ドデシルオキシフェニル)−1,3,5−トリアジン、2,4−ジフェニル−6−(2−ヒドロキシ−4−ベンジルオキシフェニル)−1,3,5−トリアジンなどのトリアジン系紫外線吸収剤などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法などを用いることができる。 The vinyl copolymer resin (A) having a specific structure and / or the vinyl copolymer resin (B) having a styrene structural unit in the present invention can be used by mixing with an ultraviolet absorber. Examples of the ultraviolet absorber include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-n-octoxybenzophenone, 2-hydroxy-4-dodecyloxybenzophenone, and 2-hydroxy. -4-octadecyloxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, etc. Benzophenone ultraviolet absorber, 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, 2- (2-hydroxy-3) -T-butyl-5-methylphenyl) benzotriazo , Benzotriazole ultraviolet absorbers such as (2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol, phenyl salicylate, 2,4-di-t-butyl Benzoate ultraviolet absorbers such as phenyl-3,5-di-t-butyl-4-hydroxybenzoate, and hindered amine ultraviolet absorbers such as bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-ethoxyphenyl) -1,3 , 5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-dipheni -(2-hydroxy-4-butoxyphenyl) 1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4- Diphenyl-6- (2-hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5- Triazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- Examples include triazine-based ultraviolet absorbers such as 1,3,5-triazine. The mixing method is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, and the like can be used.
また、本発明における特定の構造を有するビニル共重合樹脂(A)および/またはスチレン構成単位を有するビニル共重合樹脂(B)には各種添加剤を混合して使用することができる。添加剤としては、例えば、抗酸化剤や抗着色剤、抗帯電剤、離型剤、滑剤、染料、顔料などが挙げられる。混合の方法は特に限定されず、全量コンパウンドする方法、マスターバッチをドライブレンドする方法、全量ドライブレンドする方法などを用いることができる。 Moreover, various additives can be mixed and used for the vinyl copolymer resin (A) which has a specific structure in this invention, and / or the vinyl copolymer resin (B) which has a styrene structural unit. Examples of the additive include an antioxidant, an anticolorant, an antistatic agent, a release agent, a lubricant, a dye, and a pigment. The method of mixing is not particularly limited, and a method of compounding the whole amount, a method of dry blending the master batch, a method of dry blending the whole amount, and the like can be used.
本発明の合成樹脂積層体の製造方法としては共押出による方法、接着層を介して貼り合わせる方法などを用いることができる。
共押出の方法は特に限定されず、例えば、フィードブロック方式では、フィードブロックでスチレン構成単位を有するビニル共重合樹脂(B)層の両面に特定の構造を有するビニル共重合樹脂(A)層を積層し、Tダイでシート状に押し出した後、成形ロールを通過させながら冷却し所望の合成樹脂積層体を形成する。また、マルチマニホールド方式では、マルチマニホールドダイ内で前記(B)層の両面に前記(A)層を積層し、シート状に押し出した後、成形ロールを通過させながら冷却し所望の合成樹脂積層体を形成する。
また、接着層を介して貼り合わせる方法も特に限定されず、公知の方法を用いることができる。例えば、一方の板状成形体にスプレー、刷毛、グラビアロール、インクジェットなどを用いて接着剤を塗布し、そこへもう一方の板状成形体を重ねて接着剤が硬化するまで圧着し、所望の合成樹脂積層体を形成する。また、共押出の際に前記(A)層と前記(B)層の間に任意の接着樹脂(C)層を積層することもできる。
As a method for producing the synthetic resin laminate of the present invention, a method by coextrusion, a method of bonding through an adhesive layer, or the like can be used.
The method of coextrusion is not particularly limited. For example, in the feed block method, a vinyl copolymer resin (A) layer having a specific structure is formed on both sides of a vinyl copolymer resin (B) layer having a styrene constituent unit in the feed block. After laminating and extruding into a sheet with a T-die, cooling is performed while passing through a forming roll to form a desired synthetic resin laminate. In the multi-manifold system, the (A) layer is laminated on both sides of the (B) layer in a multi-manifold die, extruded into a sheet, and then cooled while passing through a molding roll to obtain a desired synthetic resin laminate. Form.
Moreover, the method of bonding through an adhesive layer is not particularly limited, and a known method can be used. For example, an adhesive is applied to one plate-like molded body using a spray, a brush, a gravure roll, an ink jet, etc., and the other plate-shaped molded body is stacked thereon and pressure-bonded until the adhesive is cured. A synthetic resin laminate is formed. In addition, an arbitrary adhesive resin (C) layer can be laminated between the (A) layer and the (B) layer during coextrusion.
本発明の合成樹脂積層体の厚みは0.1〜10.0mmの範囲であることが好ましい。0.1mm以上であることにより転写不良や厚み精度不良が発生することが少なく、また10.0mm以下であることにより成形後の冷却ムラなどによる厚み精度不良や外観不良が発生することが少ない。より好ましくは0.2〜5.0mmの範囲であり、さらに好ましくは0.3〜3.0mmの範囲である。 The thickness of the synthetic resin laminate of the present invention is preferably in the range of 0.1 to 10.0 mm. When it is 0.1 mm or more, transfer defects and thickness accuracy defects are less likely to occur, and when it is 10.0 mm or less, thickness accuracy defects and appearance defects due to uneven cooling after molding are less likely to occur. More preferably, it is the range of 0.2-5.0 mm, More preferably, it is the range of 0.3-3.0 mm.
本発明の合成樹脂積層体の(A)層の厚みは10〜500μmの範囲であることが好ましい。10μm未満であると表面硬度が不足する場合がある。また500μmを超えると吸水時の形状安定性が不足する場合がある。好ましくは30〜100μmの範囲である。 The thickness of the (A) layer of the synthetic resin laminate of the present invention is preferably in the range of 10 to 500 μm. If it is less than 10 μm, the surface hardness may be insufficient. On the other hand, if it exceeds 500 μm, shape stability upon water absorption may be insufficient. Preferably it is the range of 30-100 micrometers.
