[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012216631A - プラズマ窒化処理方法 - Google Patents

プラズマ窒化処理方法 Download PDF

Info

Publication number
JP2012216631A
JP2012216631A JP2011080075A JP2011080075A JP2012216631A JP 2012216631 A JP2012216631 A JP 2012216631A JP 2011080075 A JP2011080075 A JP 2011080075A JP 2011080075 A JP2011080075 A JP 2011080075A JP 2012216631 A JP2012216631 A JP 2012216631A
Authority
JP
Japan
Prior art keywords
gas
plasma
processing
film
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2011080075A
Other languages
English (en)
Inventor
Yoshinori Osaki
良規 大▲崎▼
Takeshi Kuroda
豪 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2011080075A priority Critical patent/JP2012216631A/ja
Priority to CN2012100888451A priority patent/CN102737977A/zh
Priority to US13/436,006 priority patent/US20120251737A1/en
Priority to KR1020120033251A priority patent/KR101364834B1/ko
Priority to TW101111428A priority patent/TW201304009A/zh
Publication of JP2012216631A publication Critical patent/JP2012216631A/ja
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/671Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes the conductor having lateral variation in doping or structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45546Atomic layer deposition [ALD] characterized by the apparatus specially adapted for a substrate stack in the ALD reactor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02321Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer
    • H01L21/02329Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment introduction of substances into an already existing insulating layer introduction of nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/338Changing chemical properties of treated surfaces
    • H01J2237/3387Nitriding
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Element Separation (AREA)

Abstract

【課題】低温ALD法で形成された窒化珪素膜のエッチング耐性を向上させる。
【解決手段】プラズマ窒化処理方法は、上部に開口を有する処理容器1と、ウエハWを載置する載置台2と、処理容器1の開口を塞ぐとともにマイクロ波を透過させるマイクロ波透過板28と、処理容器1内にマイクロ波を導入するための複数のスロットを有する平面アンテナ31と、を備えたプラズマ処理装置100を用いる。処理容器1内で、窒素含有ガスと希ガスとを含む処理ガスのプラズマを生成させて、ウエハW上の窒化珪素膜をプラズマ窒化処理する。窒化珪素膜は、ALD法により400℃以下の成膜温度で成膜された窒化珪素膜であり、プラズマ窒化処理は、ALD法における成膜温度を上限とする処理温度で行う。
【選択図】図1

