[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012222290A - Multilayer ceramic capacitor - Google Patents

Multilayer ceramic capacitor Download PDF

Info

Publication number
JP2012222290A
JP2012222290A JP2011089266A JP2011089266A JP2012222290A JP 2012222290 A JP2012222290 A JP 2012222290A JP 2011089266 A JP2011089266 A JP 2011089266A JP 2011089266 A JP2011089266 A JP 2011089266A JP 2012222290 A JP2012222290 A JP 2012222290A
Authority
JP
Japan
Prior art keywords
internal electrode
layer
ceramic capacitor
multilayer ceramic
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011089266A
Other languages
Japanese (ja)
Other versions
JP2012222290A5 (en
Inventor
Takashi Asai
尚 浅井
Takehiko Kamobe
剛彦 加茂部
Megumi Uematsu
恵 植松
Satoko Kono
聡子 河野
Naoki Saito
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2011089266A priority Critical patent/JP2012222290A/en
Publication of JP2012222290A publication Critical patent/JP2012222290A/en
Publication of JP2012222290A5 publication Critical patent/JP2012222290A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer ceramic capacitor which makes internal destruction such as cracks less likely to be caused in a laminated body and is suitable for achieving large capacity and downsizing.SOLUTION: A multilayer ceramic capacitor 1 includes: a laminated body 10 formed by alternately laminating multiple dielectric layers 120 and multiple internal electrode layers 110; and an external electrode 20 formed on an outer surface of the laminated body 10 and electrically connecting with the internal electrode layers 110. In the multilayer ceramic capacitor 1, the electric field intensity formed between the adjacent internal electrode layers 111, 112 at an outer layer side part of the laminated body 10 is smaller than the electric field intensity formed between the adjacent internal electrode layers 110 at a center part of the laminated body 10.

Description

本発明は、積層セラミックコンデンサに関し、特に積層体内部の積層構造に関する。   The present invention relates to a multilayer ceramic capacitor, and more particularly to a multilayer structure inside a multilayer body.

積層セラミックコンデンサは一般的に、複数の誘電体層と複数の内部電極層とを交互に積層してなる積層体と、該積層体の外面に形成前記内部電極層と電気的に接続する外部電極とを備えた構造となっている。また、積層セラミックコンデンサは温度補償系のクラス1と高誘電率系のクラス2に大別される。クラス1の積層セラミックコンデンサでは、誘電体として酸化チタン等を主成分とする低誘電率系誘電体が用いられる。一方、クラス2の積層セラミックコンデンサでは、誘電体としてチタン酸バリウム等を主成分とする高誘電率系誘電体(強誘電体とも言う。)が用いられる。   A multilayer ceramic capacitor generally includes a multilayer body in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately stacked, and an external electrode that is formed on the outer surface of the multilayer body and electrically connected to the internal electrode layer It has a structure with. Multilayer ceramic capacitors are broadly classified into class 1 of temperature compensation system and class 2 of high dielectric constant system. In a class 1 multilayer ceramic capacitor, a low dielectric constant type dielectric material mainly composed of titanium oxide or the like is used as a dielectric material. On the other hand, in a class 2 monolithic ceramic capacitor, a dielectric having a high dielectric constant (also referred to as a ferroelectric) whose main component is barium titanate or the like is used.

近年、積層セラミックコンデンサの大容量化のために、内部電極層の積層数の増加及び誘電体層の薄層化がすすんでいる。これにともない特にクラス2の積層セラミックコンデンサでは積層体にクラックなど内部構造の破壊が生じる現象が増加してきている。クラックが生じる原因の1つとしては誘電体層の圧電効果が挙げられる。すなわち、強誘電体である誘電体層が圧電性を有していることから、外部電極間に電圧を印加すると誘電体層は内部電極層と並行する方向に変位が生じる。この誘電体層の変位により積層体に歪み応力が残存し、これにより積層体にクラックなどの破壊が生じると考えられる。   In recent years, in order to increase the capacity of multilayer ceramic capacitors, the number of internal electrode layers has increased and the dielectric layers have become thinner. Along with this, particularly in class 2 monolithic ceramic capacitors, the phenomenon of internal structure destruction such as cracks in the laminate has increased. One cause of cracks is the piezoelectric effect of the dielectric layer. That is, since the dielectric layer which is a ferroelectric material has piezoelectricity, when a voltage is applied between the external electrodes, the dielectric layer is displaced in a direction parallel to the internal electrode layer. It is considered that a strain stress remains in the laminated body due to the displacement of the dielectric layer, thereby causing breakage such as cracks in the laminated body.