本発明の合成樹脂積層体にはその片面または両面にハードコート処理、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のいずれか一つ以上を施すことができる。それらの処理の方法は特に限定されず、公知の方法を用いることができる。例えば、熱硬化性あるいは光硬化性皮膜を塗布する方法、反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが挙げられる。コーティング剤は公知のものを用いることができ、例えば、メラミン樹脂、ウレタン樹脂、アクリル樹脂、紫外線硬化型アクリル樹脂などの有機系コーティング剤、シラン化合物などのシリコン系コーティング剤、金属酸化物などの無機系コーティング剤、有機無機ハイブリッド系コーティング剤が挙げられる。 The synthetic resin laminate of the present invention can be subjected to any one or more of hard coat treatment, antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment on one side or both sides. The method for these treatments is not particularly limited, and a known method can be used. For example, a method of applying a thermosetting or photocurable film, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be mentioned. Known coating agents can be used, for example, organic coating agents such as melamine resin, urethane resin, acrylic resin and ultraviolet curable acrylic resin, silicon coating agents such as silane compounds, and inorganic such as metal oxides. -Based coating agents and organic-inorganic hybrid coating agents.
以下、実施例により本発明を具体的に説明する。ただし、本発明はこれらの実施例により何ら制限されるものではない。
実施例および比較例で得られた合成樹脂積層体の評価は以下のように行った。
Hereinafter, the present invention will be described specifically by way of examples. However, this invention is not restrict | limited at all by these Examples.
The synthetic resin laminates obtained in the examples and comparative examples were evaluated as follows.
<吸水時の形状安定性評価>
試験片を20cm四方に切り出す。温度60℃に設定した熱風乾燥機中で16時間放置した後、温度23℃、相対湿度50%の環境に24時間以上放置して状態調整する。水に接触させる面を下向きに水平面上に静置して試験片下面と水平面との隙間長さを四隅について測定し、その平均値を隙間長さの初期値とする。温度23℃、相対湿度50%の環境中、容器に準備した水の水面上に試験片の片面のみが接触する状態に試験片を設置し24時間保持する。取り出した試験片を水に接触させた面を下向きに水平面上に静置して試験片下面と水平面との隙間長さを四隅について測定し、その平均値を隙間長さの試験値とする。試験値の初期値からの変化量を形状安定性として評価する。厚み1.5mmの試験片について変化量1.0mm以下を合格とする。
<Evaluation of shape stability during water absorption>
Cut the test piece into a 20 cm square. After being left for 16 hours in a hot air dryer set at a temperature of 60 ° C., it is left for 24 hours or longer in an environment of a temperature of 23 ° C. and a relative humidity of 50% to adjust the state. The surface to be brought into contact with water is placed on a horizontal plane facing downward, and the gap length between the lower surface of the test piece and the horizontal plane is measured at four corners, and the average value is taken as the initial value of the gap length. In an environment of a temperature of 23 ° C. and a relative humidity of 50%, the test piece is placed in a state where only one side of the test piece is in contact with the water surface of the water prepared in the container, and held for 24 hours. The surface of the test piece taken out in contact with water is placed on a horizontal surface facing downward, the gap length between the lower surface of the test piece and the horizontal plane is measured at four corners, and the average value is taken as the test value for the gap length. The amount of change from the initial value of the test value is evaluated as the shape stability. A test piece having a thickness of 1.5 mm is acceptable if the variation is 1.0 mm or less.
<加熱時の形状安定性評価>
試験片を12cm四方に切り出す。試験片の機械方向に10cmの標線を引き、標線長さの初期値とする。試験片にカオリンを振りかけカオリンを敷いた容器に平らに置き、温度100℃に設定した熱風乾燥機中に1時間保持する。取り出した試験片の標線長さを再度測定し、標線長さの試験値とする。試験値の初期値からの変化量を算出しその初期値に対する百分率を加熱時の形状安定性として評価する。厚み1.5mmの試験片について変化量−0.5%以内を合格とする。
<Evaluation of shape stability during heating>
Cut the test piece into a 12 cm square. A 10 cm mark is drawn in the machine direction of the test piece to obtain the initial value of the mark length. Sprinkle kaolin on the test piece, place it flat in a container with kaolin, and hold it in a hot air dryer set at a temperature of 100 ° C. for 1 hour. The marked line length of the taken out test piece is measured again to obtain a test value for the marked line length. The amount of change from the initial value of the test value is calculated, and the percentage of the initial value is evaluated as the shape stability during heating. For a test piece having a thickness of 1.5 mm, the variation is within -0.5%.
<鉛筆引っかき硬度試験>
JIS K 5600−5−4に準拠し、表面に対して角度45度、荷重750gで(A)層の表面に次第に硬度を増して鉛筆を押し付け、きず跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価する。鉛筆硬度2H以上を合格とする。
<Pencil scratch hardness test>
In accordance with JIS K 5600-5-4, the hardness of the hardest pencil that did not cause scratches was determined by gradually increasing the hardness against the surface of the layer (A) at an angle of 45 degrees with respect to the surface and a load of 750 g. Evaluated as pencil hardness. A pencil hardness of 2H or higher is accepted.
<ハードコート塗膜の密着性評価>
JIS K 5600−5−6に準拠し、ハードコート塗膜に直角の格子パターンを切り込み、素地まで貫通するときの素地からの剥離に対してハードコート塗膜の耐性を評価する。試験結果の分類が0または1のときを合格とする。
<Evaluation of adhesion of hard coat film>
In accordance with JIS K 5600-5-6, a grid pattern perpendicular to the hard coat film is cut and the resistance of the hard coat film is evaluated against peeling from the substrate when penetrating to the substrate. When the test result classification is 0 or 1, the test is accepted.
<積層樹脂の密着性評価>
試験片を10cm×30cmに切り出す。試験片を直径80mmの円筒に長辺が円周方向となるように押し付け、積層樹脂の界面の剥離の有無を評価する。剥離の生じる枚数が10枚中2枚以下のものを合格とする。
<Adhesion evaluation of laminated resin>
Cut the test piece into 10 cm × 30 cm. The test piece is pressed against a cylinder having a diameter of 80 mm so that the long side is in the circumferential direction, and the presence or absence of peeling at the interface of the laminated resin is evaluated. The number of peeled sheets is 2 or less out of 10 sheets.