Description

本発明は、各種半導体装置の製造過程で利用可能なプラズマ窒化処理方法に関する。
DRAM等の半導体装置には、例えばMOS構造のゲート積層体が用いられている。この種のゲート積層体の上部や側部には、キャップ膜やサイドウォール膜、スペーサー膜を形成することが一般的である。これらのキャップ膜、サイドウォール膜、スペーサー膜として窒化珪素膜(SiN膜)が用いられることがある。SiN膜の形成方法は、CVD法が一般的であるが、低温で成膜することが可能で膜厚や膜質の制御が容易なALD(Atomic Layer Deposition)やMLD(Molecular Layer Deposition)と呼ばれる方法(以下、「ALD法」と総称する)が知られている。ALD法では、基板の表面に真空雰囲気下で第1の反応ガスを吸着させた後、供給するガスを第2の反応ガスに切り替えて、両ガスの反応により1層あるいは複数層の原子層や分子層を形成する。このサイクルを多数回行うことにより、これらの層を積層して、基板上への成膜を行う。ALD法では、サイクル数に応じて膜厚を高精度にコントロールすることができると共に、膜質の面内均一性も良好であり、半導体デバイスの微細化にも対応できる有効な手法である。最近では、サーマルバジェットの低減を図るため、例えば400℃程度の低温でALD法により窒化珪素膜を成膜する技術の開発が求められている。
特許文献1、2では、MOSFETのゲート絶縁膜の一部分として、ALD法により形成した窒化珪素膜に対してプラズマ窒化処理を行うことが提案されている。これら特許文献1、2では、プラズマ窒化処理によってALD法による窒化珪素膜の膜質を改善し、窒素が拡散してゲート絶縁膜とシリコンとの界面にまで達することを抑制して、ゲートリーク電流の低減、及びデバイス特性の劣化防止を図ることを目的としている。
特開2006−108493(図3など) 特開2006−73758(段落0052など)
ところで、半導体装置の製造過程では、キャップ膜やサイドウォール膜が形成されたゲート積層体に対して、例えば基板上の他の部位に素子を製造するため、ウエットエッチング処理が施されることがある。このため、キャップ膜やサイドウォール膜には、ある程度のエッチング耐性が求められる。しかし、上記のように、400℃程度の低温でALD法により形成された窒化珪素膜は、膜中のSiとNの結合状態が不安定であり、エッチング耐性が低い。このため、半導体プロセスの中でエッチング工程が入ると、折角形成したキャップ膜やサイドウォール膜が削られてしまい、その機能が損なわれるという問題があった。
従って、本発明の目的は、低温ALD法で形成された窒化珪素膜のエッチング耐性を向上させる方法を提供することである。
本発明のプラズマ窒化処理方法は、上部に開口を有する処理容器と、前記処理容器内で窒化珪素膜を有する被処理体を載置する載置台と、前記被処理体を加熱する加熱手段と、前記載置台に対向して設けられ、前記処理容器の開口を塞ぐとともにマイクロ波を透過させるマイクロ波透過板と、前記マイクロ波透過板より外側に設けられ、前記処理容器内にマイクロ波を導入するための複数のスロットを有する平面アンテナと、前記処理容器内に処理ガスを導入するガス導入部と、前記処理容器内を減圧排気する排気装置と、を備えたプラズマ処理装置を用い、前記窒化珪素膜をプラズマ窒化処理するプラズマ窒化処理方法である。このプラズマ窒化処理方法は、前記被処理体を前記処理容器内に搬入し、前記載置台に載置する工程と、前記被処理体を前記加熱手段により加熱する工程と、前記処理容器内に前記ガス導入部から窒素含有ガスと希ガスとを含む処理ガスを供給するとともに、前記マイクロ波を、前記平面アンテナから前記マイクロ波透過板を透過させて前記処理容器内に導入し、該処理容器内で電界を生成させ、前記窒素含有ガスと希ガスとを含む処理ガスを励起してプラズマを生成させる工程と、生成した前記処理ガスのプラズマにより、前記被処理体上の前記窒化珪素膜をプラズマ窒化処理して改質する工程と、を備えている。そして、このプラズマ窒化処理方法は、前記窒化珪素膜は、ALD法により200℃以上400℃以下の成膜温度で成膜された窒化珪素膜であり、かつ、前記ALD法における前記成膜温度を上限とする処理温度で、前記窒化珪素膜をプラズマ窒化処理することにより、低温窒素含有プラズマにより改質された窒化珪素膜を形成することを特徴する。
本発明のプラズマ窒化処理方法は、前記プラズマ窒化処理する工程の処理圧力が1.3Pa以上67Pa以下の範囲内であり、全処理ガスに対する窒素含有ガスの体積流量比率が5%以上30%以下の範囲内であることが好ましい。
また、本発明のプラズマ窒化処理方法は、前記マイクロ波のパワー密度が、前記マイクロ波透過板の面積あたり0.5W/cm以上2.5W/cm以下の範囲内であることが好ましい。
本発明のプラズマ窒化処理方法によれば、ALD法により形成された窒化珪素膜を、その成膜温度以下の温度で窒素含有プラズマにより改質して、緻密性を向上させた窒化珪素膜を形成できる。このように改質された窒化珪素膜は、ウエットエッチング耐性が高いので、半導体プロセスにおいてウエットエッチングが行われても窒化珪素膜の目減りを抑制することができる。また、改質によって窒化珪素膜を緻密にすることができるため、酸素の拡散も防止できる。また、プラズマ窒化処理は、ALD法の上限以下の処理温度で実施するため、サーマルバジェットを低減することができる。従って、各種半導体装置の製造プロセスにおいて、本実施の形態のプラズマ窒化処理方法を適用することにより、半導体装置の信頼性を高めることができる。
本発明の第1の実施の形態で使用可能なプラズマ処理装置の概略構成を示す断面図である。 平面アンテナの構造を示す図面である。 制御部の構成例を示す説明図である。 本発明の第1の実施の形態に係るプラズマ窒化処理方法の工程を説明する図面である。 本発明で使用可能な基板処理システムの概略構成を示す図面である。 低温で窒化珪素膜を成膜可能なALD装置の概略構成を示す垂直断面図である。 図6のALD装置の水平断面図である。 実験例におけるウエットエッチングレートを窒化珪素膜別に比較したグラフである。
[第1の実施の形態]
以下、本発明の実施の形態について図面を参照して詳細に説明する。本実施の形態のプラズマ窒化処理方法は、ALD法により形成された窒化珪素膜を有する被処理体を、プラズマ処理装置の処理容器内で、窒素含有ガスと希ガスとを含む処理ガスのプラズマを用いてプラズマ窒化処理する工程を含んでいる。
<プラズマ処理装置>
まず、本実施の形態のプラズマ窒化処理方法に好ましく利用できるプラズマ処理装置について、図1から図3を参照しながら説明する。図1は、本実施の形態に係るプラズマ窒化処理方法に用いるプラズマ処理装置100の概略構成を模式的に示す断面図である。図2は、図1のプラズマ処理装置100の平面アンテナを示す平面図である。図3は、図1のプラズマ処理装置100を制御する制御部の構成例を示す図面である。
プラズマ処理装置100は、複数のスロット状の孔を有する平面アンテナ、特にRLSA(Radial Line Slot Antenna;ラジアルラインスロットアンテナ)にて処理容器内にマイクロ波を導入することにより、高密度かつ低電子温度のマイクロ波励起プラズマを発生させ得るRLSAマイクロ波プラズマ処理装置として構成されている。プラズマ処理装置100では、1×1010〜5×1012/cmのプラズマ密度で、かつ0.7〜2eVの低電子温度を有するプラズマによる処理が可能である。従って、プラズマ処理装置100は、窒化珪素膜をプラズマ窒化処理して膜質を低温で改質する目的で好適に利用できる。
プラズマ処理装置100は、主要な構成として、気密に構成された処理容器1と、処理容器1内にガスを供給するガス供給機構18と、処理容器1内を減圧排気するための、真空ポンプ24を備えた排気装置と、処理容器1の上部に設けられ、処理容器1内にマイクロ波を導入するマイクロ波導入機構27と、これらプラズマ処理装置100の各構成部を制御する制御部50と、を備えている。
処理容器1は、接地された略円筒状の容器により形成されている。なお、処理容器1は角筒形状の容器により形成してもよい。処理容器1は、アルミニウム等の金属またはその合金からなる底壁1aと側壁1bとを有している。
処理容器1の内部には、被処理体である半導体ウエハ(以下、単に「ウエハ」と記す)Wを水平に支持するための載置台2が設けられている。載置台2は、熱伝導性の高い材質例えばAlN等のセラミックスにより構成されている。この載置台2は、排気室11の底部中央から上方に延びる円筒状の支持部材3により支持されている。支持部材3は、例えばAlN等のセラミックスにより構成されている。
また、載置台2には、その外縁部をカバーし、ウエハWをガイドするためのカバーリング4が設けられている。このカバーリング4は、例えば石英、AlN、Al、SiN等の材質で構成された環状部材である。カバーリング4は、載置台2の表面と側面を覆うようにすることが好ましい。これにより、金属汚染など防止できる。
また、載置台2には、温度調節機構としての抵抗加熱型のヒータ5が埋め込まれている。このヒータ5は、ヒータ電源5aから給電されることにより載置台2を加熱して、その熱で被処理基板であるウエハWを均一に加熱する。
また、載置台2には、熱電対(TC)6が配備されている。この熱電対6によって載置台2の温度計測を行うことにより、ウエハWの加熱温度を例えば室温から900℃までの範囲で制御可能となっている。
また、載置台2には、ウエハWを支持して昇降させるためのウエハ支持ピン(図示せず)が設けられている。各ウエハ支持ピンは、載置台2の表面に対して突没可能に設けられている。
処理容器1の内周には、石英からなる円筒状のライナー7が設けられている。また、載置台2の外周側には、処理容器1内を均一排気するため、多数の排気孔8aを有する石英製のバッフルプレート8が環状に設けられている。このバッフルプレート8は、複数の支柱9により支持されている。
処理容器1の底壁1aの略中央部には、円形の開口部10が形成されている。底壁1aにはこの開口部10と連通し、下方に向けて突出する排気室11が設けられている。この排気室11には、排気管12が接続されており、この排気管12を介して真空ポンプ24に接続されている。
処理容器1の上部には、中央部が開口した枠状をなし、開閉機能を有する蓋部材(リッド;Lid)13が配備されている。蓋部材13の開口の内周には、段差が形成されており、内側(処理容器内空間)へ向けて突出して環状の支持部13aが形成されている。
処理容器1の側壁1bには、ガス導入部15が設けられている。このガス導入部15は、窒素含有ガスやプラズマ励起用ガスを供給するガス供給装置18aに接続されている。なお、ガス導入部15は処理容器1内にノズル状に形成しても良く、または処理容器1内に載置台2と対向してシャワー状に設けてもよい。
また、処理容器1の側壁1bには、プラズマ処理装置100と、これに隣接する真空側搬送室(図示せず)との間で、ウエハWの搬入出を行うための搬入出口16と、この搬入出口16を開閉するゲートバルブG1とが設けられている。
ガス供給機構18は、ガス供給装置18aとガス導入部15とを有している。ガス供給装置18aは、ガス供給源(例えば、不活性ガス供給源19a、窒素含有ガス供給源19b)と、配管(例えば、ガスライン20a、20b)と、流量制御装置(例えば、マスフローコントローラ21a、21b)と、バルブ(例えば、開閉バルブ22a,22b)とを有している。なお、ガス供給装置18aは、上記以外の図示しないガス供給源として、例えば処理容器1内雰囲気を置換する際に用いるパージガス供給源等を有していてもよい。また、ガス供給機構18は、その全てをプラズマ処理装置100の構成部分とせずに、例えばガス導入部15に外部のガス供給装置を接続してガスの供給を行うことも可能である。
不活性ガスとしては、例えばNガスや希ガスなどを用いることができる。希ガスとしては、例えばArガス、Krガス、Xeガス、Heガスなどを用いることができる。これらの中でも、Arガス、Heガスを用いることが特に好ましい。プラズマ窒化処理に用いる窒素含有ガスとしては、例えばN、NO、NO、NH等を挙げることができる。
不活性ガスおよび窒素含有ガスは、ガス供給装置18aの不活性ガス供給源19aおよび窒素含有ガス供給源19bから、それぞれガスライン20a、20bを介してガス導入部15に至り、ガス導入部15から処理容器1内に導入される。各ガス供給源に接続する各々のガスライン20a、20bには、マスフローコントローラ21a、21bおよびその前後の1組の開閉バルブ22a,22bが設けられている。このようなガス供給装置18aの構成により、供給されるガスの切替えや流量等の制御が出来るようになっている。
排気装置は、真空ポンプ24を備えている。真空ポンプ24は、例えばターボ分子ポンプなどの高速真空ポンプなどにより構成される。真空ポンプ24は、排気管12を介して処理容器1の排気室11に接続されている。処理容器1内のガスは、排気室11の空間11a内へ均一に流れ、さらに空間11aから真空ポンプ24を作動させることにより、排気管12を介して外部へ排気される。これにより、処理容器1内を所定の真空度、例えば0.133Paまで高速に減圧することが可能となっている。
次に、マイクロ波導入機構27の構成について説明する。マイクロ波導入機構27は、主要な構成として、マイクロ波透過板28、平面アンテナ31、遅波材33、カバー部材34、導波管37、マッチング回路38およびマイクロ波発生装置39を備えている。