特開平9−180956号公報JP-A-9-180956

このようなクラック発生を防止するための技術として特許文献1に記載されたものが提案されている。   A technique described in Patent Document 1 has been proposed as a technique for preventing the occurrence of such cracks.

特許文献1に記載のものでは積層体の中央部に応力を緩和するための中間層を設けている。該中間層は、容量形成部に用いられる誘電体と同一材料からなり、その層に接する内部電極層は容量を形成しないような配置としている。   In the thing of patent document 1, the intermediate | middle layer for relieving stress is provided in the center part of the laminated body. The intermediate layer is made of the same material as that of the dielectric used in the capacitor forming portion, and the internal electrode layer in contact with the intermediate layer is arranged so as not to form a capacitor.

しかしながら特許文献1に記載のものは、中間層において容量を形成できないので大容量化・小型化には不利であるという問題がある。また、特許文献1に記載のものは中間層により応力を吸収するという思想であり、中間層においては圧電効果による変位が生じないので、誘電体層の変位がより大きい場合には誘電体層と中間層との界面においてクラックなどの内部破壊が生じるおそれがあると考えられる。同様に、特許文献1に記載のもの及び前述の従来の積層セラミックコンデンサの何れにおいて、最も外側の内部電極層、換言すれば最も表面側の内部電極層よりも外側(表面側)の誘電体層(カバー層と言う)には電圧が印加されないので、該カバー層には圧電効果による変位は生じない。このため変位が生じる誘電体層と変位が生じないカバー層との界面において歪み応力が残存し、クラックなどの内部破壊が生じるおそれがあると考えられる。   However, since the capacitor described in Patent Document 1 cannot form a capacitor in the intermediate layer, there is a problem that it is disadvantageous for increasing the capacity and reducing the size. Further, the one described in Patent Document 1 is an idea that stress is absorbed by the intermediate layer, and in the intermediate layer, the displacement due to the piezoelectric effect does not occur. Therefore, when the displacement of the dielectric layer is larger, the dielectric layer It is considered that internal destruction such as cracks may occur at the interface with the intermediate layer. Similarly, in any one of the one described in Patent Document 1 and the above-described conventional multilayer ceramic capacitor, the outermost internal electrode layer, in other words, the outermost (front side) dielectric layer than the innermost electrode layer Since no voltage is applied to the cover layer, the cover layer is not displaced by the piezoelectric effect. For this reason, it is considered that strain stress remains at the interface between the dielectric layer where the displacement occurs and the cover layer where the displacement does not occur, which may cause internal destruction such as cracks.

本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、積層体においてクラック等の内部破壊が生じにくく大容量且つ小型化に適した積層セラミックコンデンサを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a multilayer ceramic capacitor that is less likely to cause internal destruction such as cracks in the multilayer body and is suitable for downsizing. .

上記目的を達成するために、本願発明は、複数の誘電体層と複数の内部電極層とを交互に積層した積層体と該積層体の外面に形成され前記内部電極に電気的に接続した外部電極とを備えた積層セラミックコンデンサにおいて、積層体の外層側部分における隣り合う内部電極層間に形成される電界強度が積層体の中央部分における隣り合う内部電極層間に形成される電界強度よりも小さいことを特徴とする。   In order to achieve the above object, the present invention provides a laminate in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately laminated, and an external formed on the outer surface of the laminate and electrically connected to the internal electrodes. In a multilayer ceramic capacitor having electrodes, the electric field strength formed between adjacent internal electrode layers in the outer layer side portion of the multilayer body is smaller than the electric field strength formed between adjacent internal electrode layers in the central portion of the multilayer body It is characterized by.