合成例1〔ビニル共重合樹脂(A1)の製造〕
精製したメタクリル酸メチル(三菱ガス化学社製)77.000モル%と、精製したスチレン(和光純薬工業社製)22.998モル%と、重合開始剤としてt−アミルパーオキシ−2−エチルヘキサノエート(アルケマ吉富社製、商品名:ルペロックス575)0.002モル%からなるモノマー組成物を、ヘリカルリボン翼付き10L完全混合槽に1kg/hで連続的に供給し、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。重合槽の液面が一定となるよう底部から連続的に抜き出し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(A1’)を得た。
得られたビニル共重合樹脂(A1’)をイソ酪酸メチル(関東化学社製)に溶解し、10重量%イソ酪酸メチル溶液を調整した。1000mLオートクレーブ装置に(A1’)の10重量%イソ酪酸メチル溶液を500重量部、10重量%Pd/C(NEケムキャット社製)を1重量部仕込み、水素圧9MPa、200℃で15時間保持してベンゼン環部位を水素化した。フィルターにより触媒を除去し、脱溶剤装置に導入してペレット状のビニル共重合樹脂(A1)を得た。1H−NMRによる測定の結果、メタクリル酸メチル構成単位の割合は75モル%であり、また波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。
Synthesis Example 1 [Production of Vinyl Copolymer Resin (A1)]
Purified methyl methacrylate (Mitsubishi Gas Chemical Co., Ltd.) 77.000 mol%, purified styrene (Wako Pure Chemical Industries, Ltd.) 22.998 mol%, and t-amylperoxy-2-ethyl as a polymerization initiator A monomer composition consisting of 0.002 mol% of hexanoate (Arkema Yoshitomi Co., Ltd., trade name: Luperox 575) is continuously supplied at 1 kg / h to a 10 L complete mixing tank with a helical ribbon blade, and an average residence time of 2 Continuous polymerization was carried out at a polymerization temperature of 150 ° C. for 5 hours. It extracted continuously from the bottom part so that the liquid level of a polymerization tank might become constant, and it introduced into the solvent removal apparatus, and obtained the pellet-like vinyl copolymer resin (A1 ').
The obtained vinyl copolymer resin (A1 ′) was dissolved in methyl isobutyrate (manufactured by Kanto Chemical Co., Inc.) to prepare a 10 wt% methyl isobutyrate solution. A 1000 mL autoclave apparatus was charged with 500 parts by weight of a 10% by weight methyl isobutyrate solution (A1 ′) and 1 part by weight of 10% by weight Pd / C (manufactured by NE Chemcat), and maintained at a hydrogen pressure of 9 MPa and 200 ° C. for 15 hours. The benzene ring site was hydrogenated. The catalyst was removed by a filter and introduced into a solvent removal apparatus to obtain a pellet-like vinyl copolymer resin (A1). As a result of the measurement by 1 H-NMR, the proportion of the methyl methacrylate structural unit was 75 mol%, and as a result of the absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 99%.
合成例2〔ビニル共重合樹脂(A2)の製造〕
合成例1で使用したメタクリル酸メチルの使用量を60.019モル%とし、またスチレンの使用量を39.979モル%とした以外は合成例1と同様にしてビニル共重合樹脂(A2)を得た。1H−NMRによる測定の結果、メタクリル酸メチル構成単位の割合は58モル%であり、また波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。
Synthesis Example 2 [Production of vinyl copolymer resin (A2)]
A vinyl copolymer resin (A2) was prepared in the same manner as in Synthesis Example 1 except that the amount of methyl methacrylate used in Synthesis Example 1 was changed to 60.19 mol% and the amount of styrene used was changed to 39.979 mol%. Obtained. As a result of measurement by 1 H-NMR, the proportion of the methyl methacrylate structural unit was 58 mol%, and as a result of the absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 99%.
合成例3〔ビニル共重合樹脂(A3)の製造〕
合成例1で使用したメタクリル酸メチルの使用量を30.000モル%とし、またスチレンの使用量を69.998モル%とした以外は合成例1と同様にしてビニル共重合樹脂(A3)を得た。1H−NMRによる測定の結果、メタクリル酸メチル構成単位の割合は28モル%であり、また波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。
Synthesis Example 3 [Production of vinyl copolymer resin (A3)]
A vinyl copolymer resin (A3) was prepared in the same manner as in Synthesis Example 1 except that the amount of methyl methacrylate used in Synthesis Example 1 was set to 30.000 mol% and the amount of styrene used was 69.998 mol%. Obtained. As a result of the measurement by 1 H-NMR, the proportion of the methyl methacrylate structural unit was 28 mol%, and as a result of the absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 99%.
合成例4〔ビニル共重合樹脂(A4)の製造〕
合成例1で使用したメタクリル酸メチルの使用量を92.000モル%とし、またスチレンの使用量を7.998モル%とした以外は合成例1と同様にしてビニル共重合樹脂(A4)を得た。1H−NMRによる測定の結果、メタクリル酸メチル構成単位の割合は90モル%であり、また波長260nmにおける吸光度測定の結果、ベンゼン環部位の水素化反応率は99%であった。
Synthesis Example 4 [Production of vinyl copolymer resin (A4)]
A vinyl copolymer resin (A4) was prepared in the same manner as in Synthesis Example 1 except that the amount of methyl methacrylate used in Synthesis Example 1 was 92.000 mol% and that of styrene was 7.998 mol%. Obtained. As a result of measurement by 1 H-NMR, the proportion of the methyl methacrylate structural unit was 90 mol%, and as a result of the absorbance measurement at a wavelength of 260 nm, the hydrogenation reaction rate at the benzene ring site was 99%.
合成例5〔ハードコート塗料(a)の製造〕
撹拌翼を備えた混合槽に、トリス(2−アクロキシエチル)イソシアヌレート(Aldrich社製)60部と、ネオペンチルグリコールオリゴアクリレート(大阪有機化学工業社製、商品名:215D)40部と、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(チバ・ジャパン社製、商品名:DAROCUR TPO)1部と、1−ヒドロキシシクロヘキシルフェニルケトン(Aldrich社製)0.3部と、2−(2H−ベンゾトリアゾール−2−イル)−4,6−ビス(1−メチル−1−フェニルエチル)フェノール(チバ・ジャパン社製、商品名:TINUVIN234)1部からなる組成物を導入し、40℃に保持しながら1時間撹拌して光硬化性ハードコート塗料(a)を得た。
Synthesis Example 5 [Production of Hard Coat Paint (a)]
In a mixing vessel equipped with a stirring blade, 60 parts of tris (2-acryloxyethyl) isocyanurate (manufactured by Aldrich), 40 parts of neopentyl glycol oligoacrylate (manufactured by Osaka Organic Chemical Industry, trade name: 215D), 1,4,6-trimethylbenzoyldiphenylphosphine oxide (manufactured by Ciba Japan, trade name: DAROCUR TPO) 1 part, 1-hydroxycyclohexyl phenyl ketone (manufactured by Aldrich) 0.3 part, 2- (2H -Benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol (product name: TINUVIN234) manufactured by Ciba Japan Co., Ltd. It stirred for 1 hour, hold | maintaining, and the photocurable hard coat coating material (a) was obtained.