マイクロ波を透過させるマイクロ波透過板28は、蓋部材13において内周側に張り出した支持部13a上に配備されている。マイクロ波透過板28は、誘電体、例えば石英やAl、AlN等のセラミックスから構成されている。このマイクロ波透過板28と支持部13aとの間は、シール部材29を介して気密にシールされている。したがって、処理容器1内は気密に保持される。
平面アンテナ31は、マイクロ波透過板28の上方において、載置台2と対向するように設けられている。平面アンテナ31は、円板状をなしている。なお、平面アンテナ31の形状は、円板状に限らず、例えば四角板状でもよい。この平面アンテナ31は、蓋部材13の上端に係止されている。
平面アンテナ31は、例えば表面が金または銀メッキされた銅板またはアルミニウム板から構成されている。平面アンテナ31は、マイクロ波を放射する多数のスロット状のマイクロ波放射孔32を有している。マイクロ波放射孔32は、所定のパターンで平面アンテナ31を貫通して形成されている。
個々のマイクロ波放射孔32は、例えば図2に示すように、細長い長方形状(スロット状)をなしている。そして、典型的には隣接するマイクロ波放射孔32が「T」字状に配置されている。また、このように所定の形状(例えばT字状)に組み合わせて配置されたマイクロ波放射孔32は、さらに全体として同心円状に配置されている。
マイクロ波放射孔32の長さや配列間隔は、導波管37内のマイクロ波の波長(λg)に応じて決定される。例えば、マイクロ波放射孔32の間隔は、λg/4〜λgとなるように配置される。なお、図2においては、同心円状に形成された隣接するマイクロ波放射孔32どうしの間隔をΔrで示している。なお、マイクロ波放射孔32の形状は、円形状、円弧状等の他の形状であってもよい。さらに、マイクロ波放射孔32の配置形態は特に限定されず、同心円状のほか、例えば、螺旋状、放射状等に配置することもできる。
平面アンテナ31の上面には、真空よりも大きい誘電率を有する遅波材33が設けられている。この遅波材33は、真空中ではマイクロ波の波長が長くなることから、マイクロ波の波長を短くしてプラズマを安定に調整する機能を有している。遅波材33の材質としては、例えば石英、ポリテトラフルオロエチレン樹脂、ポリイミド樹脂などを用いることができる。
なお、平面アンテナ31とマイクロ波透過板28との間、また、遅波材33と平面アンテナ31との間は、それぞれ接触させても離間させてもよいが、接触させることが好ましい。
処理容器1の上部には、これら平面アンテナ31および遅波材33を覆うように、カバー部材34が設けられている。カバー部材34は、例えばアルミニウムやステンレス等の金属材料によって形成されている。このカバー部材34と平面アンテナ31とで偏平導波路が形成されている。蓋部材13の上端とカバー部材34とは、シール部材35によりシールされている。また、カバー部材34の内部には、冷却水流路34aが形成されている。この冷却水流路34aに冷却水を通流させることにより、カバー部材34、遅波材33、平面アンテナ31およびマイクロ波透過板28を冷却できるようになっている。なお、カバー部材34は接地されている。
カバー部材34の上壁(天井部)の中央には、開口部36が形成されており、この開口部36には導波管37が接続されている。導波管37の他端側には、マッチング回路38を介してマイクロ波を発生するマイクロ波発生装置39が接続されている。
導波管37は、上記カバー部材34の開口部36から上方へ延出する断面円形状の同軸導波管37aと、この同軸導波管37aの上端部にモード変換器40を介して接続された水平方向に延びる矩形導波管37bとを有している。モード変換器40は、矩形導波管37b内をTEモードで伝播するマイクロ波をTEMモードに変換する機能を有している。
同軸導波管37aの中心には内導体41が延在している。この内導体41は、その下端部において平面アンテナ31の中心に接続固定されている。このような構造により、マイクロ波は、同軸導波管37aの内導体41を介してカバー部材34と平面アンテナ31とで形成される偏平導波路へ放射状に効率よく均一に伝播され、平面アンテナ31のマイクロ波放射孔(スロット)32より処理容器内に導入されて、プラズマが生成される。
以上のような構成のマイクロ波導入機構27により、マイクロ波発生装置39で発生したマイクロ波が導波管37を介して平面アンテナ31へ伝播され、さらにマイクロ波透過板28を介して処理容器1内に導入されるようになっている。なお、マイクロ波の周波数としては、例えば2.45GHzが好ましく用いられ、他に8.35GHz、1.98GHz等を用いることもできる。
プラズマ処理装置100の各構成部は、制御部50に接続されて制御される構成となっている。制御部50は、コンピュータを有しており、例えば図3に示したように、CPUを備えたプロセスコントローラ51と、このプロセスコントローラ51に接続されたユーザーインターフェース52および記憶部53を備えている。プロセスコントローラ51は、プラズマ処理装置100において、例えば温度、圧力、ガス流量、マイクロ波出力などのプロセス条件に関係する各構成部(例えば、ヒータ電源5a、ガス供給装置18a、真空ポンプ24、マイクロ波発生装置39など)を統括して制御する制御手段である。
ユーザーインターフェース52は、工程管理者がプラズマ処理装置100を管理するためにコマンドの入力操作等を行うキーボードや、プラズマ処理装置100の稼働状況を可視化して表示するディスプレイ等を有している。また、記憶部53には、プラズマ処理装置100で実行される各種処理をプロセスコントローラ51の制御にて実現するための制御プログラム(ソフトウエア)や処理条件データ等が記録されたレシピが保存されている。
そして、必要に応じて、ユーザーインターフェース52からの指示等の信号にて任意のレシピを記憶部53から呼び出してプロセスコントローラ51に実行させることで、プロセスコントローラ51の制御下、プラズマ処理装置100の処理容器1内で所望の処理が行われる。また、前記制御プログラムや処理条件データ等のレシピは、コンピュータ読み取り可能な記憶媒体、例えばCD−ROM、ハードディスク、フレキシブルディスク、フラッシュメモリ、DVD、ブルーレイディスクなどに格納された状態のものを利用したり、あるいは、他の装置から、例えば専用回線を介して随時伝送させてオンラインで利用したりすることも可能である。
このように構成されたプラズマ処理装置100では、600℃以下の低温で下地層等へのダメージフリーなプラズマ処理を行うことができる。従って、低温ALD法により形成された窒化珪素膜に対して、プラズマ処理装置100を用いることによって、ALD法における成膜温度以下の温度で効果的にプラズマ改質を行うことができる。また、プラズマ処理装置100は、プラズマの均一性に優れていることから、例えば300mm径以上の大型のウエハWに対してもウエハWの面内で処理の均一性を実現できる。
<プラズマ窒化処理方法>
次に、プラズマ処理装置100において行われる、プラズマ窒化処理方法について図4を参照しながら説明する。図4は、本実施の形態のプラズマ窒化処理方法の工程を説明するためのウエハW表面付近の断面図である。ここでは、本実施の形態のプラズマ窒化処理方法の典型的な適用例として、MOS構造積層体60のスペーサー膜の窒化を例に挙げて説明する。このようなMOS構造積層体60は、例えばMOSFET等のトランジスタ、MOS型半導体メモリ等の一部として利用される。なお、本実施の形態のプラズマ窒化処理方法は、MOS構造積層体に限らず、例えば相変化メモリ、磁気抵抗メモリ等の半導体メモリ素子を覆うスペーサー膜、ライナー膜、サイドウォール膜、キャップ膜などにも適用できる。また、例えばDRAMのビットラインのスペーサー膜やライナー膜などにも適用できる。
まず、処理対象のウエハWを準備する。ウエハWには、図4(a)及び(b)に示したように、シリコン基板61、絶縁膜63及び電極層65がこの順に積層された積層体60Aが形成されている。このウエハWに対して、ALD法によって窒化珪素膜であるスペーサー膜67Aを堆積させたMOS型積層体60が、本実施の形態のプラズマ窒化処理方法の被処理体となる。積層体60,60Aにおいて、絶縁膜63及び電極層65は、所定の形状にパターニングされている。絶縁膜63は、例えば酸化珪素膜、窒化珪素膜、酸化窒化珪素膜、High―k膜などである。電極層65には、例えばポリシリコンのほか、Al、Ti、W、Ni、Coなどの金属膜および、これらの金属シリサイドなどを用いることができる。スペーサー膜67Aは、後述するように、ALD法により例えば200℃以上400℃以下の低温で成膜することができる。なお、図4中、符号S、Dは、ソース、ドレインを示している。
次に、図4(b)及び図4(c)に示したように、プラズマ処理装置100を用いてスペーサー膜67Aをプラズマ窒化処理する。プラズマ窒化処理後のスペーサー膜を符号67Bで示す。プラズマ窒化処理によって、スペーサー膜67Aに比べ、スペーサー膜67Bの窒素濃度が増加し(つまり、Si−N結合が増加する)、膜の緻密性が増すことにより、ウエットエッチング耐性を向上させることができる。
<プラズマ窒化処理の手順>
プラズマ窒化処理の手順は、以下のとおりである。まず、処理対象のウエハWをプラズマ処理装置100に搬入し、載置台2上に配置する。次に、プラズマ処理装置100の処理容器1内を減圧排気しながら、ガス供給装置18aの不活性ガス供給源19a、窒素含有ガス供給源19bから、例えばArガス、Nガスを所定の流量でそれぞれガス導入部15を介して処理容器1内に導入する。このようにして、処理容器1内を所定の圧力に調節する。
次に、マイクロ波発生装置39で発生させた所定周波数が例えば2.45GHzのマイクロ波を、マッチング回路38を介して導波管37に導く。導波管37に導かれたマイクロ波は、矩形導波管37bおよび同軸導波管37aを順次通過し、内導体41を介して平面アンテナ31に供給される。つまり、マイクロ波は、矩形導波管37b内ではTEモードで伝播し、このTEモードのマイクロ波はモード変換器40でTEMモードに変換されて、同軸導波管37aを介してカバー部材34と平面アンテナ31とにより構成される偏平導波路を伝播していく。そして、マイクロ波は、平面アンテナ31に貫通形成されたスロット状のマイクロ波放射孔32からマイクロ波透過板28を透過して処理容器1内におけるウエハWの上方空間に放射される。この際のマイクロ波出力は、例えば200mm径以上のウエハWを処理する場合には、1000W以上5000W以下の範囲内から、目的に応じて適切なパワー密度になるように選択することができる。
平面アンテナ31からマイクロ波透過板28を経て処理容器1内に放射されたマイクロ波により、処理容器1内で電磁界が形成され、ArガスおよびNガスがそれぞれプラズマ化する。この際、マイクロ波が平面アンテナ31の多数のマイクロ波放射孔32から放射されることにより、略1×1010〜5×1012/cmの高密度で、かつウエハW近傍では、略1.2eV以下の低電子温度のプラズマが生成される。このようにして生成されるプラズマは、下地膜へのイオン等によるプラズマダメージが少ない。そして、プラズマ中の活性種の作用によりウエハWの表面の窒化珪素膜にプラズマ窒化処理が行われる。すなわち、ウエハWのスペーサー膜67Aが窒化されることにより、緻密なスペーサー膜67Bが形成される。
以上のようにスペーサー膜67Bを形成した後、ウエハWをプラズマ処理装置100から搬出することにより、1枚のウエハWに対する処理が終了する。
<プラズマ窒化処理条件>
プラズマ窒化処理の処理ガスとしては、希ガスと窒素含有ガスとを含むガスを用いることが好ましい。希ガスとしてはArガスを、窒素含有ガスとしてはNガスを、それぞれ使用することが好ましい。このとき、全処理ガスに対するNガスの体積流量比率(Nガス流量/全処理ガス流量の百分率)は、スペーサー膜67B中の窒素濃度を高くしてウエットエッチング耐性に優れた緻密な膜を形成する観点から、5%以上30%以下の範囲内とすることが好ましく、10%以上30%以下の範囲内とすることがより好ましい。プラズマ窒化処理では、例えばArガスの流量は500mL/min(sccm)以上2000mL/min(sccm)以下の範囲内、Nガスの流量は100mL/min(sccm)以上400mL/min(sccm)以下の範囲内から、上記流量比になるように設定することが好ましい。
また、処理圧力は、スペーサー膜67B中の窒素濃度を高くしてウエットエッチング耐性に優れた緻密な膜を形成する観点から、例えば、1.3Pa以上67Pa以下が好ましく、1.3Pa以上40Pa以下の範囲内がより好ましい。プラズマ窒化処理における処理圧力が67Paを超えると、プラズマ中の窒化活性種としてラジカル成分が主でイオン成分が少なくため、窒化レートが低下するとともに、窒素ドーズ量も低下してしまう。
また、マイクロ波のパワー密度は、プラズマ中で活性種を効率よく生成させて窒化レートを高める観点から、0.5W/cm以上2.5W/cm以下の範囲内とすることが好ましく、0.5W/cm以上2.0W/cm以下の範囲内がより好ましく、0.7W/cm以上1.5W/cmの範囲内が最も好ましい。なお、マイクロ波のパワー密度は、マイクロ波透過板28の面積1cmあたりに供給されるマイクロ波パワーを意味する(以下、同様である)。例えば200mm径以上のウエハWを処理する場合には、マイクロ波パワーを1000W以上5000W以下の範囲内とすることが好ましい。