本発明によれば、積層体の外層側部分(換言すれば積層体の表面側)では誘電体層に生じる電界強度が積層体の中央部分よりも小さいので圧電効果による変位も小さく、したがってカバー層(最も外側の内部電極層、換言すれば最も表面側の内部電極層よりも外側(表面側)の誘電体層)との界面における歪み応力が小さなものとなる。これによりクラック等の内部破壊の発生を軽減することができる。   According to the present invention, since the electric field strength generated in the dielectric layer is smaller in the outer layer side portion of the laminate (in other words, on the surface side of the laminate) than in the central portion of the laminate, the displacement due to the piezoelectric effect is also small. The strain stress at the interface with the outermost internal electrode layer (in other words, the outer (front side) dielectric layer than the outermost internal electrode layer) is small. Thereby, occurrence of internal destruction such as cracks can be reduced.

本発明の好適な態様の一例としては、前述の積層セラミックコンデンサにおいて、隣り合う内部電極層間における誘電体の厚みが積層体の中央部分よりも外層側部分の方が厚いことを特徴とするものが挙げられる。本発明によれば、電界強度を小さくするために誘電体の誘電率を変更する必要がないので、全ての誘電体層として同一材料を用いることができるので製造効率が高いものとなる。   As an example of a preferred embodiment of the present invention, in the above-described multilayer ceramic capacitor, the thickness of the dielectric between the adjacent internal electrode layers is thicker in the outer layer side portion than in the central portion of the multilayer body. Can be mentioned. According to the present invention, since it is not necessary to change the dielectric constant of the dielectric in order to reduce the electric field strength, the same material can be used for all the dielectric layers, so that the manufacturing efficiency is high.

以上説明したように本発明によれば、積層体の外層側部分(換言すれば積層体の表面側)では誘電体層に生じる電界強度が積層体の中央部分よりも小さいので圧電効果による変位も小さく、したがってカバー層との界面における歪み応力が小さなものとなる。これによりクラック等の内部破壊の発生を軽減することができる。   As described above, according to the present invention, since the electric field strength generated in the dielectric layer is smaller in the outer layer side portion (in other words, the surface side of the laminate) of the laminate, the displacement due to the piezoelectric effect is also reduced. Therefore, the strain stress at the interface with the cover layer is small. Thereby, occurrence of internal destruction such as cracks can be reduced.

積層セラミックコンデンサの断面図Cross section of multilayer ceramic capacitor 積層セラミックコンデンサの製造工程を説明するフローチャートFlow chart explaining manufacturing process of multilayer ceramic capacitor 他の例に係る積層セラミックコンデンサの断面図Cross-sectional view of a multilayer ceramic capacitor according to another example 他の例に係る積層セラミックコンデンサの断面図Cross-sectional view of a multilayer ceramic capacitor according to another example

本発明の一実施の形態に係る積層セラミックコンデンサについて図面を参照して説明する。図1は積層セラミックコンデンサの断面図である。なお本願では説明の簡単のため適宜寸法や形状を模式化している点に留意されたい。   A multilayer ceramic capacitor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor. It should be noted that in the present application, dimensions and shapes are appropriately modeled for simplicity of explanation.

積層セラミックコンデンサ1は、略直方体形状の積層体10と、該積層体10の長手方向両端部に形成された一対の外部電極20とを備えている。   The multilayer ceramic capacitor 1 includes a substantially rectangular parallelepiped laminate 10 and a pair of external electrodes 20 formed at both ends in the longitudinal direction of the laminate 10.