実施例1〔樹脂(A1)/樹脂(B1)/樹脂(A1)〕
軸径35mmの単軸押出機と、軸径65mmの単軸押出機と、全押出機に連結されたフィードブロックと、フィードブロックに連結されたTダイとを有する多層押出装置を用いて合成樹脂積層体を成形した。軸径35mmの単軸押出機に合成例1で得たビニル共重合樹脂(A1)を連続的に導入し、シリンダ温度250℃、吐出速度5.0kg/hの条件で押し出した。また軸径65mmの単軸押出機にスチレンのモル比が80%であるメタクリル酸メチル−スチレン共重合樹脂(B1)(新日鐵化学社製、商品名:エスチレンMS200)を連続的に導入し、シリンダ温度250℃、吐出速度45.0kg/hで押し出した。全押出機に連結されたフィードブロックは2種3層の分配ピンを備え、温度260℃として(A1)と(B1)を導入し積層した。その先に連結された温度260℃のTダイでシート状に押し出し、上流側から温度90℃、100℃、100℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、(B1)の両側に(A1)を積層した合成樹脂積層体(C1)を得た。得られた積層体の厚みは1.5mm、(A1)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.6mmで合格であり、加熱時の形状安定性評価は−0.2%で合格であり、鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であり、積層樹脂の密着性評価は0/10で合格であり、総合判定は合格であった。
Example 1 [resin (A1) / resin (B1) / resin (A1)]
Synthetic resin using a multi-layer extrusion apparatus having a single-screw extruder with a shaft diameter of 35 mm, a single-screw extruder with a shaft diameter of 65 mm, a feed block connected to all the extruders, and a T-die connected to the feed block A laminate was formed. The vinyl copolymer resin (A1) obtained in Synthesis Example 1 was continuously introduced into a single screw extruder having a shaft diameter of 35 mm and extruded under the conditions of a cylinder temperature of 250 ° C. and a discharge speed of 5.0 kg / h. In addition, methyl methacrylate-styrene copolymer resin (B1) (trade name: Estyrene MS200, manufactured by Nippon Steel Chemical Co., Ltd.) having a styrene molar ratio of 80% was continuously introduced into a single screw extruder having a shaft diameter of 65 mm. The cylinder was extruded at a cylinder temperature of 250 ° C. and a discharge speed of 45.0 kg / h. The feed block connected to the whole extruder was provided with two types and three layers of distribution pins, and was laminated at a temperature of 260 ° C. by introducing (A1) and (B1). Extruded into a sheet form with a T-die with a temperature of 260 ° C connected to the tip, and cooled by transferring the mirror surface with three mirror-finishing rolls at temperatures of 90 ° C, 100 ° C, and 100 ° C from the upstream side, (B1) A synthetic resin laminate (C1) in which (A1) was laminated on both sides was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A1) layer was 70 μm near the center. The shape stability evaluation at the time of water absorption is 0.6 mm, the shape stability evaluation at the time of heating is -0.2%, the pencil scratch hardness is 3H, and the adhesion of the hard coat coating film. The property evaluation was a pass of classification 0, the adhesion evaluation of the laminated resin was a pass of 0/10, and the comprehensive judgment was a pass.
実施例2〔樹脂(A1)/樹脂(B2)/樹脂(A1)〕
実施例1で使用したメタクリル酸メチル−スチレン共重合樹脂(B1)の代わりにスチレンのモル比が70%であるメタクリル酸メチル−スチレン共重合樹脂(B2)(新日鐵化学社製、商品名:エスチレンMS300)を使用した以外は実施例1と同様にして(B2)の両側に(A1)を積層した合成樹脂積層体(C2)を得た。得られた積層体の厚みは1.5mm、(A1)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.7mmで合格であり、加熱時の形状安定性評価は−0.2%で合格であり、鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であり、積層樹脂の密着性評価は0/10で合格であり、総合判定は合格であった。
Example 2 [Resin (A1) / Resin (B2) / Resin (A1)]
Instead of the methyl methacrylate-styrene copolymer resin (B1) used in Example 1, methyl methacrylate-styrene copolymer resin (B2) having a styrene molar ratio of 70% (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) : Synthetic resin laminate (C2) in which (A1) was laminated on both sides of (B2) in the same manner as in Example 1 except that Estyrene MS300) was used. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A1) layer was 70 μm near the center. The shape stability evaluation at the time of water absorption is 0.7 mm, the shape stability evaluation at the time of heating is -0.2%, the pencil scratch hardness is 3H, and the adhesion of the hard coat coating film. The property evaluation was a pass of classification 0, the adhesion evaluation of the laminated resin was a pass of 0/10, and the comprehensive judgment was a pass.
実施例3〔樹脂(A2)/樹脂(B1)/樹脂(A2)〕
実施例1で使用したビニル共重合樹脂(A1)の代わりに合成例2で得たビニル共重合樹脂(A2)を使用した以外は実施例1と同様にして(B1)の両側に(A2)を積層した合成樹脂積層体(C3)を得た。得られた積層体の厚みは1.5mm、(A2)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.6mmで合格であり、加熱時の形状安定性評価は−0.1%で合格であり、鉛筆引っかき硬度は2Hで合格であり、ハードコート塗膜の密着性評価は分類1で合格であり、積層樹脂の密着性評価は0/10で合格であり、総合判定は合格であった。
Example 3 [Resin (A2) / Resin (B1) / Resin (A2)]
(A2) on both sides of (B1) in the same manner as in Example 1 except that the vinyl copolymer resin (A2) obtained in Synthesis Example 2 was used instead of the vinyl copolymer resin (A1) used in Example 1. A synthetic resin laminate (C3) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A2) layer was 70 μm near the center. The shape stability evaluation at the time of water absorption is 0.6 mm, the shape stability evaluation at the time of heating is -0.1%, the pencil scratch hardness is 2H, and the adhesion of the hard coat film is good. The property evaluation was a pass in classification 1, the adhesion evaluation of the laminated resin was a pass of 0/10, and the overall judgment was a pass.
