[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012224890A - Sputtering target and method for producing the same - Google Patents

Sputtering target and method for producing the same Download PDF

Info

Publication number
JP2012224890A
JP2012224890A JP2011091725A JP2011091725A JP2012224890A JP 2012224890 A JP2012224890 A JP 2012224890A JP 2011091725 A JP2011091725 A JP 2011091725A JP 2011091725 A JP2011091725 A JP 2011091725A JP 2012224890 A JP2012224890 A JP 2012224890A
Authority
JP
Japan
Prior art keywords
target
sputtering target
sputtering
rich particles
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011091725A
Other languages
Japanese (ja)
Other versions
JP5669016B2 (en
Inventor
Sohei Nonaka
荘平 野中
Shuhin Cho
守斌 張
Hideji Matsuzaki
秀治 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2011091725A priority Critical patent/JP5669016B2/en
Publication of JP2012224890A publication Critical patent/JP2012224890A/en
Application granted granted Critical
Publication of JP5669016B2 publication Critical patent/JP5669016B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sputtering target which is an Al-based target and is free from cracking when it is formed even if it has a high content of Cr exhibiting more excellent corrosion resistance and further which is also free from cracking during sputtering, and to provide a method for producing the sputtering target.SOLUTION: In the sputtering target, Al-enriched particles having an absolute maximum length within the range of 0.1-50 μm are dispersed in a base material having a composition containing, by atomic percentage, 5-20% of Si and 5.5-25% of Cr, with the remainder composed of Al and inevitable impurities.

Description

本発明は、レーザー光により情報の記録、再生、記録および再生、並びに消去を行う光情報記録媒体(以下、光ディスクという)の反射記録膜を形成するための割れが発生しにくいスパッタリングターゲット(以下、ターゲットという)およびその製造方法に関するものである。   The present invention relates to a sputtering target (hereinafter, referred to as “a crack for forming a reflective recording film of an optical information recording medium (hereinafter referred to as an optical disc”) for recording, reproducing, recording and reproducing, and erasing information by laser light. And the manufacturing method thereof.

光ディスク用の反射膜としては、これまで、Au、Cu、Ag、Alおよびこれらを主成分とする合金が汎用されてきた。   Conventionally, Au, Cu, Ag, Al, and alloys based on these have been widely used as reflective films for optical disks.

Al系反射膜はBD(ブルーレイディスク)の記録再生に使用される青色レーザー(波長405nm)において十分高い反射率を示し、Ag系、Au系に比べ価格が安価であるものの、Ag系やAu系の反射膜より化学的安定性に劣っている。そこで、このAl系反射膜の合金化成分としてSi、Cr等を含有させることによって、適切な反射率、すぐれた再生安定性、かつ、すぐれた耐久性を示すAl系反射膜の検討が活発になされている。   The Al-based reflective film exhibits a sufficiently high reflectivity in a blue laser (wavelength 405 nm) used for recording / reproducing of a BD (Blu-ray disc), and is cheaper than Ag-based and Au-based materials. It is inferior in chemical stability to the reflective film. Therefore, by including Si, Cr, etc. as an alloying component of this Al-based reflective film, investigation of an Al-based reflective film that exhibits an appropriate reflectivity, excellent reproduction stability, and excellent durability is actively conducted. Has been made.

例えば、特許文献1は、原子%で、Si:5〜40at%、Cr:0.7〜5at%、Al:残部の光ディスク用反射膜と光ディスク用反射膜形成用ターゲットが開示されている。すなわち、Al合金膜の適切な反射率とすぐれた再生安定性の2特性を同時に達成させるには5%以上のSiを含有させること、および、反射膜の結晶粒の結晶組織の変化(結晶粒の粗大化)を抑制し、すぐれた耐久性を得るためにCrなどの高融点金属元素を含有させることが有効であることが開示されている。   For example, Patent Document 1 discloses, in atomic%, Si: 5 to 40 at%, Cr: 0.7 to 5 at%, Al: the remaining reflective film for an optical disk and a target for forming a reflective film for an optical disk. That is, in order to simultaneously achieve the two characteristics of an appropriate reflectivity and excellent reproduction stability of the Al alloy film, it is necessary to contain 5% or more of Si, and to change the crystal structure of the crystal grains of the reflective film (crystal grains It is disclosed that it is effective to contain a refractory metal element such as Cr in order to suppress the coarsening) and to obtain excellent durability.

特開2010−267366号公報JP 2010-267366 A

前記特許文献1に開示された光ディスク用反射膜は、一定の耐食性を備えているが、より長寿命化を求められる光ディスク反射膜としては、さらなる耐食性の向上が望まれている。ところが、耐食性を向上させるためにCrの含有量が多い組成のターゲットを作製しようとすると、機械加工時に割れが発生しやすいという問題があった。   Although the reflective film for optical discs disclosed in Patent Document 1 has a certain corrosion resistance, further improvement in corrosion resistance is desired as an optical disc reflective film that requires a longer life. However, if an attempt was made to produce a target having a high Cr content in order to improve the corrosion resistance, there was a problem that cracking was likely to occur during machining.