積層体10は、図1に示すように、複数の内部電極層110と誘電体層120とを交互に積層したセラミック焼結体からなる。内部電極層110は所定の間隔をもって互いに重なり合うように配置されており、その端部は積層体10の何れか一方の端面に交互に露出し、該端面において外部電極20に電気的に接続している。すなわち内部電極層110は一層おきに同一の外部電極20に電気的に接続している。内部電極層110はNi,Cu等の卑金属、Pd,Agなどの貴金属、Ag−Pd合金などを主成分とした金属からなるが、コストダウンの観点からはNiが好適である。また本実施の形態では積層セラミックコンデンサ1は高誘電率系のクラス2であり、誘電体層120はチタン酸バリウムベースの誘電体セラミックからなる。なお、誘電体層120のうち最も外層側(表面側)の内部電極層111よりも外層側のものをカバー層121と呼ぶものとする。   As shown in FIG. 1, the laminate 10 is made of a ceramic sintered body in which a plurality of internal electrode layers 110 and dielectric layers 120 are alternately laminated. The internal electrode layers 110 are arranged so as to overlap each other with a predetermined interval, and the end portions thereof are alternately exposed at one end face of the laminate 10 and are electrically connected to the external electrode 20 at the end face. Yes. That is, every other internal electrode layer 110 is electrically connected to the same external electrode 20. The internal electrode layer 110 is made of a base metal such as Ni or Cu, a noble metal such as Pd or Ag, or a metal mainly composed of an Ag—Pd alloy, but Ni is preferable from the viewpoint of cost reduction. In the present embodiment, the multilayer ceramic capacitor 1 is of a high dielectric constant class 2, and the dielectric layer 120 is made of a dielectric ceramic based on barium titanate. Note that the outermost layer side (surface side) internal electrode layer 111 of the dielectric layer 120 is referred to as a cover layer 121.

外部電極20は、積層体10の表面のうち長手方向両端面から該端面に隣接する側面にまで回り込んで形成されている。外部電極20は、Ni,Cu等の卑金属、Pd,Agなどの貴金属、Ag−Pd合金などを主成分とした金属からなるが、コストダウンの観点からはNi又はCuが好適である。外部電極20の表面には、半田付け性の向上等のために1層又は複層のメッキ層(図示省略)が形成されている。   The external electrode 20 is formed so as to wrap around from the both end surfaces in the longitudinal direction to the side surface adjacent to the end surface of the surface of the multilayer body 10. The external electrode 20 is made of a base metal such as Ni or Cu, a noble metal such as Pd or Ag, or a metal mainly composed of an Ag—Pd alloy, but Ni or Cu is preferable from the viewpoint of cost reduction. On the surface of the external electrode 20, a single-layer or multiple-layer plating layer (not shown) is formed in order to improve solderability.

本発明の特徴的な点は積層体10における層構造にある。すなわち、本発明では、積層体10の最も外層側部分(換言すれば積層体10の表面側部分)における隣り合う内部電極層110間に形成される電界強度が積層体10の中央部分における隣り合う内部電極層110間に形成される電界強度よりも小さいことを特徴とする。そして、本実施の形態では内部電極層110間の距離すなわち誘電体層120の厚みをもって電界強度を制御する。   The characteristic point of the present invention is the layer structure in the laminate 10. That is, in the present invention, the electric field strength formed between the adjacent internal electrode layers 110 in the outermost layer side portion of the stacked body 10 (in other words, the surface side portion of the stacked body 10) is adjacent in the central portion of the stacked body 10. The electric field strength formed between the internal electrode layers 110 is smaller. In this embodiment, the electric field strength is controlled by the distance between the internal electrode layers 110, that is, the thickness of the dielectric layer 120.