また、プラズマ窒化処理における処理温度は、窒化珪素膜(スペーサー膜67A)の成膜温度以下の温度とする。ALD法による窒化珪素膜の成膜温度が、例えば400℃以下である場合は、ウエハWの加熱温度も400℃を上限とする。この場合、具体的には、載置台2の設定温度として、例えばウエハ温度を200℃以上400℃以下の範囲内になるように設定することが好ましく、300℃以上400℃以下の範囲内になるように設定することがより好ましい。ALD法等の低温で形成した窒化珪素膜に対して、その堆積温度以下の低温でプラズマ窒化処理を行うことにより、サーマルバジェットを低減できるとともに、後工程で発生する熱に対する耐熱性を保持でき、また、熱に対して敏感な半導体プロセスにおいて、例えば原子の拡散などを抑制できる。
また、プラズマ窒化処理の処理時間は、特に制限はないが、スペーサー膜67B中の窒素濃度を均一に高くすることによりウエットエッチング耐性に優れた緻密な膜を形成する観点から、例えば60秒以上600秒以下の範囲内とすることが好ましく、120秒以上240秒以下の範囲内とすることがより好ましい。
以上の条件は、制御部50の記憶部53にレシピとして保存されている。そして、プロセスコントローラ51がそのレシピを読み出してプラズマ処理装置100の各構成部例えばガス供給装置18a、真空ポンプ24、マイクロ波発生装置39、ヒータ電源5aなどへ制御信号を送出することにより、所望の条件でプラズマ窒化処理が行われる。
本実施の形態のプラズマ窒化処理方法によれば、低温のALD法により形成されたスペーサー膜67Aを、その成膜温度以下の温度で窒素含有プラズマにより改質して、緻密性を向上させたスペーサー膜67Bを形成できる。スペーサー膜67Bは、ウエットエッチング耐性が高いので、半導体プロセスにおいてウエットエッチングが行われてもスペーサー膜67Bの目減りを抑制することができる。また、プラズマ窒化処理は、ALD法の上限以下の処理温度で実施するため、サーマルバジェットを低減することができる。従って、各種半導体装置の製造プロセスにおいて、本実施の形態の低温で成膜した窒化珪素膜を低温窒素含有プラズマで改質して形成した低温窒素含有プラズマ改質窒化珪素膜を、例えばDRAM、Logicデバイスや、相変化メモリ(PRAM)、抵抗メモリ(ReRAM)、磁気抵抗メモリ(MRAM)等の半導体メモリ素子などの半導体装置において、スペーサー膜、ライナー膜、サイドウォール膜、キャップ膜として適用することにより、半導体装置の信頼性を高めることができる。
<基板処理システム>
次に、本実施の形態のプラズマ窒化処理方法に好ましく利用できる基板処理システムについて説明する。図5は、ウエハWに対し、ALD法による窒化珪素膜の成膜と、プラズマ窒化処理と、を真空条件で行なうように構成された基板処理システム200を示す概略構成図である。この基板処理システム200は、マルチチャンバ構造のクラスタツールとして構成されている。基板処理システム200は、主要な構成として、ウエハWに対して各種の処理を行う4つのプロセスモジュール100a,100b,101a,101bと、これらのプロセスモジュール100a,100b,101a,101bに対してゲートバルブG1を介して接続された真空側搬送室103と、この真空側搬送室103にゲートバルブG2を介して接続された2つのロードロック室105a,105bと、これら2つのロードロック室105a,105bに対してゲートバルブG3を介して接続されたローダーユニット107とを備えている。
4つのプロセスモジュール100a,100b,101a,101bは、ウエハWに対して同じ内容の処理を行うこともできるし、あるいはそれぞれ異なる内容の処理を行うこともできる。本実施の形態では、プロセスモジュール100a,100bでは、ALD法によるスペーサー膜67Aの成膜を行う。すなわち、プロセスモジュール100a,100bは、それぞれ枚葉式のALD装置により構成されている。なお、枚葉式のALD装置の具体的な構成については説明を省略する。一方、プロセスモジュール101a,101bでは、スペーサー膜67Aをプラズマ窒化処理して緻密なスペーサー膜67Bに改質する。すなわち、プロセスモジュール101a,101bは、それぞれ図1のプラズマ処理装置100により構成されている。
真空引き可能に構成された真空側搬送室103には、プロセスモジュール100a,100b,101a,101bやロードロック室105a,105bに対してウエハWの受け渡しを行う第1の基板搬送装置としての搬送装置109が設けられている。この搬送装置109は、互いに対向するように配置された一対の搬送アーム部111a,111bを有している。各搬送アーム部111a,111bは同一の回転軸を中心として、屈伸及び旋回可能に構成されている。また、各搬送アーム部111a,111bの先端には、それぞれウエハWを載置して保持するためのフォーク113a,113bが設けられている。搬送装置109は、これらのフォーク113a,113b上にウエハWを載置した状態で、プロセスモジュール100a,100b,101a,101b間、あるいはプロセスモジュール100a,100b,101a,101bとロードロック室105a,105bとの間でウエハWの搬送を行う。
ロードロック室105a,105b内には、それぞれウエハWを載置する載置台106a,106bが設けられている。ロードロック室105a,105bは、真空状態と大気開放状態を切り替えられるように構成されている。このロードロック室105a,105bの載置台106a,106bを介して、真空側搬送室103と大気側搬送室119(後述)との間でウエハWの受け渡しが行われる。
ローダーユニット107は、ウエハWの搬送を行う第2の基板搬送装置としての搬送装置117が設けられた大気側搬送室119と、この大気側搬送室119に隣接配備された3つのロードポートLPと、大気側搬送室119の他の側面に隣接配備され、ウエハWの位置測定を行なう位置測定装置としてのオリエンタ121とを有している。
大気側搬送室119は、例えば窒素ガスや清浄空気をダウンフローさせる循環設備(図示省略)を備え、クリーンな環境が維持されている。大気側搬送室119は、平面視矩形をなしており、その長手方向に沿ってガイドレール123が設けられている。このガイドレール123に搬送装置117がスライド移動可能に支持されている。つまり、搬送装置117は図示しない駆動機構により、ガイドレール123に沿ってX方向へ移動可能に構成されている。この搬送装置117は、上下2段に配置された一対の搬送アーム部125a,125bを有している。各搬送アーム部125a,125bは屈伸及び旋回可能に構成されている。各搬送アーム部125a,125bの先端には、それぞれウエハWを載置して保持する保持部材としてのフォーク127a,127bが設けられている。搬送装置117は、これらのフォーク127a,127b上にウエハWを載置した状態で、ロードポートLPのウエハカセットCRと、ロードロック室105a,105bと、オリエンタ121との間でウエハWの搬送を行う。
ロードポートLPは、ウエハカセットCRを載置できるようになっている。ウエハカセットCRは、複数枚のウエハWを同じ間隔で多段に載置して収容できるように構成されている。
オリエンタ121は、図示しない駆動モータによって回転される回転板133と、この回転板133の外周位置に設けられ、ウエハWの周縁部を検出するための光学センサ135とを備えている。
<ウエハ処理の手順>
基板処理システム200においては、以下の手順でウエハWに対するALD法による窒化珪素膜の成膜処理、およびプラズマ窒化処理が行われる。まず、大気側搬送室119の搬送装置117のフォーク127a,127bのいずれかを用い、ロードポートLPのウエハカセットCRより1枚のウエハWが取り出され、オリエンタ121で位置合わせした後、ロードロック室105a(または105b)に搬入される。ウエハWが載置台106a(または106b)に載置された状態のロードロック室105a(または105b)では、ゲートバルブG3が閉じられ、内部が真空状態に減圧排気される。その後、ゲートバルブG2が開放され、真空側搬送室103内の搬送装置109のフォーク113a,113bによってウエハWがロードロック室105a(または105b)から運び出される。
搬送装置109によりロードロック室105a(または105b)から運び出されたウエハWは、まず、プロセスモジュール100a,100bのいずれかに搬入され、ゲートバルブG1を閉じた後でウエハWに対してALD法によるスペーサー膜67Aの堆積処理が行われる。
次いで、前記ゲートバルブG1が開放され、スペーサー膜67Aが形成されたウエハWが搬送装置109によりプロセスモジュール100a(または100b)から真空状態のままプロセスモジュール101a,101bのいずれか片方に搬入される。そして、ゲートバルブG1を閉じた後でウエハWに対してプラズマ窒化処理が行われ、スペーサー膜67Aがプラズマ窒化されてスペーサー膜(改質スペーサー膜)67Bに改質される。
次いで、前記ゲートバルブG1が開放され、スペーサー膜67Bが形成されたウエハWが搬送装置109によりプロセスモジュール101a(または101b)から真空状態のまま搬出され、ロードロック室105a(または105b)に搬入される。そして、前記とは逆の手順でロードポートLPのウエハカセットCRに処理済みのウエハWが収納され、基板処理システム200における1枚のウエハWに対する処理が完了する。なお、基板処理システム200における各処理装置の配置は、効率的に処理を行うことができる配置であれば、いかなる配置構成でもよい。さらに、基板処理システム200におけるプロセスモジュールの数は4つに限らず、5つ以上であってもよい。
<ALD装置>
プラズマ窒化処理の対象となる窒化珪素膜は、図5のような基板処理システム200を用いる場合に限らず、プラズマ処理装置100とは全く別のALD装置を用いて成膜することもできる。例えば400℃以下の低温で効率良く窒化珪素膜を形成することが可能なALD装置について、図6及び図7を参照しながら説明する。図6は、本実施の形態で処理対象となる窒化珪素膜を成膜する際に好ましく利用できるバッチ式のALD装置300の構成を模式的に示す縦断面図である。図7は、ALD装置300の構成を模式的に示す横断面図である。なお、図7においては、加熱装置を省略している。
図6及び図7に示すように、ALD装置300は、下端が開口し、上端が閉じた円筒体状の処理容器301を有している。処理容器301は、例えば石英により形成されている。処理容器301内の上部には、例えば石英により形成された天井板302が設けられている。また、この処理容器301の下端の開口部分には、例えばステンレススチールにより円筒体状に成形されたマニホールド303が連結されている。処理容器301とマニホールド303との連結部分は、例えばOリング等のシール部材304が配備され、気密性が保持されている。
マニホールド303は、処理容器301の下端を支持している。マニホールド303の下方から、複数のウエハWを多段に支持することができる石英製のウエハボート305が処理容器301内に挿入されている。ウエハボート305は、3本の支柱306を有しており(図16Aでは2本のみ図示)、支柱306に形成された溝(図示省略)によりウエハWを支持している。ウエハボート305は、例えば50〜100枚のウエハWを同時に支持できるように構成されている。
ウエハボート305は、石英製の筒体307を介して回転テーブル308上に載置されている。マニホールド303の下端の開口部には、開閉を行うため、例えばステンレススチール製の底蓋309が設けられている。回転テーブル308は、この底蓋309を貫通して設けられた回転軸310上に支持されている。回転軸310が挿入されている底蓋309の貫通口(図示省略)には、例えば磁性流体シール311が設けられている。磁性流体シール311は、回転軸310の回転を可能にしつつ、回転軸310が挿通された底蓋309の貫通口を気密にシールしている。また、底蓋309の周辺部とマニホールド303の下端部との間には、例えばOリングなどのシール部材312が配備されている。これにより処理容器301内のシール性を保持している。
回転軸310は、アーム313の先端に取付けられている。アーム313は、例えばボートエレベータ等の図示しない昇降機構に支持されており、これにより、ウエハボート305、回転テーブル308および底蓋309は、一体的に昇降し、ウエハボート305を処理容器301内に挿入し、あるいは抜き出すことができるようになっている。なお、回転テーブル308を底蓋309に固定して設け、ウエハボート305を回転させずにウエハWの処理を行うようにしてもよい。
ALD装置300は、処理容器301内へ窒素含有ガス、例えばNガスやNHガスを供給する窒素含有ガス供給部314と、処理容器301内へSi含有化合物ガスを供給するSi含有化合物ガス供給部315と、処理容器301内へパージガスとして不活性ガス、例えばNガスを供給するパージガス供給部316とを有している。窒素含有ガスとしては、例えば、Nガス、NHガス等を用いることができる。また、Si含有化合物としては、例えばジクロロシラン(DCS;SiHCl)などのシラン系プリカーサーを用いることができる。