そこで、本発明の目的は、優れた耐食性機能を奏する高Cr含有量のAl系のターゲットにおいて、ターゲットの成形後の機械加工時に割れが発生することなく、また、スパッタ時においても割れが発生することがないスパッタリングターゲットおよびその製造方法を提供することである。   Accordingly, an object of the present invention is to generate a crack in the Al-based target having a high Cr content that exhibits an excellent corrosion resistance function without being cracked during machining after the target is molded, and also during sputtering. It is providing the sputtering target which does not have, and its manufacturing method.

そこで、本発明者らは高Cr含有量のAl系ターゲットにおいて、ターゲットの作製時およびスパッタ時に割れが発生しないターゲットを得るべく研究を行い、以下の知見を得た。
(イ)高Cr含有量のAlSiCr合金の焼結体に、真空中、または不活性ガス雰囲気中にて所定の温度および時間の熱処理を施すことにより、機械加工時において割れが発生せず、また、スパッタ時においても割れが発生しないターゲットが得られる。
(ロ)前記ターゲットについて、電子線マイクロアナライザー(以下、EPMAという)により断面組織の観察と分析を行ったところ、前記ターゲットは、素地に粒子径(絶対最大長)0.1〜50μmのAlリッチな粒子が分散した構造の組織を有する。
(ハ)前記Alリッチな粒子を3点定量分析し、組成の平均値を求めたところ、原子%で、Alを97%以上含有している。
(ニ)また、Alリッチな粒子のターゲットの組織に占める面積率が、5〜50%であることがわかった。
Accordingly, the present inventors have studied to obtain a target in which cracks do not occur during the preparation and sputtering of an Al-based target having a high Cr content, and have obtained the following knowledge.
(A) By subjecting a sintered body of an AlSiCr alloy having a high Cr content to a heat treatment at a predetermined temperature and time in a vacuum or in an inert gas atmosphere, no cracking occurs during machining, and A target that does not crack even during sputtering is obtained.
(B) When the cross-sectional structure was observed and analyzed with an electron microanalyzer (hereinafter referred to as EPMA), the target was Al-rich with a particle diameter (absolute maximum length) of 0.1 to 50 μm on the substrate. The structure has a structure in which various particles are dispersed.
(C) When the Al-rich particles were quantitatively analyzed at three points and the average value of the compositions was determined, they contained 97% or more of Al in atomic%.
(D) Moreover, it turned out that the area ratio which occupies for the structure | tissue of the target of Al rich particle | grains is 5 to 50%.

前記の知見に基づき、本発明者が鋭意研究を重ねた結果、次のような本発明を完成するに至った。   Based on the above knowledge, as a result of intensive studies by the inventor, the present invention has been completed as follows.

すなわち、本発明は、
「(1) 成分組成が原子%で、Si:5〜20%、Cr:5.5〜25%を含有し、残部:Alおよび不可避不純物であるスパッタリングターゲットであって、
組成の素地中にAlリッチの粒子が分散していることを特徴とするスパッタリングターゲット。
(2) 前記Alリッチの粒子の成分組成において全体に占めるAlの割合が原子%で、97%以上であることを特徴とする(1)に記載のスパッタリングターゲット。
(3) 前記Alリッチの粒子のターゲットの組織に占める面積率が、5〜50%であることを特徴とする(1)または(2)に記載のスパッタリングターゲット。
(4) (1)乃至(3)のいずれかに記載のスパッタリングターゲットの製造方法であって、
原子%で、Si:5〜20%、Cr:5.5〜25%を含有し、残部:Alおよび不可避不純物からなる組成のAlSiCr合金粉末を作製する合金粉末作製工程と、
前記合金粉末作製工程で得られた合金粉末を焼結して焼結体とする焼結工程と、
前記焼結工程で得られた焼結体を真空中、または不活性ガス雰囲気中にて720〜920℃、0.5〜10時間保持の熱処理を行う熱処理工程と、
を備えることを特徴とするスパッタリングターゲットの製造方法。」
を特徴とするものである。
That is, the present invention
“(1) Sputtering target whose component composition is atomic%, Si: 5 to 20%, Cr: 5.5 to 25%, the balance: Al and inevitable impurities,
A sputtering target, wherein Al-rich particles are dispersed in a composition base.
(2) The sputtering target according to (1), wherein the ratio of Al in the component composition of the Al-rich particles is atomic% and is 97% or more.
(3) The sputtering target according to (1) or (2), wherein an area ratio of the Al-rich particles in the target structure is 5 to 50%.
(4) A method for producing a sputtering target according to any one of (1) to (3),
An alloy powder preparation step of preparing an AlSiCr alloy powder having a composition comprising, in atomic%, Si: 5 to 20%, Cr: 5.5 to 25%, and the balance: Al and inevitable impurities;
A sintering step in which the alloy powder obtained in the alloy powder preparation step is sintered to form a sintered body;
A heat treatment step of performing a heat treatment of holding the sintered body obtained in the sintering step in a vacuum or in an inert gas atmosphere at 720 to 920 ° C. for 0.5 to 10 hours;
A method for producing a sputtering target, comprising: "
It is characterized by.