図1の例では、積層体10の最も外層側の内部電極層111(換言すればカバー層121に隣接する内部電極層111)と該内部電極層1111に隣り合う内層側の内部電極層112の間の誘電体層122の厚みD1が、他の全ての内部電極層110間の誘電体層120の厚みD0よりも厚い。これにより内部電極層111及び112間の誘電体層122における電界強度E1は、他の全ての内部電極層110間の誘電体層120における電界強度E0よりも小さくなる。一方、カバー層121には電界は生じない。したがって、積層体10の内部において圧電効果により生じる変位は、(カバー層121における変位=0)<(誘電体層122における変位)<(他の誘電体層120における変位)という関係になる。これにより各内部電極層110・各誘電体層120間の界面において残存する歪み応力が過大になることを防止できる。特に、カバー層121と最も外層側の内部電極層111との境界面における歪み応力が小さなものとなる。これによりクラック等の内部破壊の発生を軽減することができる。   In the example of FIG. 1, the inner electrode layer 111 on the outermost layer side of the laminate 10 (in other words, the inner electrode layer 111 adjacent to the cover layer 121) and the inner electrode layer 112 on the inner layer side adjacent to the inner electrode layer 1111. The thickness D1 of the dielectric layer 122 therebetween is thicker than the thickness D0 of the dielectric layer 120 between all the other internal electrode layers 110. As a result, the electric field strength E1 in the dielectric layer 122 between the internal electrode layers 111 and 112 becomes smaller than the electric field strength E0 in the dielectric layer 120 between all the other internal electrode layers 110. On the other hand, no electric field is generated in the cover layer 121. Therefore, the displacement caused by the piezoelectric effect in the laminated body 10 has a relationship of (displacement in the cover layer 121 = 0) <(displacement in the dielectric layer 122) <(displacement in the other dielectric layers 120). Thereby, it is possible to prevent the strain stress remaining at the interface between each internal electrode layer 110 and each dielectric layer 120 from becoming excessive. In particular, the strain stress at the boundary surface between the cover layer 121 and the inner electrode layer 111 on the outermost layer side is small. Thereby, occurrence of internal destruction such as cracks can be reduced.

次に本実施の形態に係る積層セラミックコンデンサ1の製造方法について図2のフローチャートを参照して説明する。まず誘電体セラミックを形成する原料粉末、有機バインダ、溶剤及びその他添加剤を混合してセラミックスラリーを作成する(ステップS1)。次に、セラミックスラリーをドクターブレード法などによりシート状に形成・乾燥してセラミックグリーンシートを得る(ステップS2)。ここでセラミックグリーンシートは、前記誘電体層122用、他の誘電体層120、カバー層121用にそれぞれ厚みが異なり、少なくとも誘電体層122用の厚み<他の誘電体層120用の厚みとなっている。カバー層121用のセラミックグリーンシートの厚みについては不問であるが、積層工程の削減などの観点からは各誘電体層120,122用よりも厚くするのが好ましい。次にセラミックグリーンシートに所定のパターン形状で内部電極用の導電性ペーストを印刷する(ステップS3)。該導電性ペーストには共生地としてセラミック原料粉を所定分量混合しておくと好適である。次に、導電性ペーストを印刷したセラミックグリーンシートを所定のパターン・枚数積層した後に圧着してシート積層体を得る(ステップS4)。次にシート積層体を個別チップに切断した後に(ステップS5)、バレル研磨などで個別チップの表面を研磨する(ステップS6)。次に、研磨後の個別チップに対して大気中又は窒素等の非酸化性ガス中で脱バインダ処理を行う(ステップS7)。次に、脱バインダ処理後の個別チップの内部電極露出面に外部電極用の導電ペーストを塗布する(ステップS8)。次に、導電性ペーストを塗布した個別チップを所定の温度の窒素―水素雰囲気中で焼成する(ステップS9)。最後に、外部電極の表面にメッキ処理を施して積層セラミックコンデンサ1が得られた(ステップS10)。   Next, a method for manufacturing the multilayer ceramic capacitor 1 according to the present embodiment will be described with reference to the flowchart of FIG. First, a raw material powder for forming a dielectric ceramic, an organic binder, a solvent, and other additives are mixed to prepare a ceramic slurry (step S1). Next, the ceramic slurry is formed and dried into a sheet shape by a doctor blade method or the like to obtain a ceramic green sheet (step S2). Here, the ceramic green sheets have different thicknesses for the dielectric layer 122, the other dielectric layer 120, and the cover layer 121, and at least the thickness for the dielectric layer 122 <the thickness for the other dielectric layer 120 It has become. The thickness of the ceramic green sheet for the cover layer 121 is not questioned, but it is preferably thicker than that for the dielectric layers 120 and 122 from the viewpoint of reducing the lamination process. Next, conductive paste for internal electrodes is printed in a predetermined pattern shape on the ceramic green sheet (step S3). It is preferable that a predetermined amount of ceramic raw material powder is mixed with the conductive paste as a co-fabric. Next, after laminating a predetermined number of patterns and number of ceramic green sheets printed with conductive paste, pressure bonding is performed to obtain a sheet laminate (step S4). Next, after cutting the sheet laminate into individual chips (step S5), the surface of the individual chips is polished by barrel polishing or the like (step S6). Next, the binder removal process is performed on the polished individual chips in the air or in a non-oxidizing gas such as nitrogen (step S7). Next, a conductive paste for an external electrode is applied to the exposed surface of the internal electrode of the individual chip after the binder removal process (step S8). Next, the individual chip coated with the conductive paste is baked in a nitrogen-hydrogen atmosphere at a predetermined temperature (step S9). Finally, the surface of the external electrode was plated to obtain a multilayer ceramic capacitor 1 (step S10).