窒素含有ガス供給部314は、窒素含有ガス供給源317と、窒素含有ガス供給源317から窒素含有ガスを導くガス供給配管318と、このガス供給配管318に接続された分散ノズル319とを有している。分散ノズル319は、マニホールド303の側壁を内側へ貫通して設けられ、上方向へ屈曲して処理容器301の長尺方向に垂直に延びる石英管により構成されている。分散ノズル319の垂直部分には、複数のガス吐出孔319aが所定の間隔を隔てて形成されている。各ガス吐出孔319aからは、処理容器301に向けて水平方向に略均一に窒素含有ガス、例えばNガスやNHガスを吐出できるようになっている。
また、Si含有化合物ガス供給部315は、Si含有化合物ガス供給源320と、このSi含有化合物ガス供給源320からSi含有化合物ガスを導くガス供給配管321と、このガス供給配管321に接続された分散ノズル322とを有している。分散ノズル322は、マニホールド303の側壁を内側へ貫通して設けられ、上方向へ屈曲して処理容器301の長尺方向に垂直に延びる石英管により構成されている。分散ノズル322は、例えば2本設けられており(図16B参照)、各分散ノズル322の垂直部分には、その長さ方向に複数のガス吐出孔322aが所定の間隔を隔てて形成されている。各ガス吐出孔322aからは、処理容器301内の水平方向に略均一にSi含有化合物ガスを吐出できるようになっている。なお、分散ノズル322は、2本に限らず、1本或いは3本以上でもよい。
パージガス供給部316は、パージガス供給源323と、パージガス供給源323からパージガスを導くガス供給配管324と、このガス供給配管324に接続され、マニホールド303の側壁を貫通して設けられたパージガスノズル325とを有している。パージガスとしては不活性ガス(例えばNガス)を用いることができる。
ガス供給配管318,321,324には、それぞれ開閉弁318a、321a、324aおよびマスフローコントローラなどの流量制御器318b、321b、324bが設けられており、窒素含有ガス、Si含有化合物ガスおよびパージガスを、それぞれ流量制御しつつ供給できるようになっている。
処理容器301には、窒素含有ガスのプラズマを形成するプラズマ生成部330が形成されている。このプラズマ生成部330は、拡張壁332を有している。処理容器301の側壁の一部は、上下方向に沿って所定の幅で削りとられており、上下に細長く形成された開口331が形成されている。開口331は、ウエハボート305に多段に保持されている全てのウエハWをカバーできるように上下方向(処理容器301の長尺方向)に十分に長く形成されている。拡張壁332は、この開口331をその外側から覆うようにして処理容器301の壁に気密に接合されている。拡張壁332は、例えば石英で形成されており、横断面がU字状をなし、上下方向(処理容器301の長尺方向)に細長く形成されている。拡張壁332を設けることにより、処理容器301の側壁の一部が横断面U字状に外側へ拡張した形状となり、拡張壁332の内部空間が処理容器301の内部空間に一体的に連通された状態となる。
また、プラズマ生成部330は、細長い一対のプラズマ電極333a,333bと、このプラズマ電極333a,333bに接続された給電線334と、この給電線334を介して一対のプラズマ電極333a,333bに高周波電力を供給する高周波電源335とを有している。細長い一対のプラズマ電極333a,333bは、拡張壁332の互いに対向する側壁332a,332bの外側に上下方向(処理容器301の長尺方向)に沿って互いに対向するように配置されている。そして、プラズマ電極333a,333bに高周波電源335から例えば13.56MHzの高周波電力を印加することにより、窒素含有ガスのプラズマを発生させることができる。なお、高周波電力の周波数は、13.56MHzに限定されず、他の周波数、例えば400kHz等を用いてもよい。
上記拡張壁332の外側には、これを覆うようにして例えば石英よりなる絶縁保護カバー336が取付けられている。また、この絶縁保護カバー336の内側部分には、図示しない冷媒通路が設けられており、例えば冷却された窒素ガス等の冷媒を流すことによりプラズマ電極333a,333bを冷却できるようになっている。
窒素含有ガスを処理容器301内に導入する分散ノズル319は、処理容器301内を上方向に延びている途中で、処理容器301の半径方向外方へ屈曲し、拡張壁332内の最も外側の壁332c(処理容器301の中心から最も離れた部分)に沿って上方に向けて起立して設けられている。そして、高周波電源335から高周波電力が供給されてプラズマ電極333a,333b間に高周波電界が形成されると、分散ノズル319のガス吐出孔319aから吐出されたNガスやNHガスがプラズマ化され、該プラズマが処理容器301の中心に向けて拡散していくように構成されている。
また、Si含有化合物ガスを処理容器301内に導入する2本の分散ノズル322は、処理容器301の開口331を挟む位置に起立して設けられている。これらの分散ノズル322に形成された複数のガス吐出孔322aより処理容器301の中心方向に向けてSi含有化合物ガスを吐出できるようになっている。
一方、処理容器301の開口331と反対側には、処理容器301内を真空排気するための排気口337が設けられている。この排気口337は処理容器301の側壁を上下方向(処理容器301の長尺方向)へ削り取ることによって細長く形成されている。この排気口337の周囲には、排気口337を覆うように横断面がU字状に成形された排気カバー338が、例えば溶接により接合されて取付けられている。この排気カバー338は、処理容器301の長尺方向に沿って処理容器301の上端よりもさらに上方に延びており、処理容器301の上方に設けられたガス出口339に接続されている。このガス出口339は、図示しない真空ポンプ等を含む真空排気装置に接続されており、処理容器301内を真空引きできるように構成されている。
また、処理容器301の周囲には、処理容器301を囲むようにして処理容器301およびその内部のウエハWを加熱する筐体状の加熱装置340が設けられている。
ALD装置300の各構成部の制御、例えばバルブ318a、321a、324aの開閉による各ガスの供給・停止、流量制御器318b、321b、324bによるガス流量の制御、および高周波電源335のオン・オフ制御、加熱装置340の制御等は制御部70Bにより行われる。制御部70Bの基本的構成と機能は、図1の成膜装置100の制御部50と同様であるため、説明を省略する。
本変形例では、ALD法により、Si含有化合物ガスを処理容器301内に供給し、Si含有化合物ガスをウエハW上に吸着させる工程と、窒素含有ガスを処理容器301内に供給し、Si含有化合物ガスを窒化する工程とを交互に繰り返す。具体的には、Si含有化合物ガスをウエハW上に吸着させる工程においては、Si含有化合物ガスを、分散ノズル322を介して処理容器301内に所定の時間供給する。これにより、ウエハW上にSi含有化合物ガスを吸着させる。
次に、窒素含有ガスを処理容器301内に供給し、Si含有化合物ガスを窒化する工程においては、窒素含有ガスを、分散ノズル319を介して処理容器301内に所定の時間供給する。プラズマ生成部330によってプラズマ化された窒素含有ガスによって、ウエハW上に吸着されたSi含有化合物ガスが窒化され、例えばスペーサー膜67Aとなる窒化珪素膜が形成される。
また、Si含有化合物ガスをウエハW上に吸着させる工程と、Si含有化合物ガスを窒化する工程とを切り換える際に、各工程の間に、直前の工程における残留ガスを除去するために、処理容器301内を真空排気しつつ例えばNガス等の不活性ガスよりなるパージガスを処理容器301内に供給する工程を所定の時間行うことができる。なお、この工程は、処理容器301内に残留しているガスを除去することができればよいため、パージガスを供給せずに全てのガスの供給を停止した状態で真空引きを行ってもよい。
ALD装置300を使用し、ALD法により低温で窒化珪素膜を成膜するための好ましい条件を以下に例示する。
(ALD法による好ましい成膜条件)
(1)Si含有ガスの供給条件
Si含有ガス:ジクロロシラン
基板(ウエハW)温度:300〜400℃
処理容器301内の圧力:27〜67Pa
ガス流量:500〜2000mL/min(sccm)
供給時間:1〜30秒
(2)窒素含有ガスの供給条件
窒素含有ガス:NHガス
基板(ウエハW)温度:300〜400℃
処理容器301内の圧力:27〜67Pa
ガス流量:1000〜10000mL/min(sccm)
供給時間:1〜30秒
高周波電源周波数:13.56MHz
高周波電源パワー:50〜500W
(3)パージガスの供給条件
パージガス:Nガス
処理容器301内の圧力:0.133〜67Pa
ガス流量:0.1〜5000mL/min(sccm)
供給時間:1〜60秒
(4)繰返し条件
合計サイクル:20〜50サイクル
以上のように、ALD法を用いることにより、スペーサー膜67Aの成膜を400℃以下で行うことができる。しかも、ALD法を利用することによって、積層体60A上に被覆するスペーサー膜67Aのステップカバレッジも良好となる。
[第2の実施の形態]
第1の実施の形態では、主に、半導体装置のスペーサー膜、ライナー膜、サイドウォール膜、キャップ膜などとして用いられるSiN膜の改質を例に挙げたが、本発明のプラズマ窒化処理方法は、他の目的への適用も可能である。例えば、STI(Shallow Trench Isolation)法によって素子分離膜を形成する場合、シリコンのトレンチ内表面にALD法でSiN膜を形成した後、トレンチ内に素子分離膜としてSiO膜を埋め込む場合がある。この場合、埋め込まれたSiO膜中の酸素がSiN膜を通過してシリコンとSiN膜との界面に到達し、そこでシリコンと反応してSiOが形成され、SiN膜がSiON膜となって実質的に増膜する。その結果、素子形成領域が小さくなり、デバイスが安定して製造出来なくなり、歩留まりが低下してしまうことがある。このような問題を防ぐために、トレンチ内表面にALD法で形成されたSiN膜に対して、プラズマ処理装置100において、第1の実施の形態と同様の条件でプラズマ窒化処理を行うことができる。プラズマ窒化処理によって、トレンチ内表面にALD法で形成されたSiN膜が改質され、緻密化するので、トレンチ内にSiO膜を埋め込んだ場合でも、酸素がシリコンとSiN膜との界面へ拡散して増膜することを防止できる。
[実験例]
次に、本発明の効果を確認した実験データについて説明する。シリコン基板上に、ジクロロシランをプリカーサーとしてALD法によって630℃又は400℃の成膜温度でそれぞれSiN膜を成膜した(以下、400℃−ALD膜、630℃−ALD膜と記す)。このうち、400℃−ALD膜に対して、下記の条件A又は条件Bのいずれかにより、プラズマ窒化処理による改質を行った(以下、改質SiN膜A、改質SiN膜Bと記す)。その後、各SiN膜を、0.5重量%希フッ酸溶液に1分間浸漬した。浸漬前後の膜厚の差分から1分間当りのウエットエッチングレートを算出した。
[条件A;改質SiN膜Aの形成]
Arガス流量;1000mL/min(sccm)
ガス流量;200mL/min(sccm)
処理圧力;20Pa
載置台の温度;400℃
マイクロ波パワー;1500W(パワー密度;約0.8W/cm
処理時間;180秒
[条件B;改質SiN膜Bの形成]
Heガス流量;1000mL/min(sccm)
ガス流量;200mL/min(sccm)
処理圧力;20Pa
載置台の温度;400℃
マイクロ波パワー;1500W(パワー密度;約0.8W/cm
処理時間;180秒
実験結果を図8に示した。図8の縦軸は、ウエットエッチングレートを示し、横軸は、各サンプルを示している。この図8より、400℃−ALD膜は、630℃−ALD膜に比べ、極端にウエットエッチングレートが大きくなっている。しかし、本発明のプラズマ窒化処理方法によってプラズマ窒化処理を行った改質SiN膜A及び改質SiN膜Bでは、いずれも630℃−ALD膜に近いレベルまでウエットエッチングレートが大幅に小さくなった。また、改質SiN膜Aと改質SiN膜Bとの比較から、プラズマ生成用の希ガスは、Ar、Heともに同程度の改質効果が得られた。
以上の実験結果から、本発明のプラズマ窒化処理方法により、400℃の低温でALD法により成膜したSiN膜の膜質を顕著に改善し、ウエットエッチング耐性を向上させ得ることが確認できた。また、本発明のプラズマ窒化処理方法は、ALD法によるSiN膜の成膜温度と同じ400℃の低温でも十分な改質効果が得られることも確認できた。
以上、本発明の実施の形態を述べたが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。例えば、被処理体である基板としては、半導体ウエハに限るものではなく、例えばフラットパネルディスプレイ用基板や太陽電池用基板などを処理対象とすることも可能である。
1…処理容器、2…載置台、3…支持部材、5…ヒータ、12…排気管、15…ガス導入部、16…搬入出口、18…ガス供給機構、18a…ガス供給装置、19a…不活性ガス供給源、19b…窒素含有ガス供給源、24…真空ポンプ、28…マイクロ波透過板、29…シール部材、31…平面アンテナ、32…マイクロ波放射孔、37…導波管、37a…同軸導波管、37b…矩形導波管、39…マイクロ波発生装置、50…制御部、51…プロセスコントローラ、52…ユーザーインターフェース、53…記憶部、100…プラズマ処理装置、W…半導体ウエハ(基板)