ここで、本発明において、ターゲットの組成をSi:5〜20%、Cr:5.5〜25%を含有し、残部:Alおよび不可避不純物と限定した理由は、Siが5%未満であると記録信号(再生信号)の精度が低下(すなわち、ジッター値が上昇)し、安定した再生を行うことができないため好ましくない。また、Siの含有量が20%を超えると反射膜を構成するAl合金膜の吸収量が増加し、相対的に反射率が低下するため好ましくない。よって、反射率とジッター値のバランスの観点から、Siの含有量は、5〜20%と定めた。一方、Crは、反射膜にさらなる耐食性を付与するために必要な成分であるが、含有量が5.5%未満であると十分に耐食性を持たせることができず、また、含有量が25%を超えると光ディスク反射膜として用いたときに再生安定性に劣る。よって、Crの含有量は、5.5〜25%と定めた。   Here, in the present invention, the composition of the target contains Si: 5 to 20%, Cr: 5.5 to 25%, and the remainder: Al and inevitable impurities are limited because Si is less than 5%. This is not preferable because the accuracy of the recording signal (reproduced signal) decreases (that is, the jitter value increases) and stable reproduction cannot be performed. On the other hand, if the Si content exceeds 20%, the amount of absorption of the Al alloy film constituting the reflective film increases, and the reflectance is relatively lowered, which is not preferable. Therefore, from the viewpoint of the balance between the reflectance and the jitter value, the Si content is determined to be 5 to 20%. On the other hand, Cr is a component necessary for imparting further corrosion resistance to the reflective film. However, if the content is less than 5.5%, sufficient corrosion resistance cannot be provided, and the content is 25. If it exceeds 50%, the reproduction stability is inferior when used as an optical disk reflective film. Therefore, the Cr content is set to 5.5 to 25%.

さらに本発明において、Alリッチとは、素地よりもAlの含有量が多いことを意味する、例えば、Alを97%以上含有する粒子は、Alリッチの粒子に該当する。   Furthermore, in the present invention, Al-rich means that the content of Al is higher than that of the substrate. For example, particles containing 97% or more of Al correspond to Al-rich particles.

Alリッチの粒子の面積率は、5%未満であるとAlリッチの粒子の効果が十分に発揮されないため、ターゲットの割れを防止することができず、一方、50%を超えるとスパッタ成膜時に膜組成がAlリッチ側にずれてしまい、形成された膜の品質、特に耐湿性が低下するため好ましくない。よって、Alリッチの粒子の面積率は、5〜50%、より好ましくは15%〜45%と定めた。   If the area ratio of the Al-rich particles is less than 5%, the effect of the Al-rich particles is not sufficiently exerted, so that cracking of the target cannot be prevented. Since the film composition is shifted to the Al-rich side, the quality of the formed film, particularly moisture resistance, is lowered, which is not preferable. Therefore, the area ratio of Al-rich particles is determined to be 5 to 50%, more preferably 15% to 45%.

また、本発明のターゲットは、Alリッチの粒子がターゲットの素地に分散した構造の組織を有するので、ターゲットの成形後の機械加工時の割れやスパッタ時の割れを防止するという効果を有するが、Alリッチの粒子の粒子径が0.1μm未満であるとAlリッチの粒子の効果が十分に発揮されず、一方、50μmを超えるとスパッタ時に異常放電が起きやすいため好ましくない。したがって、Alリッチの粒子の粒子径は、0.1〜50μm、より好ましくは0.5〜35μmと定めた。なお、本発明において、粒子径は粒子の輪郭線上の任意の2点間の距離の最大値、すなわち絶対最大値長によって定義している。   In addition, since the target of the present invention has a structure having a structure in which Al-rich particles are dispersed in the base of the target, it has an effect of preventing cracks during machining after sputtering of the target and cracks during sputtering, If the particle diameter of the Al-rich particles is less than 0.1 μm, the effect of the Al-rich particles cannot be sufficiently exerted. On the other hand, if the particle diameter exceeds 50 μm, abnormal discharge tends to occur during sputtering, which is not preferable. Therefore, the particle diameter of the Al-rich particles is set to 0.1 to 50 μm, more preferably 0.5 to 35 μm. In the present invention, the particle diameter is defined by the maximum value of the distance between any two points on the particle outline, that is, the absolute maximum length.

焼結体を真空中にて熱処理を行う際の温度については720℃より低くても、920℃より高くてもAlリッチの粒子が析出した組織が得られないため、720〜920℃、より好ましくは760〜880℃とした。また熱処理の保持時間は0.5時間より短くても、10時間より長くてもAlリッチの粒子が析出した組織が得られないため、0.5〜10時間、より好ましくは1〜7時間とした。   Even if the temperature at which the sintered body is heat-treated in a vacuum is lower than 720 ° C. or higher than 920 ° C., a structure in which Al-rich particles are precipitated cannot be obtained. 760-880 degreeC. Further, even if the heat treatment holding time is shorter than 0.5 hours or longer than 10 hours, a structure in which Al-rich particles are deposited cannot be obtained, so 0.5 to 10 hours, more preferably 1 to 7 hours. did.