このように本発明によれば、積層体10の外層側部分では誘電体層122に生じる電界強度が積層体10の中央部分よりも小さいので圧電効果による変位も小さく、したがってカバー層121との界面における歪み応力が小さなものとなる。これによりクラック等の内部破壊の発生を軽減することができる。   As described above, according to the present invention, the electric field strength generated in the dielectric layer 122 is smaller in the outer layer side portion of the multilayer body 10 than in the central portion of the multilayer body 10, so that the displacement due to the piezoelectric effect is small. The strain stress at is small. Thereby, occurrence of internal destruction such as cracks can be reduced.

以上本発明の一実施の形態について詳述したが本発明はこれに限定されるものではない。例えば上記実施の形態では、最も外層側の内部電極層111の内側に位置する1層の誘電体層122を他の誘電体層120よりも厚く形成していたが、図3に示すように、他の誘電体層120よりも厚い誘電体層122を複数形成してもよい。また例えば、図4に示すように、最も外層側の内部電極層111の内側に位置する誘電体層122から中心側にむかって徐々に誘電体層の厚みが小さくなるようにしてもよい。   Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this. For example, in the above embodiment, the one dielectric layer 122 located inside the inner electrode layer 111 on the outermost layer side is formed thicker than the other dielectric layers 120. However, as shown in FIG. A plurality of dielectric layers 122 thicker than the other dielectric layers 120 may be formed. Further, for example, as shown in FIG. 4, the thickness of the dielectric layer may gradually decrease from the dielectric layer 122 located inside the innermost electrode layer 111 toward the center.

また、上記実施の形態では1回路のコンデンサを有するものについて説明したが、多回路のコンデンサを有するコンデンサアレイであっても本発明を適用できる。   In the above embodiment, the one having a capacitor of one circuit has been described. However, the present invention can also be applied to a capacitor array having a multi-circuit capacitor.

1…積層セラミックコンデンサ、10…積層体、110,111,112…内部電極層、120,122…誘電体層、121…カバー層、20…外部電極   DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor, 10 ... Laminated body, 110, 111, 112 ... Internal electrode layer, 120, 122 ... Dielectric layer, 121 ... Cover layer, 20 ... External electrode

Claims (2)

複数の誘電体層と複数の内部電極層とを交互に積層した積層体と該積層体の外面に形成され前記内部電極に電気的に接続した外部電極とを備えた積層セラミックコンデンサにおいて、
積層体の外層側部分における隣り合う内部電極層間に形成される電界強度が積層体の中央部分における隣り合う内部電極層間に形成される電界強度よりも小さい
ことを特徴とする積層セラミックコンデンサ。
In a multilayer ceramic capacitor comprising a laminate in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately laminated, and an external electrode formed on the outer surface of the laminate and electrically connected to the internal electrode,
A multilayer ceramic capacitor, wherein an electric field strength formed between adjacent internal electrode layers in an outer layer side portion of the multilayer body is smaller than an electric field strength formed between adjacent internal electrode layers in a central portion of the multilayer body.
隣り合う内部電極層間における誘電体の厚みが積層体の中央部分よりも外層側部分の方が厚い
ことを特徴とする請求項1記載の積層セラミックコンデンサ。
2. The multilayer ceramic capacitor according to claim 1, wherein the thickness of the dielectric between adjacent internal electrode layers is thicker in the outer layer side portion than in the central portion of the multilayer body.
JP2011089266A 2011-04-13 2011-04-13 Multilayer ceramic capacitor Pending JP2012222290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089266A JP2012222290A (en) 2011-04-13 2011-04-13 Multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089266A JP2012222290A (en) 2011-04-13 2011-04-13 Multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2012222290A true JP2012222290A (en) 2012-11-12
JP2012222290A5 JP2012222290A5 (en) 2014-05-08