Claims (3)

  1. 上部に開口を有する処理容器と、
    前記処理容器内で窒化珪素膜を有する被処理体を載置する載置台と
    前記被処理体を加熱する加熱手段と、
    前記載置台に対向して設けられ、前記処理容器の開口を塞ぐとともにマイクロ波を透過させるマイクロ波透過板と、
    前記マイクロ波透過板より外側に設けられ、前記処理容器内にマイクロ波を導入するための複数のスロットを有する平面アンテナと、
    前記処理容器内に処理ガスを導入するガス導入部と、
    前記処理容器内を減圧排気する排気装置と、
    を備えたプラズマ処理装置を用い、前記窒化珪素膜をプラズマ窒化処理するプラズマ窒化処理方法であって、
    前記被処理体を前記処理容器内に搬入し、前記載置台に載置する工程と
    前記被処理体を前記加熱手段により加熱する工程と、
    前記処理容器内に前記ガス導入部から窒素含有ガスと希ガスとを含む処理ガスを供給するとともに、前記マイクロ波を、前記平面アンテナから前記マイクロ波透過板を透過させて前記処理容器内に導入し、該処理容器内で電界を生成させ、前記窒素含有ガスと希ガスとを含む処理ガスを励起してプラズマを生成させる工程と、
    生成した前記処理ガスのプラズマにより、前記被処理体上の前記窒化珪素膜をプラズマ窒化処理して改質する工程と、
    を備え、
    前記窒化珪素膜は、ALD法により200℃以上400℃以下の成膜温度で成膜された窒化珪素膜であり、かつ、前記ALD法における前記成膜温度を上限とする処理温度で、前記窒化珪素膜をプラズマ窒化処理することにより、低温窒素含有プラズマにより改質された窒化珪素膜を形成することを特徴するプラズマ窒化処理方法。
  2. 前記プラズマ窒化処理する工程の処理圧力が1.3Pa以上67Pa以下の範囲内であり、全処理ガスに対する窒素含有ガスの体積流量比率が5%以上30%以下の範囲内である請求項1に記載のプラズマ窒化処理方法。
  3. 前記マイクロ波のパワー密度が、前記マイクロ波透過板の面積あたり0.5W/cm以上2.5W/cm以下の範囲内である請求項1又は2に記載のプラズマ窒化処理方法。
JP2011080075A 2011-03-31 2011-03-31 プラズマ窒化処理方法 Ceased JP2012216631A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011080075A JP2012216631A (ja) 2011-03-31 2011-03-31 プラズマ窒化処理方法
CN2012100888451A CN102737977A (zh) 2011-03-31 2012-03-29 等离子体氮化处理方法
US13/436,006 US20120251737A1 (en) 2011-03-31 2012-03-30 Plasma-nitriding method
KR1020120033251A KR101364834B1 (ko) 2011-03-31 2012-03-30 플라즈마 질화 처리 방법
TW101111428A TW201304009A (zh) 2011-03-31 2012-03-30 等離子氮化處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080075A JP2012216631A (ja) 2011-03-31 2011-03-31 プラズマ窒化処理方法