本発明のスパッタリングターゲットは、原子%で、Si:5〜20%、Cr:5.5〜25%を含有し、残部:Alおよび不可避不純物からなる組成の素地中にAlリッチの粒子が分散しているので、焼結時およびスパッタ時にターゲット内部に発生する応力を緩和するため、Crの含有量が多い場合であっても焼結時およびスパッタ時に割れが発生することがない。   The sputtering target of the present invention contains, in atomic%, Si: 5 to 20%, Cr: 5.5 to 25%, and Al-rich particles are dispersed in a base material having a composition comprising the balance: Al and inevitable impurities. Therefore, in order to relieve the stress generated in the target during sintering and sputtering, cracks do not occur during sintering and sputtering even when the Cr content is high.

また、本発明のスパッタターゲットは、前記の構成に加えて、ターゲットの組織においてAlリッチの粒子の面積率が、5〜50%であることによって、前述したターゲットの割れを防止するという効果が得られる。   In addition to the above-described structure, the sputter target of the present invention has the effect of preventing the above-described target cracking because the area ratio of Al-rich particles in the target structure is 5 to 50%. It is done.

さらに、本発明のスパッタターゲットの製造方法によれば、AlSiCr合金粉末を作製する合金粉末作製工程と、前記合金粉末作製工程で得られた合金粉末を焼結して焼結体とする焼結工程と、前記焼結工程で得られた焼結体を真空中にて720〜920℃、0.5〜10時間保持の熱処理を行う熱処理工程を備えていることによって、Alリッチな粒子を均一に分散させて析出させることができるので、前述のターゲットを再現性よく製造することができる。   Furthermore, according to the method for producing a sputter target of the present invention, an alloy powder production process for producing an AlSiCr alloy powder, and a sintering process for sintering the alloy powder obtained in the alloy powder production process to obtain a sintered body And a sintered body obtained in the sintering step is subjected to a heat treatment step of holding at 720 to 920 ° C. for 0.5 to 10 hours in a vacuum, so that Al-rich particles can be uniformly formed. Since it can be dispersed and precipitated, the above-mentioned target can be produced with good reproducibility.

本発明ターゲット1のEPMA面分析で得られるマッピング像。The mapping image obtained by EPMA surface analysis of this invention target 1. FIG.

以下、本発明のスパッタリングターゲットおよびスパッタリングターゲットの製造方法について、実施例を挙げて具体的に説明する。ただし、本発明は本実施例に限定されるものではない。   Hereinafter, the sputtering target of the present invention and the method for producing the sputtering target will be specifically described with reference to examples. However, the present invention is not limited to this embodiment.

まず、原料として、純度:99.99%以上のAl、純度:99.999%以上のSi、純度:99.99%以上のCrを用意した。
つぎに、これらの原料を表1に示される配合組成となるように秤量しアルミナるつぼに投入した。そして、このアルミナるつぼをガスアトマイズ装置にセットしてArガス噴射によるガスアトマイズ法によりAlSiCr合金粉末とした。ガスアトマイズの条件は溶解温度1200℃、噴射Arガス圧28kgf/cm、るつぼのノズル径は1.5mmとした。その後、目開き100μmの篩にて粉末を分級し、篩の下の粉末を回収し、原料粉末とした。この原料粉末を直径165mmの黒鉛製モールドに充填し、真空ホットプレスにて温度700℃、圧力150kgf/cmの条件にて3時間保持することによりAlSiCr合金の焼結体を得た。この焼結体を真空炉を用いて、真空中にて表1に示す条件において熱処理を行った。
First, as a raw material, purity: 99.99% or more of Al, purity: 99.999% or more of Si, and purity: 99.99% or more of Cr were prepared.
Next, these raw materials were weighed so as to have the blending composition shown in Table 1 and charged into an alumina crucible. The alumina crucible was set in a gas atomizer and AlSiCr alloy powder was obtained by a gas atomization method using Ar gas injection. The gas atomization conditions were a melting temperature of 1200 ° C., an injection Ar gas pressure of 28 kgf / cm 2 , and a crucible nozzle diameter of 1.5 mm. Thereafter, the powder was classified with a sieve having an opening of 100 μm, and the powder under the sieve was collected to obtain a raw material powder. This raw material powder was filled in a graphite mold having a diameter of 165 mm, and held for 3 hours under a vacuum hot press at a temperature of 700 ° C. and a pressure of 150 kgf / cm 2 to obtain an AlSiCr alloy sintered body. This sintered body was heat-treated in a vacuum furnace under the conditions shown in Table 1 in a vacuum.