実施例4〔樹脂(A1)/樹脂(B3)/樹脂(A1)〕
実施例1で使用したメタクリル酸メチル−スチレン共重合樹脂(B1)の代わりにスチレンのモル比が80%であるアクリル酸ニトリル−スチレン共重合樹脂(B3)(旭化成ケミカルズ社製、商品名:スタイラックAS T8701)を使用した以外は実施例1と同様にして(B3)の両側に(A1)を積層した合成樹脂積層体(C4)を得た。得られた積層体の厚みは1.5mm、(A1)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.7mmで合格であり、加熱時の形状安定性評価は−0.2%で合格であり、鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であり、積層樹脂の密着性評価は0/10で合格であり、総合判定は合格であった。
Example 4 [Resin (A1) / Resin (B3) / Resin (A1)]
Instead of the methyl methacrylate-styrene copolymer resin (B1) used in Example 1, an acrylic nitrile-styrene copolymer resin (B3) having a styrene molar ratio of 80% (manufactured by Asahi Kasei Chemicals Corporation, trade name: sty A synthetic resin laminate (C4) in which (A1) was laminated on both sides of (B3) was obtained in the same manner as in Example 1 except that rack AS T8701) was used. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A1) layer was 70 μm near the center. The shape stability evaluation at the time of water absorption is 0.7 mm, the shape stability evaluation at the time of heating is -0.2%, the pencil scratch hardness is 3H, and the adhesion of the hard coat coating film. The property evaluation was a pass of classification 0, the adhesion evaluation of the laminated resin was a pass of 0/10, and the comprehensive judgment was a pass.
実施例5〔樹脂(A2)/樹脂(B3)/樹脂(A2)〕
実施例4で使用したビニル共重合樹脂(A1)の代わりに合成例2で得たビニル共重合樹脂(A2)を使用した以外は実施例4と同様にして(B3)の両側に(A2)を積層した合成樹脂積層体(C5)を得た。得られた積層体の厚みは1.5mm、(A2)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.8mmで合格であり、加熱時の形状安定性評価は−0.1%で合格であり、鉛筆引っかき硬度は2Hで合格であり、ハードコート塗膜の密着性評価は分類1で合格であり、積層樹脂の密着性評価は0/10で合格であり、総合判定は合格であった。
Example 5 [Resin (A2) / Resin (B3) / Resin (A2)]
(A2) on both sides of (B3) in the same manner as in Example 4 except that the vinyl copolymer resin (A2) obtained in Synthesis Example 2 was used instead of the vinyl copolymer resin (A1) used in Example 4. A synthetic resin laminate (C5) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A2) layer was 70 μm near the center. Shape stability evaluation at the time of water absorption is acceptable at 0.8 mm, shape stability evaluation at the time of heating is acceptable at −0.1%, pencil scratch hardness is acceptable at 2H, and adhesion of hard coat coating film The property evaluation was a pass in classification 1, the adhesion evaluation of the laminated resin was a pass of 0/10, and the overall judgment was a pass.
比較例1〔樹脂(A3)/樹脂(B1)/樹脂(A3)〕
実施例1で使用したビニル共重合樹脂(A1)の代わりに合成例3で得たビニル共重合樹脂(A3)を使用した以外は実施例1と同様にして(B1)の両側に(A3)を積層した合成樹脂積層体(C6)を得た。得られた積層体の厚みは1.5mm、(A3)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.5mmで合格であり、加熱時の形状安定性評価は−0.1%で合格であり、鉛筆引っかき硬度は2Hで合格であり、積層樹脂の密着性評価は0/10で合格であったが、ハードコート塗膜の密着性評価は分類2で不合格であり、総合判定は不合格であった。
Comparative Example 1 [Resin (A3) / Resin (B1) / Resin (A3)]
(A3) on both sides of (B1) in the same manner as in Example 1 except that the vinyl copolymer resin (A3) obtained in Synthesis Example 3 was used instead of the vinyl copolymer resin (A1) used in Example 1. A synthetic resin laminate (C6) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A3) layer was 70 μm near the center. Shape stability evaluation at the time of water absorption is acceptable at 0.5 mm, shape stability evaluation at the time of heating is acceptable at -0.1%, pencil scratch hardness is acceptable at 2H, and adhesion evaluation of laminated resin Was 0/10, but the adhesion evaluation of the hard coat coating film failed in Category 2, and the overall judgment was unsuccessful.
比較例2〔樹脂(A4)/樹脂(B1)/樹脂(A4)〕
実施例1で使用したビニル共重合樹脂(A1)の代わりに合成例4で得たビニル共重合樹脂(A4)を使用した以外は実施例1と同様にして(B1)の両側に(A4)を積層した合成樹脂積層体(C7)を得た。得られた積層体の厚みは1.5mm、(A4)層の厚みは中央付近で70μmであった。加熱時の形状安定性評価は−0.4%で合格であり、鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であったが、吸水時の形状安定性評価は1.3mmで不合格であり、積層樹脂の密着性評価は8/10で不合格であり、総合判定は不合格であった。
Comparative Example 2 [Resin (A4) / Resin (B1) / Resin (A4)]
(A4) on both sides of (B1) in the same manner as in Example 1 except that the vinyl copolymer resin (A4) obtained in Synthesis Example 4 was used instead of the vinyl copolymer resin (A1) used in Example 1. A synthetic resin laminate (C7) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A4) layer was 70 μm near the center. The shape stability evaluation at the time of heating was -0.4%, the pencil scratch hardness was 3H, and the adhesion evaluation of the hard coat film was a classification 0, but the shape at the time of water absorption The stability evaluation was rejected at 1.3 mm, the adhesion evaluation of the laminated resin was rejected at 8/10, and the comprehensive judgment was rejected.