Family

ID=47273454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089266A Pending JP2012222290A (en) 2011-04-13 2011-04-13 Multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2012222290A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160189868A1 (en) * 2014-12-26 2016-06-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
JP2016197645A (en) * 2015-04-03 2016-11-24 太陽誘電株式会社 Lamination capacitor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118424U (en) * 1988-02-02 1989-08-10
JPH05152157A (en) * 1991-11-29 1993-06-18 Kyocera Corp Laminated ceramic capacitor
JPH1012475A (en) * 1996-06-27 1998-01-16 Murata Mfg Co Ltd Layer-built ceramic electronic component
JP2001044058A (en) * 1999-07-30 2001-02-16 Kyocera Corp Multilayer ceramic capacitor
JP2007042743A (en) * 2005-08-01 2007-02-15 Tdk Corp Laminated electronic part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118424U (en) * 1988-02-02 1989-08-10
JPH05152157A (en) * 1991-11-29 1993-06-18 Kyocera Corp Laminated ceramic capacitor
JPH1012475A (en) * 1996-06-27 1998-01-16 Murata Mfg Co Ltd Layer-built ceramic electronic component
JP2001044058A (en) * 1999-07-30 2001-02-16 Kyocera Corp Multilayer ceramic capacitor
JP2007042743A (en) * 2005-08-01 2007-02-15 Tdk Corp Laminated electronic part

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160189868A1 (en) * 2014-12-26 2016-06-30 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
CN105742054A (en) * 2014-12-26 2016-07-06 太阳诱电株式会社 Multilayer Ceramic Capacitor
US9734950B2 (en) * 2014-12-26 2017-08-15 Taiyo Yuden Co., Ltd. Multilayer ceramic capacitor
KR101793004B1 (en) * 2014-12-26 2017-11-02 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor
JP2016197645A (en) * 2015-04-03 2016-11-24 太陽誘電株式会社 Lamination capacitor

Similar Documents

Publication Publication Date Title
JP5512625B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5653886B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4816648B2 (en) Multilayer capacitor
KR101681358B1 (en) A multilayer ceramic capacitor and a method for manufactuaring the same
JP5420619B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5206440B2 (en) Ceramic electronic components
JP5654102B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
US9627142B2 (en) Multilayer ceramic capacitor and board for mounting of the same
KR102004773B1 (en) Multilayered ceramic electronic component and board for mounting the same
KR102018306B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR20140121726A (en) A multilayer ceramic capacitor and a method for manufactuaring the same
JP2005259772A (en) Laminated ceramic capacitor
JP2012227197A (en) Multilayer ceramic capacitor
KR101496813B1 (en) Multi-layered ceramic capacitor, mounting circuit board thereof and manufacturing method the same
JP4105665B2 (en) Multilayer ceramic capacitor
JP5414940B1 (en) Multilayer ceramic capacitor
JP2022073617A (en) Multilayer ceramic capacitor
JP2016021437A (en) Multilayer capacitor and method for manufacturing the same
JP2012222290A (en) Multilayer ceramic capacitor
JP2018198327A (en) Multilayer capacitor and method of manufacturing the same
JP6377957B2 (en) Multilayer ceramic capacitor
JP2005108890A (en) Laminated ceramic capacitor
JP4492216B2 (en) Multilayer positive temperature coefficient thermistor
WO2013190718A1 (en) Laminated ceramic capacitor
JP2013021010A (en) Multilayer ceramic capacitor

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150311