得られた焼結体を旋盤を使用した切削加工により直径152.4mm、厚さ6mmの円盤とした。本発明ターゲット1〜9の表面を目視にて観察したが、いずれもクラックは発生していなかった。   The obtained sintered body was cut into a disk having a diameter of 152.4 mm and a thickness of 6 mm by cutting using a lathe. Although the surface of this invention target 1-9 was observed visually, all were not generating the crack.

その後、Inハンダにて無酸素銅製のバッキングプレートにボンディングして表1の配合組成と同じ成分組成を有する本発明ターゲット1〜9とした。   Then, it bonded to the backing plate made from oxygen-free copper with In solder, and it was set as this invention targets 1-9 which have the same component composition as the compounding composition of Table 1.

さらに本発明ターゲット1〜9をスパッタ装置に装着し、Arガス圧0.5Pa、直流1000Wの条件で1時間放電させた後、表面を目視にて観察したが、いずれもクラックは発生していなかった。   Furthermore, the present invention targets 1 to 9 were mounted on a sputtering apparatus, and after discharging for 1 hour under conditions of Ar gas pressure 0.5 Pa and direct current 1000 W, the surface was visually observed, but no cracks were generated. It was.

次に表1に示す焼結体の組織を観察するために、小片を樹脂に埋め、試料研磨装置にて鏡面研磨した後、EPMA(日本電子製、JXA−8500F)により断面組織の観察と分析を実施した。EPMAの分析条件は、
加速電圧:15kV、
照射電流:5E−8A
ビーム系:1μm
とした。なお分析にあたり使用した分光結晶は、Al:TAPH、Cr:LIF、Si:PETHである。
Next, in order to observe the structure of the sintered body shown in Table 1, after burying a small piece in a resin and mirror polishing with a sample polishing apparatus, observation and analysis of the cross-sectional structure with EPMA (JEOL, JXA-8500F) Carried out. The analysis conditions for EPMA are:
Acceleration voltage: 15 kV,
Irradiation current: 5E-8A
Beam system: 1 μm
It was. The spectral crystals used for the analysis are Al: TAPH, Cr: LIF, Si: PETH.

本発明ターゲット1〜9の断面組織について500倍の視野にて、面分析を行い240μm×180μmの視野の元素分布画像得て、解析したところ、素地に、粒子径(絶対最大長)0.5〜35μmのAlリッチな粒子が分散した構造を有していることがわかった。例えば、図1は、本発明ターゲット1のEPMA面分析で得られるマッピング像であるが、0.5〜35μmのAlリッチな粒子が分散していることがわかる。   The cross-sectional structure of the inventive targets 1 to 9 was subjected to surface analysis at a field of magnification of 500 times to obtain an element distribution image of a field of view of 240 μm × 180 μm and analyzed. As a result, the particle size (absolute maximum length) 0.5 It was found that a ~ 35 μm Al-rich particle was dispersed. For example, FIG. 1 is a mapping image obtained by EPMA surface analysis of the target 1 of the present invention, and it can be seen that Al-rich particles of 0.5 to 35 μm are dispersed.

このAlリッチな粒子を前記視野の中で3か所定量分析し、組成の平均値を求めた。その結果を表1に示す。いずれも97原子%を超えるAlを含有していることがわかった。   A predetermined amount of these Al-rich particles was analyzed within the field of view to determine the average composition. The results are shown in Table 1. All were found to contain more than 97 atomic% Al.

また、EPMAの面分析の結果得られたAlの組成像において、Alリッチの粒子に相当するAlの特性X線のピーク強度が562を超える部分の視野中における面積率についても表1に示す。なお、ピーク強度とは、図1に例として示す、EPMA面分析で得られるマッピング像にて表示される「LV」の数値であり、また、「ピーク強度カウントが562を超える部分の面積率」とは、図1のピーク強度カウントが562より大きい部分の、「Area%」の数値の合計値を示す。
[比較例1〜4]
本発明の実施例と同様に、原料として、純度:99.99%以上のAl、純度:99.99%以上のSi、純度:99.99%以上のCrを用意した。
つぎに、これらの原料を表1に示される配合組成となるように秤量しアルミナるつぼに投入した。そして、このアルミナるつぼをガスアトマイズ装置にセットして実施例と同様の条件にてArガス噴射によるガスアトマイズ法によりAlSiCrを作製した後、目開き100μmの篩にて粉末を分級し、篩の下の粉末を回収し、原料粉末とした。この原料粉末を実施例と同様の条件にて真空ホットプレスによりAlSiCr合金の焼結体を得た。この焼結体を真空炉を用いて、真空中にて表1に示す条件において熱処理を行った。
Table 1 also shows the area ratio in the field of view where the peak intensity of characteristic X-rays of Al corresponding to Al-rich particles exceeds 562 in the Al composition image obtained as a result of the surface analysis of EPMA. The peak intensity is a numerical value of “LV” displayed in the mapping image obtained by the EPMA surface analysis shown in FIG. 1 as an example, and “the area ratio of the portion where the peak intensity count exceeds 562”. Indicates the total value of the values of “Area%” in the portion where the peak intensity count in FIG.
[Comparative Examples 1-4]
In the same manner as in the examples of the present invention, Al: purity of 99.99% or more, Si: purity of 99.99% or more, and Cr of purity: 99.99% or more were prepared as raw materials.
Next, these raw materials were weighed so as to have the blending composition shown in Table 1 and charged into an alumina crucible. Then, this alumina crucible was set in a gas atomizer, and AlSiCr was produced by a gas atomization method by Ar gas injection under the same conditions as in the examples. Then, the powder was classified with a sieve having an opening of 100 μm, and the powder under the sieve Was recovered and used as a raw material powder. A sintered body of an AlSiCr alloy was obtained by vacuum hot pressing of this raw material powder under the same conditions as in the example. This sintered body was heat-treated in a vacuum furnace under the conditions shown in Table 1 in a vacuum.