比較例3〔樹脂(A1)/樹脂(B1)〕
実施例1で使用した2種3層の分配ピンの代わりに2種2層の分配ピンを使用し、(A1)の吐出速度を2.5kg/hとし、(B1)の吐出速度を47.5kgとし、ロール温度を上流側から90℃、90℃、100℃とした以外は実施例1と同様にして(B1)の片側に(A1)を積層した合成樹脂積層体(C8)を得た。得られた積層体の厚みは1.5mm、(A1)層の厚みは中央付近で70μmであった。(A1)層側の鉛筆引っかき硬度は3Hで合格であり、(A1)層側のハードコート塗膜の密着性評価は分類0で合格であり、積層樹脂の密着性評価は0/10で合格であったが、吸水時の形状安定性評価は1.4mmで不合格であり、加熱時の形状安定性評価は−1.5%で不合格であり、総合判定は不合格であった。
Comparative Example 3 [Resin (A1) / Resin (B1)]
Instead of the 2 types and 3 layers of distribution pins used in Example 1, 2 types and 2 layers of distribution pins were used, the discharge speed of (A1) was 2.5 kg / h, and the discharge speed of (B1) was 47. A synthetic resin laminate (C8) in which (A1) was laminated on one side of (B1) was obtained in the same manner as in Example 1, except that the roll temperature was 5 kg and the roll temperature was 90 ° C, 90 ° C, and 100 ° C from the upstream side. . The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A1) layer was 70 μm near the center. (A1) The layer side pencil scratch hardness is 3H, and the (A1) layer side hard coat coating adhesion evaluation is 0 in classification, and the laminated resin adhesion evaluation is 0/10. However, the shape stability evaluation at the time of water absorption was rejected at 1.4 mm, the shape stability evaluation at the time of heating was rejected at −1.5%, and the comprehensive judgment was rejected.
比較例4〔樹脂(A1)/樹脂(B4)/樹脂(A1)〕
実施例1で使用したメタクリル酸メチル−スチレン共重合樹脂(B1)の代わりにスチレンのモル比が40%であるメタクリル酸メチル−スチレン共重合樹脂(B4)(新日鐵化学社製、商品名:エスチレンMS600)を使用した以外は実施例1と同様にして(B4)の両側に(A1)を積層した合成樹脂積層体(C9)を得た。得られた積層体の厚みは1.5mm、(A1)層の厚みは中央付近で70μmであった。加熱時の形状安定性評価は−0.2%で合格であり、鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であり、積層樹脂の密着性評価は0/10で合格であったが、吸水時の形状安定性評価は1.9mmで不合格であり、総合判定は不合格であった。
Comparative Example 4 [Resin (A1) / Resin (B4) / Resin (A1)]
Instead of the methyl methacrylate-styrene copolymer resin (B1) used in Example 1, a methyl methacrylate-styrene copolymer resin (B4) having a styrene molar ratio of 40% (trade name, manufactured by Nippon Steel Chemical Co., Ltd.) : Synthetic resin laminate (C9) in which (A1) was laminated on both sides of (B4) in the same manner as in Example 1 except that Estyrene MS600) was used. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A1) layer was 70 μm near the center. The shape stability evaluation at the time of heating is -0.2%, and the pencil scratch hardness is 3H, and the adhesion evaluation of the hard coat film is the classification 0, and the adhesion evaluation of the laminated resin. Was 0/10, but the shape stability evaluation at the time of water absorption was 1.9 mm, which was unacceptable, and the comprehensive judgment was unacceptable.
比較例5〔樹脂(A5)/樹脂(B1)/樹脂(A5)〕
実施例1で使用したビニル共重合樹脂(A1)の代わりにメタクリル樹脂(A5)(旭化成ケミカルズ社製、商品名:デルペット80NE)を使用した以外は実施例1と同様にして(B1)の両側に(A5)を積層した合成樹脂積層体(C10)を得た。得られた積層体の厚みは1.5mm、(A5)層の厚みは中央付近で70μmであった。鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であったが、吸水時の形状安定性評価は2.7mmで不合格であり、加熱時の形状安定性評価は−1.0%で不合格であり、積層樹脂の密着性評価は10/10で不合格であり、総合判定は不合格であった。
Comparative Example 5 [Resin (A5) / Resin (B1) / Resin (A5)]
(B1) in the same manner as in Example 1 except that the methacrylic resin (A5) (manufactured by Asahi Kasei Chemicals Corporation, trade name: Delpet 80NE) was used instead of the vinyl copolymer resin (A1) used in Example 1. A synthetic resin laminate (C10) in which (A5) was laminated on both sides was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A5) layer was 70 μm near the center. The pencil scratch hardness was 3H, and the adhesion evaluation of the hard coat film was a classification 0, but the shape stability evaluation at the time of water absorption was 2.7mm, and the shape stability at the time of heating was stable. The evaluation was -1.0%, and the adhesion evaluation of the laminated resin was 10/10, and the comprehensive evaluation was rejected.
比較例6〔樹脂(A5)/樹脂(B2)/樹脂(A5)〕
実施例2で使用したビニル共重合樹脂(A1)の代わりにメタクリル樹脂(A5)を使用した以外は実施例2と同様にして(B2)の両側に(A5)を積層した合成樹脂積層体(C11)を得た。得られた積層体の厚みは1.5mm、(A5)層の厚みは中央付近で70μmであった。鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であったが、吸水時の形状安定性評価は2.4mmで不合格であり、加熱時の形状安定性評価は−1.0%で不合格であり、積層樹脂の密着性評価は10/10で不合格であり、総合判定は不合格であった。
Comparative Example 6 [Resin (A5) / Resin (B2) / Resin (A5)]
A synthetic resin laminate in which (A5) is laminated on both sides of (B2) in the same manner as in Example 2, except that methacrylic resin (A5) is used instead of vinyl copolymer resin (A1) used in Example 2 ( C11) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A5) layer was 70 μm near the center. The pencil scratch hardness was 3H, and the adhesion evaluation of the hard coat film was a classification 0. However, the shape stability evaluation at the time of water absorption was 2.4mm, and the shape stability at the time of heating was stable. The evaluation was -1.0%, and the adhesion evaluation of the laminated resin was 10/10, and the comprehensive evaluation was rejected.
比較例7〔樹脂(A5)/樹脂(B3)/樹脂(A5)〕
実施例4で使用したビニル共重合樹脂(A1)の代わりにメタクリル樹脂(A5)を使用した以外は実施例4と同様にして(B3)の両側に(A5)を積層した合成樹脂積層体(C12)を得た。得られた積層体の厚みは1.5mm、(A5)層の厚みは中央付近で70μmであった。鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であり、積層樹脂の密着性評価は0/10で合格であったが、吸水時の形状安定性評価は2.8mmで不合格であり、加熱時の形状安定性評価は−1.1%で不合格であり、総合判定は不合格であった。
Comparative Example 7 [Resin (A5) / Resin (B3) / Resin (A5)]
A synthetic resin laminate in which (A5) is laminated on both sides of (B3) in the same manner as in Example 4 except that methacrylic resin (A5) is used instead of vinyl copolymer resin (A1) used in Example 4 ( C12) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (A5) layer was 70 μm near the center. The pencil scratch hardness was 3H, and the adhesion evaluation of the hard coat film was a classification 0, and the adhesion evaluation of the laminated resin was 0/10, but the shape stability evaluation at the time of water absorption. Was rejected at 2.8 mm, the shape stability evaluation at the time of heating was -1.1%, and the comprehensive judgment was rejected.