Publications (1)

Publication Number Publication Date
JP2012216631A true JP2012216631A (ja) 2012-11-08

Family

ID=46927612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080075A Ceased JP2012216631A (ja) 2011-03-31 2011-03-31 プラズマ窒化処理方法

Country Status (5)

Country Link
US (1) US20120251737A1 (ja)
JP (1) JP2012216631A (ja)
KR (1) KR101364834B1 (ja)
CN (1) CN102737977A (ja)
TW (1) TW201304009A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016063232A (ja) * 2014-09-17 2016-04-25 エーエスエム アイピー ホールディング ビー.ブイ. SiNの堆積
US9343317B2 (en) 2013-07-01 2016-05-17 Micron Technology, Inc. Methods of forming silicon-containing dielectric materials and semiconductor device structures
KR20160115761A (ko) * 2015-03-26 2016-10-06 램 리써치 코포레이션 단속적 재생 플라즈마를 사용하는 ald 실리콘 옥사이드 표면 코팅을 사용하여 라디칼 재결합 최소화
US10553402B2 (en) 2018-04-27 2020-02-04 Tokyo Electron Limited Antenna device and plasma processing apparatus
JP2020534692A (ja) * 2017-09-21 2020-11-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高アスペクト比堆積
US10896811B2 (en) 2018-08-30 2021-01-19 Tokyo Electron Limited Antenna device, radiation method of electromagnetic waves, plasma processing apparatus, and plasma processing method
JP2021061414A (ja) * 2013-03-14 2021-04-15 エーエスエム アイピー ホールディング ビー.ブイ. 低温でのSiNの蒸着用Si前駆体
US11069522B2 (en) 2013-03-14 2021-07-20 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US11133181B2 (en) 2015-08-24 2021-09-28 Asm Ip Holding B.V. Formation of SiN thin films
JP2022079865A (ja) * 2020-11-17 2022-05-27 東京エレクトロン株式会社 基板処理方法および基板処理システム
US12163219B2 (en) 2017-12-15 2024-12-10 Lam Research Corporation Ex situ coating of chamber components for semiconductor processing