得られた焼結体を旋盤を使用して直径152.4mm、厚さ6mmの円盤とすべく切削加工を行ったが、比較例1では切削加工中にクラックを生じた。比較例2〜4においてはクラックは発生せず、所定サイズの円盤を得ることが出来た。
その後、比較例2〜4の焼結体について、Inハンダにて無酸素銅のバッキングプレートにボンディングして表1の配合組成と同じ成分組成を有する比較例ターゲット2〜4とした。
The obtained sintered body was cut using a lathe to obtain a disk having a diameter of 152.4 mm and a thickness of 6 mm. In Comparative Example 1, cracks were generated during the cutting process. In Comparative Examples 2 to 4, no crack was generated, and a disk having a predetermined size could be obtained.
Thereafter, the sintered bodies of Comparative Examples 2 to 4 were bonded to an oxygen-free copper backing plate with In solder to obtain Comparative Examples Targets 2 to 4 having the same component composition as the composition shown in Table 1.

さらに比較例ターゲット2〜4をスパッタ装置に装着し、実施例と同様の条件にて1時間放電させた後、表面を目視にて観察したところ、いずれも表面にクラックを生じていた。   Further, Comparative Examples Targets 2 to 4 were mounted on a sputtering apparatus, and after discharging for 1 hour under the same conditions as in the Examples, the surface was visually observed.

また、この比較例ターゲット1〜4について実施例と同様にEPMAにより面分析、定量分析を実施したところ、比較例ターゲット1の場合Al、Si、Crの原子比がおよそ73:8:19、Al、Si、Crの原子比がおよそ85:1:14、およびAl、Si、Crの原子比がおよそ62:19:19の3種の領域が観察されたが、実施例でみられたAlリッチの粒子は存在しないことが分かった。比較例ターゲット2〜4についても同様の分析を行った結果、Alリッチの粒子は存在しないことが分かった。
[比較例5]
比較のために、実施例と同様に、原料として、純度:99.99%以上のAl、99.99%以上のSi、純度:99.99%以上のCrを用意しアルミナるつぼに投入した。そして、このアルミナるつぼをガスアトマイズ装置にセットしてArガス噴射によるガスアトマイズ法によりAlSiCr合金粉末とした後、目開き100μmの篩にて粉末を分級し、篩の下の粉末を回収し、原料粉末とした。この原料粉末を直径165mmの黒鉛製モールドに充填し、真空ホットプレスにて温度700℃、圧力150kgf/cmの条件にて3時間保持することによりAlSiCr合金の焼結体を得た。
Further, when surface analysis and quantitative analysis were performed on the comparative targets 1 to 4 by EPMA in the same manner as in the examples, the atomic ratio of Al, Si, and Cr was about 73: 8: 19 in the case of the comparative target 1 and Al. , Si and Cr atomic ratios of approximately 85: 1: 14 and Al, Si, Cr atomic ratios of approximately 62:19:19 were observed. The particles were found to be absent. As a result of conducting the same analysis for Comparative Examples Targets 2 to 4, it was found that there were no Al-rich particles.
[Comparative Example 5]
For comparison, in the same manner as in the example, as raw materials, Al of purity 99.99% or higher, Si of 99.99% or higher, and Cr of purity 99.99% or higher were prepared and charged into an alumina crucible. And after setting this alumina crucible in a gas atomizer and making it an AlSiCr alloy powder by a gas atomizing method by Ar gas injection, the powder is classified with a sieve having an opening of 100 μm, and the powder under the sieve is collected, did. This raw material powder was filled in a graphite mold having a diameter of 165 mm, and held for 3 hours under a vacuum hot press at a temperature of 700 ° C. and a pressure of 150 kgf / cm 2 to obtain an AlSiCr alloy sintered body.

得られた焼結体を熱処理することなく、旋盤を使用して直径152.4mm、厚さ6mmの円盤とすべく、切削加工を行ったが、加工中にクラックを生じた。   The obtained sintered body was cut without heat treatment so as to be a disk having a diameter of 152.4 mm and a thickness of 6 mm using a lathe, but cracks were generated during the processing.