比較例8〔樹脂(B4)/樹脂(B1)/樹脂(B4)〕
実施例1で使用したビニル共重合樹脂(A1)の代わりにメタクリル酸メチル−スチレン共重合樹脂(B4)を使用し、ロール温度を上流側から80℃、90℃、90℃とした以外は実施例1と同様にして(B1)の両側に(B4)を積層した合成樹脂積層体(C13)を得た。得られた積層体の厚みは1.5mm、(B4)層の厚みは中央付近で70μmであった。吸水時の形状安定性評価は0.9mmで合格であり、鉛筆引っかき硬度は2Hで合格であり、積層樹脂の密着性評価は0/10で合格であったが、加熱時の形状安定性評価は−1.2%で不合格であり、ハードコート塗膜の密着性評価は分類2で不合格であり、総合判定は不合格であった。
Comparative Example 8 [Resin (B4) / Resin (B1) / Resin (B4)]
Implemented except that methyl methacrylate-styrene copolymer resin (B4) was used instead of vinyl copolymer resin (A1) used in Example 1 and the roll temperature was 80 ° C., 90 ° C., and 90 ° C. from the upstream side. In the same manner as in Example 1, a synthetic resin laminate (C13) in which (B4) was laminated on both sides of (B1) was obtained. The thickness of the obtained laminate was 1.5 mm, and the thickness of the (B4) layer was 70 μm near the center. The shape stability evaluation at the time of water absorption was 0.9 mm and passed, the pencil scratch hardness was 2H and the adhesion evaluation of the laminated resin was 0/10, but the shape stability evaluation during heating Was -1.2%, the hard coat coating film was evaluated as having an adhesion evaluation of Category 2, and the overall judgment was unsuccessful.
比較例9〔樹脂(A5)〕
軸径65mmの単軸押出機と、押出機に連結されたTダイとを有する単層押出装置を用いて合成樹脂単層体を成形した。単軸押出機にメタクリル樹脂(A5)を連続的に導入し、シリンダ温度250℃、吐出速度50.0kg/hで押し出した。その先に連結された温度260℃のTダイでシート状に押し出し、上流側から温度80℃、90℃、90℃とした3本の鏡面仕上げロールで鏡面を転写しながら冷却し、合成樹脂単層体(C14)を得た。得られた積層体の厚みは1.5mmであった。鉛筆引っかき硬度は3Hで合格であり、ハードコート塗膜の密着性評価は分類0で合格であったが、吸水時の形状安定性評価は7.2mmで不合格であり、加熱時の形状安定性評価は−1.0%で不合格であり、総合判定は不合格であった。
Comparative Example 9 [Resin (A5)]
A synthetic resin monolayer was formed using a monolayer extruder having a single screw extruder having a shaft diameter of 65 mm and a T die connected to the extruder. Methacrylic resin (A5) was continuously introduced into the single screw extruder and extruded at a cylinder temperature of 250 ° C. and a discharge speed of 50.0 kg / h. It is extruded in a sheet form with a T-die with a temperature of 260 ° C connected to the tip, and cooled while transferring the mirror surface with three mirror finish rolls at temperatures of 80 ° C, 90 ° C, and 90 ° C from the upstream side. A layered body (C14) was obtained. The thickness of the obtained laminate was 1.5 mm. The pencil scratch hardness was 3H, and the adhesion evaluation of the hard coat film was a classification 0. However, the shape stability evaluation at the time of water absorption was 7.2mm, and the shape stability at the time of heating was stable. The property evaluation was -1.0%, which was unacceptable, and the comprehensive judgment was unacceptable.
比較例10〔樹脂(B1)〕
比較例9で使用したメタクリル樹脂(A5)の代わりにメタクリル酸メチル−スチレン共重合樹脂(B1)を使用した以外は比較例1と同様にして合成樹脂単層体(C15)を得た。得られた積層体の厚みは1.5mmであった。吸水時の形状安定性評価は0.5mmで合格であったが、加熱時の形状安定性評価は−2.4%で不合格であり、鉛筆引っかき硬度はHで不合格であり、ハードコート塗膜の密着性評価は分類5で不合格であり、総合判定は不合格であった。
Comparative Example 10 [Resin (B1)]
A synthetic resin monolayer (C15) was obtained in the same manner as in Comparative Example 1 except that methyl methacrylate-styrene copolymer resin (B1) was used instead of the methacrylic resin (A5) used in Comparative Example 9. The thickness of the obtained laminate was 1.5 mm. The shape stability evaluation at the time of water absorption was 0.5 mm, but the shape stability evaluation at the time of heating was -2.4%, and the pencil scratch hardness was H, which was rejected. The adhesion evaluation of the coating film failed in Category 5, and the comprehensive judgment was unacceptable.
比較例11〔樹脂(B3)〕
比較例9で使用したメタクリル樹脂(A5)の代わりにアクリル酸ニトリル−スチレン共重合樹脂(B3)を使用した以外は比較例9と同様にして合成樹脂単層体(C16)を得た。得られた積層体の厚みは1.5mmであった。吸水時の形状安定性評価は0.5mmで合格であり、ハードコート塗膜の密着性評価は分類0で合格であったが、加熱時の形状安定性評価は−2.0%で不合格であり、鉛筆引っかき硬度はHで不合格であり、総合判定は不合格であった。
表1より、本発明の合成樹脂積層体は吸水時の形状安定性、加熱時の形状安定性、表面硬度、ハードコート塗料の密着性および積層樹脂の層間密着性に優れる。
A synthetic resin monolayer (C16) was obtained in the same manner as in Comparative Example 9, except that acrylonitrile-styrene copolymer resin (B3) was used instead of the methacrylic resin (A5) used in Comparative Example 9. The thickness of the obtained laminate was 1.5 mm. The shape stability evaluation at the time of water absorption was acceptable at 0.5 mm, and the adhesion evaluation of the hard coat film was acceptable at classification 0, but the shape stability evaluation at heating was -2.0% and failed. The pencil scratch hardness was H, which was unacceptable, and the comprehensive judgment was unacceptable.
From Table 1, the synthetic resin laminate of the present invention is excellent in shape stability at the time of water absorption, shape stability at the time of heating, surface hardness, adhesion of the hard coat paint, and interlayer adhesion of the laminate resin.
本発明の合成樹脂積層体は表面硬度、加熱時や吸水時の形状安定性、および塗料密着性に優れるという特徴を有し、透明性基板材料や透明性保護材料などとして好適に用いられ、特にOA機器や携帯型電子機器の表示部前面板として好適に用いられる。 The synthetic resin laminate of the present invention is characterized by excellent surface hardness, shape stability at the time of heating or water absorption, and paint adhesion, and is suitably used as a transparent substrate material, a transparent protective material, etc. It is suitably used as a display unit front plate for OA devices and portable electronic devices.
Claims (10)
前記(A)は、下記一般式(1)で表される(メタ)アクリル酸エステル構成単位(a)と、下記一般式(2)で表される脂肪族ビニル構成単位(b)を含み、前記(a)の割合が前記(A)の全構成単位の合計に対して50〜85モル%であるビニル共重合樹脂であり、前記(B)は、スチレン構成単位が前記(B)の全構成単位の合計に対して60〜90モル%であることを特徴とする合成樹脂積層体。
The (A) includes a (meth) acrylate structural unit (a) represented by the following general formula (1) and an aliphatic vinyl structural unit (b) represented by the following general formula (2). It is a vinyl copolymer resin in which the proportion of (a) is 50 to 85 mol% based on the total of all the structural units of (A), and (B) is a styrene structural unit of all of (B). The synthetic resin laminate, which is 60 to 90 mol% with respect to the total of the structural units.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011098073A JP2012228811A (en) | 2011-04-26 | 2011-04-26 | Synthetic resin laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011098073A JP2012228811A (en) | 2011-04-26 | 2011-04-26 | Synthetic resin laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012228811A true JP2012228811A (en) | 2012-11-22 |
Family
ID=47430790
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011098073A Pending JP2012228811A (en) | 2011-04-26 | 2011-04-26 | Synthetic resin laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012228811A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157530A1 (en) * | 2012-04-17 | 2013-10-24 | 三菱瓦斯化学株式会社 | Laminate body |
WO2019026512A1 (en) * | 2017-08-04 | 2019-02-07 | 三菱瓦斯化学株式会社 | Stretched multilayer synthetic resin film |
US10921492B2 (en) | 2018-01-09 | 2021-02-16 | Corning Incorporated | Coated articles with light-altering features and methods for the production thereof |
US11940593B2 (en) | 2020-07-09 | 2024-03-26 | Corning Incorporated | Display articles with diffractive, antiglare surfaces and methods of making the same |
US12147009B2 (en) | 2021-07-07 | 2024-11-19 | Corning Incorporated | Textured region to reduce specular reflectance including a low refractive index substrate with higher elevated surfaces and lower elevated surfaces and a high refractive index material disposed on the lower elevated surfaces |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005116090A1 (en) * | 2004-05-31 | 2005-12-08 | Mitsubishi Gas Chemical Company, Inc. | Thermoplastic transparent resin |
JP2006089713A (en) * | 2004-05-31 | 2006-04-06 | Mitsubishi Gas Chem Co Inc | Thermoplastic transparent resin |
JP2009196125A (en) * | 2008-02-19 | 2009-09-03 | Mitsubishi Gas Chem Co Inc | Thermoplastic resin laminated body |
-
2011
- 2011-04-26 JP JP2011098073A patent/JP2012228811A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005116090A1 (en) * | 2004-05-31 | 2005-12-08 | Mitsubishi Gas Chemical Company, Inc. | Thermoplastic transparent resin |
JP2006089713A (en) * | 2004-05-31 | 2006-04-06 | Mitsubishi Gas Chem Co Inc | Thermoplastic transparent resin |
JP2009196125A (en) * | 2008-02-19 | 2009-09-03 | Mitsubishi Gas Chem Co Inc | Thermoplastic resin laminated body |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013157530A1 (en) * | 2012-04-17 | 2013-10-24 | 三菱瓦斯化学株式会社 | Laminate body |
US20150079368A1 (en) * | 2012-04-17 | 2015-03-19 | Mitsubishi Gas Chemical Company, Inc. | Laminate material |
WO2019026512A1 (en) * | 2017-08-04 | 2019-02-07 | 三菱瓦斯化学株式会社 | Stretched multilayer synthetic resin film |
US10921492B2 (en) | 2018-01-09 | 2021-02-16 | Corning Incorporated | Coated articles with light-altering features and methods for the production thereof |
US12019209B2 (en) | 2018-01-09 | 2024-06-25 | Corning Incorporated | Coated articles with light-altering features and methods for the production thereof |
US11940593B2 (en) | 2020-07-09 | 2024-03-26 | Corning Incorporated | Display articles with diffractive, antiglare surfaces and methods of making the same |
US11971519B2 (en) | 2020-07-09 | 2024-04-30 | Corning Incorporated | Display articles with antiglare surfaces and thin, durable antireflection coatings |
US11977206B2 (en) | 2020-07-09 | 2024-05-07 | Corning Incorporated | Display articles with diffractive, antiglare surfaces and thin, durable antireflection coatings |
US12147009B2 (en) | 2021-07-07 | 2024-11-19 | Corning Incorporated | Textured region to reduce specular reflectance including a low refractive index substrate with higher elevated surfaces and lower elevated surfaces and a high refractive index material disposed on the lower elevated surfaces |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI548518B (en) | Synthetic resin laminate | |
JP5850112B2 (en) | Thermoplastic resin laminate | |
JP2009196125A (en) | Thermoplastic resin laminated body | |
JPWO2013157530A1 (en) | Laminated body | |
TWI531468B (en) | Thermoplastic resin laminate | |
WO2016006589A1 (en) | Synthetic resin laminate | |
JP2012228811A (en) | Synthetic resin laminate | |
JP5910272B2 (en) | Decorative film | |
JP5741587B2 (en) | Synthetic resin laminate | |
JP7555932B2 (en) | Molding resin sheet and molded product using same | |
JP2013226666A (en) | Synthetic resin laminate | |
JP6668826B2 (en) | Thermoplastic resin laminate | |
WO2022071489A1 (en) | Resin laminate | |
WO2022071487A1 (en) | Resin multilayer body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20141218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150428 |