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8934282B2 (en) 2012-05-31 2015-01-13 Freescale Semiconductor, Inc. Circuitry including resistive random access memory storage cells and methods for forming same
JP5977617B2 (ja) * 2012-08-08 2016-08-24 東京エレクトロン株式会社 被処理体のマイクロ波処理方法及びマイクロ波処理装置
CN103426741A (zh) * 2013-08-05 2013-12-04 上海华力微电子有限公司 改善栅极侧墙间隔氮化物厚度均匀度的方法
CN103489768A (zh) * 2013-09-22 2014-01-01 上海华力微电子有限公司 Ono结构的栅极侧墙的制作方法
CN103606519B (zh) * 2013-10-23 2016-08-03 上海华力微电子有限公司 一种形成多层复合式接触孔刻蚀阻挡层的方法
CN103646864A (zh) * 2013-11-22 2014-03-19 上海华力微电子有限公司 一种提高栅极侧墙间隔层厚度均匀度的方法
KR102264542B1 (ko) * 2014-08-04 2021-06-14 삼성전자주식회사 반도체 장치 제조 방법
JP6492736B2 (ja) * 2015-02-17 2019-04-03 東京エレクトロン株式会社 基板処理装置及び基板処理方法並びに記憶媒体
US9911806B2 (en) * 2015-05-22 2018-03-06 Taiwan Semiconductor Manufacturing Company, Ltd. Solvent-based oxidation on germanium and III-V compound semiconductor materials
KR20180014207A (ko) 2015-06-26 2018-02-07 도쿄엘렉트론가부시키가이샤 기상 식각 시스템 및 방법
US9754779B1 (en) * 2016-02-19 2017-09-05 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
CN107502854A (zh) * 2017-08-08 2017-12-22 合肥正明机械有限公司 一种增强汽车冲压件使用特性的处理方法
JP2020056104A (ja) 2018-10-02 2020-04-09 エーエスエム アイピー ホールディング ビー.ブイ. 選択的パッシベーションおよび選択的堆積
US11217443B2 (en) * 2018-11-30 2022-01-04 Applied Materials, Inc. Sequential deposition and high frequency plasma treatment of deposited film on patterned and un-patterned substrates
KR20200143254A (ko) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조
US11401608B2 (en) * 2020-10-20 2022-08-02 Sky Tech Inc. Atomic layer deposition equipment and process method
KR20220081905A (ko) 2020-12-09 2022-06-16 에이에스엠 아이피 홀딩 비.브이. 실리콘 질화물 증착용 실리콘 전구체
JP7372271B2 (ja) * 2021-01-06 2023-10-31 日本碍子株式会社 半導体製造装置用部材及びその製法
CN116759297B (zh) * 2023-08-23 2023-11-03 上海陛通半导体能源科技股份有限公司 一种连续制备低温氮化硅薄膜中降低晶圆表面温度的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179710A (ja) * 1988-01-08 1989-07-17 Nec Corp 絶縁薄膜の製造方法
JPH07235535A (ja) * 1993-12-27 1995-09-05 Sony Corp 絶縁膜の形成方法
JP2000294550A (ja) * 1999-04-05 2000-10-20 Tokyo Electron Ltd 半導体製造方法及び半導体製造装置
US20030232491A1 (en) * 2002-06-18 2003-12-18 Fujitsu Limited Semiconductor device fabrication method
JP2006073758A (ja) * 2004-09-01 2006-03-16 Hitachi Kokusai Electric Inc 半導体装置の製造方法
US20070238316A1 (en) * 2006-04-06 2007-10-11 Elpida Memory Inc. Method for manufacturing a semiconductor device having a nitrogen-containing gate insulating film
US20080277715A1 (en) * 2000-12-28 2008-11-13 Tadahiro Ohmi Dielectric film and formation method thereof, semiconductor device, non-volatile semiconductor memory device, and fabrication method for a semiconductor device
US20090065849A1 (en) * 2007-08-31 2009-03-12 Kosei Noda Semiconductor device and method for manufacturing the same
JP2009224772A (ja) * 2008-02-19 2009-10-01 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法及び半導体デバイス製造装置及び半導体デバイス製造システム
JP2010118441A (ja) * 2008-11-12 2010-05-27 Hitachi Kokusai Electric Inc 半導体装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998033362A1 (en) * 1997-01-29 1998-07-30 Tadahiro Ohmi Plasma device
JP2002367990A (ja) * 2001-06-04 2002-12-20 Tokyo Electron Ltd 半導体装置の製造方法
JP2004111447A (ja) * 2002-09-13 2004-04-08 Handotai Rikougaku Kenkyu Center:Kk 半導体装置及びその製造方法
JP4477981B2 (ja) * 2004-10-07 2010-06-09 Okiセミコンダクタ株式会社 半導体装置の製造方法
JP4983025B2 (ja) * 2006-01-17 2012-07-25 富士通セミコンダクター株式会社 半導体装置の製造方法
JP2008192686A (ja) * 2007-02-01 2008-08-21 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
CN102789951A (zh) * 2007-07-11 2012-11-21 东京毅力科创株式会社 等离子体处理方法和等离子体处理装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01179710A (ja) * 1988-01-08 1989-07-17 Nec Corp 絶縁薄膜の製造方法
JPH07235535A (ja) * 1993-12-27 1995-09-05 Sony Corp 絶縁膜の形成方法
JP2000294550A (ja) * 1999-04-05 2000-10-20 Tokyo Electron Ltd 半導体製造方法及び半導体製造装置
US20080277715A1 (en) * 2000-12-28 2008-11-13 Tadahiro Ohmi Dielectric film and formation method thereof, semiconductor device, non-volatile semiconductor memory device, and fabrication method for a semiconductor device
US20030232491A1 (en) * 2002-06-18 2003-12-18 Fujitsu Limited Semiconductor device fabrication method
JP2006073758A (ja) * 2004-09-01 2006-03-16 Hitachi Kokusai Electric Inc 半導体装置の製造方法
US20070238316A1 (en) * 2006-04-06 2007-10-11 Elpida Memory Inc. Method for manufacturing a semiconductor device having a nitrogen-containing gate insulating film
JP2007281181A (ja) * 2006-04-06 2007-10-25 Elpida Memory Inc 半導体装置の製造方法
US20090065849A1 (en) * 2007-08-31 2009-03-12 Kosei Noda Semiconductor device and method for manufacturing the same
JP2009224772A (ja) * 2008-02-19 2009-10-01 Hitachi Kokusai Electric Inc 半導体デバイスの製造方法及び半導体デバイス製造装置及び半導体デバイス製造システム
JP2010118441A (ja) * 2008-11-12 2010-05-27 Hitachi Kokusai Electric Inc 半導体装置の製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069522B2 (en) 2013-03-14 2021-07-20 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
US11587783B2 (en) 2013-03-14 2023-02-21 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
JP2021061414A (ja) * 2013-03-14 2021-04-15 エーエスエム アイピー ホールディング ビー.ブイ. 低温でのSiNの蒸着用Si前駆体
US11289327B2 (en) 2013-03-14 2022-03-29 Asm Ip Holding B.V. Si precursors for deposition of SiN at low temperatures
JP7123115B2 (ja) 2013-03-14 2022-08-22 エーエスエム アイピー ホールディング ビー.ブイ. 低温でのSiNの蒸着用Si前駆体
US9343317B2 (en) 2013-07-01 2016-05-17 Micron Technology, Inc. Methods of forming silicon-containing dielectric materials and semiconductor device structures
US10468595B2 (en) 2013-07-01 2019-11-05 Micron Technology, Inc. Semiconductor device structures including silicon-containing dielectric materials
US10930846B2 (en) 2013-07-01 2021-02-23 Micron Technology, Inc. Methods of forming silicon-containing dielectric materials and methods of forming a semiconductor device comprising nitrogen radicals and oxygen-containing, silicon-containing, or carbon-containing precursors
US11367613B2 (en) 2014-09-17 2022-06-21 Asm Ip Holding B.V. Deposition of SiN
JP2016063232A (ja) * 2014-09-17 2016-04-25 エーエスエム アイピー ホールディング ビー.ブイ. SiNの堆積
KR20160115761A (ko) * 2015-03-26 2016-10-06 램 리써치 코포레이션 단속적 재생 플라즈마를 사용하는 ald 실리콘 옥사이드 표면 코팅을 사용하여 라디칼 재결합 최소화
KR102700250B1 (ko) * 2015-03-26 2024-08-28 램 리써치 코포레이션 단속적 재생 플라즈마를 사용하는 ald 실리콘 옥사이드 표면 코팅을 사용하여 라디칼 재결합 최소화
US11920239B2 (en) 2015-03-26 2024-03-05 Lam Research Corporation Minimizing radical recombination using ALD silicon oxide surface coating with intermittent restoration plasma
US11133181B2 (en) 2015-08-24 2021-09-28 Asm Ip Holding B.V. Formation of SiN thin films
JP2020534692A (ja) * 2017-09-21 2020-11-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高アスペクト比堆積
US12163219B2 (en) 2017-12-15 2024-12-10 Lam Research Corporation Ex situ coating of chamber components for semiconductor processing
US12227837B2 (en) 2017-12-15 2025-02-18 Lam Research Corporation Ex situ coating of chamber components for semiconductor processing
US10553402B2 (en) 2018-04-27 2020-02-04 Tokyo Electron Limited Antenna device and plasma processing apparatus
US10896811B2 (en) 2018-08-30 2021-01-19 Tokyo Electron Limited Antenna device, radiation method of electromagnetic waves, plasma processing apparatus, and plasma processing method
JP2022079865A (ja) * 2020-11-17 2022-05-27 東京エレクトロン株式会社 基板処理方法および基板処理システム
JP7565763B2 (ja) 2020-11-17 2024-10-11 東京エレクトロン株式会社 基板処理方法および基板処理システム

Also Published As

Publication number Publication date
TW201304009A (zh) 2013-01-16
US20120251737A1 (en) 2012-10-04
CN102737977A (zh) 2012-10-17
KR20120112234A (ko) 2012-10-11
KR101364834B1 (ko) 2014-02-19

Similar Documents

Publication Publication Date Title
KR101364834B1 (ko) 플라즈마 질화 처리 방법
US7960293B2 (en) Method for forming insulating film and method for manufacturing semiconductor device
JPWO2009099252A1 (ja) 絶縁膜のプラズマ改質処理方法
US8158535B2 (en) Method for forming insulating film and method for manufacturing semiconductor device
JPWO2006129643A1 (ja) プラズマ処理装置およびプラズマ処理方法
US20060269694A1 (en) Plasma processing method
US20100323529A1 (en) Method for forming insulating film and method for manufacturing semiconductor device
US8026187B2 (en) Method of forming silicon oxide film and method of production of semiconductor memory device using this method
US20120252188A1 (en) Plasma processing method and device isolation method
US20130022760A1 (en) Plasma nitriding method
JP2017084894A (ja) ボロン窒化膜の形成方法および半導体装置の製造方法
US20080233764A1 (en) Formation of Gate Insulation Film
JP2012079785A (ja) 絶縁膜の改質方法
CN102737987A (zh) 等离子体氮化处理方法和装置、及半导体装置的制造方法
JP5374749B2 (ja) 絶縁膜の形成方法、コンピュータ読み取り可能な記憶媒体および処理システム
JP5374748B2 (ja) 絶縁膜の形成方法、コンピュータ読み取り可能な記憶媒体および処理システム
TWI873281B (zh) 用於可流動間隙填充膜的多步驟處理
JP2005322900A (ja) ゲート絶縁膜の形成方法ならびにコンピュータ読取可能な記憶媒体およびコンピュータプログラム
JP2009267391A (ja) 窒化珪素膜の製造方法、窒化珪素膜積層体の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
JP2009049217A (ja) 半導体デバイスの製造方法。
JP2009246210A (ja) 窒化珪素膜の製造方法、窒化珪素膜積層体の製造方法、コンピュータ読み取り可能な記憶媒体およびプラズマcvd装置
JP2008182194A (ja) 半導体装置の製造方法
US20080206968A1 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20150626