また、この比較例ターゲット5について実施例と同様にEPMAにより面分析、定量分析を実施したところ、Alリッチの粒子は存在しないことが分かった。   Further, when surface analysis and quantitative analysis were performed on this comparative target 5 by EPMA in the same manner as in the example, it was found that there were no Al-rich particles.

Figure 2012224890
以上の結果から分かるように、本発明ターゲットは、Alの素地中にAlリッチの粒子を含有しているので、Alの素地に生じる応力をAlリッチの粒子によって緩和されるので、Crの含有量が多いにもかかわらず、成形中およびスパッタ中に割れることを防止できる。
Figure 2012224890
As can be seen from the above results, since the target of the present invention contains Al-rich particles in the Al substrate, the stress generated in the Al substrate is relieved by the Al-rich particles, so the content of Cr In spite of the large amount, cracking during molding and sputtering can be prevented.

これに対して、Alリッチの粒子がターゲットの素地に分散していない比較例ターゲットは、Crの含有量が多いことによって生じる応力の影響で、ターゲットの成形後の機械加工中またはスパッタ中に割れてしまうことが分かる。   On the other hand, the comparative example target in which Al-rich particles are not dispersed in the target substrate is cracked during machining or sputtering after forming the target due to the stress caused by the high Cr content. You can see that

本発明のスパッタリングターゲットは、より優れた耐食性を備えた反射記録膜を形成することができ、しかも、ターゲットの成形後の機械加工中及びスパッタ中に割れが生じないので、光ディスクの反射記録膜の形成に好適に使用できるため、産業上の利用可能性がきわめて大きい。   The sputtering target of the present invention can form a reflective recording film having better corrosion resistance, and further, no cracking occurs during machining and sputtering after forming the target. Since it can be used suitably for formation, industrial applicability is very large.

Claims (4)

成分組成が原子%で、Si:5〜20%、Cr:5.5〜25%を含有し、残部:Alおよび不可避不純物であるスパッタリングターゲットであって、
組成の素地中にAlリッチの粒子が分散していることを特徴とするスパッタリングターゲット。
The component composition is atomic%, Si: 5 to 20%, Cr: 5.5 to 25%, the balance: a sputtering target that is Al and inevitable impurities,
A sputtering target, wherein Al-rich particles are dispersed in a composition base.
前記Alリッチの粒子の成分組成において全体に占めるAlの割合が原子%で、97%以上であることを特徴とする請求項1に記載のスパッタリングターゲット。   2. The sputtering target according to claim 1, wherein the proportion of Al in the component composition of the Al-rich particles is atomic% and is 97% or more. 前記Alリッチの粒子のターゲットの組織に占める面積率が、5〜50%であることを特徴とする請求項1または請求項2に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein an area ratio of the Al-rich particles in the target structure is 5 to 50%. 請求項1乃至請求項3のいずれかに記載のスパッタリングターゲットの製造方法であって、
原子%で、Si:5〜20%、Cr:5.5〜25%を含有し、残部:Alおよび不可避不純物からなる組成のAlSiCr合金粉末を作製する合金粉末作製工程と、
前記合金粉末作製工程で得られた合金粉末を焼結して焼結体とする焼結工程と、
前記焼結工程で得られた焼結体を真空中、または不活性ガス雰囲気中にて720〜920℃、0.5〜10時間保持の熱処理を行う熱処理工程と、
を備えることを特徴とするスパッタリングターゲットの製造方法。
It is a manufacturing method of the sputtering target in any one of Claims 1 thru | or 3, Comprising:
An alloy powder preparation step of preparing an AlSiCr alloy powder having a composition comprising, in atomic%, Si: 5 to 20%, Cr: 5.5 to 25%, and the balance: Al and inevitable impurities;
A sintering step in which the alloy powder obtained in the alloy powder preparation step is sintered to form a sintered body;
A heat treatment step of performing a heat treatment of holding the sintered body obtained in the sintering step in a vacuum or in an inert gas atmosphere at 720 to 920 ° C. for 0.5 to 10 hours;
A method for producing a sputtering target, comprising:
JP2011091725A 2011-04-18 2011-04-18 Sputtering target and manufacturing method thereof Expired - Fee Related JP5669016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011091725A JP5669016B2 (en) 2011-04-18 2011-04-18 Sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011091725A JP5669016B2 (en) 2011-04-18 2011-04-18 Sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012224890A true JP2012224890A (en) 2012-11-15
JP5669016B2 JP5669016B2 (en) 2015-02-12

Family

ID=47275385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011091725A Expired - Fee Related JP5669016B2 (en) 2011-04-18 2011-04-18 Sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5669016B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472063A (en) * 1990-07-12 1992-03-06 Seiko Epson Corp Sputtering target
JPH07268617A (en) * 1994-03-31 1995-10-17 Tdk Corp Target for al alloy sputtering and its production
JPH1143765A (en) * 1997-07-22 1999-02-16 Hitachi Metals Ltd Aluminum alloy target and its production
JP2001073128A (en) * 1999-08-03 2001-03-21 Praxair St Technol Inc Production of high density sputtering target composed of two or more kinds of metals
JP2004204284A (en) * 2002-12-25 2004-07-22 Toshiba Corp Sputtering target, al alloy film, and electronic component
JP2004303804A (en) * 2003-03-28 2004-10-28 Susumu Co Ltd Ternary alloy material
JP2006123159A (en) * 2004-09-30 2006-05-18 Kobe Steel Ltd Hard coating film superior in abrasion resistance and oxidation resistance, target for forming this hard coating film, hard coating film superior in high temperature lubricatability and abrasion resistance and target for forming this hard coating film
JP2008106287A (en) * 2006-10-23 2008-05-08 Hitachi Tool Engineering Ltd Nitride-containing target material
JP2010097682A (en) * 2008-09-22 2010-04-30 Tdk Corp Sputtering target for optical medium, method of manufacturing the same, and optical medium and method of manufacturing the same
JP2011044225A (en) * 2008-09-22 2011-03-03 Tdk Corp Sputtering target for reflection layer of optical medium, and method for manufacturing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472063A (en) * 1990-07-12 1992-03-06 Seiko Epson Corp Sputtering target
JPH07268617A (en) * 1994-03-31 1995-10-17 Tdk Corp Target for al alloy sputtering and its production
JPH1143765A (en) * 1997-07-22 1999-02-16 Hitachi Metals Ltd Aluminum alloy target and its production
JP2001073128A (en) * 1999-08-03 2001-03-21 Praxair St Technol Inc Production of high density sputtering target composed of two or more kinds of metals
JP2004204284A (en) * 2002-12-25 2004-07-22 Toshiba Corp Sputtering target, al alloy film, and electronic component
JP2004303804A (en) * 2003-03-28 2004-10-28 Susumu Co Ltd Ternary alloy material
JP2006123159A (en) * 2004-09-30 2006-05-18 Kobe Steel Ltd Hard coating film superior in abrasion resistance and oxidation resistance, target for forming this hard coating film, hard coating film superior in high temperature lubricatability and abrasion resistance and target for forming this hard coating film
JP2008106287A (en) * 2006-10-23 2008-05-08 Hitachi Tool Engineering Ltd Nitride-containing target material
JP2010097682A (en) * 2008-09-22 2010-04-30 Tdk Corp Sputtering target for optical medium, method of manufacturing the same, and optical medium and method of manufacturing the same
JP2011044225A (en) * 2008-09-22 2011-03-03 Tdk Corp Sputtering target for reflection layer of optical medium, and method for manufacturing the same

Also Published As

Publication number Publication date
JP5669016B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
TWI431140B (en) Method for manufacturing sputtering standard materials for aluminum - based alloys
JP6037421B2 (en) Sb-Te based alloy sintered compact sputtering target
WO2016121367A1 (en) Mn-Zn-W-O SPUTTERING TARGET AND MANUFACTURING METHOD THEREFOR
JP3772972B2 (en) Silver alloy sputtering target for reflection layer formation of optical recording media
JP6312009B2 (en) Cr-Ti alloy sputtering target material and method for producing the same
CN115058694B (en) TiAlZr target and preparation method thereof
US10130449B2 (en) Dental casting billet material, metal powder for powder metallurgy, dental metal component, and dental prosthesis
JP6536239B2 (en) Te-Ge based sputtering target, and method of manufacturing Te-Ge based sputtering target
JP5669016B2 (en) Sputtering target and manufacturing method thereof
JP6048651B2 (en) Sputtering target and manufacturing method thereof
JP5661540B2 (en) Cu-Ga based alloy powder having low oxygen content, Cu-Ga based alloy target material, and method for producing target material
WO2022138233A1 (en) Copper alloy powder for additive manufacturing and method for evaluating said copper alloy powder, method for producing copper alloy additively-manufactured article, and copper alloy additively-manufactured article
JP2013237908A (en) Sputtering target for forming thin film and manufacturing method thereof
JP2003277923A (en) Ge-Bi ALLOY TARGET FOR SPUTTERING AND PRODUCTION METHOD THEREOF
TW201432058A (en) Sputtering target for thin film formation and preparation method thereof
KR20230020509A (en) Aluminum-scandium composite, aluminum-scandium composite sputtering target and manufacturing method
JP4953168B2 (en) Te-based sputtering target for forming an optical recording medium film with less generation of particles
JP3772971B2 (en) Silver alloy sputtering target for reflection layer formation of optical recording media
JP4186221B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP7512077B2 (en) Sputtering target material
TWI859395B (en) Manufacturing method of sputtering target
JP5287028B2 (en) Ag alloy sputtering target for forming translucent reflective film of optical recording medium
JP6361543B2 (en) Bi-Ge target for sputtering and manufacturing method thereof
JP4069660B2 (en) Silver alloy sputtering target for forming total reflection layer or translucent reflection layer of optical recording medium
JP2002206165A (en) Sputtering target sintered material for forming photorecording medium protective layer exhibiting excellent cracking resistance in high output sputtering condition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141204

R150 Certificate of patent or registration of utility model

Ref document number: 5669016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees