[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012216669A - METHOD OF FORMING FILM-LIKE BODY CONTAINING π ELECTRON CONJUGATED COMPOUND HAVING AROMATIC RING, AND METHOD OF PRODUCING π ELECTRON CONJUGATED COMPOUND - Google Patents

METHOD OF FORMING FILM-LIKE BODY CONTAINING π ELECTRON CONJUGATED COMPOUND HAVING AROMATIC RING, AND METHOD OF PRODUCING π ELECTRON CONJUGATED COMPOUND Download PDF

Info

Publication number
JP2012216669A
JP2012216669A JP2011080630A JP2011080630A JP2012216669A JP 2012216669 A JP2012216669 A JP 2012216669A JP 2011080630 A JP2011080630 A JP 2011080630A JP 2011080630 A JP2011080630 A JP 2011080630A JP 2012216669 A JP2012216669 A JP 2012216669A
Authority
JP
Japan
Prior art keywords
compound
group
electron conjugated
substituent
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011080630A
Other languages
Japanese (ja)
Other versions
JP5807359B2 (en
Inventor
Daisuke Goto
大輔 後藤
Toshiya Kosaka
俊也 匂坂
Satoshi Yamamoto
諭 山本
Takuji Kato
拓司 加藤
Masahito Shinoda
雅人 篠田
Masataka Mori
匡貴 毛利
Keiichiro Yutani
圭一郎 油谷
Takanori Tano
隆徳 田野
Shinji Matsumoto
真二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2011080630A priority Critical patent/JP5807359B2/en
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to KR1020137000560A priority patent/KR20130021439A/en
Priority to PCT/JP2011/063999 priority patent/WO2011158953A1/en
Priority to TW100120772A priority patent/TWI492950B/en
Priority to CN2011800396200A priority patent/CN103080068A/en
Priority to EP11795855.3A priority patent/EP2582655B1/en
Priority to US13/704,480 priority patent/US20130095605A1/en
Publication of JP2012216669A publication Critical patent/JP2012216669A/en
Application granted granted Critical
Publication of JP5807359B2 publication Critical patent/JP5807359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of obtaining a π electron conjugated compound by imparting low energy, and an efficient method of forming a continuous film of a slightly-soluble π electron conjugated compound utilizing that technology, and to apply the thin film to an organic electronic device.SOLUTION: In the production method of a film-like body, a film-like body obtaining a π electron conjugated compound represented by (Ia) is produced by desorbing a desorption substituent represented by formula (II) by means of a coating film formed by coating a substrate with a coating liquid of solvent containing a π electron conjugated compound precursor (I). (In the formulae (I), (Ia), (II), X and Y represent a hydrogen atom or a desorption substituent. Q-Qare a hydrogen atom, a halogen atom, or a univalent organic group, independently, Qand Qare a hydrogen atom, a halogen atom, or a univalent organic group other than the desorption substituent. Q-Qmay form a ring by bonding the adjoining groups).

Description

本発明は合成が簡便であり有機溶媒に対して溶解性に富み、従来よりも更に低温のエネルギー付与により熱変換可能なシクロヘキサジエン環を含むπ電子共役系化合物前駆体から、特定の置換基を脱離して芳香環(例えばベンゼン環)を含むπ電子共役系化合物を含有する膜状体の製法、及び該化合物を簡便かつ高収率で製造する方法に関し、有機エレクトロニクス分野での応用、例えば、有機エレクトロルミセッセンス(EL)および有機半導体、有機太陽電池などの有機電子デバイス等の製造において有用であり、また有機顔料、有機色素の製膜の製造において有用である。   The present invention provides a specific substituent from a π-electron conjugated compound precursor containing a cyclohexadiene ring that is easy to synthesize and has a high solubility in organic solvents, and can be thermally converted by applying energy at a lower temperature than in the past. The present invention relates to a method for producing a film-like body containing a π-electron conjugated compound containing an aromatic ring (for example, a benzene ring), and a method for producing the compound in a simple and high yield. It is useful in the manufacture of organic electroluminescence (EL) and organic electronic devices such as organic semiconductors and organic solar cells, and is also useful in the production of organic pigments and organic dyes.

二重結合と一重結合が交互に並んだ形の部位を有するπ電子共役系化合物は高度に拡張されたπ電子系を有するため、ホール輸送、電子輸送性に優れ、例えば、エレクトロルミセッセンス材料、有機半導体材料(例えば特許文献1の特開平5−055568号公報、特許文献2のWO2006−077888号公報および非特許文献1のAppl.Phys.Lett.72,p1854(1998)、非特許文献2のJ.Am.Chem.Soc.128,p12604(2006)参照)や、有機色素、有機顔料等に広く応用されている。このようにπ電子共役系材料が広く用いられる中で、障害となるのはπ電子共役系化合物の多くは、平面性が高く剛直であるものが多いため、分子間の相互作用が非常に強固であり、水や有機溶媒への溶解性が乏しいことが挙げられる。例えば、有機顔料に関しては顔料の凝集にともない分散が不安定となる。またエレクトロルミネッセンス材料や有機半導体材料を例に取ると、難溶であるため溶液プロセスの適用が難しく、真空蒸着等の気相製膜が必要になるなどの問題があり、製造コスト、製造プロセスが煩雑になるといった問題があげられる。より大面積、高効率を考えると、スピンコート塗布、ブレードコート、グラビア印刷、インクジェット塗布、ディプコーティング塗布などの材料をあらかじめ溶解させることによる塗布によるウェットプロセスへの適応性が求められている。ただし、分子間の相互作用が非常に強固で、分子同士の隣接化、配列化や、凝集乃至結晶化し易いことは、伝導性に寄与するものであるので、概して、塗工製膜容易性と、得られた膜の伝導性とは相容れない場合が多い。この点は、当該技術を難しくしている1つの要因でもある。   A π-electron conjugated compound having a site in which double bonds and single bonds are alternately arranged has a highly expanded π-electron system, so that it has excellent hole transport and electron transport properties, for example, an electroluminescent material. Organic semiconductor materials (for example, Japanese Patent Application Laid-Open No. 5-05568 of Patent Document 1, WO 2006-077788 of Patent Document 2, and Appl. Phys. Lett. 72, p 1854 (1998) of Non-Patent Document 1, Non-Patent Document 2 J. Am. Chem. Soc. 128, p12604 (2006)), organic dyes, organic pigments, and the like. As π-electron conjugated materials are widely used in this way, the obstacle is that many of the π-electron conjugated compounds are highly planar and rigid, so the interaction between molecules is extremely strong. In other words, the solubility in water and organic solvents is poor. For example, regarding an organic pigment, dispersion becomes unstable as the pigment aggregates. Taking electroluminescent materials and organic semiconductor materials as an example, they are difficult to apply because they are difficult to dissolve, and there are problems such as the need for vapor deposition such as vacuum deposition. The problem is complicated. Considering a larger area and higher efficiency, there is a demand for adaptability to a wet process by coating by dissolving materials such as spin coat coating, blade coating, gravure printing, inkjet coating, and dip coating in advance. However, the interaction between molecules is very strong, and the adjacency and arrangement between molecules and the tendency to aggregation or crystallization contribute to conductivity. In many cases, the conductivity of the obtained film is incompatible. This is one factor that makes the technology difficult.

これに対して、π電子共役系化合物を含む有機化合物を可溶化するような反応性置換基を導入した前駆体に対して、外部刺激を与えることによって置換基を脱離し、目的の化合物を得る方法が提案されている(例えば、特許文献3の特開平7−188234号公報、特許文献4の特開2008−226959号公報、非特許文献3のNature,.388,p131,(1997)参照)。この方法は、例えば、顔料分子中のアミノ基やアルコール性又はフェノール性ヒドロキシ基がt−ブトキシカルボニル基(tBoc基)で修飾された構造の顔料前駆体について、加熱等することでtBoc基を脱離させるものである。しかし、この方法は置換基が窒素原子もしくは酸素原子に連結される必要があるため化合物に制限があった。さらに前駆体の保存性の観点からも改善が求められていた。   On the other hand, by applying an external stimulus to a precursor into which a reactive substituent that solubilizes an organic compound containing a π-electron conjugated compound is introduced, the substituent is eliminated to obtain the target compound. Methods have been proposed (see, for example, Japanese Patent Application Laid-Open No. 7-188234 of Patent Document 3, Japanese Patent Application Laid-Open No. 2008-226959 of Patent Document 4, Nature, .388, p131, (1997) of Non-Patent Document 3). . In this method, for example, the tBoc group is removed by heating the pigment precursor having a structure in which an amino group or an alcoholic or phenolic hydroxy group in the pigment molecule is modified with a t-butoxycarbonyl group (tBoc group). It is something to be released. However, this method has limited compounds because the substituents need to be linked to nitrogen or oxygen atoms. Furthermore, the improvement was calculated | required also from the viewpoint of the preservability of a precursor.

また、近年レトロディールスアルダー反応を利用して、溶媒可溶性の高い嵩高い置換基を有する前駆体から外部刺激を与えて可溶性付与基を脱離させることによって、ペンタセンやポルフィリン系化合物、フタロシアニン系化合物へと変換する方法が精力的に研究されている。(例えば、特許文献5の特開2007−224019号公報、特許文献6の特開2008−270843号公報、特許文献7の特開2009−188386号公報、特許文献8の特開2009−215547号公報、特許文献9の特開2009−239293号公報、特許文献10の特開2009−28394号公報、非特許文献4のAdv.Mater.,11,p480(1999)、非特許文献5のJ.Appl.Phys.100,p034502(2006)、非特許文献6のAppl.Phys.Lett.84,12,p2085(2004)、非特許文献7のJ.Am.Chem.Soc.126,p1596(2004)参照)。
しかし、これらの例のうちペンタセン前駆体からはテトラクロロベンゼン分子等が脱離するが、テトラクロロベンゼンは、沸点が高く反応系外に取り除くことが難しいことに加え、その毒性が懸念される。また、ポルフィリン、フタロシアニンについてはいずれも煩雑な合成を必要とするため適用範囲が狭く、より簡便に合成可能な置換基の開発が必要とされている。
In recent years, by utilizing the retro Diels-Alder reaction, by applying external stimuli from a precursor having a bulky substituent having high solvent solubility to remove the solubility-imparting group, pentacene, porphyrin compounds, and phthalocyanine compounds can be obtained. The method of conversion is energetically studied. (For example, Japanese Patent Application Laid-Open No. 2007-224019 in Patent Document 5, Japanese Patent Application Laid-Open No. 2008-270843 in Patent Document 6, Japanese Patent Application Laid-Open No. 2009-188386 in Japanese Patent Application Laid-Open No. JP-A-2009-239293 of Patent Document 9, JP-A 2009-28394 of Patent Document 10, Adv. Mater., 11, p480 (1999) of Non-Patent Document 4, and J. Appl of Non-Patent Document 5. Phys.100, p034502 (2006), Appl.Phys.Lett.84, 12, p2085 (2004) of Non-Patent Document 6, and J.Am.Chem.Soc.126, p1596 (2004) of Non-Patent Document 7. ).
However, among these examples, tetrachlorobenzene molecules and the like are eliminated from the pentacene precursor, but tetrachlorobenzene has a high boiling point and is difficult to remove out of the reaction system, and its toxicity is a concern. Further, both porphyrins and phthalocyanines require complicated synthesis, so the application range is narrow, and the development of substituents that can be synthesized more simply is required.

またその他にスルホン酸エステル系置換基を有し溶媒溶解性の高い前駆体に外部刺激を与えることで、置換基を脱離し、水素原子に置き換えることで、フタロシアニンへと変換する方法が提案されている(例えば特許文献11の特開2009−84555号公報、特許文献12の特開2009−88483号公報)。
しかし、この方法はスルホン酸エステルの極性が高いため非極性の有機溶媒への溶解性が十分ではなく、前駆体からの変換に要する温度も250℃〜300℃と比較的高いことが問題であった。
In addition, a method has been proposed in which a precursor having a sulfonate ester-based substituent group is externally stimulated to eliminate the substituent group and replace it with a hydrogen atom to convert it into phthalocyanine. (For example, Japanese Patent Application Laid-Open No. 2009-84555 of Patent Document 11 and Japanese Patent Application Laid-Open No. 2009-88483 of Patent Document 12).
However, this method has a problem that the sulfonic acid ester has a high polarity, so that the solubility in a nonpolar organic solvent is not sufficient, and the temperature required for the conversion from the precursor is relatively high at 250 to 300 ° C. It was.

また、オリゴチオフェンの分子末端β位にアルキル鎖を有するカルボン酸エステルを導入することで可溶化し、これに熱を加えて脱離させることでオレフィン置換オリゴチオフェンやオレフィン置換[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェンを得る方法が提案されている(例えば、特許文献13の特開2006−352143号公報、特許文献14の特開2009−275032号公報、前記非特許文献7のJ.Am.Chem.Soc.126,p1596(2004))。この方法は150℃〜250℃程度の加熱で脱離が起こるが、変換後の分子末端にオレフィン基(ビニル基、プロペニル基等)が生成し、これが熱や光によりシスートランスの異性化を伴うため、材料の純度の低下および結晶性が損なわれるという問題があった。また、反応性の高い末端オレフィン基の存在は、酸素や水分に対する安定性が低下すること、加えて高温下においてオレフィン基同士が熱重合反応を起こしてしまうという問題があった。   In addition, olefinic oligothiophene and olefin substituted [1] benzothieno [3] are obtained by solubilizing by introducing a carboxylate having an alkyl chain at the molecular terminal β-position of oligothiophene and removing it by applying heat. , 2-b] [1] benzothiophene has been proposed (for example, Japanese Patent Application Laid-Open No. 2006-352143 in Patent Document 13, Japanese Patent Application Laid-Open No. 2009-275032 in Patent Document 14, Non-Patent Document 7). J. Am. Chem. Soc. 126, p 1596 (2004)). In this method, desorption occurs by heating at about 150 ° C. to 250 ° C., but an olefin group (vinyl group, propenyl group, etc.) is generated at the molecular end after conversion, and this is accompanied by cis-trans isomerization by heat or light. Therefore, there is a problem that the purity of the material is lowered and the crystallinity is impaired. In addition, the presence of highly reactive terminal olefin groups has a problem in that stability to oxygen and moisture is lowered, and in addition, olefin groups cause a thermal polymerization reaction at high temperatures.

上記した従来化合物においては前駆体の溶解性、脱離成分の安全性、変換温度、変換後の化合物の安定性に問題が有り、また合成上においても所望の中間体を得ることが難しかった。
本発明者らは、前記課題に対して、脱離性基としてアシルオキシ基(具体的には、カルボン酸エステルを)構造を有するシクロヘキセン骨格をベースとしたπ電子共役系化合物前駆体(前駆体)とすれば、脱離後の構造が前述(オレフィン置換オリゴチオフェンやオレフィン置換[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン)のようなオレフィン基ではなく、ベンゼン環となるためにシスートランスの異性化が生じないという点で上記課題を解決できることを見出し、既に特許文献15の特願2009−209911号明細書において開示している。しかし、エネルギー付与によって前駆体から脱離性基が脱離する温度は典型的には150〜250℃程度であるため、一部のプラスティックなど耐熱性の低い基板を用いる際には依然として課題があった。
本発明は上記従来技術の現状に鑑みてなされたものであり、より合成が簡便で有機溶媒に対する高い溶解性を有し、従来よりも低いエネルギー(以降、「外部刺激」と称することがある。)で脱離性基の脱離反応が可能な新規なπ電子共役化合物前駆体を用い、該前駆体に対して、熱などの外部刺激を加えることで、脱離成分を生成しつつ、化学的に不安定な末端オレフィン基を生成することなく、ベンゼン環を含むπ電子共役系化合物を得る製造方法の提供を目的とする。また、この技術を利用し、難溶性π電子共役系化合物の連続した薄膜の効率的な製造方法の提供、加えて該薄膜の有機電子デバイス(特に有機薄膜トランジスタ)への応用を目的とする。
The above-mentioned conventional compounds have problems in the solubility of the precursor, the safety of the elimination component, the conversion temperature, and the stability of the compound after the conversion, and it is difficult to obtain a desired intermediate in the synthesis.
In order to solve the above problems, the present inventors have proposed a π-electron conjugated compound precursor (precursor) based on a cyclohexene skeleton having an acyloxy group (specifically, a carboxylic acid ester) structure as a leaving group. Then, the structure after elimination is not an olefin group as described above (olefin-substituted oligothiophene or olefin-substituted [1] benzothieno [3,2-b] [1] benzothiophene) but a benzene ring. It has been found that the above problem can be solved in that cis-trans isomerization does not occur, and has already been disclosed in Japanese Patent Application No. 2009-209911 of Patent Document 15. However, the temperature at which the detachable group is desorbed from the precursor by applying energy is typically about 150 to 250 ° C. Therefore, there are still problems when using a substrate having low heat resistance such as some plastics. It was.
The present invention has been made in view of the current state of the prior art described above. It is easier to synthesize, has higher solubility in organic solvents, and has lower energy than before (hereinafter referred to as “external stimulus”). ) Using a novel π-electron conjugated compound precursor capable of leaving the leaving group, and applying an external stimulus such as heat to the precursor to produce a leaving component, An object of the present invention is to provide a production method for obtaining a π-electron conjugated compound containing a benzene ring without generating a terminal olefin group which is unstable. Another object of the present invention is to provide an efficient method for producing a continuous thin film of a sparingly soluble π-electron conjugated compound by using this technique, and to apply the thin film to an organic electronic device (especially an organic thin film transistor).

本発明者らは鋭意検討した結果、以下の〔1〕〜〔14〕に記載する発明によって上記課題が解決されることを見出し本発明に至った。以下、本発明について具体的に説明する。   As a result of intensive studies, the present inventors have found that the above problems can be solved by the inventions described in the following [1] to [14], and have reached the present invention. Hereinafter, the present invention will be specifically described.

〔1〕π電子共役系化合物前駆体A−(B)mを含む溶媒の塗工液を基材に塗布して形成された塗工膜より、下記一般式(II)で示される脱離性置換基を脱離させA−(C)mで示されるπ電子共役系化合物を含有する膜状体を生成することを特徴とする膜状体の製造方法。 [1] A releasability represented by the following general formula (II) from a coating film formed by applying a coating liquid of a solvent containing a π-electron conjugated compound precursor A- (B) m to a substrate. A method for producing a film-like body, comprising producing a film-like body containing a π-electron conjugated compound represented by A- (C) m by removing a substituent.

Figure 2012216669
(ここでAはπ電子共役系置換基であり、Bは上記一般式(I)で表される構造を少なくとも部分構造として有している溶媒可溶性置換基である。mは自然数である。ただし、Bは上記一般式(I)中、Q乃至Q上の任意の原子と、A上の任意の原子とで共有結合を介して連結しているか、A上の任意の原子と縮環している。Cは上記一般式(Ia)で表される構造を少なくとも部分構造として有している。
[式(I)、(Ia)、(II)中、XおよびYは水素原子もしくは脱離性置換基を表し、該XおよびYのうち一方は脱離性置換基であり、他方は水素原子である。Q乃至Qはそれぞれ独立して水素原子、ハロゲン原子または、1価の有機基であり、QとQは水素原子、ハロゲン原子または、前記脱離性置換基以外の一価の有機基である。Q乃至Qは隣り合った基同士でそれぞれ結合して環を形成していてもよい。]
Figure 2012216669
(Here, A is a π-electron conjugated substituent, and B is a solvent-soluble substituent having at least a partial structure of the structure represented by the general formula (I). M is a natural number. , B is linked to any atom on Q 1 to Q 6 and any atom on A in the above general formula (I) via a covalent bond, or is fused with any atom on A C has at least a partial structure of the structure represented by the above general formula (Ia).
[In the formulas (I), (Ia) and (II), X and Y represent a hydrogen atom or a detachable substituent, and one of the X and Y is a detachable substituent, and the other is a hydrogen atom. It is. Q 2 to Q 5 are each independently a hydrogen atom, a halogen atom or a monovalent organic group, and Q 1 and Q 6 are a monovalent organic other than a hydrogen atom, a halogen atom or the above-mentioned leaving substituent. It is a group. Q 1 to Q 6 may be bonded to each other between adjacent groups to form a ring. ]

〔2〕前記、脱離性置換基XまたはYが、置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、該XおよびYのうち一方は置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、他方は水素原子であることを特徴とする〔1〕に記載の膜状体の製造方法。
〔3〕前記塗工液の塗布が、インクジェット塗布、スピンコート法、溶液キャスト法、ディップコーティング法からなる群から選択される方法により行われることを特徴とする〔1〕又は〔2〕に記載の膜状体の製造方法。
〔4〕前記置換基Aが、(i)1つ以上の芳香族炭化水素環および芳香族ヘテロ環、若しくは2つ以上の前記環が縮環された化合物、及び、(ii)前記(i)の環同士が共有結合を介して連結された化合物、からなる群から少なくとも一つ以上選択されるπ電子共役系化合物であることを特徴とする〔1〕乃至〔3〕のいずれかに記載の膜状体の製造方法。
〔5〕前記化合物A−(B)mより脱離する一般式(II)で示される脱離成分がハロゲン化水素または置換されていても良いカルボン酸または置換されていても良いアルコール、二酸化炭素のいずれかを含むことを特徴とする〔1〕乃至〔4〕のいずれかに記載の膜状体の製造方法。
〔6〕前記化合物A−(B)mが溶媒可溶性であり、前記脱離性置換基の脱離により生成する前記化合物A−(C)mが溶媒不溶性であることを特徴とする〔1〕乃至〔5〕のいずれかに記載の膜状体の製造方法。
〔7〕π電子共役系化合物前駆体A−(B)mより、下記一般式(II)で示される脱離性置換基を脱離させA−(C)mで示されるπ電子共役系化合物を生成することを特徴とするπ電子共役系化合物の製造方法。
[2] The detachable substituent X or Y is an [ether group or acyloxy group] having 1 or more carbon atoms which may be substituted, and one of X and Y may be substituted. [1] The method for producing a film-like body according to [1], which is an [ether group or acyloxy group] having 1 or more carbon atoms and the other is a hydrogen atom.
[3] The application of the coating liquid is performed by a method selected from the group consisting of inkjet coating, spin coating, solution casting, and dip coating, [1] or [2] A method for producing a film-like body.
[4] The substituent A is (i) one or more aromatic hydrocarbon rings and aromatic heterocycles, or a compound having two or more condensed rings, and (ii) the above (i) The ring according to any one of [1] to [3], which is a π-electron conjugated compound selected from the group consisting of compounds in which the rings are connected via a covalent bond A method for producing a film-like body.
[5] The elimination component represented by the general formula (II) desorbed from the compound A- (B) m is a hydrogen halide, an optionally substituted carboxylic acid, an optionally substituted alcohol, or carbon dioxide. Any one of the above, The method for producing a film-like body according to any one of [1] to [4].
[6] The compound A- (B) m is solvent-soluble, and the compound A- (C) m produced by elimination of the detachable substituent is solvent-insoluble [1] Thru | or the manufacturing method of the film-like body in any one of [5].
[7] A π-electron conjugated compound represented by A- (C) m by detaching a detachable substituent represented by the following general formula (II) from the π-electron conjugated compound precursor A- (B) m A method for producing a π-electron conjugated compound, characterized in that

Figure 2012216669
(ここでAはπ電子共役系置換基であり、Bは上記一般式(I)で表される構造を少なくとも部分構造として有している溶媒可溶性置換基である。mは自然数である。ただし、Bは上記一般式(I)中、Q乃至Q上の任意の原子と、A上の任意の原子とで共有結合を介して連結しているか、A上の任意の原子と縮環している。Cは上記一般式(Ia)で表される構造を少なくとも部分構造として有している。
[式(I)、(Ia)、(II)中、XおよびYは水素原子もしくは脱離性置換基を表し、該XおよびYのうち一方は脱離性置換基であり、他方は水素原子である。Q乃至Qはそれぞれ独立して水素原子、ハロゲン原子または、1価の有機基であり、QとQは水素原子、ハロゲン原子または、前記脱離性置換基以外の一価の有機基である。Q乃至Qは隣り合った基同士でそれぞれ結合して環を形成していてもよい。]
Figure 2012216669
(Here, A is a π-electron conjugated substituent, and B is a solvent-soluble substituent having at least a partial structure of the structure represented by the general formula (I). M is a natural number. , B is linked to any atom on Q 1 to Q 6 and any atom on A in the above general formula (I) via a covalent bond, or is fused with any atom on A C has at least a partial structure of the structure represented by the above general formula (Ia).
[In the formulas (I), (Ia) and (II), X and Y represent a hydrogen atom or a detachable substituent, and one of the X and Y is a detachable substituent, and the other is a hydrogen atom. It is. Q 2 to Q 5 are each independently a hydrogen atom, a halogen atom or a monovalent organic group, and Q 1 and Q 6 are a monovalent organic other than a hydrogen atom, a halogen atom or the above-mentioned leaving substituent. It is a group. Q 1 to Q 6 may be bonded to each other between adjacent groups to form a ring. ]

〔8〕前記、脱離性置換基XまたはYが、置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、該XおよびYのうち一方は置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、他方は水素原子であることを特徴とする〔7〕に記載のπ電子共役系化合物の製造方法。
〔9〕前記置換基Aが、(i)1つ以上の芳香族炭化水素環および芳香族ヘテロ環、若しくは2つ以上の前記環が縮環された化合物、及び、(ii)前記(i)の環同士が共有結合を介して連結された化合物、からなる群から少なくとも一つ以上選択されるπ電子共役系化合物であることを特徴とする〔7〕又は〔8〕に記載のπ電子共役系化合物の製造方法。
〔10〕前記化合物A−(B)mが溶媒可溶性であり、前記脱離性置換基の脱離により生成する前記化合物A−(C)mが溶媒不溶性であることを特徴とする〔7〕乃至〔9〕のいずれかに記載のπ電子共役系化合物の製造方法。
〔11〕〔7〕乃至〔10〕のいずれかに記載の方法で製造されたものであることを特徴とする前記π電子共役化合物系化合物。
[8] The leaving substituent X or Y is an optionally substituted [ether group or acyloxy group] having 1 or more carbon atoms, and one of X and Y may be substituted. The method for producing a π-electron conjugated compound according to [7], which is an [ether group or acyloxy group] having 1 or more carbon atoms, and the other is a hydrogen atom.
[9] The substituent A is (i) one or more aromatic hydrocarbon rings and aromatic heterocycles, or a compound in which two or more of the rings are condensed, and (ii) the above (i) The π-electron conjugate according to [7] or [8], characterized in that it is a π-electron conjugated compound selected from the group consisting of compounds in which the rings are linked via a covalent bond Of the production of the compound.
[10] The compound A- (B) m is solvent-soluble, and the compound A- (C) m produced by elimination of the detachable substituent is solvent-insoluble [7] Thru | or the manufacturing method of the pi-electron conjugated compound in any one of [9].
[11] The π-electron conjugated compound compound produced by the method according to any one of [7] to [10].

本発明の製造方法によれば、新規な溶媒可溶性のπ電子共役系化合物の前駆体を原料として用いるため、溶液プロセスに好適に対応することが可能であり、加えて熱、光などの外部刺激を与えることにより、該前駆体置換基脱離反応により溶剤可溶性を付与している置換基を脱離させることで、不安定な末端置換基が存在することなく、ベンゼン環を含むπ電子共役系化合物を簡便かつ高収率で製造することができる。加えて、本発明のπ電子共役系化合物前駆体の置換基脱離反応は従来のπ電子共役系化合物前駆体(例えば、シクロヘキセン骨格をベースとしたπ電子共役系化合物前駆体)よりも低いエネルギー(低温)で行うことが可能である。また、π電子共役系化合物の前駆体と溶媒を含む溶液を塗布して有機膜とした後、置換基脱離反応を行うことによりπ電子共役系化合物(有機半導体を含む)からなる有機膜を得ることができる。このような有機膜(有機半導体膜を含む)を用いることにより有機電子デバイス(特に有機薄膜トランジスタ)を提供することが可能である。   According to the production method of the present invention, since a precursor of a novel solvent-soluble π-electron conjugated compound is used as a raw material, it is possible to suitably cope with a solution process, and in addition, external stimuli such as heat and light Π-electron conjugated system containing a benzene ring without the presence of unstable terminal substituents by eliminating the solvent-soluble substituents by the precursor substituent elimination reaction The compound can be produced simply and with high yield. In addition, the substituent elimination reaction of the π-electron conjugated compound precursor of the present invention has a lower energy than conventional π-electron conjugated compound precursors (for example, π-electron conjugated compound precursors based on a cyclohexene skeleton). (Low temperature). Moreover, after applying a solution containing a precursor of a π-electron conjugated compound and a solvent to form an organic film, an organic film made of a π-electron conjugated compound (including an organic semiconductor) is obtained by performing a substituent elimination reaction. Obtainable. By using such an organic film (including an organic semiconductor film), an organic electronic device (especially an organic thin film transistor) can be provided.

本発明に係わる有機薄膜トランジスタの構造例を示す概略図である。It is the schematic which shows the structural example of the organic thin-film transistor concerning this invention. 表示画像素子を駆動するためのトランジスタアレイの一例の断面図である。It is sectional drawing of an example of the transistor array for driving a display image element. 表示画像素子を駆動するためのトランジスタアレイの一例を表す図である。It is a figure showing an example of the transistor array for driving a display image element. 実施例26において化合物(実1)の熱分解挙動および相変化挙動を観察した結果を示す図(TG−DTA)である。In Example 26, it is a figure (TG-DTA) which shows the result of having observed the thermal decomposition behavior and phase change behavior of the compound (Ex. 1). 実施例27において化合物(実2)の熱分解挙動および相変化挙動を観察した結果を示す図(TG−DTA)である。In Example 27, it is a figure (TG-DTA) which shows the result of having observed the thermal decomposition behavior and phase change behavior of a compound (exact 2). 実施例28において本発明の化合物(実1)または化合物(実2)を用いて作製した薄膜の偏光顕微鏡写真である。4 is a polarizing microscope photograph of a thin film produced using the compound (Act 1) or the compound (Act 2) of the present invention in Example 28. 実施例29で作製した本発明の有機薄膜トランジスタ(FET素子)の電流―電圧(I−V)特性図である。It is the electric current-voltage (IV) characteristic view of the organic thin-film transistor (FET element) of this invention produced in Example 29.

以下、本発明について実施の形態を示して、説明するが、本発明は以下の実施形態に限定されるものではなく、その要旨を逸脱しない範囲において任意に変更して実施することができる。   Hereinafter, the present invention will be described with reference to embodiments. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified and implemented without departing from the gist thereof.

[π電子共役系化合物前駆体および本発明の製造方法により得られる膜状体、並びにπ電子共役系化合物]
本発明の膜状体、並びにπ電子共役系化合物の製造方法においては、特定の溶媒可溶性置換基を有する「π電子共役系化合物前駆体」に対して、外部刺激を加え特定の置換基を脱離させることにより、目的とする膜状体、並びにπ電子共役系化合物を製造することが特徴である。前記「π電子共役系化合物前駆体」はA−(B)mで表される。
ここでAはπ電子共役系置換基であり、Bは上記一般式(I)で表される構造を少なくとも部分構造として有している溶媒可溶性置換基である。mは自然数である。ただし、Bは上記一般式(I)中、Q乃至Qの位置において、A上の任意の原子と共有結合を介して連結しているか、A上の任意の原子と縮環している。これに外部刺激を加えることにより、溶媒可溶性置換基Bは特定の脱離性置換基XおよびをX−Y(XとYが結合した分子)の形で脱離し、代わりに一部がベンゼン環に置き換わった一般式(Ia)で示される置換基Cへと変換されるとともに、π電子共役系化合物A−(C)mで表される化合物膜状体、並びに該化合物が得られる。
[Π-Electron Conjugated Compound Precursor, Film-like Material Obtained by the Production Method of the Present Invention, and π-Electron Conjugated Compound]
In the method for producing a film-like body and a π-electron conjugated compound of the present invention, an external stimulus is applied to the “π-electron conjugated compound precursor” having a specific solvent-soluble substituent to remove the specific substituent. It is characterized by producing the target film-like body and the π-electron conjugated compound by separating them. The “π-electron conjugated compound precursor” is represented by A- (B) m.
Here, A is a π-electron conjugated substituent, and B is a solvent-soluble substituent having at least a partial structure of the structure represented by the general formula (I). m is a natural number. However, B is linked to any atom on A through a covalent bond at the positions of Q 1 to Q 6 in the above general formula (I), or is condensed with any atom on A. . By applying an external stimulus to this, the solvent-soluble substituent B leaves the specific leaving substituent X and X in the form of XY (a molecule in which X and Y are bonded), and instead a part thereof is a benzene ring. Is converted to the substituent C represented by the general formula (Ia) replaced with the compound film-like product represented by the π-electron conjugated compound A- (C) m, and the compound.

Figure 2012216669
(Cは上記一般式(Ia)で表される構造を少なくとも部分構造として有している。
[式(I)、(Ia)、(II)中、XおよびYは水素原子もしくは脱離性置換基を表し、該XおよびYのうち一方は脱離性置換基であり、他方は水素原子である。Q乃至Qはそれぞれ独立して水素原子、ハロゲン原子または、1価の有機基であり、QとQは水素原子、ハロゲン原子または、前記脱離性置換基以外の一価の有機基である。Q乃至Qは隣り合った基同士でそれぞれ結合して環を形成していてもよい。]
Figure 2012216669
(C has at least a partial structure of the structure represented by the general formula (Ia).
[In the formulas (I), (Ia) and (II), X and Y represent a hydrogen atom or a detachable substituent, and one of the X and Y is a detachable substituent, and the other is a hydrogen atom. It is. Q 2 to Q 5 are each independently a hydrogen atom, a halogen atom or a monovalent organic group, and Q 1 and Q 6 are a monovalent organic other than a hydrogen atom, a halogen atom or the above-mentioned leaving substituent. It is a group. Q 1 to Q 6 may be bonded to each other between adjacent groups to form a ring. ]

まず、溶媒可溶性置換基Bと脱離変換後の置換基Cについて説明する。   First, the solvent-soluble substituent B and the substituent C after elimination conversion will be described.

前記式(I)、(II)においてXおよびYで表される脱離性置換基は、水素原子または置換されていてもよい炭素数1以上のエーテル基またはアシルオキシ基であり、XおよびYのうち少なくとも一方は、脱離性置換基即ち、置換されていてもよい炭素数1以上のエーテル基またはアシルオキシ基などであり、他方は水素原子である。
上記、置換されていても良い炭素数1以上のエーテル基としては、炭素数1以上の置換されていても良い直鎖または環状の脂肪族アルコールおよび炭素数4以上の芳香族アルコール等、アルコール由来のエーテル基が挙げられる。また、前記エーテル中の酸素原子が硫黄原子に置き換わったチオエーテル基も含めることができる。具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、イソブトキシ基、ピバロイル基、ペントキシ基、ヘキシロキシ基、ラウリロキシ基、トリフルオロメトキシ基、3,3,3−トリフルオロプロポキシ基、ペンタフルオロプロポキシ基、シクロプロポキシ基、シクロブトキシ基、シクロヘキシロキシ基、トリメチルシリルオキシ基、トリエチルシリルオキシ基、tert−ブチルジメチルシリルオキシ基、tert−ブチルジフェニルシリルオキシ基等が挙げられ、エーテル結合部位の酸素を硫黄に置き換えた対応するチオエーテル類も同様に含まれる。
上記、置換されていても良い炭素数1以上のアシルオキシ基としては、ホルミルオキシ基、炭素数2以上のハロゲン原子を含んでいてもよい直鎖または環状の脂肪族カルボン酸および炭酸ハーフエステル、炭素数4以上の芳香族カルボン酸等、カルボン酸および炭酸ハーフエステル由来のアシルオキシ基が挙げられる。また、前記カルボン酸の酸素原子が硫黄に置き換わったチオカルボン酸も含めることができる。具体的には、例えば、ホルミルオキシ基、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ペンタノイルオキシ、ヘキサノイルオキシ、ラウロイルオキシ基、ステアロイルオキシ基、トリフルオロアセチルオキシ、3,3,3−トリフルオロプロピオニルオキシ、ペンタフルオロプロピオニルオキシ、シクロプロパノイルオキシ、シクロブタノイルオキシ、シクロヘキサノイルオキシ基、ベンゾイルオキシ基、p−メトキシフェニルカルボニルオキシ基、ペンタフルオロベンゾイルオキシ基等が挙げられる。
加えて、上記例示したアシルオキシ基のカルボニル基とアルキル基あるいはアリール基の間に酸素原子または硫黄原子を挿入した、炭酸ハーフエステル由来の炭酸エステルも挙げることができる。加えて、エーテル結合部位およびカルボニル部位の酸素の一つ以上を硫黄に置き換えた対応するアシルチオオキシ類、チオアシルオキシ類も同様に含まれる。
The leaving substituent represented by X and Y in the formulas (I) and (II) is a hydrogen atom or an optionally substituted ether group or acyloxy group having 1 or more carbon atoms. At least one of them is a leaving substituent, that is, an optionally substituted ether group or acyloxy group having 1 or more carbon atoms, and the other is a hydrogen atom.
The ether group having 1 or more carbon atoms which may be substituted is derived from an alcohol such as a linear or cyclic aliphatic alcohol having 1 or more carbon atoms or an aromatic alcohol having 4 or more carbon atoms. Of ether groups. Further, a thioether group in which an oxygen atom in the ether is replaced with a sulfur atom can also be included. Specifically, for example, methoxy group, ethoxy group, propoxy group, butoxy group, isobutoxy group, pivaloyl group, pentoxy group, hexyloxy group, lauryloxy group, trifluoromethoxy group, 3,3,3-trifluoropropoxy group, Pentafluoropropoxy group, cyclopropoxy group, cyclobutoxy group, cyclohexyloxy group, trimethylsilyloxy group, triethylsilyloxy group, tert-butyldimethylsilyloxy group, tert-butyldiphenylsilyloxy group, etc. Corresponding thioethers in which oxygen is replaced with sulfur are also included.
Examples of the acyloxy group having 1 or more carbon atoms which may be substituted include a formyloxy group, a linear or cyclic aliphatic carboxylic acid and carbonic acid half ester which may contain a halogen atom having 2 or more carbon atoms, carbon Examples thereof include acyloxy groups derived from carboxylic acids and carbonic acid half esters such as aromatic carboxylic acids having a number of 4 or more. Moreover, thiocarboxylic acid in which the oxygen atom of the carboxylic acid is replaced with sulfur can also be included. Specifically, for example, formyloxy group, acetoxy group, propionyloxy group, butyryloxy group, isobutyryloxy group, pivaloyloxy group, pentanoyloxy, hexanoyloxy, lauroyloxy group, stearoyloxy group, trifluoroacetyloxy 3,3,3-trifluoropropionyloxy, pentafluoropropionyloxy, cyclopropanoyloxy, cyclobutanoyloxy, cyclohexanoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, pentafluorobenzoyloxy group Etc.
In addition, a carbonic acid ester derived from a carbonic acid half ester in which an oxygen atom or a sulfur atom is inserted between the carbonyl group of the acyloxy group exemplified above and an alkyl group or an aryl group can also be mentioned. In addition, corresponding acylthiooxy compounds and thioacyloxy compounds in which one or more of oxygen at the ether bond site and the carbonyl site are replaced with sulfur are also included.

上記概念の脱離性置換基XおよびYの一部を下記に例示する。   Some of the leaving substituents X and Y of the above concept are exemplified below.

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

本発明における置換されていてもよい炭素数1以上のエーテル基またはアシルオキシ基(脱離性を有する基)の導入により、有機溶媒に対する高い溶解性と、化合物の保存安定性を維持しつつ従来よりも低いエネルギー(加熱)で脱離性基の脱離反応を確実に行うことができる。
例えば、脱離性基として、置換または無置換の炭素数1以上のエーテル基およびアシルオキシ基に代えて炭素数1以上の置換されていてもよいスルホニルオキシ基、を導入することもできる。
尚、上記置換されていてもよいスルホニルオキシ基としては、炭素数1以上の直鎖または環状の脂肪族スルホン酸、炭素数4以上の芳香族スルホン酸等、スルホン酸由来のスルホニルオキシ基が挙げられる。具体的には、例えば、メチルスルホニルオキシ基、エチルスルホニルオキシ基、イソプロピルスルホニルオキシ基、ピバロイルスルホニルオキシ基、ペンタノイルスルホニルオキシ基、ヘキサノイルスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基、3,3,3−トリフルオロプロピオニルスルホニルオキシ基、フェニルスルホニルオキシ基、p−トルエンスルホニルオキシ基等が挙げられ、エーテル部位の酸素原子が硫黄原子に置き換わったスルホニルチオオキシ基も同様に含むことができる。
Introduction of an optionally substituted ether group or acyloxy group (group having a leaving property) having 1 or more carbon atoms in the present invention, while maintaining high solubility in organic solvents and storage stability of the compound. In addition, the leaving group can be reliably eliminated with low energy (heating).
For example, as the leaving group, a substituted or unsubstituted ether group having 1 or more carbon atoms and a sulfonyloxy group having 1 or more carbon atoms may be introduced instead of an acyloxy group.
Examples of the optionally substituted sulfonyloxy group include sulfonyloxy groups derived from sulfonic acids such as linear or cyclic aliphatic sulfonic acids having 1 or more carbon atoms and aromatic sulfonic acids having 4 or more carbon atoms. It is done. Specifically, for example, methylsulfonyloxy group, ethylsulfonyloxy group, isopropylsulfonyloxy group, pivaloylsulfonyloxy group, pentanoylsulfonyloxy group, hexanoylsulfonyloxy group, trifluoromethanesulfonyloxy group, 3, 3 , 3-trifluoropropionylsulfonyloxy group, phenylsulfonyloxy group, p-toluenesulfonyloxy group, and the like, and a sulfonylthiooxy group in which the oxygen atom of the ether moiety is replaced with a sulfur atom can also be included.

また、本発明における前記一般式(I)、(Ia)中、Q乃至Qで表される基としては、π電子共役基であるA以外の場合、前述のように、水素原子、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、あるいは一価の有機基(但し、Q乃至Qにおいては置換されていても良い炭素数1以上のエーテル基またはアシルオキシ基以外の1価の有機基)が用いられるが、該一価の有機基としては、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アリールオキシ基、アリールチオオキシ基、ヘテロアリールオキシ基、ヘテロチオアリールオキシ基、アルコキシル基、チオアルコキシル基、アリールオキシ基、チオアリールオキシ基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、チオール基、アミノ基などが挙げられる。 In the general formulas (I) and (Ia) in the present invention, as the groups represented by Q 1 to Q 6 , other than A which is a π-electron conjugated group, An atom (for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom) or a monovalent organic group (however, other than an ether group or acyloxy group having 1 or more carbon atoms which may be substituted in Q 1 to Q 6) The monovalent organic group is an alkyl group, alkenyl group, alkynyl group, aryl group, heteroaryl group, aryloxy group, arylthiooxy group, heteroaryloxy group. , Heterothioaryloxy group, alkoxyl group, thioalkoxyl group, aryloxy group, thioaryloxy group, cyano group, hydroxyl group, nitro group, carboxyl Group, a thiol group, and an amino group.

上記アルキル基は、直鎖または分岐または環状の置換または無置換のアルキル基を表す。
これらの例としては、アルキル基[好ましくは置換または無置換の炭素数1以上のアルキル基〔例えば、メチル基、エチル基、n−プロピル基、i−プロピル基、t−ブチル基、s−ブチル基、n−ブチル基、i−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデカン基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、3,7−ジメチルオクチル基、2−エチルヘキシル基、トリフルオロメチル基、トリフルオロオクチル基、トリフルオロドデシル基、トリフルオロオクタデシル基、2−シアノエチル基〕]、シクロアルキル基[好ましくは置換または無置換の炭素数3以上のアルキル基〔例えば、シクロペンチル基、シクロブチル基、シクロヘキシル基、ペンタフルオロシクロヘキシル基〕]が挙げられる。
以下に説明する他の一価の有機基においても、アルキル基は上記概念のアルキル基を示す。
The alkyl group represents a linear or branched or cyclic substituted or unsubstituted alkyl group.
Examples thereof include alkyl groups [preferably substituted or unsubstituted alkyl groups having 1 or more carbon atoms [for example, methyl group, ethyl group, n-propyl group, i-propyl group, t-butyl group, s-butyl group]. Group, n-butyl group, i-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group , Octadecyl group, 3,7-dimethyloctyl group, 2-ethylhexyl group, trifluoromethyl group, trifluorooctyl group, trifluorododecyl group, trifluorooctadecyl group, 2-cyanoethyl group]], cycloalkyl group [preferably A substituted or unsubstituted alkyl group having 3 or more carbon atoms [eg, cyclopentyl group, cyclo Butyl group, a cyclohexyl group, pentafluoro cyclohexyl]] and the like.
In other monovalent organic groups described below, the alkyl group represents an alkyl group of the above concept.

上記アルケニル基は、直鎖または分岐または環状の置換または無置換のアルケニル基を表す。これらの例としては、アルケニル基[好ましくは置換または無置換の炭素数2以上のアルケニル基であり、上記した炭素数2以上のアルキル基の任意の炭素―炭素単結合を1つ以上二重結合としたものが挙げられる〔例えば、エテニル基(ビニル基)、プロペニル基(アリル基)、1−ブテニル基、2−ブテニル基、2−メチル−2−ブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、1−ヘプテニル基、2−ヘプテニル基、3−ヘプテニル基、4−ヘプテニル基、1―オクテニル基、2−オクテニル基、3−オクテニル基、4−オクテニル基、1,1,1−トリフルオロ−2−ブテニル基〕。]、シクロアルケニル基[上記した炭素数2以上のシクロアルキル基の任意の炭素−炭素単結合を1つ以上二重結合としたものが挙げられる〔例えば、1−シクロアリル基、1−シクロブテニル基、1−シクロペンテニル基、2−シクロペンテニル基、3−シクロペンテニル基、1−シクロヘキセニル基、2−シクロヘキセニル基、3−シクロヘキセニル基、1−シクロヘプテニル基、2−シクロヘプテニル基、3−シクロヘプテニル基、4−シクロヘプテニル基、3−フルオロ−1−シクロヘキセニル基〕。]等が挙げられる。なお、該アルケニル基はトランス(E)体及びシス(Z)体等の立体異性体が存在する場合は、その何れであってもよく、またそれらの任意の割合からなる混合物であってもよい。   The alkenyl group represents a linear, branched, or cyclic substituted or unsubstituted alkenyl group. Examples thereof include an alkenyl group [preferably a substituted or unsubstituted alkenyl group having 2 or more carbon atoms and one or more double bonds of any carbon-carbon single bond of the above-described alkyl group having 2 or more carbon atoms. [For example, ethenyl group (vinyl group), propenyl group (allyl group), 1-butenyl group, 2-butenyl group, 2-methyl-2-butenyl group, 1-pentenyl group, 2-pentenyl group Group, 3-pentenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 1-heptenyl group, 2-heptenyl group, 3-heptenyl group, 4-heptenyl group, 1-octenyl group, 2-octenyl group Group, 3-octenyl group, 4-octenyl group, 1,1,1-trifluoro-2-butenyl group]. ], A cycloalkenyl group [which includes one or more double bonds of any carbon-carbon single bond of the cycloalkyl group having 2 or more carbon atoms described above [for example, 1-cycloallyl group, 1-cyclobutenyl group, 1-cyclopentenyl group, 2-cyclopentenyl group, 3-cyclopentenyl group, 1-cyclohexenyl group, 2-cyclohexenyl group, 3-cyclohexenyl group, 1-cycloheptenyl group, 2-cycloheptenyl group, 3-cycloheptenyl group 4-cycloheptenyl group, 3-fluoro-1-cyclohexenyl group]. ] Etc. are mentioned. The alkenyl group may be any of stereoisomers such as trans (E) isomer and cis (Z) isomer, and may be a mixture composed of any ratio thereof. .

上記アルキニル基としては、好ましくは置換または無置換の炭素数2以上のアルキニル基であり、上記した炭素数2以上のアルキル基の任意の炭素―炭素単結合を1つ以上三重結合としたものが挙げられる。このようなアルキニル基として、例えば、エチニル基、プロパギル基、トリメチルシリルエチニル基、トリイソプロピルシリルエチニル基が挙げられる。   The alkynyl group is preferably a substituted or unsubstituted alkynyl group having 2 or more carbon atoms, wherein one or more triple bonds are formed from any carbon-carbon single bond of the above-described alkyl group having 2 or more carbon atoms. Can be mentioned. Examples of such alkynyl groups include ethynyl group, propargyl group, trimethylsilylethynyl group, and triisopropylsilylethynyl group.

上記アリール基としては、好ましくは置換または無置換の炭素数6以上のアリール基〔例えば、フェニル、o−トリル、m−トリル、p−トリル、p−クロロフェニル、p−フルオロフェニル、p−トリフルオロフェニル、ナフチル等〕が挙げられる。   The aryl group is preferably a substituted or unsubstituted aryl group having 6 or more carbon atoms [for example, phenyl, o-tolyl, m-tolyl, p-tolyl, p-chlorophenyl, p-fluorophenyl, p-trifluoro. Phenyl, naphthyl, etc.].

上記ヘテロアリール基としては、好ましくは5または6員の置換または無置換の、芳香族性もしくは非芳香族性のヘテロ環化合物〔例えば、2−フリル、2−チエニル、3−チエニル、2−チエノチエニル、2−ベンゾチエニル、2−ピリミジル等〕が挙げられる。   The heteroaryl group is preferably a 5- or 6-membered substituted or unsubstituted aromatic or non-aromatic heterocyclic compound [for example, 2-furyl, 2-thienyl, 3-thienyl, 2-thienothienyl. , 2-benzothienyl, 2-pyrimidyl, etc.].

上記アルコキシル基およびチオアルコキシル基としては、好ましくは置換または無置換のアルコキシル基およびチオアルコキシル基であり、上記に例示したアルキル基およびアルケニル基およびアルキニル基の結合位に酸素原子あるいは硫黄原子を挿入してアルコキシ基あるいはチオアルコキシ基としたものが具体例として挙げられる。   The alkoxyl group and thioalkoxyl group are preferably substituted or unsubstituted alkoxyl groups and thioalkoxyl groups, and an oxygen atom or a sulfur atom is inserted at the bonding position of the alkyl group, alkenyl group, and alkynyl group exemplified above. Specific examples thereof include alkoxy groups or thioalkoxy groups.

上記アリールオキシ基およびチオアリールオキシ基としては、好ましくは置換または無置換のアリールオキシ基およびアリールチオオキシ基であり、上記に例示したアリール基の結合部位に酸素原子あるいは硫黄原子を挿入してアリールオキシ基あるいはチオアルコキシ基としたものが具体例として挙げられる。   The aryloxy group and thioaryloxy group are preferably a substituted or unsubstituted aryloxy group and an arylthiooxy group, and an aryl or oxygen atom is inserted into the aryl group binding site exemplified above. Specific examples include an oxy group or a thioalkoxy group.

上記ヘテロアリールオキシ基およびヘテロチオアリールオキシ基としては、好ましくは置換または無置換のヘテロアリールオキシ基およびヘテロアリールチオオキシ基であり、上記に例示したヘテロアリール基の結合部位に酸素原子あるいは硫黄原子を挿入してヘテロアリールオキシ基あるいはヘテロアリールチオアリールオキシ基としたものが具体例として挙げられる。   The heteroaryloxy group and heterothioaryloxy group are preferably a substituted or unsubstituted heteroaryloxy group and heteroarylthiooxy group, and an oxygen atom or a sulfur atom at the binding site of the heteroaryl group exemplified above. Specific examples include those in which a heteroaryloxy group or a heteroarylthioaryloxy group is inserted.

上記アミノ基としては、好ましくはアミノ基、置換もしくは無置換のアルキルアミノ基、置換もしくは無置換のアニリノ基、〔例えば、アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N−メチル−アニリノ基、ジフェニルアミノ基〕、アシルアミノ基[好ましくは、ホルミルアミノ基、置換もしくは無置換のアルキルカルボニルアミノ基、置換もしくは無置換のアリールカルボニルアミノ基、〔例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ基、ラウロイルアミノ、ベンゾイルアミノ基、3,4,5−トリ−n−オクチルオキシフェニルカルボニルアミノ基〕]、アミノカルボニルアミノ基[好ましくは、炭素置換もしくは無置換のアミノカルボニルアミノ基、〔例えば、カルバモイルアミノ基、N,N−ジメチルアミノカルボニルアミノ基、N,N−ジエチルアミノカルボニルアミノ基、モルホリノカルボニルアミノ基〕]等が挙げられる。   The amino group is preferably an amino group, a substituted or unsubstituted alkylamino group, a substituted or unsubstituted anilino group [for example, an amino group, a methylamino group, a dimethylamino group, an anilino group, an N-methyl-anilino group. Group, diphenylamino group], acylamino group [preferably formylamino group, substituted or unsubstituted alkylcarbonylamino group, substituted or unsubstituted arylcarbonylamino group, [for example, formylamino, acetylamino, pivaloylamino group, lauroyl Amino, benzoylamino group, 3,4,5-tri-n-octyloxyphenylcarbonylamino group]], aminocarbonylamino group [preferably carbon-substituted or unsubstituted aminocarbonylamino group, [for example, carbamoylamino group] , N, N-Dime Le aminocarbonylamino group, N, N-diethylamino carbonyl amino group, a morpholinocarbonylamino group]], and the like.

溶媒可溶性置換基Bおよび置換基Cについて、上記一般式(I)および(Ia)におけるQ乃至Qで表される一価の有機基としては、前述した範囲で表すことが可能であるが、好ましくは置換基を有していてもよいアリール基またはヘテロアリール基であるか、または隣り合う基同士で環状構造を形成していることである。さらに好ましくは、前記環状構造が置換していても良いアリール基またはヘテロアリール基からなることである。置換基Bおよび置換基Cについて、該環の結合、縮環形式の一例としては下記I−(1)〜I−(42)に示すような構造が挙げられる。 As for the solvent-soluble substituent B and substituent C, the monovalent organic group represented by Q 1 to Q 6 in the above general formulas (I) and (Ia) can be expressed in the above-mentioned range. Preferably, it is an aryl group or a heteroaryl group which may have a substituent, or adjacent groups form a cyclic structure. More preferably, the cyclic structure comprises an optionally substituted aryl group or heteroaryl group. As for the substituent B and the substituent C, examples of the bond of the ring and the condensed ring form include structures shown in the following I- (1) to I- (42).

Figure 2012216669
Figure 2012216669

前述のように、XおよびYのうち少なくとも一方は置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であるが、このような[エーテル基またはアシルオキシ基]としては下記一般式(III)、(IV)で表される構造を有するものであることができる。   As described above, at least one of X and Y is an optionally substituted [ether group or acyloxy group] having 1 or more carbon atoms. Examples of such [ether group or acyloxy group] are as follows. It can have a structure represented by formula (III) or (IV).

Figure 2012216669
Figure 2012216669

Figure 2012216669
ここで、Zは、上記一般式で表される構造式において、n=1の時は下記一般式(III−1)、(IV−1)のような構造となる。
Figure 2012216669
Here, Z is a structural formula represented by the above general formula, and when n = 1, the structure is represented by the following general formulas (III-1) and (IV-1).

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

上記一般式で表される構造式において、n=2の時は下記一般式(III−2)、(IV−2)のような構造となる。   In the structural formula represented by the above general formula, when n = 2, the following general formulas (III-2) and (IV-2) are obtained.

Figure 2012216669
Figure 2012216669

Figure 2012216669
この構造式の場合には、一方のアシルオキシ基が前記XまたはYの位置で置換され、他方のアシルオキシ基が同分子内もしくは他分子のX’またはY’(非表示)の位置で置換された構造を取り得る。
Figure 2012216669
In this structural formula, one acyloxy group is substituted at the X or Y position, and the other acyloxy group is substituted within the same molecule or at the X ′ or Y ′ (not shown) position of another molecule. Can take a structure.

[上記式中、Zは酸素原子または硫黄原子であり、それぞれ同一であっても異なっていても良い。Rは、水素原子〔一般式(III)、(IV)でn=2の時は除く〕、または1価の有機基あるいは2価の有機基を示す。]
特に好ましくは、水素原子[一般式(III)、(IV)でn=2の時は除く]、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアルコキシル基、置換または無置換のチオアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、シアノ基であり、より好ましくは水素原子[一般式(III)、(IV)でn=2の時は除く]、置換または無置換のアルキル基である。最も好ましくは、置換または無置換のアルキル基の時である。
[In the above formula, Z represents an oxygen atom or a sulfur atom, which may be the same or different. R 1 represents a hydrogen atom (except when n = 2 in the general formulas (III) and (IV)), a monovalent organic group or a divalent organic group. ]
Particularly preferably, a hydrogen atom [excluding when n = 2 in formulas (III) and (IV)], a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, A substituted or unsubstituted alkoxyl group, a substituted or unsubstituted thioalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heteroaryl group, and a cyano group, more preferably a hydrogen atom [general formula (III), (Except when n = 2 in (IV))], a substituted or unsubstituted alkyl group. Most preferably, it is a substituted or unsubstituted alkyl group.

脱離成分X−Yとしては、前記置換されていても良いエーテル基またはアシルオキシ基を構成する置換基の−O−結合または−S−結合部位を切断し末端に水素を置換した対応するアルコールおよびカルボン酸および炭酸ハーフエステルが挙げられる。
前記アルコールとしては、例えばメタノール、エタノール、プロパノール基、イソプロパノール、ブタノール、イソブタノール、tertブチルアルコール、ペンタノール、ヘキサノール、トリフルオロメタノール、3,3,3−トリフルオロプロパノール、3,3,3−トリフルオロプロポキシ基、ペンタフルオロプロパノール、シクロプロパノール、シクロブタノール、シクロヘキサノール、トリメチルシラノール、トリエチルシラノール、tert−ブチルジメチルシリラノール、tert−ブチルジフェニルシラノール等が挙げられ、エーテル結合部位の酸素を硫黄に置き換えた対応するチオール類も同様に含まれる。
前記カルボン酸および炭酸ハーフエステルとしては、例えばギ酸、酢酸、プロピオン酸、酪酸、吉草酸、イソ吉草酸、ピバル酸、カプロン酸、ラウリン酸、ステアリン酸、トリフルオロ酢酸、3,3,3−トリフルオロプロピオン酸、ペンタフルオロプロピオン酸、シクロプロパンカルボン酸、シクロブタンカルボン酸、シクロヘキサンカルボン酸、安息香酸、p−メトキシ安息香酸、ペンタフルオロ安息香酸、メチルハイドロゲンカーボネート、エチルハイドロゲンカーボネート、イソプロピルハイドロゲンカーボネート、ヘキシルハイドロゲンカーボネートなどが挙げられる。これら炭酸ハーフエステルは通常不安定であるため、対応するアルコール(例えば、メタノール、エタノール、2−プロパノール、ヘキサノール)と二酸化炭素まで分解されることがある。)また、同様にエーテル結合部位の酸素を硫黄に置き換えた対応するチオカルボン酸、チオ炭酸ハーフエステル類も同様に含まれる。
The leaving component XY includes the corresponding alcohol in which the —O— bond or —S— bond site of the substituent constituting the ether group or acyloxy group which may be substituted is cut and hydrogen is substituted at the terminal. Carboxylic acid and carbonic acid half ester are mentioned.
Examples of the alcohol include methanol, ethanol, propanol group, isopropanol, butanol, isobutanol, tertbutyl alcohol, pentanol, hexanol, trifluoromethanol, 3,3,3-trifluoropropanol, 3,3,3-trifluoro. Examples include fluoropropoxy group, pentafluoropropanol, cyclopropanol, cyclobutanol, cyclohexanol, trimethylsilanol, triethylsilanol, tert-butyldimethylsilanol, tert-butyldiphenylsilanol, etc., replacing oxygen at the ether bond site with sulfur Corresponding thiols are also included.
Examples of the carboxylic acid and carbonic acid half ester include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, isovaleric acid, pivalic acid, caproic acid, lauric acid, stearic acid, trifluoroacetic acid, 3,3,3-trimethyl Fluoropropionic acid, pentafluoropropionic acid, cyclopropanecarboxylic acid, cyclobutanecarboxylic acid, cyclohexanecarboxylic acid, benzoic acid, p-methoxybenzoic acid, pentafluorobenzoic acid, methyl hydrogen carbonate, ethyl hydrogen carbonate, isopropyl hydrogen carbonate, hexyl hydrogen Examples include carbonate. Since these carbonic acid half esters are usually unstable, they may be decomposed to the corresponding alcohol (eg, methanol, ethanol, 2-propanol, hexanol) and carbon dioxide. Similarly, corresponding thiocarboxylic acids and thiocarbonic acid half esters in which oxygen at the ether bond site is replaced with sulfur are also included.

尚、参考として前述の置換もしくは無置換のスルホニルオキシ基としては下記一般式(V)で表される構造を有するものが例示される。   For reference, examples of the substituted or unsubstituted sulfonyloxy group include those having a structure represented by the following general formula (V).

Figure 2012216669
Figure 2012216669

上記一般式(V)におけるRとしては、前述のおよびQ乃至Qと同様の置換基が挙げられる。
例えば、置換または無置換のアルキル基、置換または無置換のアルケニル基、置換または無置換のアルキニル基、置換または無置換のアルコキシル基、置換または無置換のチオアルキル基、置換または無置換のアリール基、置換または無置換のヘテロアリール基、シアノ基が例示される。
脱離成分X−Yとしては、前記スルホニルオキシ基を構成する置換基の−O−結合または−S−結合部位を切断し末端に水素を置換した対応するスルホン酸およびチオスルホン酸が挙げられ、例えば、メタンスルホン酸、エタンスルホン酸、イソプロピルスルホン酸、ピバロイルスルホン酸、ペンタンスルホン酸、ヘキサノイルスルホン酸、トルエンスルホン酸、フェニルスルホン酸、トリフルオロメタンスルホン酸、3,3,3−トリフルオロプロピオニルスルホン酸基などが挙げられ、エーテル結合部位の酸素を硫黄に置き換えた対応するチオスルホン酸類も同様に含まれる。
Examples of R 2 in the general formula (V) include the same substituents as those described above and Q 1 to Q 6 .
For example, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkoxyl group, a substituted or unsubstituted thioalkyl group, a substituted or unsubstituted aryl group, Examples thereof include a substituted or unsubstituted heteroaryl group and cyano group.
Examples of the leaving component XY include the corresponding sulfonic acid and thiosulfonic acid obtained by cleaving the —O— bond or the —S— bond site of the substituent constituting the sulfonyloxy group and replacing the terminal with hydrogen. , Methanesulfonic acid, ethanesulfonic acid, isopropylsulfonic acid, pivaloylsulfonic acid, pentanesulfonic acid, hexanoylsulfonic acid, toluenesulfonic acid, phenylsulfonic acid, trifluoromethanesulfonic acid, 3,3,3-trifluoropropionyl Examples thereof include sulfonic acid groups, and the corresponding thiosulfonic acids in which oxygen at the ether bond site is replaced with sulfur are also included.

上記一般式(III)乃至(V)における置換基R、Rに関しては前述の範囲のもであれば特に制限は無いが、溶媒可溶性や成膜性の観点からは、これら置換基としてある程度分子間相互作用を減少し、溶媒との親和性を高めるようなものであることが有利になってくるため、置換基の脱離前後における体積変化があまりに著しいと脱離反応における薄膜の均一性に問題が生じることが懸念される。そのため、適度な溶解性を維持しつつできるだけ小さい置換基である方が好ましい。
また、未だ定かではないが、R、Rはカルボニル酸素の負の分極の度合いが大きくなるような電子吸引性の置換基(たとえばハロゲンを有するアルキル基や、シアノ基を有する基)であることが脱離反応の効率化という点好ましいと考えられる。
The substituents R 1 and R 2 in the general formulas (III) to (V) are not particularly limited as long as they are within the above-mentioned range, but from the viewpoint of solvent solubility and film formability, these substituents are to some extent. It would be advantageous to reduce the intermolecular interaction and increase the affinity with the solvent, so if the volume change before and after the elimination of the substituent is too significant, the uniformity of the thin film in the elimination reaction There is a concern that problems will occur. Therefore, it is preferable that the substituent is as small as possible while maintaining appropriate solubility.
Although not yet known, R 1 and R 2 are electron-withdrawing substituents (for example, an alkyl group having a halogen or a group having a cyano group) that increases the degree of negative polarization of carbonyl oxygen. This is considered preferable in terms of increasing the efficiency of the elimination reaction.

次に、π電子共役系置換基Aについて説明する。置換基Aとしては、π電子共役平面を有するものであればいかなるものであっても良いが、具体的にはベンゼン環、チオフェン環、ピリジン環、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、チアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環が好ましく、より好ましくは、
(i) 1つ以上の前記芳香族炭化水素環および芳香族ヘテロ環、または前記環同士が縮環された化合物、
(ii) (ii)、(i)の環同士が共有結合を介して連結された化合物、上記(i)および(ii)より形成される群から少なくとも一つ以上選択される組み合わせで選ばれるπ電子共役系化合物、
が好ましく、それらの芳香族炭化水素環または芳香族へテロ環がそれぞれ有するπ電子が、縮環及び共有結合を介した連結による相互作用によって縮環または連結環全体に非局在化した構造であることが好ましい。
Next, the π electron conjugated substituent A will be described. The substituent A may be any as long as it has a π-electron conjugated plane, and specifically, a benzene ring, a thiophene ring, a pyridine ring, a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, Triazine ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring, oxazole ring, thiazole ring, furan ring, thiophene ring, selenophene ring, and silole ring are preferred, more preferably
(I) one or more aromatic hydrocarbon rings and aromatic heterocycles, or a compound in which the rings are condensed with each other;
(Ii) π selected from a compound in which the rings of (ii) and (i) are linked via a covalent bond, and a combination selected from at least one selected from the group consisting of (i) and (ii) above Electron conjugated compounds,
In which the π electrons of each of the aromatic hydrocarbon ring or aromatic heterocycle are delocalized in the condensed ring or the entire connected ring by the interaction by the connection via the condensed ring and the covalent bond. Preferably there is.

上記、縮環または共有結合で連結された芳香族炭化水素環または芳香族へテロ環の数は2以上が好ましい。具体例(一部の例について一般式を併記する。)としては、ナフタレン、アントラセン、テトラセン、クリセン、ピレン〔下記一般式(Ar3)〕、ペンタセン、チエノチオフェン〔下記一般式(Ar1)〕、チエノジチオフェン、トリフェニレン、ヘキサベンゾコロネン、ベンゾチオフェン〔下記一般式(Ar2)〕、ベンゾジチオフェン、[1]ベンゾチエノ[3,2−b][1]ベンゾチオフェン〔BTBT;下記一般式(Ar4)〕、ジナフト[2,3−b:2’,3’−f][3,2−b]チエノチオフェン〔DNTT〕、ベンゾジチエノチオフェン〔TTPTT;下記一般式(Ar5)〕、ナフトジチエノチオフェン〔TTNTT;下記一般式(Ar6)、(Ar7)〕等の縮合多環化合物、ビフェニル、ターフェニル、クォーターフェニル、ビチオフェン、ターチオフェン、クォーターチオフェン等のような芳香族炭化水素環および芳香族ヘテロ環のオリゴマー、フタロシアニン類、ポルフィリン類、等が挙げられる。
ここでの共有結合とは、炭素−炭素単結合、炭素−炭素二重結合、炭素−炭素三重結合、オキシエーテル結合、チオエーテル結合、アミド結合、エステル結合などが挙げられるが、好ましくは前記単結合、二重結合、三重結合のいずれかである。
The number of the aromatic hydrocarbon rings or aromatic heterocycles linked by the condensed ring or covalent bond is preferably 2 or more. Specific examples (general formulas are given for some examples) include naphthalene, anthracene, tetracene, chrysene, pyrene [the following general formula (Ar3)], pentacene, thienothiophene [the following general formula (Ar1)], thieno Dithiophene, triphenylene, hexabenzocoronene, benzothiophene [following general formula (Ar2)], benzodithiophene, [1] benzothieno [3,2-b] [1] benzothiophene [BTBT; following general formula (Ar4)] Dinaphtho [2,3-b: 2 ′, 3′-f] [3,2-b] thienothiophene [DNTT], benzodithienothiophene [TTPTT; the following general formula (Ar5)], naphthodithienothiophene [ TTTTT; condensed polycyclic compounds such as the following general formulas (Ar6) and (Ar7)], biphenyl, terphenyl, quarter Phenyl, bithiophene, terthiophene, aromatic oligomeric hydrocarbon ring and an aromatic hetero ring, phthalocyanines such as quaterthiophene, porphyrins, and the like.
Examples of the covalent bond here include a carbon-carbon single bond, a carbon-carbon double bond, a carbon-carbon triple bond, an oxyether bond, a thioether bond, an amide bond, and an ester bond. , Either a double bond or a triple bond.

Figure 2012216669
Figure 2012216669

次に、π電子共役系置換基Aと溶媒可溶性置換基Bとの結合形式について述べる。Bは上記A上の任意の原子と共有結合を介して連結しているか、A上の任意の原子と縮環している場合がある。置換位置については、B上の脱離性置換基の位置以外であれば、置換は可能である。ここでの共有結合とは、炭素−炭素単結合、炭素−炭素二重結合、炭素−炭素三重結合、オキシエーテル結合、チオエーテル結合、アミド結合、エステル結合などが挙げられるが、好ましくは前記単結合、二重結合、三重結合のいずれかである。
また、あるπ電子共役系置換基Aに対して共有結合を介して結合または縮合している、溶解性置換基Bの数は、当然いずれも、A上の置換あるいは縮環可能な原子の数に依存する。例えば、無置換のベンゼン環においては、最大で6つの置換位置で共有結合を介して結合が可能であり、最大6箇所で縮環可能である。しかしながら、A自体の分子の大きさ、溶解性に応じた置換数、分子の対称性、合成の容易さを考慮すると、下限として1分子内に含まれる本発明の溶解性置換基は2以上がより好ましい。一方、置換数があまり大きいと、溶解性置換基同士が立体的に混み入りすぎて好ましくないため、上限としては、分子の対称性、合成の容易さ、溶解性に応じた十分な置換数を考慮すると4以下が好ましい。
Next, the bonding mode between the π-electron conjugated substituent A and the solvent-soluble substituent B will be described. B may be linked to any atom on A via a covalent bond, or may be condensed with any atom on A. Any substitution position other than the position of the leaving substituent on B can be substituted. Examples of the covalent bond here include a carbon-carbon single bond, a carbon-carbon double bond, a carbon-carbon triple bond, an oxyether bond, a thioether bond, an amide bond, and an ester bond. , Either a double bond or a triple bond.
In addition, the number of the soluble substituent B that is bonded or condensed to a certain π-electron conjugated substituent A via a covalent bond is naturally the number of atoms that can be substituted or condensed on A. Depends on. For example, an unsubstituted benzene ring can be bonded via a covalent bond at a maximum of 6 substitution positions, and can be condensed at a maximum of 6 positions. However, considering the size of the molecule of A itself, the number of substitutions depending on the solubility, the symmetry of the molecule, and the ease of synthesis, the lower limit of the soluble substituent of the present invention contained in one molecule is 2 or more. More preferred. On the other hand, if the number of substitutions is too large, the soluble substituents are sterically crowded, which is not preferable. Therefore, the upper limit is a sufficient number of substitutions depending on the symmetry of the molecule, ease of synthesis, and solubility. Considering 4 or less is preferable.

本発明の製造方法に用いられるπ電子共役化合物前駆体A−(B)mは、上述のとおりπ電子共役系置換基Aと溶媒可溶性置換基Bから成り、Bは上記一般式(I)で表される構造を少なくとも部分構造として有している溶媒可溶性置換基である。ただし、Bは上記一般式(I)中、Q1乃至Q6上の任意の原子と、A上の任意の原子とで共有結合を介して連結しているか、A上の任意の原子と縮環している。Cは上記一般式(Ia)で表される構造を少なくとも部分構造として有している。そして本発明のπ電子共役系化合物を含む膜状体、並びに該化合物の製造方法においては、上記前駆体の溶媒可溶性置換基Bから特定の化合物X−Yを置換基脱離反応により、脱離させ、ベンゼン環を有する置換基Cへと変換することで、π電子共役系化合物A−(C)mとする。   The π-electron conjugated compound precursor A- (B) m used in the production method of the present invention is composed of the π-electron conjugated substituent A and the solvent-soluble substituent B as described above, and B is represented by the general formula (I). It is a solvent-soluble substituent having the structure represented as at least a partial structure. However, B is connected to any atom on Q1 to Q6 and any atom on A through a covalent bond in the above general formula (I), or condensed with any atom on A. ing. C has at least a partial structure of the structure represented by the general formula (Ia). In the film-like body containing the π-electron conjugated compound of the present invention and the method for producing the compound, the specific compound XY is eliminated from the solvent-soluble substituent B of the precursor by a substituent elimination reaction. And is converted to a substituent C having a benzene ring to obtain a π-electron conjugated compound A- (C) m.

本発明のπ電子共役化合物前駆体は、上述のとおり脱離性の溶媒可溶性置換基を有し、これにより溶媒可溶化することが特徴である。
本発明において、「溶媒可溶性」とは、溶媒に対して、溶剤を加熱還流した後に室温まで冷却した状態で0.05wt%以上の溶解度を有することをいう。好ましくは0.1wt%以上であり、より好ましくは0.5wt%であり、最も好ましくは1.0wt%以上である。
また、置換基AおよびBの組合せによっては、π電子共役系化合物A−(C)nの溶媒に対する溶解性が変わってくる。
ここで、「溶媒不溶化」とは、前記溶媒可溶性の状態よりも1桁以上溶解度を低下させることをいう。具体的には、溶媒に対して、溶剤を加熱還流した後に室温まで冷却した状態で、0.05wt%以上の溶解度(溶媒可溶性)から0.005wt%以下に溶解度を低下させることが好ましく、0.1wt%以上の溶解度(溶媒可溶性)から0.01wt%以下に溶解度を低下させることがより好ましく、0.5wt%以上の溶解度(溶媒可溶性)から0.05wt%未満に溶解度を低下させることが特に好ましい、さらに最も好ましくは1.0wt%以上の溶解度から0.1wt%未満に低下させることが好ましい。そして、「溶媒不溶性」とは、溶媒に対して、溶剤を加熱還流した後に室温まで冷却した状態で0.01wt%未満の溶解度を有することをいい、0.005wt%以下であることが好ましく、0.001wt%以下であることがより好ましい。
The π-electron conjugated compound precursor of the present invention is characterized by having a detachable solvent-soluble substituent as described above and thereby making the solvent soluble.
In the present invention, “solvent soluble” means that the solvent has a solubility of 0.05 wt% or more in a state where the solvent is heated to reflux and then cooled to room temperature. Preferably it is 0.1 wt% or more, More preferably, it is 0.5 wt%, Most preferably, it is 1.0 wt% or more.
Further, depending on the combination of the substituents A and B, the solubility of the π electron conjugated compound A- (C) n in the solvent changes.
Here, “solvent insolubilization” refers to lowering the solubility by one digit or more than the solvent-soluble state. Specifically, it is preferable to lower the solubility from 0.05 wt% or more (solvent solubility) to 0.005 wt% or less in a state where the solvent is heated to reflux and then cooled to room temperature. It is more preferable to lower the solubility from 1 wt% or more (solvent soluble) to 0.01 wt% or less, and from 0.5 wt% or more (solvent soluble) to less than 0.05 wt%. It is particularly preferable to reduce the solubility from 1.0 wt% or more to less than 0.1 wt%. And “solvent insoluble” means that the solvent has a solubility of less than 0.01 wt% in a state where the solvent is heated to reflux and then cooled to room temperature, preferably 0.005 wt% or less. More preferably, it is 0.001 wt% or less.

上記「溶媒可溶性」及び「溶媒不溶性」の程度を規定するときの溶媒の種類は特に限定されず、実際に用いる溶媒及び温度により定めてもよいが、例えば、THFやトルエンあるいはクロロホルム、メタノールに対する溶解度(25℃)として特定することができる。ただし、本発明に用いられる溶媒がこれによって限定されるものではない。
前記XおよびYの脱離反応による変換の前後、即ち、前記一般式(I)で表される部分構造を有するπ電子共役化合物前駆体から前記一般式(Ia)で表される化合物部分構造を有する化合物(「特定化合物」あるいは「有機半導体化合物」と呼称する。)への変換により、これら化合物の溶解性が大きく変化する。即ち、特定化合物上に続けて異なる膜を積層する場合に、積層膜形成に用いる溶液の溶媒に侵されにくくなるため、有機薄膜トランジスタ、有機EL、有機太陽電池などのような有機電子デバイスの製造工程において有用である。
The type of the solvent used when defining the degree of “solvent soluble” and “solvent insoluble” is not particularly limited, and may be determined depending on the actually used solvent and temperature, for example, solubility in THF, toluene, chloroform, or methanol. (25 ° C.). However, the solvent used in the present invention is not limited thereto.
Before and after the conversion by the elimination reaction of X and Y, that is, from the π electron conjugated compound precursor having the partial structure represented by the general formula (I), the compound partial structure represented by the general formula (Ia) The solubility of these compounds is greatly changed by the conversion to a compound having a compound (referred to as “specific compound” or “organic semiconductor compound”). That is, when different films are successively laminated on a specific compound, it is difficult to be attacked by the solvent of the solution used for forming the laminated film, so that the manufacturing process of organic electronic devices such as organic thin film transistors, organic EL, organic solar cells, etc. Useful in.

前記したπ電子共役系置換基Aと、溶媒可溶性置換基Bを組み合わせることでできるA−(B)mの具体的な構造として下記の化合物群(例示化合物1〜例示化合物42)を例示するが、本発明におけるπ電子共役系化合物前駆体はこれらに限定されるものではない。また、溶媒可溶性置換基には脱離性置換基の立体異性体が複数存在することが容易に推察でき、下記化合物はそれら立体配置の異なる異性体の混合物であることも含む。
本発明のπ電子共役化合物前駆体の保存安定性については、脱離性の溶解性置換基が変換処理を行うまでの間に、意図せず外れることがないという意味である。形態は、固体のままであっても、溶媒に溶かしてインクやウェス状、あるいは前記インクから製膜された膜状であってもよい。
保存安定性の程度を規定するときの指標としては、固体やインクを一定温度(一般には20度程度)で一定条件(湿度50%、遮光下)の基、一定期間(例えば1ヶ月)放置した後の状態を分析することで決めることができる。意図せず脱離変換されてしまった分子を定量すればよい。
脱離反応は、エネルギー付与によるものであるから、低温下(例えば0度〜−100℃)や遮光下、不活性雰囲気下に保存するすることでその保存安定を高めることが可能である。好ましくは、遮光下、−40℃において脱離基の意図しない脱離(例えばLC純度99.5%の前駆体から、保存後に0.5%以上の新たな不純物が検出されないこと)が起こらないことであるが、より好ましくは0−5℃で起こらないこと、もっとも好ましくは5−40℃において起こらないことである。
Examples of the specific structure of A- (B) m that can be obtained by combining the above-described π-electron conjugated substituent A and solvent-soluble substituent B include the following compound groups (Exemplary Compound 1 to Exemplary Compound 42). The π electron conjugated compound precursor in the present invention is not limited to these. Moreover, it can be easily inferred that a solvent-soluble substituent has a plurality of stereoisomers of a leaving substituent, and the following compounds include a mixture of isomers having different steric configurations.
The storage stability of the π-electron conjugated compound precursor of the present invention means that the detachable soluble substituent is not unintentionally removed until the conversion treatment is performed. The form may be solid or may be dissolved in a solvent to form ink or waste, or a film formed from the ink.
As an index for prescribing the degree of storage stability, a solid or ink is left at a constant temperature (generally about 20 degrees) under a certain condition (humidity 50%, under light shielding) for a certain period (for example, one month). It can be determined by analyzing the later state. What is necessary is just to quantify the molecules that have been unintentionally desorbed and converted.
Since the elimination reaction is due to energy application, it is possible to enhance the storage stability by storing it under a low temperature (for example, 0 ° C. to −100 ° C.), light shielding, or an inert atmosphere. Preferably, unintentional elimination of the leaving group does not occur at -40 ° C. under light shielding (eg, 0.5% or more of new impurities are not detected after storage from a precursor having an LC purity of 99.5%). More preferably, it does not occur at 0-5 ° C, most preferably it does not occur at 5-40 ° C.

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

前記前駆体A−(B)mに熱などのエネルギーを付与(外部刺激を付与あるいは印加)することにより、後述の脱離反応を起こし、置換基XおよびYを脱離することで、π電子共役系化合物A−(C)mを含む膜状体、並びに該化合物を得ることができる。
以下に、前記具体例に示したA−(B)mから製造されるA−(C)m(特定化合物と称する)の具体例を下記特定化合物1〜特定化合物29に示すが、本発明におけるπ電子共役系化合物はこれらに限定されるものではない。
By applying energy such as heat (applying or applying an external stimulus) to the precursor A- (B) m, a desorption reaction described later occurs, and the substituents X and Y are eliminated, thereby π electrons A film-like body containing the conjugated compound A- (C) m and the compound can be obtained.
Specific examples of A- (C) m (referred to as a specific compound) produced from A- (B) m shown in the specific examples are shown in the following specific compound 1 to specific compound 29 below. The π electron conjugated compound is not limited to these.

Figure 2012216669
Figure 2012216669

Figure 2012216669
Figure 2012216669

[2.π電子共役化合物前駆体の脱離反応によるπ電子共役系化合物の製造方法]
本発明のπ電子共役系化合物を含む膜状体の製法における中核部分は、前記脱離反応による該π電子共役系化合物の製造であるともいえるので、前記脱離反応について詳細に説明する。
本発明の製造方法の場合、プラスチックス、金属、シリコンウエハ、ガラス等の基質(支持体)上に、例えば塗工により形成された前駆体含有膜中に含まれ前述のように本発明の前記一般式(I)で表される前駆体は、エネルギー付与により前記一般式(Ia)で表される化合物(特定化合物)と前記一般式(II)で表される化合物(脱離成分)に変換する。
[2. Method for producing π-electron conjugated compound by elimination reaction of π-electron conjugated compound precursor]
Since the core part in the method for producing a film-like body containing a π-electron conjugated compound of the present invention can be said to be the production of the π-electron conjugated compound by the elimination reaction, the elimination reaction will be described in detail.
In the case of the production method of the present invention, it is contained in a precursor-containing film formed by, for example, coating on a substrate (support) such as plastics, metal, silicon wafer, glass, etc. The precursor represented by general formula (I) is converted into the compound represented by general formula (Ia) (specific compound) and the compound represented by general formula (II) (leaving component) by applying energy. To do.

前記一般式(I)で表される化合物には置換基の立体的な配置が異なる異性体が複数存在するが、いずれも前記一般式(Ia)で示される特定化合物へと変換され、脱離成分は同一であることに変わりはない。   The compound represented by the general formula (I) has a plurality of isomers having different steric arrangements of substituents, all of which are converted into the specific compound represented by the general formula (Ia) and eliminated. The components remain the same.

一般式(I)で表される化合物から脱離する基であるXおよびYは脱離性置換基と定義され、それらが結合して生成したX−Yは脱離成分と定義される。脱離成分は固体、液体、気体の3態を取りえるが、系外への除去を考えると、脱離成分が液体または気体であることが好ましく、特に好ましくは常温で気体であることまたは、脱離反応を行う温度において気体となることである。
前記脱離成分の沸点としては大気圧(1013hPa)において、500℃以下であることが好ましく、系外への除去の容易さと生成するπ共役化合物の分解・昇華温度を考えると、400℃以下であることがより好ましく、特に好ましくは300℃以下である。
X and Y, which are groups leaving from the compound represented by the general formula (I), are defined as leaving substituents, and XY formed by combining them is defined as a leaving component. The desorbing component can take the three states of solid, liquid, and gas, but considering the removal to the outside of the system, the desorbing component is preferably liquid or gas, particularly preferably at room temperature or It becomes a gas at the temperature at which the elimination reaction is performed.
The boiling point of the desorbing component is preferably 500 ° C. or less at atmospheric pressure (1013 hPa). Considering the ease of removal out of the system and the decomposition / sublimation temperature of the π-conjugated compound produced, the boiling point is 400 ° C. or less. More preferably, it is 300 ° C. or less.

以下に、前記一般式(I)におけるXが置換されていても良いアシルオキシ基であり、YおよびQ,Qが水素原子である場合を一例とし、下記にその離脱反応による変換の式を示す。なお、本発明のπ電子共役化合物前駆体の離脱反応による変換はこれに限定されるものではない。 The following is an example of the case where X in the general formula (I) is an optionally substituted acyloxy group, and Y and Q 1 and Q 6 are hydrogen atoms. Show. The conversion by the leaving reaction of the π-electron conjugated compound precursor of the present invention is not limited to this.

Figure 2012216669
Figure 2012216669

上記の例の場合、エネルギー付与(加熱)により、一般式(VI)で表されるシクロヘキサジエン環構造から、脱離成分として一般式(VIII)で表されるアルキル鎖を有するカルボン酸が脱離し、一般式(VII)で表されるベンゼン環を含む構造の特定化合物に変換される。加熱温度がカルボン酸の沸点を超えている場合にはカルボン酸は速やかに気体となる。
上記一般式(VI)で表される化合物から脱離成分が脱離する機構について下記反応式(スキーム)により概略を示す。なお、下記反応機構において、本発明のシクロヘキサジエン環構造からの脱離成分の脱離機構は下記一般式(VI−a)から下記一般式(VII−a)への変換である。説明を補足するため、シクロヘキセン環[下記一般式(IX)]の場合の脱離機構も含めて示す。尚下記式中、Rは置換又は無置換のアルキル基を示す。
In the case of the above example, by applying energy (heating), the carboxylic acid having the alkyl chain represented by the general formula (VIII) is eliminated from the cyclohexadiene ring structure represented by the general formula (VI) as the elimination component. To a specific compound having a structure containing a benzene ring represented by the general formula (VII). When the heating temperature exceeds the boiling point of the carboxylic acid, the carboxylic acid quickly becomes a gas.
An outline of the mechanism by which the elimination component is eliminated from the compound represented by the general formula (VI) is shown by the following reaction formula (scheme). In the following reaction mechanism, the elimination mechanism of the elimination component from the cyclohexadiene ring structure of the present invention is conversion from the following general formula (VI-a) to the following general formula (VII-a). To supplement the explanation, the elimination mechanism in the case of a cyclohexene ring [the following general formula (IX)] is also shown. In the following formula, R 3 represents a substituted or unsubstituted alkyl group.

Figure 2012216669
Figure 2012216669

上記反応式に示すように、一般式(VI−a)で表されるシクロヘキセン環の場合、六員環状の遷移状態を取ることで、β−炭素上の水素原子がカルボニルの酸素原子上へと1,5−転位することで協奏的な脱離反応が起こり、カルボン酸化合物が脱離し、シクロヘキセン環構造から一般式(VII−a)で表されるようなベンゼン環構造へと変換される。
2つアシルオキシ基を有するシクロヘキセン構造を有する化合物[一般式(IX)]の場合、脱離反応は2段階で進行すると考えられ、先ず一つのカルボン酸が脱離して前記一般式(VI−a)で表されるシクロヘキサジエン環構造となる。
この時、一般式(IX)で表される2置換体からカルボン酸1分子を脱離させるために必要な活性化エネルギーは、一般式(VI−a)で表される1置換体から同1分子を脱離させるのに要するそれに比べて、十分に大きいため、反応は速やかに2段階進行し、一般式(VII−a)で表される構造まで変換される。つまり、上記反応式の場合には反応系内で一般式(VI−a)で表される1置換体を単離することはできない。
ここで、置換基(アシルオキシ基と水素等)の位置関係の違いによる、複数の立体立体異性体が存在する場合においても、反応の速度は違えど上記反応は進行する。
上記反応式から推察されるように、活性な1置換体を合成することができれば、前記一般式(VI)で表されるシクロヘキセン環に較べて脱離反応に要するエネルギーは少なくて済むことから有利である。即ち、本発明のシクロヘキサジエン環構造は、従来よりも低いエネルギー(外部刺激)で脱離性置換基の脱離反応が確実に行える。
As shown in the above reaction formula, in the case of the cyclohexene ring represented by the general formula (VI-a), by taking a transition state of a six-membered ring, the hydrogen atom on the β-carbon is transferred onto the oxygen atom of the carbonyl. The 1,5-rearrangement causes a concerted elimination reaction, whereby the carboxylic acid compound is eliminated and converted from a cyclohexene ring structure to a benzene ring structure represented by the general formula (VII-a).
In the case of a compound having a cyclohexene structure having two acyloxy groups [general formula (IX)], the elimination reaction is considered to proceed in two steps. First, one carboxylic acid is eliminated and the general formula (VI-a) is eliminated. It becomes the cyclohexadiene ring structure represented by these.
At this time, the activation energy required to desorb one molecule of carboxylic acid from the disubstituted product represented by the general formula (IX) is the same as that of the 1 substituted product represented by the general formula (VI-a). Since it is sufficiently larger than that required for desorbing the molecule, the reaction proceeds rapidly in two steps, and is converted to a structure represented by the general formula (VII-a). That is, in the case of the above reaction formula, the monosubstituted product represented by the general formula (VI-a) cannot be isolated in the reaction system.
Here, even when there are a plurality of stereostereoisomers due to the difference in the positional relationship between the substituents (acyloxy group and hydrogen, etc.), the above reaction proceeds although the reaction rate is different.
As inferred from the above reaction formula, if an active mono-substituted product can be synthesized, it is advantageous because less energy is required for the elimination reaction than the cyclohexene ring represented by the general formula (VI). It is. That is, the cyclohexadiene ring structure of the present invention can reliably perform the elimination reaction of the detachable substituent with lower energy (external stimulus) than before.

上記シクロヘキサジエン骨格の、脱離反応の低温化はアシルオキシ基だけに限られるわけではなく、エーテル基などでも同様の効果が見られる。エーテル基などは従来のシクロへヘキセン骨格においては、脱離反応に要するエネルギーが高く、用いるのに好適ではなかったが、本発明の骨格を適用することで、エネルギーが低下し、アシルオキシ基と同様に用いることが可能になった。   The lowering of the elimination reaction of the cyclohexadiene skeleton is not limited to acyloxy groups, and similar effects can be seen with ether groups and the like. In conventional cyclohexene skeletons such as ether groups, the energy required for elimination reaction is high and not suitable for use. However, by applying the skeleton of the present invention, the energy is reduced and the same as in acyloxy groups. It became possible to use.

上記反応式においてβ炭素上の水素原子の引き抜き、転移が反応の第一段階であるため、酸素原子の水素原子を引きつける力が強いほど反応は起こりやすいと考えられる。その度合いは、例えば、アシルオキシ基側のアルキル鎖によっても変わってくるし、酸素原子を同じく第16族の元素である硫黄、セレン、テルル、ポロニウムなどのカルコゲン原子などに変えることによっても変化する。   In the above reaction formula, the extraction and transfer of hydrogen atoms on the β carbon is the first stage of the reaction, so the reaction is considered to occur more easily as the force of attracting hydrogen atoms of oxygen atoms is stronger. The degree varies depending on, for example, the alkyl chain on the acyloxy group side, and also varies by changing the oxygen atom to a chalcogen atom such as sulfur, selenium, tellurium, polonium or the like, which is also a group 16 element.

この脱離反応を行なうために付与(印加)するエネルギーとしては、熱、光、電磁波が挙げられるが、反応性および収率、後処理の観点から、熱エネルギーあるいは光エネルギーが望ましく、特に熱エネルギーが好ましい。また、酸または塩基の存在下で上記エネルギーを印加してもよい。
通常、前記脱離反応には、官能基の構造にも依存するが、反応速度および反応率の観点から加熱が必要となることが多い。脱離反応を行なうための加熱の方法には、支持体上で加熱する方法、オーブン内で加熱する方法、マイクロ波の照射による方法、レーザーを用いて光を熱に変換して加熱する方法、光熱変換層を用いる等種々の方法を用いることができるが、これらに限定されるものではない。
Examples of the energy applied (applied) for carrying out this elimination reaction include heat, light, and electromagnetic waves. From the viewpoint of reactivity, yield, and post-treatment, thermal energy or light energy is desirable, especially thermal energy. Is preferred. Moreover, you may apply the said energy in presence of an acid or a base.
Usually, the elimination reaction depends on the structure of the functional group, but heating is often required from the viewpoint of reaction rate and reaction rate. The heating method for carrying out the elimination reaction includes a method of heating on a support, a method of heating in an oven, a method of irradiation with microwaves, a method of heating by converting light into heat using a laser, Although various methods, such as using a photothermal conversion layer, can be used, it is not limited to these.

脱離反応を行なうための加熱温度については、室温(およそ25℃)〜500℃の範囲を用いることが可能であり、下限温度は材料の熱安定性および脱離成分の沸点を考え、上限温度ではエネルギー効率や、未変換分子の存在率、変換後の化合物の分解、昇華等を考慮すると、40℃〜500℃の範囲が好ましく、さらにπ電子共役化合物前駆体の合成時の熱安定性を考慮すると、より好ましくは60℃〜500℃の範囲であり、特に好ましくは80℃〜400℃である。
上記加熱の時間については、高温であるほど反応時間は短く、低温であるほど脱離反応に必要な時間は長くなる。また、π電子共役化合物前駆体の反応性、量にもよるが、通常0.5分〜120分、好ましくは1分〜60分、特に好ましくは1分〜30分である。
The heating temperature for carrying out the elimination reaction can be in the range of room temperature (approximately 25 ° C.) to 500 ° C., and the lower limit temperature is the upper limit temperature in consideration of the thermal stability of the material and the boiling point of the elimination component. Then, in view of energy efficiency, abundance of unconverted molecules, decomposition of the compound after conversion, sublimation, etc., a range of 40 ° C. to 500 ° C. is preferable, and thermal stability during the synthesis of the π-electron conjugated compound precursor is further improved. Considering it, it is more preferably in the range of 60 ° C to 500 ° C, particularly preferably in the range of 80 ° C to 400 ° C.
Regarding the heating time, the higher the temperature, the shorter the reaction time, and the lower the temperature, the longer the time required for the elimination reaction. Further, although depending on the reactivity and amount of the π-electron conjugated compound precursor, it is usually 0.5 minutes to 120 minutes, preferably 1 minute to 60 minutes, and particularly preferably 1 minute to 30 minutes.

光を外部刺激として用いる場合は、赤外線ランプや、化合物が吸収する波長の光を照射すること(例えば、405nm以下の波長に露光)等を利用してもよい。その際に半導体レーザーを用いてもよい。例えば、近赤外域のレーザー光(通常は780nm付近の波長のレーザー光)、可視レーザー光(通常は、630nm〜680nmの範囲の波長のレーザー光)、波長390〜440nmのレーザー光が挙げられる。特に好ましくは波長390〜440nmのレーザー光であり、440nm以下の範囲の発振波長を有する半導体レーザー光が好適に用いられる。中でも好ましい光源としては、390〜440(更に好ましくは390〜415nm)の範囲の発振波長を有する青紫色半導体レーザー光、中心発振波長850nmの赤外半導体レーザー光を光導波路素子を使って半分の波長にした中心発振波長425nmの青紫色SHGレーザー光を挙げることができる。   When light is used as an external stimulus, an infrared lamp, irradiation with light having a wavelength absorbed by the compound (for example, exposure to a wavelength of 405 nm or less), and the like may be used. At that time, a semiconductor laser may be used. For example, near-infrared laser light (usually laser light having a wavelength of around 780 nm), visible laser light (usually laser light having a wavelength in the range of 630 nm to 680 nm), and laser light having a wavelength of 390 to 440 nm can be mentioned. Laser light having a wavelength of 390 to 440 nm is particularly preferable, and semiconductor laser light having an oscillation wavelength in the range of 440 nm or less is preferably used. Among them, as a preferable light source, a blue-violet semiconductor laser light having an oscillation wavelength in the range of 390 to 440 (more preferably 390 to 415 nm) and an infrared semiconductor laser light having a central oscillation wavelength of 850 nm are half wavelength using an optical waveguide device. And blue-violet SHG laser light having a central oscillation wavelength of 425 nm.

前記脱離性置換基の脱離反応において、酸または塩基は触媒として働き、より低温での変換が可能となる。これらの使用方法は特に限定はされないが、π電子共役化合物前駆体に対してそのまま添加してもよいし、任意の溶媒に溶解させ溶液にして添加してもよいし、気化させてその雰囲気中で加熱処理を行ってもよく、光酸発生剤および光塩基発生剤等を添加し、光照射によって系内で酸および塩基を得てもよい。
上記、酸としては、塩酸、硝酸、硫酸、酢酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、3,3,3−トリフルオロプロピオン酸、蟻酸、リン酸等、2−ブチルオクタン酸等を用いることができる。
光酸発生剤としては、スルホニウム塩、ヨードニウム塩等のイオン性発生剤とイオン性光酸発生剤イミドスルホネート、オキシムスルホネート、ジスルホニルジアゾメタン、ニトロベンジルスルホネート等の非イオン性発生剤を用いることができる。
また、塩基としては、水酸化ナトリウム、水酸化カリウム等の水酸化物、炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム等の炭酸塩、トリエチルアミン、ピリジン等のアミン類、ジアザビシクロウンデセン、ジアザビシクロノネン等のアミジン類などを用いることができる。
また、光塩基発生剤としては、カルバマート類、アシルオキシム類、アンモニウム塩等を用いることができる。
中でも揮発性の酸または塩基の雰囲気中に行うのが、反応後の酸塩基の系外への除去の容易さを考えると好ましい。
In the elimination reaction of the detachable substituent, the acid or base acts as a catalyst, and conversion at a lower temperature is possible. Although these usage methods are not particularly limited, they may be added to the π-electron conjugated compound precursor as it is, dissolved in an arbitrary solvent and added as a solution, or vaporized in the atmosphere. A heat treatment may be performed, or a photoacid generator, a photobase generator, or the like may be added, and an acid and a base may be obtained in the system by light irradiation.
Examples of the acid include hydrochloric acid, nitric acid, sulfuric acid, acetic acid, trifluoroacetic acid, trifluoromethanesulfonic acid, 3,3,3-trifluoropropionic acid, formic acid, phosphoric acid, 2-butyloctanoic acid, and the like. it can.
As the photoacid generator, ionic generators such as sulfonium salts and iodonium salts and nonionic generators such as ionic photoacid generator imide sulfonate, oxime sulfonate, disulfonyldiazomethane, and nitrobenzyl sulfonate can be used. .
Examples of the base include hydroxides such as sodium hydroxide and potassium hydroxide, carbonates such as sodium hydrogen carbonate, sodium carbonate and potassium carbonate, amines such as triethylamine and pyridine, diazabicycloundecene, diazabicyclo Amidines such as nonene can be used.
As the photobase generator, carbamates, acyl oximes, ammonium salts and the like can be used.
Of these, it is preferable to carry out the reaction in an atmosphere of a volatile acid or base in view of ease of removal of the acid-base after the reaction.

脱離反応を行なう際の雰囲気については、上記触媒の有無に関わらず大気下においても行なうことが可能であるが、酸化等の副反応および水分の影響を除くため、さらに脱離した成分の系外への排除を促すために、不活性ガス雰囲気下また減圧下で行なうことが望ましい。   The atmosphere for the desorption reaction can be performed in the air with or without the above catalyst. However, in order to eliminate side effects such as oxidation and the influence of moisture, a system of further desorbed components is used. In order to promote the exclusion to the outside, it is desirable to carry out under an inert gas atmosphere or under reduced pressure.

脱離性置換基となるアシルオキシ基の形成方法については、後述のアルコールとカルボン酸クロライドもしくはカルボン酸無水物を反応させるまたはハロゲン原子とカルボン酸銀もしくはカルボン酸−4級アンモニウム塩の交換反応によってカルボン酸エステルを得る方法以外にも、ホスゲンとアルコールを反応させ炭酸エステルを得る方法、アルコールに二硫化炭素を加えた後、ヨウ化アルキルを反応させキサントゲン酸エステルを得る方法、三級アミンと過酸化水素あるいはカルボン酸を反応させアミンオキシドを得る方法、アルコールにオルトセレノシアノニトロベンゼンを反応させセレノキシドを得る方法などが挙げられるが、これらに限定されるものではない。
また、エーテル基についても、アルコールに塩基を作用させ、続けてハロゲン化アルキル、ハロゲン化アルキルシラン等を作用させる(ウィリアムソンエーテル合成法)方法などで調整することができるが、これらに限定されるものではない。
Regarding the method for forming an acyloxy group as a detachable substituent, an alcohol described later is reacted with a carboxylic acid chloride or a carboxylic acid anhydride, or a carbon atom is exchanged between a halogen atom and a carboxylic acid silver or a carboxylic acid-quaternary ammonium salt. In addition to the method for obtaining acid esters, a method for obtaining carbonate esters by reacting phosgene and alcohol, a method for obtaining xanthate esters by reacting alkyl iodide after adding carbon disulfide to alcohol, tertiary amine and peroxidation Examples include, but are not limited to, a method of obtaining amine oxide by reacting hydrogen or carboxylic acid, a method of obtaining selenoxide by reacting orthoselenocyanonitrobenzene with alcohol, and the like.
The ether group can also be adjusted by a method in which a base is allowed to act on an alcohol and subsequently an alkyl halide, a halogenated alkylsilane, or the like (Williamson ether synthesis method), but is not limited thereto. It is not a thing.

[3.π電子共役系化合物前駆体の製造方法]
前述のように本発明のπ電子共役化合物前駆体は、シクロヘキサジエン骨格と脱離性置換基を有していることが特徴である(この構造部位全体として溶解性置換基Bと定義される)。
このシクロヘキサジエン骨格と脱離性置換基からなる構造の所謂、溶解性置換基B部分が剛直ではなくまた立体的に嵩高いために結晶性が悪く、このような構造を有する分子は溶解性が良好であり、且つπ電子共役化合物前駆体を溶解した溶液を用いて塗布した際に、結晶性の低い、あるいは無定形の膜が得られやすい性質を有する。
[3. Method for producing π-electron conjugated compound precursor]
As described above, the π-electron conjugated compound precursor of the present invention is characterized by having a cyclohexadiene skeleton and a detachable substituent (the entire structural site is defined as a soluble substituent B). .
The so-called soluble substituent B portion of the structure composed of this cyclohexadiene skeleton and a leaving substituent is not rigid and sterically bulky, so that the crystallinity is poor, and a molecule having such a structure has solubility. It is good and has a property that an amorphous film with low crystallinity or amorphousness can be easily obtained when applied using a solution in which a π-electron conjugated compound precursor is dissolved.

次に、シクロヘキサジエン骨格におけるエーテル基、アシルオキシ基の形成方法について一例を示しながら詳細に述べる。
シクロヘキサジエン骨格におけるエーテル基またはアシルオキシ基の形成方法としては、下記一般式(X)で表されるようなシクロヘキセン−1−オン骨格を有する化合物から誘導が可能である。一般式(X)で表される化合物は従来公知の方法で製造することができ、これを原料として用いることが可能であるが、本発明の脱離反応の形式から考えるとケトンの隣の2位にそれぞれ一つ以上の水素原子を有していることが好ましい。
Next, a method for forming an ether group and an acyloxy group in the cyclohexadiene skeleton will be described in detail with an example.
A method for forming an ether group or acyloxy group in the cyclohexadiene skeleton can be derived from a compound having a cyclohexen-1-one skeleton as represented by the following general formula (X). The compound represented by the general formula (X) can be produced by a conventionally known method and can be used as a raw material. However, in view of the form of the elimination reaction of the present invention, 2 next to the ketone. It is preferable that each group has one or more hydrogen atoms.

Figure 2012216669
Figure 2012216669

[式(X)中、Q乃至Qは式(I)で定義した範囲と同一である。] [In formula (X), Q 2 to Q 6 are the same as the range defined in formula (I). ]

次に、下記反応式に示すように、還元剤を用いて一般式(X)で表される化合物の1位のケトン基をアルコールに還元し、一般式(XI)で表される化合物とする。   Next, as shown in the following reaction formula, the 1-position ketone group of the compound represented by the general formula (X) is reduced to an alcohol using a reducing agent to obtain a compound represented by the general formula (XI). .

Figure 2012216669
Figure 2012216669

[式(X)、(XI)中、Q乃至Qは式(I)で定義した範囲と同一である。] [In formulas (X) and (XI), Q 2 to Q 6 are the same as the range defined in formula (I). ]

上記の還元反応の方法としては、還元剤として水素化ホウ素化ナトリウム、水素化アルミニウムリチウムなどを用いたヒドリド還元や、ニッケル、銅、ルテニウム、白金、パラジウムなどの金属触媒と水素を用いた接触還元などを用いることができるが、官能基選択性や反応の容易さから判断するとヒドリド還元がより好ましい。
還元反応に用いる溶媒は種々の有機溶媒を用いることができ、反応速度の観点から特にメタノールやエタノールなどのアルコール類が好適である。
反応温度は通常0℃近辺で行うが、反応性に応じて室温から溶媒の還流温度までを好適に用いることができる。
As a method of the above reduction reaction, hydride reduction using sodium borohydride, lithium aluminum hydride or the like as a reducing agent, or catalytic reduction using a metal catalyst such as nickel, copper, ruthenium, platinum, palladium, etc. and hydrogen. However, hydride reduction is more preferable in view of functional group selectivity and ease of reaction.
Various organic solvents can be used as the solvent used in the reduction reaction, and alcohols such as methanol and ethanol are particularly preferable from the viewpoint of reaction rate.
The reaction temperature is usually about 0 ° C., but from room temperature to the reflux temperature of the solvent can be suitably used depending on the reactivity.

続けて下記反応式に示すように、上記反応で得られた一般式(XI)で表される化合物を一般式(XII)で表される化合物に変換し、アルコール体のOH基を保護する。保護基の種類はアセチル基、メチル基、トリメチルシリル基、ベンジル基などが挙げられこれらは、特に限定されないが、後述の反応条件が塩基性であるため塩基条件で脱保護ができる保護基が工程数の減少という点で好ましい。   Subsequently, as shown in the following reaction formula, the compound represented by the general formula (XI) obtained by the above reaction is converted into a compound represented by the general formula (XII) to protect the OH group of the alcohol form. Examples of the protective group include acetyl group, methyl group, trimethylsilyl group, and benzyl group. These are not particularly limited. However, since the reaction conditions described below are basic, the number of protective groups that can be deprotected under basic conditions is the number of steps. This is preferable in terms of a decrease in.

Figure 2012216669
Figure 2012216669

[式(XI)、(XII)中、Q乃至Qは式(I)で定義した範囲と同一である。RはOH保護基である。]
OH保護基としては、例えば、アセチル基、メチル基、トリメチルシリル基、ベンジル基などが挙げられる。
[In formulas (XI) and (XII), Q 2 to Q 6 are the same as the range defined in formula (I). R is an OH protecting group. ]
Examples of the OH protecting group include an acetyl group, a methyl group, a trimethylsilyl group, and a benzyl group.

上記反応式において、塩基条件で脱保護可能な基として用いる例を説明する。
1等量のカルボン酸無水物(例えば、無水酢酸)と塩基存在で反応させることにより、カルボン酸エステルを形成する(XII−1)。塩基は、ピリジンやトリエチルアミンなどの3級アミンを好適に用いることができ、これらを過剰に加え溶媒として用いることもできる。
溶媒は、上記に加え、ジクロロメタンやテトラヒドロフランなど反応性の内多くの有機溶媒を用いることができる。
In the above reaction formula, an example of using as a group that can be deprotected under basic conditions will be described.
A carboxylic acid ester is formed by reacting with 1 equivalent of carboxylic acid anhydride (for example, acetic anhydride) in the presence of a base (XII-1). As the base, tertiary amines such as pyridine and triethylamine can be preferably used, and these can be added in excess to be used as a solvent.
As the solvent, in addition to the above, a large number of reactive organic solvents such as dichloromethane and tetrahydrofuran can be used.

続けて、下記反応式に示すように、上記反応で得られた一般式(XII−1)の4位を1等量のハロゲン化剤を用いて選択的にハロゲン化して一般式(XIII)で表される化合物を得る。   Subsequently, as shown in the following reaction formula, the 4-position of the general formula (XII-1) obtained by the above reaction is selectively halogenated using 1 equivalent of a halogenating agent to give a general formula (XIII) The compound represented is obtained.

Figure 2012216669
Figure 2012216669

[式(XII−1)、(XIII)中、Q乃至Qは式(I)で定義した範囲と同一である。Acはアセチル基である。] [In formulas (XII-1) and (XIII), Q 2 to Q 6 are the same as the range defined in formula (I). Ac is an acetyl group. ]

上記反応式において、後の工程の反応性からヨウ素原子、臭素原子、塩素原子が好ましく、特に好ましくは臭素原子である。臭素化剤としては、N−ブロモスクシンイミド、N−ヨードスクシンイミド、N−クロロスクシンイミドなどが挙げられ、これらとアゾビスイソブチロニトリル、過酸化ベンゾイルなどのラジカル開始剤を共存して行なうことが好ましい。溶媒は必ずしも必要ではないが、種々の有機溶媒を用いることができ、特にベンゼン、四塩化炭素などが好適である。反応温度は室温から溶媒の還流温度までを好適に用いることができる。
この工程において、反応条件によっては複数の立体異性体が生成する可能性がある。具体的には、シクロヘキセン環と結合したカルボン酸エステル基とブロモ基との立体配置により、ラセミ混合物と、メソ体が任意の割合で得られることがある。特に分離する必要は無いが、これらは再結晶あるいは光学活性な固定層を用いたクロマトグラフィー等で分離することができる。
In the above reaction formula, an iodine atom, a bromine atom and a chlorine atom are preferred from the reactivity of the subsequent step, and a bromine atom is particularly preferred. Examples of the brominating agent include N-bromosuccinimide, N-iodosuccinimide, N-chlorosuccinimide, and the like, and it is preferable to perform these in the presence of a radical initiator such as azobisisobutyronitrile and benzoyl peroxide. . A solvent is not necessarily required, but various organic solvents can be used, and benzene, carbon tetrachloride and the like are particularly preferable. The reaction temperature can be suitably used from room temperature to the reflux temperature of the solvent.
In this step, a plurality of stereoisomers may be generated depending on the reaction conditions. Specifically, a racemic mixture and a meso form may be obtained in an arbitrary ratio depending on the configuration of a carboxylic acid ester group bonded to a cyclohexene ring and a bromo group. Although it is not particularly necessary to separate them, they can be separated by recrystallization or chromatography using an optically active fixed layer.

続けて、下記反応式に示すように、上記反応で得られた一般式(XIII)で表される化合物を、塩基を用いてブロモ基の脱離による二重結合の形成と、脱保護基による水酸基への変換を行い一般式(XIV)で表される化合物とする。   Subsequently, as shown in the following reaction formula, the compound represented by the general formula (XIII) obtained by the above reaction is formed with a double bond formed by elimination of a bromo group using a base and a deprotection group. Conversion to a hydroxyl group is performed to obtain a compound represented by the general formula (XIV).

Figure 2012216669
[式(XIII)、(XIV)中、Acはアセチル基である。]
Figure 2012216669
[Ac is an acetyl group in the formulas (XIII) and (XIV). ]

上記反応式において、塩基としては、ナトリウムメドキシド、ナトリウムエトキシド、水酸化ナトリウム、水酸化カリウム等を用いることができる。水酸基の脱保護を同時に行うことができるため、特に強塩基が好ましい。用いる溶媒は、特に限定されないが反応性という観点では、メタノール、エタノールなどのアルコール系溶媒が好ましい。   In the above reaction formula, sodium methoxide, sodium ethoxide, sodium hydroxide, potassium hydroxide and the like can be used as the base. A strong base is particularly preferred because the hydroxyl group can be deprotected simultaneously. The solvent to be used is not particularly limited, but alcohol solvents such as methanol and ethanol are preferable from the viewpoint of reactivity.

上記アルコール体の合成に関して、活性なK領域(下図における円で囲まれた領域を示す)を有する多環芳香族化合物においては、上記とは別法を用いてその活性領域に比較的容易に水酸基を導入し、脱離性基で置換することができる。そのような多環芳香族化合物の例としては、下図で示されるフェナンスレン、クリセン、ピレン、ベンゾピレンの他に、ピセン、ベンゾピセンなどが挙げられる。   Regarding the synthesis of the above alcohol, a polycyclic aromatic compound having an active K region (shown by a circled region in the figure below) is relatively easily hydroxylated in the active region using a method different from the above. Can be introduced and substituted with a leaving group. Examples of such polycyclic aromatic compounds include picene, benzopicene and the like in addition to phenanthrene, chrysene, pyrene and benzopyrene shown in the figure below.

Figure 2012216669
Figure 2012216669

以下、上記一般式(XIV)において(Q,Q)および(Q,Q)の位置で二つのベンゼン環が縮環した構造であるフェナンスレンを例に、そのK領域への水酸基の導入について説明する。 Hereinafter, in the above general formula (XIV), phenanthrene having a structure in which two benzene rings are condensed at positions (Q 2 , Q 3 ) and (Q 4 , Q 5 ) is used as an example. The introduction will be described.

まず、下記反応式に示すように、フェナンスレンのK領域(9,10位)を酸化剤を用いてエポキシ化し、一般式(XV)で表されるエポキシ誘導体とする。   First, as shown in the following reaction formula, the K region (9th and 10th positions) of phenanthrene is epoxidized using an oxidizing agent to obtain an epoxy derivative represented by the general formula (XV).

Figure 2012216669
Figure 2012216669

上記のK領域エポキシ化反応の方法としては、従来公知のエポキシ化における酸化剤同様、m−過安息香酸、過酸化水素、過酢酸、オキソン、ジメチルジオキシラン、次亜塩素酸ナトリウム水溶液などの有機および無機過酸化物等を用いることができる。取り扱いの容易さから、m―過安息香酸、過酸化水素、次亜塩素酸ナトリウム水溶液などが好ましい。
溶媒は化合物を良く溶かし、自身が酸化を受けないものであれば特に制限されないが、一例としては、ジクロロメタン、クロロホルム、四塩化炭素、ベンゼン、水などを用いることができる。特に好ましいのは、ジクロロメタン、クロロホルムおよび水である。
また、次亜塩素酸ナトリウム水溶液のような酸化剤を用いる場合は、有機相に化合物を溶解させ、相間移動触媒を加えた二相系での反応を行うことが好ましい。前記相間移動触媒としては、いわゆる界面活性剤を用いることができるが、一例として、4級アンモニウム塩やスルホニウム塩などを主成分とする物が挙げられる。
反応温度は通常0℃近辺で行うが、反応性に応じて室温から溶媒の還流温度までを好適に用いることができる。
As the method of the above K region epoxidation reaction, organic compounds such as m-perbenzoic acid, hydrogen peroxide, peracetic acid, oxone, dimethyldioxirane, and sodium hypochlorite aqueous solution are used as well as the oxidants in the conventional epoxidation. Inorganic peroxides can also be used. In view of ease of handling, m-perbenzoic acid, hydrogen peroxide, sodium hypochlorite aqueous solution and the like are preferable.
The solvent is not particularly limited as long as it dissolves the compound well and does not oxidize itself. For example, dichloromethane, chloroform, carbon tetrachloride, benzene, water and the like can be used. Particularly preferred are dichloromethane, chloroform and water.
When an oxidizing agent such as an aqueous sodium hypochlorite solution is used, it is preferable to carry out the reaction in a two-phase system in which a compound is dissolved in an organic phase and a phase transfer catalyst is added. As the phase transfer catalyst, a so-called surfactant can be used, and examples thereof include a quaternary ammonium salt or a sulfonium salt as a main component.
The reaction temperature is usually about 0 ° C., but from room temperature to the reflux temperature of the solvent can be suitably used depending on the reactivity.

まず、下記反応式に示すように、一般式(XV)で表されるエポキシ誘導体を還元剤で還元し、目的とする一般式(XVI)で示されるアルコール体を得る。   First, as shown in the following reaction formula, the epoxy derivative represented by the general formula (XV) is reduced with a reducing agent to obtain the target alcohol compound represented by the general formula (XVI).

Figure 2012216669
Figure 2012216669

上記の還元反応の方法としては、還元剤として水素化ホウ素化ナトリウム、水素化アルミニウムリチウム(LAH)、水素化ジイソブチルアルミニウム(DIBAL)などを用いたヒドリド還元や、ニッケル、銅、ルテニウム、白金、パラジウムなどの金属触媒と水素を用いた接触還元などを用いることができるが、官能基選択性や反応の容易さから判断するとヒドリド還元がより好ましい。ヒドリド還元剤の中でも、エポキシの還元にはある程度の強い還元剤が好適である。一例として、水素化アルミニウムリチウム(LAH)、水素化ジイソブチルアルミニウム(DIBAL)などが挙げられる。
還元反応に用いる溶媒は種々の有機溶媒を用いることができるが、還元剤と反応しないことが求められ、特にエーテル系溶媒が好ましい。一例として、ジエチルエーテル、テトラヒドロフラン、ジメトキシエタン、ジオキサンなどである。
反応温度は通常0℃近辺で行うが、反応性に応じて室温から溶媒の還流温度までを好適に用いることができる。
As a method for the above reduction reaction, hydride reduction using sodium borohydride, lithium aluminum hydride (LAH), diisobutylaluminum hydride (DIBAL) or the like as a reducing agent, nickel, copper, ruthenium, platinum, palladium However, hydride reduction is more preferable in view of functional group selectivity and ease of reaction. Among hydride reducing agents, a strong reducing agent to some extent is suitable for reducing epoxy. Examples include lithium aluminum hydride (LAH), diisobutylaluminum hydride (DIBAL), and the like.
Although various organic solvents can be used as the solvent used in the reduction reaction, it is required not to react with the reducing agent, and ether solvents are particularly preferable. Examples include diethyl ether, tetrahydrofuran, dimethoxyethane, dioxane and the like.
The reaction temperature is usually about 0 ° C., but from room temperature to the reflux temperature of the solvent can be suitably used depending on the reactivity.

続けて、下記反応式に示すように、上記反応で得られた一般式(XIV)で表される化合物(アルコール体)に、カルボン酸無水物またはカルボン酸クロライドあるいはクロロギ酸アルキルなどの炭酸ハーフエステル類と塩基を作用させることで、一般式(XVII)で表される化合物(1位がアシルオキシ化された目的物)を得ることができる。   Subsequently, as shown in the following reaction formula, a carbonic acid half ester such as a carboxylic acid anhydride, a carboxylic acid chloride, or an alkyl chloroformate is added to the compound (alcohol) represented by the general formula (XIV) obtained by the above reaction. The compound represented by the general formula (XVII) (the target product in which the 1-position is acyloxylated) can be obtained by reacting a group with a base.

Figure 2012216669
Figure 2012216669

[式(XIV)、(XVII)中、Q乃至Qは式(I)で定義した範囲と同一である。Acyはアシル基である。] [In formulas (XIV) and (XVII), Q 2 to Q 6 are the same as the range defined in formula (I). Acy is an acyl group. ]

上記反応において用いられるカルボン酸無水物およびカルボン酸クロライド、クロロギ酸アルキルなどの炭酸ハーフエステル類としては、カルボン酸(例えば、酢酸、酪酸、吉草酸、プロピオン酸、ピバル酸、カプロン酸、ステアリン酸、トリフルオロ酢酸、3,3,3−トリフルオロプロピオン酸)から誘導される化合物が挙げられる。上記反応式において、塩基としては、ピリジン、トリエチルアミン、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、水素化ナトリウム等を用いることができる。アシル化の場合は、反応で発生する塩酸をトラップできれば良いので必ずしも強塩基である必要はない。また、用いられる溶媒としては、前記塩基と兼ねたピリジンおよびトリエチルアミン、ジクロロメタン、テトラヒドロフラン、トルエンなど種々の有機溶媒を用いることができるが、反応速度の観点や副反応を防ぐために、溶媒は可能な限り脱水されたものを用いることが好ましい。
反応温度としては、室温から溶媒還流温度までを適用することが可能であるが、脱離反応などの副反応を防ぐためにも50℃以下が好ましく、最も好ましくは室温(25℃近傍)以下で行うことである。
なお、上記工程において、カルボン酸誘導体の代わりに、ハロゲン化アルキルあるいはハロゲン化アルキルシランあるいはスルホン酸誘導体を用いれば、公知の方法において容易にアルキルエーテル基、シリルエーテル基、スルホニルオキシ基を有する骨格が構築も達成できる。
ただし、ハロゲン化アルキル、ハロゲン化シリルエーテルの場合は、トリエチルアミンやピリジンのような弱塩基ではなく、水素化ナトリウム、水酸化ナトリウム、炭酸カリウムなどの強塩基を用いたほうが良好な結果を与える。
Examples of the carbonic acid half esters such as carboxylic acid anhydride and carboxylic acid chloride and alkyl chloroformate used in the above reaction include carboxylic acids (for example, acetic acid, butyric acid, valeric acid, propionic acid, pivalic acid, caproic acid, stearic acid, And compounds derived from trifluoroacetic acid and 3,3,3-trifluoropropionic acid). In the above reaction formula, pyridine, triethylamine, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium hydride and the like can be used as the base. In the case of acylation, it is not always necessary to be a strong base, as long as it is possible to trap hydrochloric acid generated in the reaction. Further, as the solvent used, various organic solvents such as pyridine and triethylamine, dichloromethane, tetrahydrofuran, toluene, which also serve as the base can be used, but in order to prevent reaction rate and side reactions, the solvent is as much as possible. It is preferable to use a dehydrated one.
The reaction temperature may be from room temperature to the solvent reflux temperature, but is preferably 50 ° C. or lower, and most preferably room temperature (near 25 ° C.) or lower in order to prevent side reactions such as elimination reaction. That is.
In the above process, if a halogenated alkyl or halogenated alkylsilane or sulfonic acid derivative is used in place of the carboxylic acid derivative, a skeleton having an alkyl ether group, a silyl ether group, or a sulfonyloxy group can be easily obtained by a known method. Construction can also be achieved.
However, in the case of alkyl halides and halogenated silyl ethers, it is better to use strong bases such as sodium hydride, sodium hydroxide and potassium carbonate instead of weak bases such as triethylamine and pyridine.

前述のような反応式に準拠して合成して得られた溶解性置換基Bは、種々の従来公知の方法でπ電子共役化合物Aと縮環させることにより縮環構造を有するπ電子共役化合物前駆体(縮環化合物)を合成することができる。これをπ電子共役化合物前駆体として用いる場合、例えば、ヘテロアセン類の場合は、J.Am.Chem.Soc.2007,129,pp2224−2225等に記載の方法に準じて行うことができる。
下記に具体的な例を挙げてその詳細反応式(スキーム)を示す。
The soluble substituent B obtained by synthesizing according to the above reaction formula is condensed with the π electron conjugated compound A by various conventionally known methods to form a π electron conjugated compound having a condensed ring structure. A precursor (fused ring compound) can be synthesized. When this is used as a π-electron conjugated compound precursor, for example, in the case of heteroacenes, Am. Chem. Soc. 2007, 129, pp 2224-2225, and the like.
The detailed reaction formula (scheme) is shown by giving a specific example below.

Figure 2012216669
Figure 2012216669

上記反応式において用いる原料の1−アシルオキシ−6−ヨード−1,2−ジヒドロナフタレンは本発明の合成例に従って合成が可能である。
第一段階として、ヨウ素原子とグリニア試薬とのグリニア交換反応を行う。極低温でかつヨウ素の反応性が高いため、選択的にグリニア交換反応が起こりグリニア試薬が得られる。このグリニア試薬にジメチルホルムアミドやモルホリンなどのホルミル化剤を加えることでホルミル化を行う。
第二段階はホルミル基のオルトリチオ化である。同時に加えるアミンとリチウムとホルミル基が錯体を形成するため、他の官能基を損なうことなく選択的にオルト位(1,2−ジヒドロナフタレンの7位)がリチオ化される。これを同様にジメチルスルフィドを加えることで、SMe化される。
続けて、第三段階ではホルミル基同士のマクマリーカップリング反応を行う。亜鉛、四塩化チタンの存在下で反応を行う。これにより、ホルミル基同士がカップリングし、オレフィン構造が形成される。
最終段階では、ヨウ素による閉環反応を行う。ヨウ素が二重結合部位に付加し、続けて、SMe基と反応し、MeIの形で脱離することにより、チオフェン環が二つ形成され、目的の縮環化合物を得ることができる。
The starting material 1-acyloxy-6-iodo-1,2-dihydronaphthalene used in the above reaction formula can be synthesized according to the synthesis example of the present invention.
As a first step, a Grineer exchange reaction between iodine atoms and a Grineer reagent is performed. Because of the extremely low temperature and the high reactivity of iodine, a Grineer exchange reaction occurs selectively and a Grineer reagent is obtained. Formylation is performed by adding a formylating agent such as dimethylformamide or morpholine to the Grineer reagent.
The second step is ortho trithiolation of the formyl group. Since the amine, lithium, and formyl group to be added simultaneously form a complex, the ortho position (position 7 of 1,2-dihydronaphthalene) is selectively lithiated without impairing other functional groups. This is similarly converted to SMe by adding dimethyl sulfide.
Subsequently, in the third stage, McMurry coupling reaction between formyl groups is performed. The reaction is carried out in the presence of zinc and titanium tetrachloride. Thereby, formyl groups couple with each other to form an olefin structure.
In the final stage, a ring closure reaction with iodine is performed. Iodine is added to the double bond site, subsequently reacts with the SMe group, and is eliminated in the form of MeI, whereby two thiophene rings are formed, and the desired condensed ring compound can be obtained.

また、ペンタセンの場合は、J.Am.ChemSoc.,129,2007,pp.15752に記載の方法に準じて行うことができ、フタロシアニン類の場合の環形成反応は、白井汪芳,小林長夫編・著「フタロシアニン−化学と機能−」(アイピーシー社,1997年刊)の第1〜62頁、廣橋亮,坂本恵一,奥村映子編「機能性色素としてのフタロシアニン」(アイピーシー社,2004年刊)の第29〜77頁に準じて同様に行うことが可能であり、ポルフィリン類の場合は、特開2009−105336号公報等に記載の方法に準じて行うことが可能である。   In the case of pentacene, J.A. Am. ChemSoc. , 129, 2007, pp. The ring formation reaction in the case of phthalocyanines can be carried out in accordance with the method described in “Phthalocyanine-Chemistry and Function” edited by Masayoshi Shirai and Nagao Kobayashi (IPC, 1997). 1 to 62, Ryo Takahashi, Keiichi Sakamoto, and Eiko Okumura, “Phthalocyanine as a functional dye” (IPC, 2004), pages 29 to 77 can be used in the same manner. Porphyrins In this case, it can be performed according to the method described in JP-A-2009-105336.

また、本発明のπ電子共役化合物前駆体において、前述の溶媒可溶性置換基(下記一般式中のB)の、他の骨格との共有結合による連結方法としては、Suzukiカップリング反応による方法、Stilleカップリング反応による方法、Kumadaカップリング反応、Negishiカップリング反応による方法、Hiyamaカップリング反応による方法、Sonogashira反応による方法、Heck反応による方法、Wittig反応による方法、などに代表される種々のカップリング反応を用いて行う、公知の方法が例示される。
これらのうち、Suzukiカップリング反応またはStilleカップリング反応を用いる方法が、中間体の誘導体化が容易であるのと、反応性、収率の観点から特に好ましい。炭素−炭素二重結合の形成に置いては、上記に加えHeck反応による方法、Wittig反応なども好ましい。炭素−炭素三重結合の形成においては、上記に加え、Sonogashira反応が特に好ましい。
以下に、炭素−炭素結合をSuzukiカップリング反応およびStilleカップリング反応によって連結する例を以下に挙げる。
In addition, in the π-electron conjugated compound precursor of the present invention, as a method for linking the above-described solvent-soluble substituent (B in the following general formula) by covalent bond with another skeleton, a method by Suzuki coupling reaction, Stille Various coupling reactions represented by a coupling reaction method, a Kumada coupling reaction, a Negishi coupling reaction method, a Hiyama coupling reaction method, a Sonogashira reaction method, a Heck reaction method, a Wittig reaction method, etc. The well-known method performed using is illustrated.
Among these, a method using a Suzuki coupling reaction or a Stille coupling reaction is particularly preferable from the viewpoint of reactivity and yield that the derivatization of the intermediate is easy. In addition to the above, in the formation of the carbon-carbon double bond, a method by Heck reaction, Wittig reaction, and the like are also preferable. In the formation of a carbon-carbon triple bond, in addition to the above, the Sonogashira reaction is particularly preferable.
Below, the example which connects a carbon-carbon bond by a Suzuki coupling reaction and a Stille coupling reaction is given to the following.

下記一般式(XVIII)、(XIX)で表されるハロゲン体およびトリフルオロトリフラート体またはボロン酸誘導体および有機スズ誘導体の組み合わせで反応を行う。ただし、一般式(XVIII)、(XIXI)で示される化合物が共にハロゲン体およびトリフラート体またはボロン酸誘導体および有機スズ誘導体で有る場合はカップリング反応が起こらないため除外する。
そして、上記混合物にさらにSuzukiカップリング反応の場合においてのみ塩基を追加し、パラジウム触媒の存在下で、反応させることにより製造される。
The reaction is carried out using a combination of a halogen compound and a trifluorotriflate compound represented by the following general formulas (XVIII) and (XIX) or a boronic acid derivative and an organotin derivative. However, when the compounds represented by the general formulas (XVIII) and (XIXI) are both a halogen compound, a triflate compound, a boronic acid derivative, and an organotin derivative, the coupling reaction does not occur, and thus it is excluded.
And it is manufactured by adding a base to the said mixture only in the case of Suzuki coupling reaction, and making it react in presence of a palladium catalyst.

Figure 2012216669
Figure 2012216669

[式(XVIII)中、Aは前述のπ電子共役系置換基であり、Dはハロゲン原子(塩素原子、臭素原子あるいはヨウ素原子を表す。)、トリフラート(トリフルオロメタンスルホニル)基または、ボロン酸またはそのエステルもしくは有機スズ官能基を示す。lは1以上の整数である。]   [In Formula (XVIII), A is the above-mentioned π-electron conjugated substituent, D is a halogen atom (representing a chlorine atom, a bromine atom or an iodine atom), a triflate (trifluoromethanesulfonyl) group, a boronic acid or The ester or organotin functional group is shown. l is an integer of 1 or more. ]

Figure 2012216669
Figure 2012216669

[式(XIX)中、Bは前述の溶媒可溶性置換基、Dはハロゲン原子(塩素原子、臭素原子あるいはヨウ素原子を表す)、トリフラート(トリフルオロメタンスルホニル)基または、ボロン酸またはそのエステルもしくは有機スズ官能基を示す。kは自然数である。)   [In the formula (XIX), B is the above-mentioned solvent-soluble substituent, D is a halogen atom (representing a chlorine atom, a bromine atom or an iodine atom), a triflate (trifluoromethanesulfonyl) group, or a boronic acid, its ester or organotin Indicates a functional group. k is a natural number. )

Suzukiカップリング、Stilleカップリング反応による合成方法において、前記一般式(XVI)および(XVII)中のハロゲン体またはトリフラート体の中でも、ヨウ素体あるいは臭素体もしくはトリフラート体が反応性の観点から好ましい。   In the synthesis method by Suzuki coupling or Stille coupling reaction, iodine, bromine or triflate is preferable from the viewpoint of reactivity among the halogen or triflate in the general formulas (XVI) and (XVII).

前記一般式(XVIII)および(XIX)中の有機スズ官能基としては、SnMe基やSnBu基などのアルキルスズ基を有する誘導体を用いることができる。これらは所望の位置の水素やハロゲン原子をn−ブチルリチウム等の有機金属試薬をを用いてリチウムやグリニア試薬に置き換え、その後トリメチルスズクロライドやトリブチルスズクロライドなどでクエンチすることで容易に得られる。
また、ボロン酸誘導体としては、ボロン酸のほか、熱的に安定で空気中で容易に扱えるビス(ピナコラト)ジボロンを用いハロゲン化誘導体から合成される、またはボロン酸をピナコール等のジオールで保護することによって合成されるボロン酸エステル誘導体を用いてもよい。
As the organotin functional group in the general formulas (XVIII) and (XIX), a derivative having an alkyltin group such as a SnMe 3 group or a SnBu 3 group can be used. These can be easily obtained by replacing a hydrogen or halogen atom at a desired position with lithium or a grinder reagent using an organometallic reagent such as n-butyllithium, and then quenching with trimethyltin chloride or tributyltin chloride.
The boronic acid derivative is synthesized from a halogenated derivative using bis (pinacolato) diboron that is thermally stable and easily handled in air in addition to boronic acid, or the boronic acid is protected with a diol such as pinacol. A boronic acid ester derivative synthesized by this method may be used.

上述の通り、置換基AまたはBのどちらがハロゲンおよびトリフラート体またはボロン酸誘導体および有機スズ誘導体であっても構わないが、誘導体化の容易さや副反応を減らすという意味では、置換基Aの方をボロン酸誘導体および有機スズ誘導体とした方がよい場合が多い。   As described above, either substituent A or B may be a halogen and triflate, or a boronic acid derivative and an organotin derivative. However, in terms of ease of derivatization and reduction of side reactions, substituent A is preferred. Often it is better to use boronic acid derivatives and organotin derivatives.

Stilleカップリング反応においては、特に塩基は不要であるが、Suzukiカップリング反応においては塩基が必ず必要となり、NaCO、NaHCOなどの比較的弱い塩基が良好な結果を与える。立体障害等の影響を受ける場合には、Ba(OH)やKPO、NaOHなどの強塩基が有効である。その他、苛性カリ、金属アルコシド等、例えば、カリウムt−ブトキシド、ナトリウムt−ブトキシド、リチウムt−ブトキシド、カリウム2−メチル−2−ブトキシド、ナトリウム2−メチル−2−ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド、カリウムメトキシドなども用いることができる。トリエチルアミン等の有機塩基も用いることができる。 In the Stille coupling reaction, a base is not particularly required, but in the Suzuki coupling reaction, a base is always required, and relatively weak bases such as Na 2 CO 3 and NaHCO 3 give good results. When affected by steric hindrance or the like, a strong base such as Ba (OH) 2 , K 3 PO 4 , or NaOH is effective. In addition, caustic potash, metal alkoxide, etc., for example, potassium t-butoxide, sodium t-butoxide, lithium t-butoxide, potassium 2-methyl-2-butoxide, sodium 2-methyl-2-butoxide, sodium methoxide, sodium ethoxide , Potassium ethoxide, potassium methoxide and the like can also be used. An organic base such as triethylamine can also be used.

パラジウム触媒としては、例えば、パラジウムブロマイド、パラジウムクロライド、パラジウムヨージド、パラジウムシアニド、パラジウムアセテート、パラジウムトリフルオロアセテート、パラジウムアセチルアセトナト[Pd(acac)]、ジアセテートビス(トリフェニルホスフィン)パラジウム[Pd(OAc)(PPh]、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh]、ジクロロビス(アセトニトリル)パラジウム[Pd(CHCNCl]、ジクロロビス(ベンゾニトリル)パラジウム[Pd(PhCN)Cl]、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム[Pd(dppe)Cl]、ジクロロ[1,1−ビス(ジフェニルホスフィノ)フェロセン]パラジウム[Pd(dppf)Cl]、ジクロロビス(トリシクロヘキシルホスフィン)パラジウム〔Pd[P(C11Cl〕、ジクロロビス(トリフェニルホスフィン)パラジウム[Pd(PPhCl]、トリス(ジベンジリデンアセトン)ジパラジウム[Pd(dba)]、ビス(ジベンジリデンアセトン)パラジウム[Pd(dba)]、等が挙げられるが、テトラキス(トリフェニルホスフィン)パラジウム[Pd(PPh]、ジクロロ[1,2−ビス(ジフェニルホスフィノ)エタン]パラジウム[Pd(dppe)Cl]、ジクロロビス(トリフェニルホスフィン)パラジウム[Pd(PPhCl]等のホスフィン系触媒が好ましい。 Examples of the palladium catalyst include palladium bromide, palladium chloride, palladium iodide, palladium cyanide, palladium acetate, palladium trifluoroacetate, palladium acetylacetonate [Pd (acac) 2 ], diacetate bis (triphenylphosphine) palladium. [Pd (OAc) 2 (PPh 3 ) 2 ], tetrakis (triphenylphosphine) palladium [Pd (PPh 3 ) 4 ], dichlorobis (acetonitrile) palladium [Pd (CH 3 CN 2 Cl 2 ], dichlorobis (benzonitrile) palladium [Pd (PhCN) 2 Cl 2 ], dichloro [1,2-bis (diphenylphosphino) ethane] palladium [Pd (dppe) Cl 2], dichloro [1,1-bis (Jifeniruho ) Ferrocene] palladium [Pd (dppf) Cl 2], dichlorobis (tricyclohexylphosphine) palladium [Pd [P (C 6 H 11 ) 3] 2 Cl 2 ], dichlorobis (triphenylphosphine) palladium [Pd (PPh 3 ) 2 Cl 2 ], tris (dibenzylideneacetone) dipalladium [Pd 2 (dba) 3 ], bis (dibenzylideneacetone) palladium [Pd (dba) 2 ] and the like, but tetrakis (triphenylphosphine) Palladium [Pd (PPh 3 ) 4 ], dichloro [1,2-bis (diphenylphosphino) ethane] palladium [Pd (dppe) Cl 2 ], dichlorobis (triphenylphosphine) palladium [Pd (PPh 3 ) 2 Cl 2 ] Is preferred. Arbitrariness.

上記の他にパラジウム触媒として、反応系中においてパラジウム錯体と配位子の反応により合成されるパラジウム触媒を用いることができる。配位子としては、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリス(n−ブチル)ホスフィン、トリス(tert−ブチル)ホスフィン、ビス(tert−ブチル)メチルホスフィン、トリス(i−プロピル)ホスフィン、トリシクロヘキシルホスフィン、トリス(o−トリル)ホスフィン、トリス(2−フリル)ホスフィン、2−ジシクロヘキシルホスフィノビフェニル、2−ジシクロヘキシルホスフィノ−2’−メチルビフェニル、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピル−1,1’−ビフェニル、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル、2−ジシクロヘキシルホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−ジフェニルホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチル)ホスフィノ−2’−(N,N’−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチル)ホスフィノビフェニル、2−(ジ−tert−ブチル)ホスフィノ−2’−メチルビフェニル、ジフェニルホスフィノエタン、ジフェニルホスフィノプロパン、ジフェニルホスフィノブタン、ジフェニルホスフィノエチレン、ジフェニルホスフィノフェロセン、エチレンジアミン、N,N’,N’’,N’’’−テトラメチルエチレンジアミン、2,2’−ビピリジル、1,3−ジフェニルジヒドロイミダゾリリデン、1,3−ジメチルジヒドロイミダゾリリデン、ジエチルジヒドロイミダゾリリデン、1,3−ビス(2,4,6−トリメチルフェニル)ジヒドロイミダゾリリデン、1,3−ビス(2,6−ジイソプロピルフェニル)ジヒドロイミダゾリリデンが挙げられ、これらの配位子のいずれかが配位したパラジウム触媒をクロスカップリング触媒として用いることができる。   In addition to the above, a palladium catalyst synthesized by reaction of a palladium complex and a ligand in the reaction system can be used as the palladium catalyst. Examples of the ligand include triphenylphosphine, trimethylphosphine, triethylphosphine, tris (n-butyl) phosphine, tris (tert-butyl) phosphine, bis (tert-butyl) methylphosphine, tris (i-propyl) phosphine, tris. Cyclohexylphosphine, tris (o-tolyl) phosphine, tris (2-furyl) phosphine, 2-dicyclohexylphosphinobiphenyl, 2-dicyclohexylphosphino-2′-methylbiphenyl, 2-dicyclohexylphosphino-2 ′, 4 ′, 6'-triisopropyl-1,1'-biphenyl, 2-dicyclohexylphosphino-2 ', 6'-dimethoxy-1,1'-biphenyl, 2-dicyclohexylphosphino-2'-(N, N'-dimethyl Amino) biphenyl 2-diphenylphosphino-2 ′-(N, N′-dimethylamino) biphenyl, 2- (di-tert-butyl) phosphino-2 ′-(N, N′-dimethylamino) biphenyl, 2- (di- tert-butyl) phosphinobiphenyl, 2- (di-tert-butyl) phosphino-2′-methylbiphenyl, diphenylphosphinoethane, diphenylphosphinopropane, diphenylphosphinobutane, diphenylphosphinoethylene, diphenylphosphinoferrocene, Ethylenediamine, N, N ′, N ″, N ′ ″-tetramethylethylenediamine, 2,2′-bipyridyl, 1,3-diphenyldihydroimidazolylidene, 1,3-dimethyldihydroimidazolylidene, diethyldihydroimidazo Lilidene, 1,3-bis (2,4,6- Limethylphenyl) dihydroimidazolylidene and 1,3-bis (2,6-diisopropylphenyl) dihydroimidazolylidene are mentioned, and a palladium catalyst coordinated with any of these ligands is used as a cross-coupling catalyst. Can be used.

反応溶媒としては、原料と反応し得るような官能基を有さず、かつ原料を適度に溶解させられることができるようなものが望ましく、水、メタノール、エタノール、イソプロパノール、ブタノール、2−メトキシエタノール、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル等のアルコールおよびエーテル系、ジオキサン、テトラヒドロフラン等の環状エーテル系の他、ベンゼン、トルエン、キシレン、クロロベンゼン、ジクロロベンゼン、ジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン等をあげることができる。これらの溶媒は単独で用いても、二種以上適宜組み合わせて用いてもよい。またこれらの溶媒はあらかじめ乾燥、脱気処理を行うことが望ましい。   The reaction solvent is preferably one that does not have a functional group capable of reacting with the raw material and that can dissolve the raw material in an appropriate amount. Water, methanol, ethanol, isopropanol, butanol, 2-methoxyethanol 1,2-dimethoxyethane, bis (2-methoxyethyl) ether and other alcohols and ethers, dioxane, tetrahydrofuran and other cyclic ethers, benzene, toluene, xylene, chlorobenzene, dichlorobenzene, dimethyl sulfoxide (DMSO) N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like. These solvents may be used alone or in combination of two or more. These solvents are preferably dried and degassed in advance.

上記反応の温度は、用いる原料の反応性、また、反応溶媒により適宜設定され、通常0℃〜200℃の範囲で行うことが可能であるが、いずれの場合も溶媒の沸点以下に抑えることが好ましい。加えて脱離反応が起こる温度以下に抑えることが収率の観点から好ましく、具体的には室温〜150℃の範囲が好ましく、特に好ましくは室温〜120℃の範囲が好ましく、もっとも好ましくは室温〜100℃の範囲である。
上記反応における反応時間は、用いる原料の反応性において適宜設定することができ、1〜72時間が好適であり、さらには、1〜24時間がより好ましい。
The temperature of the above reaction is appropriately set depending on the reactivity of the raw materials used and the reaction solvent, and can usually be carried out in the range of 0 ° C. to 200 ° C. In either case, the reaction temperature should be kept below the boiling point of the solvent. preferable. In addition, it is preferable from the viewpoint of yield to suppress to a temperature at which the elimination reaction occurs or less, specifically, a range of room temperature to 150 ° C. is preferable, a range of room temperature to 120 ° C. is particularly preferable, and a range of room temperature to 120 ° C. is most preferable. It is in the range of 100 ° C.
The reaction time in the above reaction can be appropriately set in the reactivity of the raw material used, is preferably 1 to 72 hours, and more preferably 1 to 24 hours.

以上のようにして下記一般式(XX)で表されるπ電子共役化合物前駆体が得られる。   As described above, a π-electron conjugated compound precursor represented by the following general formula (XX) is obtained.

Figure 2012216669
Figure 2012216669

[式(XX)中、Aは式(XVIII)と、Bは式(XIX)とそれぞれ同義であり、mは1以上の整数である。] [In Formula (XX), A is the same as Formula (XVIII) and B is the same as Formula (XIX), respectively, and m is an integer of 1 or more. ]

得られるπ電子共役化合物前駆体は、反応に使用した触媒、未反応の原料、また反応時に副生するボロン酸塩、有機スズ誘導体等の不純物を除去して使用される。これらの精製は再沈澱法、カラムクロマト法、吸着法、抽出法(ソックスレー抽出法を含む)、限外濾過法、透析法、触媒を除くためのスカベンジャーの使用等をはじめとする従来公知の方法を使用できる。
溶解性に優れた材料では、これら精製方法の制約が少なくなり、結果的にデバイス特性にも好影響を与える。
The resulting π-electron conjugated compound precursor is used after removing impurities such as the catalyst used in the reaction, unreacted raw materials, and boronate and organotin derivatives by-produced during the reaction. These purification methods include conventional methods such as reprecipitation, column chromatography, adsorption, extraction (including Soxhlet extraction), ultrafiltration, dialysis, and the use of scavengers to remove the catalyst. Can be used.
A material having excellent solubility has fewer restrictions on these purification methods, and as a result, has a positive effect on device characteristics.

上記した製造方法により得られるπ電子共役化合物前駆体を薄膜とするには、例えば、π電子共役化合物前駆体と溶媒を含む溶液(インク等の形態であってもよい。)とし、この溶液を用いてスピンコート法、キャスト法、ディップ法、インクジェット法、ドクターブレード法、スクリーン印刷法により製膜したり、あるいは熱変換後のπ電子共役系化合物自体を、真空蒸着、スパッタ等により製膜したりする公知の製膜方法を用いることができる。これらの製膜方法によって、クラックのない、強度、靭性、耐久性等に優れた良好な薄膜を作製することが可能である。
さらに前記の製膜方法により塗布した本発明のπ電子共役化合物前駆体A−(B)mの膜にエネルギーを付与する(外部刺激を加える)ことによって、前記一般式(I)で表される溶解性の脱離性置換基Bから前記一般式(II)で表される化合物(脱離成分)を脱離し、前記一般式(Ia)で表されるCへと変換することで、π電子共役化合物A−C(m)(応用として有機半導体材料等が挙げられる)からなる有機半導体膜を形成することが可能であることから、光電変換素子、薄膜トランジスタ素子、発光素子など種々の機能素子用材料として好適に用いることができる。
In order to make the π-electron conjugated compound precursor obtained by the above-described manufacturing method into a thin film, for example, a solution containing the π-electron conjugated compound precursor and a solvent (may be in the form of ink or the like) is used. Film formation by spin coating method, casting method, dipping method, ink jet method, doctor blade method, screen printing method, or π electron conjugated compound itself after heat conversion is formed by vacuum deposition, sputtering, etc. A known film forming method can be used. By these film forming methods, it is possible to produce a good thin film free from cracks and excellent in strength, toughness, durability and the like.
Further, by applying energy (applying external stimulus) to the film of the π-electron conjugated compound precursor A- (B) m of the present invention applied by the film forming method, it is represented by the general formula (I). By removing the compound (leaving component) represented by the general formula (II) from the soluble leaving group B and converting it to C represented by the general formula (Ia), π electrons Since it is possible to form an organic semiconductor film made of a conjugated compound A-C (m) (an organic semiconductor material or the like can be used as an application), it can be used for various functional elements such as a photoelectric conversion element, a thin film transistor element, and a light emitting element. It can be suitably used as a material.

[4.π電子共役化合物のデバイスへの応用]
本発明のπ電子共役化合物前駆体から製造したπ電子共役化合物(ここでは有機半導体化合物)は、例えば、電子デバイスに用いることができる。電子デバイスの例を挙げると、2個以上の電極を有し、その電極間に流れる電流や生じる電圧を、電気、光、磁気、または化学物質等により制御するデバイス、あるいは、印加した電圧や電流により、光や電場、磁場を発生させる装置などが挙げられる。また、例えば、電圧や電流の印加により電流や電圧を制御する素子、磁場の印加による電圧や電流を制御する素子、化学物質を作用させて電圧や電流を制御する素子などが挙げられる。この制御としては、整流、スイッチング、増幅、発振等が挙げられる。
現在シリコン等の無機半導体で実現されている対応するデバイスとしては、抵抗器、整流器(ダイオード)、スイッチング素子(トランジスタ、サイリスタ)、増幅素子(トランジスタ)、メモリー素子、化学センサー等、あるいはこれらの素子の組み合わせや集積化したデバイスが挙げられる。また、光により起電力を生じる太陽電池や、光電流を生じるフォトダイオード、フォトトランジスター等の光素子も挙げることができる。
[4. Application of π-electron conjugated compounds to devices]
The π-electron conjugated compound (here, an organic semiconductor compound) produced from the π-electron conjugated compound precursor of the present invention can be used for an electronic device, for example. As an example of an electronic device, a device that has two or more electrodes and controls the current flowing between the electrodes or the voltage generated by electricity, light, magnetism, or a chemical substance, or the applied voltage or current Thus, a device that generates light, an electric field, or a magnetic field can be used. In addition, for example, an element that controls current or voltage by application of voltage or current, an element that controls voltage or current by application of a magnetic field, an element that controls voltage or current by the action of a chemical substance, or the like can be given. Examples of this control include rectification, switching, amplification, and oscillation.
Corresponding devices currently implemented with inorganic semiconductors such as silicon include resistors, rectifiers (diodes), switching elements (transistors, thyristors), amplifier elements (transistors), memory elements, chemical sensors, etc., or these elements Combinations and integrated devices. In addition, a solar cell that generates an electromotive force by light, or an optical element such as a photodiode or a phototransistor that generates a photocurrent can be used.

本発明のπ電子共役化合物前駆体およびそれから製造したπ電子共役化合物(ここでは有機半導体化合物)を適用するのに好適な電子デバイスの例としては、有機薄膜トランジスタすなわち、有機電界効果トランジスタ(OFET)が挙げられる。以下、このFETについて詳細に説明する。   Examples of electronic devices suitable for applying the π-electron conjugated compound precursor of the present invention and the π-electron conjugated compound (here, an organic semiconductor compound) produced therefrom include an organic thin film transistor, that is, an organic field effect transistor (OFET). Can be mentioned. Hereinafter, this FET will be described in detail.

「トランジスタ構造」
図1の(A)〜(D)は、本発明に係わる有機薄膜トランジスタの構造例を示す概略図である。本発明に係わる有機薄膜トランジスタの有機半導体層(1)は、本発明のπ電子共役化合物前駆体にエネルギーを付与して変換された有機半導体化合物[A−C(m)]を含有する。本発明の有機薄膜トランジスタには、空間的に分離された第一の電極(ソース電極(2))、第二の電極(ドレイン電極(3))および図示しない支持体(基質)上に第三の電極(ゲート電極(4))が設けられており、ゲート電極(4)と有機半導体層(1)の間には絶縁膜(5)が設けられていてもよい。
有機薄膜トランジスタはゲート電極への電圧の印加により、ソース電極(2)とドレイン電極(3)の間の有機半導体層(1)内を流れる電流がコントロールされるが、スイッチング素子としては、ゲート電極4による電圧の印加状態により、ソース電極(2)とドレイン電極(3)との間に流れる電流量が大きく変調できることが重要である。これはトランジスタの駆動状態で大きな電流が流れ、非駆動状態では、電流が流れないことを意味する。
"Transistor structure"
1A to 1D are schematic views showing structural examples of organic thin film transistors according to the present invention. The organic semiconductor layer (1) of the organic thin film transistor according to the present invention contains an organic semiconductor compound [AC (m)] converted by applying energy to the π-electron conjugated compound precursor of the present invention. The organic thin film transistor of the present invention includes a third electrode on a spatially separated first electrode (source electrode (2)), second electrode (drain electrode (3)) and a support (substrate) (not shown). An electrode (gate electrode (4)) is provided, and an insulating film (5) may be provided between the gate electrode (4) and the organic semiconductor layer (1).
In the organic thin film transistor, the current flowing in the organic semiconductor layer (1) between the source electrode (2) and the drain electrode (3) is controlled by applying a voltage to the gate electrode. It is important that the amount of current flowing between the source electrode (2) and the drain electrode (3) can be greatly modulated by the application state of the voltage. This means that a large current flows when the transistor is driven, and no current flows when the transistor is not driven.

本発明の有機薄膜トランジスタは、支持体上に設けることができ、例えば、ガラス、シリコン、プラスチック等の一般に用いられる基板を利用できる。また、導電性基板を用いることにより、ゲート電極と兼ねること、さらにはゲート電極と導電性基板とを積層した構造にすることもできるが、本発明の有機薄膜トランジスタが応用されるデバイスのフレキシビリティー、軽量化、安価、耐衝撃性等の特性が所望される場合、プラスチックシートを支持体とすることが好ましい。   The organic thin film transistor of the present invention can be provided on a support, and for example, a commonly used substrate such as glass, silicon, or plastic can be used. In addition, by using a conductive substrate, it can also be used as a gate electrode, and a structure in which a gate electrode and a conductive substrate are stacked can be used. However, the flexibility of a device to which the organic thin film transistor of the present invention is applied. When characteristics such as light weight, low cost, and impact resistance are desired, a plastic sheet is preferably used as the support.

プラスチックシートとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリイミド、ポリカーボネート、セルローストリアセテート、セルロースアセテートプロピオネート等からなるフィルム等が挙げられる。   Examples of the plastic sheet include polyethylene terephthalate, polyethylene naphthalate, polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate, cellulose triacetate, and cellulose acetate propionate. Is mentioned.

「製膜方法:有機半導体層」
前述のように本発明のπ電子共役化合物前駆体を有機半導体前駆体として用い、例えば、ジクロロメタン、テトラヒドロフラン、クロロホルム、トルエン、、クロロベンゼン、ジクロロベンゼン及びキシレン等の溶剤に溶解して溶液(インク組成物)とし、該溶液を支持体上に塗布することによって有機半導体前駆体からなる薄膜を形成した後、この膜に対してエネルギーを印加し、有機半導体膜に変換することによっても形成することができる。
“Film Formation Method: Organic Semiconductor Layer”
As described above, the π-electron conjugated compound precursor of the present invention is used as an organic semiconductor precursor, and is dissolved in a solvent such as dichloromethane, tetrahydrofuran, chloroform, toluene, chlorobenzene, dichlorobenzene, and xylene. ) And coating the solution on a support to form a thin film made of an organic semiconductor precursor, and then applying energy to this film to convert it to an organic semiconductor film. .

[インク組成、溶媒]
前記、インク組成物に用いられる溶媒は、次のように決めることができる。
例えばジクロロメタン、テトラヒドロフラン、クロロホルム、トルエン、クロロベンゼン、ジクロロベンゼン及びキシレン等の溶剤に溶解して、支持体上に塗布することによって薄膜を形成することができる。すなわち、前駆体を含む塗工液のための溶媒は、目的に応じて適宜選択することができるが、除去が容易であることから、沸点が500℃以下であることが好ましい。しかし、揮発性が高ければ高いほど良いという訳ではない。沸点50℃以上のものが好ましい。まだ充分に確認した訳ではないが、伝導性には、前駆体が有する脱離性基の単なる離脱のみでなく、分子相互間の接触のための配置状態変化も重要なためかも知れない。つまり、塗工膜中に存在する前駆体は、それが有する脱離性基が除去されたのち、ランダム状態から、分子の向き又は位置の少なくとも部分的変化により分子同士の隣接化、接触や再配列、凝集、結晶化等が生じるための時間が必要なためかも知れない。
いずれにしても、溶媒としては具体的には、前駆体A−(B)mが有する例えば脱離性基としての極性のカルボエステル基やエーテル基に親和性のあるメタノール、エタノール、イソプロパノール等のアルコール、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール、テトラヒドロフラン(THF)、ジオキサン等のエーテル、メチルエチルケトン、メチルイソブチルケトン等のケトン、フエノール、クレゾールのようなフエノール類、ジメチルホルムアミド(DMF)、ピリジン、ジメチルアミン、トリエチルアミン等の含窒素有機溶媒、メチルセロソルブ、エチルセロソルブのようなセロソルブ(登録商標)等の極性(水混和性)溶媒に加えて、本体構造部分と比較的親和性のあるトルエン、キシレン、ベンゼン等の炭化水素、四塩化炭素、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、クロロホルム、モノクロロベンゼン、ジクロロエチリデン等のハロゲン化炭化水素溶媒、酢酸メチル、酢酸エチルのようなエステル系溶媒、ニトロメタン、ニトロエタン等の含窒素有機溶媒等が挙げられる。これらは、単独で使用してもよいし、二種以上を併用してもよい。
中でも、テトラヒドロフラン(THF)等の極性(水混和性)溶媒と、トルエン、キシレン、ベンゼン、塩化メチレン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素、酢酸エチル等のエステル系溶媒のような非水混和性のものとの併用が特に好ましい。
また、塗工液には、さらに、本発明の目的達成を損なわない程度で、カルボエステル基分解促進のための揮発性又は自己分解性の酸、塩基材料を含んでしてもよい。また、トリクロロ酢酸(加熱によりクロロホルムと炭酸ガスに分解)、トリフロロ酢酸(揮発性)のような強酸性の溶媒は、弱いルイス酸であるカルボエステル基の追い出しに効果があるので好ましく用いられる。
[Ink composition, solvent]
The solvent used in the ink composition can be determined as follows.
For example, a thin film can be formed by dissolving in a solvent such as dichloromethane, tetrahydrofuran, chloroform, toluene, chlorobenzene, dichlorobenzene, and xylene and coating on a support. That is, the solvent for the coating liquid containing the precursor can be appropriately selected according to the purpose, but it is preferable that the boiling point is 500 ° C. or less because it is easy to remove. However, the higher the volatility, the better. Those having a boiling point of 50 ° C. or higher are preferred. Although not fully confirmed, it may be because conductivity is not only the detachment of the leaving group of the precursor, but also the change of the arrangement state for contact between molecules. In other words, the precursor present in the coating film is removed from the random state and then adjoined, contacted, or regenerated between the molecules by at least a partial change in the direction or position of the molecule from the random state. This may be because it takes time for the arrangement, aggregation, crystallization, and the like to occur.
In any case, specifically as the solvent, the precursor A- (B) m has, for example, a polar carboester group as a leaving group or an ether group having affinity for methanol, ethanol, isopropanol, etc. Alcohols, glycols such as ethylene glycol, diethylene glycol and propylene glycol, ethers such as tetrahydrofuran (THF) and dioxane, ketones such as methyl ethyl ketone and methyl isobutyl ketone, phenols such as phenol and cresol, dimethylformamide (DMF), pyridine and dimethyl In addition to nitrogen-containing organic solvents such as amine and triethylamine, polar (water-miscible) solvents such as cellosolve (registered trademark) such as methyl cellosolve and ethyl cellosolve, toluene, xylene, Of hydrocarbons such as carbon dioxide, carbon tetrachloride, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, trichloroethylene, chloroform, monochlorobenzene, dichloroethylidene, methyl acetate, ethyl acetate Such ester solvents, and nitrogen-containing organic solvents such as nitromethane and nitroethane. These may be used alone or in combination of two or more.
Among them, polar (water-miscible) solvents such as tetrahydrofuran (THF) and halogenated hydrocarbons such as toluene, xylene, benzene, methylene chloride, 1,2-dichloroethane, chloroform and carbon tetrachloride, and ester systems such as ethyl acetate A combination with a non-water miscible solvent such as a solvent is particularly preferred.
Further, the coating solution may further contain a volatile or self-decomposable acid or base material for accelerating the decomposition of the carboester group without impairing the achievement of the object of the present invention. Further, a strongly acidic solvent such as trichloroacetic acid (decomposed into chloroform and carbon dioxide by heating) and trifluoroacetic acid (volatile) is preferably used because it has an effect of expelling a carboester group which is a weak Lewis acid.

また前述のように、本発明のπ電子共役化合物前駆体はシクロヘキサジエン構造と置換されていても良いエーテル基またはアシルオキシ基を有しており、この部分が立体的に嵩高いために結晶性が悪く、この構造を有する分子は溶解性が良好でかつ、溶液から塗布した際に結晶性の低いか、あるいは無定形の膜が得られやすい性質を有する。
これら薄膜の作製方法としては、スプレーコート法、スピンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコート法、ダイコート法、インクジェット法、ディスペンス法、スクリーン印刷、オフセット印刷、凸版印刷、フレキソ印刷等の印刷法、マイクロコンタクトプリンティング法などのソフトリソグラフィーの手法等が挙げられ、更にはこれらの手法を複数組み合わせた方法を用いることができる。
そして、材料に応じて、適した上記製膜方法と、上記溶媒から適切な溶媒が選択される。
さらに、熱変換後の有機半導体材料自体は、真空蒸着法等による気相製膜が可能である。
Further, as described above, the π-electron conjugated compound precursor of the present invention has an ether group or acyloxy group which may be substituted with a cyclohexadiene structure. Unfortunately, molecules having this structure have good solubility and low crystallinity when applied from a solution, or an amorphous film can be easily obtained.
The methods for producing these thin films include spray coating, spin coating, blade coating, dip coating, casting, roll coating, bar coating, die coating, ink jet, dispensing, screen printing, offset printing, Examples thereof include printing methods such as letterpress printing and flexographic printing, and soft lithography methods such as microcontact printing, and a method combining a plurality of these methods can also be used.
And according to material, a suitable solvent is selected from the said suitable film forming method and the said solvent.
Furthermore, the organic semiconductor material itself after heat conversion can be formed into a vapor phase by a vacuum deposition method or the like.

上記、印刷・塗布法のなかでも、インクジェット法に代表される液滴塗布法は、基板の所定の位置にのみ液滴を滴下させるため、材料を無駄なく利用することができ、他の方法に必要な不要部分の材料除去プロセスが必要なくなるので、工程を簡略にすることができる。   Among the above-mentioned printing / coating methods, the droplet coating method represented by the ink jet method drops the droplet only at a predetermined position on the substrate, so that the material can be used without waste. Since the unnecessary material removal process for unnecessary portions is not necessary, the process can be simplified.

安定に吐出させるための条件としては、少なくとも、溶媒の乾燥速度と、溶質の溶解度に対するインクの溶質濃度の二点から検討する必要がある。
乾燥速度については、過度に高い蒸気圧すなわち、沸点が比較的低い溶媒は、インクジェットのノズル周辺での急激な溶媒乾燥によって溶質が析出し、ノズルの目詰まりが生じるという問題が発生するため、工業的製造において不適切である。したがって、一般にインクジェット法に用いる溶媒としては高沸点のものがよいとされているが、本発明においては、少なくとも150℃以上の沸点を有する溶媒を含むことが望ましい。さらに望ましくは、少なくとも200℃以上の沸点を有する溶媒を含むことである。
また、インク溶媒に対する溶質の溶解度としては、本発明で用いられる有機半導体材料を少なくとも0.1重量%以上溶解させる溶媒であることが望ましい。さらに望ましくは0.5重量%以上溶解させる溶媒である。上記を満たす溶媒としては、例えば、クメン、シメン、メシチレン、2,4−トリメチルベンゼン、プロピルベンゼン、ブチルベンゼン、アミルベンゼン、1,3−ジメトキシベンゼン、ニトロベンゼン、ベンゾニトリル、N,N−ジメチルアニリン、N,N−ジエチルアニリン、テトラリン、1,5−ジメチルテトラリン、シクロヘキサノン、安息香酸メチル、安息香酸エチル、安息香酸プロピル等が挙げられる。
As conditions for stable ejection, it is necessary to examine at least two points: the drying speed of the solvent and the solute concentration of the ink with respect to the solubility of the solute.
Regarding the drying speed, a solvent having an excessively high vapor pressure, that is, a relatively low boiling point, causes a problem that the solute is precipitated by the rapid solvent drying around the nozzle of the inkjet, and the nozzle is clogged. Inadequate manufacturing. Therefore, it is generally considered that a solvent having a high boiling point is suitable for the ink jet method, but in the present invention, it is desirable to include a solvent having a boiling point of at least 150 ° C. or higher. More desirably, it includes a solvent having a boiling point of at least 200 ° C. or higher.
The solubility of the solute with respect to the ink solvent is desirably a solvent that dissolves at least 0.1% by weight or more of the organic semiconductor material used in the present invention. More desirably, the solvent dissolves 0.5% by weight or more. Examples of the solvent satisfying the above include cumene, cymene, mesitylene, 2,4-trimethylbenzene, propylbenzene, butylbenzene, amylbenzene, 1,3-dimethoxybenzene, nitrobenzene, benzonitrile, N, N-dimethylaniline, N, N-diethylaniline, tetralin, 1,5-dimethyltetralin, cyclohexanone, methyl benzoate, ethyl benzoate, propyl benzoate and the like can be mentioned.

本発明の有機薄膜トランジスタにおいて、有機半導体層の膜厚としては、特に制限はないが、均一な薄膜、即ち、有機半導体層のキャリア輸送特性に悪影響を及ぼすギャップやホールがない膜が形成されるような厚みに選択される。有機半導体薄膜の厚みは、一般に1μm以下、特に5nm〜100nmが好ましい。本発明の有機薄膜トランジスタにおいて、上記化合物を成分として形成される有機半導体層は、ソース電極、ドレイン電極および絶縁膜に接して形成される。   In the organic thin film transistor of the present invention, the thickness of the organic semiconductor layer is not particularly limited, but a uniform thin film, that is, a film having no gap or hole that adversely affects the carrier transport property of the organic semiconductor layer is formed. The thickness is selected. The thickness of the organic semiconductor thin film is generally 1 μm or less, particularly preferably 5 nm to 100 nm. In the organic thin film transistor of the present invention, the organic semiconductor layer formed using the above compound as a component is formed in contact with the source electrode, the drain electrode, and the insulating film.

「製膜方法:有機半導体膜の後処理」
上記した前駆体薄膜より変換した有機半導体膜は、後処理により特性を改良することが可能である。例えば、加熱処理により、製膜中に生じた膜中のゆがみを緩和することができ、これが結晶性の向上に繋がり、特性の向上や安定化を図ることができる。また、有機溶媒(例えば、トルエン、クロロホルムなど)雰囲気中に置くことにより、加熱処理と同様に膜中のゆがみを緩和し、さらに結晶性を高めることも可能である。
さらに、酸素や水素等の酸化性あるいは還元性の気体や液体にさらすことにより、酸化あるいは還元による特性変化を誘起することもできる。これは膜中のキャリア密度の増加、あるいは減少の目的で利用することができる。
“Filming method: Post-treatment of organic semiconductor film”
The characteristics of the organic semiconductor film converted from the precursor thin film can be improved by post-processing. For example, the heat treatment can alleviate distortion in the film generated during film formation, which leads to improvement in crystallinity, and can improve and stabilize characteristics. Further, by placing in an atmosphere of an organic solvent (for example, toluene, chloroform, etc.), it is possible to reduce distortion in the film and further enhance crystallinity as in the heat treatment.
Furthermore, a change in characteristics due to oxidation or reduction can be induced by exposure to an oxidizing or reducing gas or liquid such as oxygen or hydrogen. This can be used for the purpose of increasing or decreasing the carrier density in the film.

「電極」
本発明の有機薄膜トランジスタに用いられるゲート電極、ソース電極、ゲート電極としては、導電性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アンチモン、鉛、タンタル、インジウム、アルミニウム、亜鉛、マグネシウム等、及びこれらの合金やインジウム・錫酸化物等の導電性金属酸化物、あるいはドーピング等で導電率を向上させた無機及び有機半導体、例えば、シリコン単結晶、ポリシリコン、アモルファスシリコン、ゲルマニウム、グラファイト、ポリアセチレン、ポリパラフェニレン、ポリチオフェン、ポリピロール、ポリアニリン、ポリチエニレンビニレン、ポリパラフェニレンビニレン、ポリエチレンジオキシチオフェンとポリスチレンスルホン酸の錯体等が挙げられる。
"electrode"
The gate electrode, source electrode, and gate electrode used in the organic thin film transistor of the present invention are not particularly limited as long as they are conductive materials, such as platinum, gold, silver, nickel, chromium, copper, iron, tin, antimony, lead, Tantalum, indium, aluminum, zinc, magnesium, etc., and their alloys and conductive metal oxides such as indium / tin oxide, or inorganic and organic semiconductors whose conductivity has been improved by doping, such as silicon single crystals, Examples thereof include polysilicon, amorphous silicon, germanium, graphite, polyacetylene, polyparaphenylene, polythiophene, polypyrrole, polyaniline, polythienylene vinylene, polyparaphenylene vinylene, a complex of polyethylenedioxythiophene and polystyrene sulfonic acid.

ソース電極及びドレイン電極は、上記導電性の中でも半導体層との接触面において、電気抵抗が少ないものが好ましい。
電極の形成方法としては、上記材料を原料として蒸着やスパッタリング等の方法を用いて形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成する方法、アルミニウムや銅等の金属箔上に熱転写、インクジェット等によるレジストを用いてエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導電性微粒子分散液を直接インクジェットによりパターニングしてもよいし、塗工膜からリソグラフィーやレーザーアブレーション等により形成してもよい。さらに導電性ポリマーや導電性微粒子を含むインク、導電性ペースト等を凸版、凹版、平版、スクリーン印刷等の印刷法でパターニングする方法も用いることができる。
また、本発明の有機薄膜トランジスタは、必要に応じて各電極からの引出し電極を設けることができる。
The source electrode and the drain electrode are preferably those having low electrical resistance at the contact surface with the semiconductor layer among the above-described conductivity.
As a method for forming an electrode, a method of forming an electrode using a known photolithographic method or a lift-off method, using a conductive thin film formed by a method such as vapor deposition or sputtering using the above materials as a raw material, a metal such as aluminum or copper There is a method of etching using a resist by thermal transfer, ink jet or the like on a foil. Alternatively, a conductive polymer solution or dispersion, or a conductive fine particle dispersion may be directly patterned by inkjet, or may be formed from the coating film by lithography, laser ablation, or the like. Furthermore, a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste, or the like by a printing method such as a relief printing plate, an intaglio printing plate, a planographic printing plate or a screen printing can be used.
Moreover, the organic thin-film transistor of this invention can provide the extraction electrode from each electrode as needed.

「絶縁膜」
本発明の有機薄膜トランジスタにおいて用いられる絶縁膜には、種々の絶縁膜材料を用いることができる。例えば、酸化ケイ素、窒化ケイ素、酸化アルミニウム、窒化アルミニウム、酸化チタン、酸化タンタル、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウム、ジルコウム酸化チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、タンタル酸ニオブ酸ビスマス、トリオキサイドイットリウム等の無機系絶縁材料が挙げられる。
また、例えば、ポリイミド、ポリビニルアルコール、ポリビニルフェノール、ポリエステル、ポリエチレン、ポリフェニレンスルフィド、無置換またはハロゲン原子置換ポリパラキシリレン、ポリアクリロニトリル、シアノエチルプルラン等の高分子化合物を用いることができる。
さらに、上記絶縁材料を2種以上合わせて用いてもよい。特に材料は限定されないが、中でも誘電率が高く、導電率が低いものが好ましい。
"Insulating film"
Various insulating film materials can be used for the insulating film used in the organic thin film transistor of the present invention. For example, silicon oxide, silicon nitride, aluminum oxide, aluminum nitride, titanium oxide, tantalum oxide, tin oxide, vanadium oxide, barium strontium titanate, zirconium barium titanate, lead zirconate titanate, lead lanthanum titanate, titanate Examples thereof include inorganic insulating materials such as strontium, barium titanate, barium magnesium fluoride, bismuth tantalate niobate, and yttrium trioxide.
Further, for example, polymer compounds such as polyimide, polyvinyl alcohol, polyvinylphenol, polyester, polyethylene, polyphenylene sulfide, unsubstituted or halogen atom-substituted polyparaxylylene, polyacrylonitrile, cyanoethyl pullulan, and the like can be used.
Further, two or more of the above insulating materials may be used in combination. The material is not particularly limited, but a material having a high dielectric constant and a low electrical conductivity is preferable.

上記材料を用いた絶縁膜層の作製方法としては、例えば、CVD法、プラズマCVD法、プラズマ重合法、蒸着法のドライプロセスや、スプレーコート法、スピンコート法、ディップコート法、インクジェット法、キャスト法、ブレードコート法、バーコート法等の塗布によるウェットプロセスが挙げられる。   Examples of the method for producing the insulating film layer using the above materials include a CVD method, a plasma CVD method, a plasma polymerization method, a dry process such as a vapor deposition method, a spray coating method, a spin coating method, a dip coating method, an ink jet method, and a cast method. Examples thereof include wet processes such as coating, blade coating, and bar coating.

「有機半導体/絶縁膜および電極界面修飾」
本発明の有機薄膜トランジスタにおいて、絶縁膜および電極と有機半導体層の接着性を向上、ゲート電圧の低減、リーク電流低減等の目的で、これら層間に有機薄膜を設けてもよい。有機薄膜は有機半導体層に対し、化学的影響を与えなければ、特に限定されないが、例えば、有機分子膜や高分子薄膜が利用できる。
"Organic semiconductor / insulating film and electrode interface modification"
In the organic thin film transistor of the present invention, an organic thin film may be provided between these layers for the purpose of improving the adhesion between the insulating film and the electrode and the organic semiconductor layer, reducing the gate voltage, and reducing the leakage current. The organic thin film is not particularly limited as long as it does not chemically affect the organic semiconductor layer. For example, an organic molecular film or a polymer thin film can be used.

有機分子膜としては、オクチルトリクロロシラン、オクタデシルトリクロロシラン、ヘキサメチレンジシラザン、フェニルトリクロロシランや、ベンゼンチオール、トリフルオロベンゼンチオール、パーフルオロベンゼンチオール、ペーフルオロデカンチオールなどを具体的な例としたカップリング剤が挙げられる。また、高分子薄膜としては、上述の高分子絶縁膜材料を利用することができ、これらが絶縁膜の一種として機能していてもよい。
また、この有機薄膜をラビング等により、異方性処理を施していてもよい。
Specific examples of organic molecular films include octyltrichlorosilane, octadecyltrichlorosilane, hexamethylenedisilazane, phenyltrichlorosilane, benzenethiol, trifluorobenzenethiol, perfluorobenzenethiol, and perfluorodecanethiol. A ring agent is mentioned. As the polymer thin film, the above-described polymer insulating film materials can be used, and these may function as a kind of insulating film.
The organic thin film may be subjected to an anisotropic treatment by rubbing or the like.

「保護層」
本発明の有機薄膜トランジスタは、大気中でも安定に駆動するものであるが、機械的破壊からの保護、水分やガスからの保護、またはデバイスの集積の都合により要する保護、等のため必要に応じて保護層を設けることもできる。
"Protective layer"
The organic thin film transistor of the present invention is stably driven even in the atmosphere, but is protected as necessary for protection from mechanical destruction, protection from moisture and gas, or protection required for device integration. Layers can also be provided.

「応用デバイス」
本発明のπ電子共役化合物前駆体および有機半導体は、光電変換素子、薄膜トランジスタ素子、発光素子など種々の有機電子デバイスを作製可能であるため有用である。
上述した本発明の有機薄膜トランジスタは、液晶、エレクトロルミネッセンス、エレクトロクロミック、電気泳動等の、従来公知の各種表示画像素子を駆動するための素子として好適に利用でき、これらの集積化により、いわゆる「電子ペーパー」と呼ばれるディスプレイを製造することが可能である。
"Applied devices"
The π electron conjugated compound precursor and the organic semiconductor of the present invention are useful because various organic electronic devices such as a photoelectric conversion element, a thin film transistor element, and a light emitting element can be produced.
The organic thin film transistor of the present invention described above can be suitably used as an element for driving various conventionally known display image elements such as liquid crystal, electroluminescence, electrochromic, electrophoresis, and so on. It is possible to produce a display called “paper”.

本発明のディスプレイ装置は、例えば、液晶表示装置では液晶表示素子、EL表示装置では有機若しくは無機のエレクトロルミネッセンス表示素子、電気泳動表示装置では電気泳動表示素子などの表示素子を1表示画素として、該表示素子をX方向及びY方向にマトリックス状に複数配列して構成される。前記表示素子は、該表示素子に対して電圧の印加又は電流の供給を行うためのスイッチング素子として、図2に示されるように本発明の有機薄膜トランジスタを備えている。本発明のディスプレイ装置としては、前記スイッチング素子が前記表示素子の数、即ち表示画素数に対応して複数備えられる。   The display device of the present invention includes, for example, a liquid crystal display element in a liquid crystal display device, an organic or inorganic electroluminescence display element in an EL display device, and a display element such as an electrophoretic display element in an electrophoretic display device as one display pixel. A plurality of display elements are arranged in a matrix in the X and Y directions. The display element includes the organic thin film transistor of the present invention as shown in FIG. 2 as a switching element for applying voltage or supplying current to the display element. The display device of the present invention includes a plurality of the switching elements corresponding to the number of the display elements, that is, the number of display pixels.

前記表示素子は、前記スイッチング素子の他に、例えば、基板、透明電極等の電極、偏光板、カラーフィルタなどの構成部材を備えるが、これらの構成部材としては、特に制限はなく、目的に応じて適宜選択することができ、従来から公知のものを使用することができる。   The display element includes, in addition to the switching element, for example, a substrate, an electrode such as a transparent electrode, a polarizing plate, a color filter, and the like. However, these components are not particularly limited and may be used depending on the purpose. Can be appropriately selected, and conventionally known ones can be used.

前記ディスプレイ装置が、所定の画像を形成する場合には、例えば、図3に示すようにマトリックス状に配置されたスイッチング素子の中から任意に選択された前記スイッチング素子が、対応する前記表示素子に電圧の印加又は電流を供給する時のみスイッチがONまたはOFFとなり、その他の時間はOFFまたはONとなるように構成することにより、高速、高コントラストで、前記ディスプレイ装置の表示を行うことができる。なお、前記ディスプレイ装置における画像の表示動作としては、従来から公知の表示動作により画像等が表示される。   When the display device forms a predetermined image, for example, the switching elements arbitrarily selected from the switching elements arranged in a matrix as shown in FIG. 3 are used as the corresponding display elements. By configuring the switch to be turned on or off only when voltage is applied or current is supplied, and to be turned off or on at other times, display of the display device can be performed at high speed and with high contrast. As an image display operation in the display device, an image or the like is displayed by a conventionally known display operation.

例えば、前記液晶表示素子の場合には、液晶に対して電圧を印加することにより、該液晶の分子配列を制御して画像等の表示が行われる。また、前記有機若しくは無機のエレクトロルミネッセンス表示素子の場合には、有機若しくは無機膜で形成された発光ダイオードに電流を供給して該有機若しくは無機膜を発光させることにより画像等の表示が行われる。また、前記電気泳動表示素子の場合には、例えば、異なる極性に帯電された白及び黒色の着色粒子に電圧を印加して、電極間で前記粒子を所定方向に電気的に泳動させて画像等の表示が行われる。   For example, in the case of the liquid crystal display element, an image or the like is displayed by controlling the molecular arrangement of the liquid crystal by applying a voltage to the liquid crystal. In the case of the organic or inorganic electroluminescent display element, an image or the like is displayed by supplying a current to a light emitting diode formed of an organic or inorganic film to cause the organic or inorganic film to emit light. In the case of the electrophoretic display element, for example, a voltage is applied to white and black colored particles charged to different polarities, and the particles are electrophoresed between electrodes in a predetermined direction to generate an image or the like. Is displayed.

前記ディスプレイ装置は、前記スイッチング素子を塗工、印刷等の簡易なプロセスにより作製可能であり、プラスチック基板、紙等の高温処理に耐えない基板を用いることができるとともに、大面積のディスプレイであっても、省エネルギー、低コストで前記スイッチング素子を作製可能となる。
また、ICタグ等のデバイスとして、本発明の有機薄膜トランジスタを集積化したICを利用することが可能である。
The display device can be manufactured by a simple process such as coating and printing of the switching element, and can use a substrate that cannot withstand high-temperature processing such as a plastic substrate or paper, and can be a large-area display. However, the switching element can be fabricated with energy saving and low cost.
Further, an IC in which the organic thin film transistor of the present invention is integrated can be used as a device such as an IC tag.

以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、これら実施例によって制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples unless it exceeds the gist.

先ず実施例および比較例で用いる化合物に関連する特定化合物中間体等を合成した。
また、下記合成例および実施例における化合物の同定は、NMRスペクトル〔JNM−ECX(商品名)500MHz、日本電子製〕、質量分析〔GC−MS、GCMS−QP2010 Plus(商品名)、島津製作所製〕、精密質量分析〔LC−TofMS、Alliance−LCT Premier(商品名)、Waters社製〕、元素分析〔(CHN)(CHNレコーダーMT−2、柳本製作所製)、元素分析(硫黄)(イオンクロマトグラフィー;アニオン分析システム:DX320(商品名)、ダイオネクス製〕を用いて行った。
First, specific compound intermediates related to the compounds used in Examples and Comparative Examples were synthesized.
Moreover, the identification of the compound in the following synthesis example and an Example is NMR spectrum [JNM-ECX (brand name) 500MHz, JEOL make], mass spectrometry [GC-MS, GCMS-QP2010 Plus (brand name), Shimadzu Corporation make. ], Accurate mass spectrometry [LC-TofMS, Alliance-LCT Premier (trade name), manufactured by Waters], elemental analysis [(CHN) (CHN recorder MT-2, manufactured by Yanagimoto Seisakusho), elemental analysis (sulfur) (ion chromatography) An anion analysis system: DX320 (trade name, manufactured by Dionex)].

[合成例1]
〔特定化合物中間体の合成1〕
〈化合物(2)の合成〉
下記反応式(スキーム)に従って化合物(2)を合成した。
[Synthesis Example 1]
[Synthesis of specific compound intermediate 1]
<Synthesis of Compound (2)>
Compound (2) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

上記式(1)の化合物はSIGMA Aldrich社より購入したものをそのまま用いた。
500mLのビーカーに上記式1の化合物(20g、119.0mmol)と15%HCl(96mL)を入れ、氷冷却下5℃以下を維持しながら、亜硝酸ナトリウム水溶液(9.9g、143.0mmol+水42mL)を徐々に滴下した。滴下終了後、そのままの温度で30分間攪拌し、ヨウ化カリウム水溶液(23.7g、143.0mmol+水77mL)を一度に加え、氷浴を外し2.5時間攪拌し、その後60℃で窒素の発生が収まるまで0.5時間加熱した。室温まで冷却した後、反応溶液をジエチルエーテルで3回抽出した。有機層を5%チオ硫酸ナトリウム水溶液(100mL×3回)で洗浄し、さらに飽和食塩水(100mL×2回)で洗浄した。さらに、硫酸ナトリウムで乾燥させ、濾液を濃縮することで赤色のオイルを得た。
これをシリカゲルカラムクロマトグラフィー(溶媒:酢酸エチル/ヘキサン=9/1)にて精製することにより、淡橙色の固体を得た。さらに、2−プロパノールより再結晶することにより、淡橙色の結晶として化合物(2)を得た(収量11.4g、収率35.2%)。
The compound of the above formula (1) used as it was purchased from SIGMA Aldrich.
In a 500 mL beaker, put the compound of formula 1 (20 g, 119.0 mmol) and 15% HCl (96 mL), and maintain an aqueous sodium nitrite solution (9.9 g, 143.0 mmol + water) while maintaining the temperature at 5 ° C. or lower under ice cooling. 42 mL) was gradually added dropwise. After completion of the dropwise addition, the mixture was stirred at the same temperature for 30 minutes, an aqueous potassium iodide solution (23.7 g, 143.0 mmol + 77 mL of water) was added at once, the ice bath was removed and the mixture was stirred for 2.5 hours, and then at 60 ° C. Heated for 0.5 hour until evolution stopped. After cooling to room temperature, the reaction solution was extracted three times with diethyl ether. The organic layer was washed with 5% aqueous sodium thiosulfate solution (100 mL × 3 times) and further with saturated brine (100 mL × 2 times). Furthermore, it dried with sodium sulfate and the red oil was obtained by concentrating a filtrate.
This was purified by silica gel column chromatography (solvent: ethyl acetate / hexane = 9/1) to obtain a pale orange solid. Furthermore, recrystallization from 2-propanol gave Compound (2) as pale orange crystals (yield 11.4 g, yield 35.2%).

以下に化合物(2)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 2.13 (quint, 2H, J = 5.7 Hz), 2.64 (t, 2H, J = 6.3 Hz ), 2.92 (t, 2H, J =6.0 Hz), 7.66 (d, 1H, J = 8.0 Hz), , 7.67 (s, 1H),7.72 (d, 1H, J = 8.0 Hz)
融点:74.0−75.0℃
質量分析:GC−MS m/z = 272 (M+)
以上の分析結果から、合成したものが、化合物(2)の構造と矛盾が無いことを確認した。
The analysis results of compound (2) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 2.13 (quant, 2H, J = 5.7 Hz), 2.64 (t, 2H, J = 6.3 Hz), 2.92 (T, 2H, J = 6.0 Hz), 7.66 (d, 1H, J = 8.0 Hz),, 7.67 (s, 1H), 7.72 (d, 1H, J = 8 .0 Hz)
Melting point: 74.0-75.0 ° C
Mass spectrometry: GC-MS m / z = 272 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (2).

〈化合物(3)の合成〉
下記反応式(スキーム)に従って化合物(3)を合成した。
<Synthesis of Compound (3)>
Compound (3) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

200mLの丸底フラスコに化合物(2)(4.1g、15mmol)、メタノール(100mL)を入れ、氷冷下0℃にて、水素化ホウ素ナトリウム(850mg、22.5mmol)を徐々に加え、0℃のまま3時間攪拌した。過剰の水素化ホウ素ナトリウムを希塩酸で中和し、飽和食塩水を加えて、酢酸エチル(50mL)で5回抽出を行った。抽出液を塩化アンモニウム(100mL)で1回、続けて食塩水(100mL)で2回洗浄し、硫酸ナトリウムを加えて乾燥させた。濾液を濃縮し、淡赤色の固体として、化合物(3)を得た(収量3.93g、収率95.5%)。これ以上精製することなく、このまま次の反応に用いた。
以下に化合物(3)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 1.71 (d, 1H, J =5.8 Hz), 1.84−2.02 (m, 4H) , 2.65−2.71 (m, 1H, ), 2.75−2.81 (m, 1H, ), 4.72 (d, 1H, J =4.6 Hz), 7.17 (d, 1H, J = 8.0 Hz), , 7.47 (s, 1H),7.52 (d,t 1H, J = 8.0 Hz, J = 1.2 Hz)
質量分析:GC−MS m/z = 274 (M+)
融点:82.0−84.0℃
以上の分析結果から、合成したものが、化合物(3)の構造と矛盾が無いことを確認した。
Compound (2) (4.1 g, 15 mmol) and methanol (100 mL) were placed in a 200 mL round bottom flask, and sodium borohydride (850 mg, 22.5 mmol) was gradually added at 0 ° C. under ice cooling. The mixture was stirred for 3 hours while maintaining the temperature. Excess sodium borohydride was neutralized with dilute hydrochloric acid, saturated brine was added, and the mixture was extracted 5 times with ethyl acetate (50 mL). The extract was washed once with ammonium chloride (100 mL), then twice with brine (100 mL), and dried by adding sodium sulfate. The filtrate was concentrated to obtain compound (3) as a pale red solid (yield 3.93 g, yield 95.5%). The product was used in the next reaction as it was without further purification.
The analysis results of compound (3) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 1.71 (d, 1H, J = 5.8 Hz), 1.84 to 2.02 (m, 4H), 2.65-2. 71 (m, 1H,), 2.75-2.81 (m, 1H,), 4.72 (d, 1H, J = 4.6 Hz), 7.17 (d, 1H, J = 8. 0 Hz),, 7.47 (s, 1 H), 7.52 (d, t 1 H, J 1 = 8.0 Hz, J 2 = 1.2 Hz)
Mass spectrometry: GC-MS m / z = 274 (M +)
Melting point: 82.0-84.0 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (3).

〈化合物(4)の合成〉
下記反応式(スキーム)に従って化合物(4)を合成した。
<Synthesis of Compound (4)>
Compound (4) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

50mLの丸底フラスコに化合物(3)(3.70g、13.5mmol)、N,N−ジメチルアミノピリジン(以下、DMAP、10mg)を入れ、アルゴンガスで置換した後、脱水ピリジン(8.1ml)、無水酢酸(6.2ml)を加えて、室温で6時間攪拌した。
反応溶液に水50mLを加えて、酢酸エチル(20mL)で5回抽出し、合わせた有機層を希塩酸(100ml)で3回、続けて飽和炭酸水素ナトリウム溶液(100ml)で2回洗浄し、最後に飽和食塩水(100ml)で2回洗浄し、硫酸マグネシウムで乾燥させた。濾液を濃縮し、褐色の液体として化合物(4)を得た(収量4.28g、収率100%)。これ以上精製することなく、このまま次の反応に用いた。
Compound (3) (3.70 g, 13.5 mmol) and N, N-dimethylaminopyridine (hereinafter referred to as DMAP, 10 mg) were placed in a 50 mL round-bottomed flask and replaced with argon gas, and then dehydrated pyridine (8.1 ml) ), Acetic anhydride (6.2 ml) was added, and the mixture was stirred at room temperature for 6 hours.
50 mL of water was added to the reaction solution, and the mixture was extracted 5 times with ethyl acetate (20 mL). The combined organic layers were washed 3 times with dilute hydrochloric acid (100 ml), followed by 2 times with saturated sodium bicarbonate solution (100 ml), and finally The extract was washed twice with saturated brine (100 ml) and dried over magnesium sulfate. The filtrate was concentrated to obtain compound (4) as a brown liquid (yield 4.28 g, yield 100%). The product was used in the next reaction as it was without further purification.

以下に化合物(4)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 1.76−1.83 (m, 1H, ), 1.89−2.10 (m, 1H), 2.07 (s, 3H) , 2.67−2.73 (m, 1H, ), 2.79−2.84 (m, 1H, ), 5.93 (t, 1H, J =5.2 Hz), 7.01 (d, 1H, J = 8.6 Hz), 7.49 (d, 1H, J = 2.3 Hz),7.52 (s , 1H)
質量分析:GC−MS m/z = 316 (M+)
以上の分析結果から、合成したものが、化合物(4)の構造と矛盾が無いことを確認した。
The analysis result of compound (4) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 1.76-1.83 (m, 1H,), 1.89-2.10 (m, 1H), 2.07 (s, 3H) , 2.67-2.73 (m, 1H,), 2.79-2.84 (m, 1H,), 5.93 (t, 1H, J = 5.2 Hz), 7.01 (d , 1H, J = 8.6 Hz), 7.49 (d, 1H, J = 2.3 Hz), 7.52 (s, 1H)
Mass spectrometry: GC-MS m / z = 316 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (4).

〈化合物(5)の合成〉
下記反応式(スキーム)に従って化合物(5)を合成した。
<Synthesis of Compound (5)>
Compound (5) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

100mLの丸底フラスコに化合物(4)(4.27g、13.5mmol)、アゾビスイソブチロニトリル(以下AIBN,25mg)、四塩化炭素(100mL)、N−ブロモスクシンイミド(以下NBS,2.64g、14.8mmol)を入れ、アルゴンガスで置換を行なった後、穏やかに80℃に加熱し、そのまま1時間攪拌し、室温まで冷却した。
沈殿を濾過し、濾液を減圧下で濃縮することで、薄黄色の固体を得た。これをシリカゲルカラムクロマトグラフィー(溶媒:酢酸エチル/ヘキサン=8/2)にて精製することにより、淡赤色のオイルとして化合物(5)を得た(収量4.9g、収率92.0%)。化合物(5)はシス体とトランス体の10:7の混合物として得られた。
In a 100 mL round-bottom flask, compound (4) (4.27 g, 13.5 mmol), azobisisobutyronitrile (hereinafter AIBN, 25 mg), carbon tetrachloride (100 mL), N-bromosuccinimide (hereinafter NBS, 2. 64 g, 14.8 mmol) was added, and after substitution with argon gas, the mixture was gently heated to 80 ° C., stirred as it was for 1 hour, and cooled to room temperature.
The precipitate was filtered, and the filtrate was concentrated under reduced pressure to obtain a light yellow solid. This was purified by silica gel column chromatography (solvent: ethyl acetate / hexane = 8/2) to obtain compound (5) as a pale red oil (yield 4.9 g, yield 92.0%). . Compound (5) was obtained as a 10: 7 mixture of cis and trans isomers.

以下に化合物(5)の分析結果を示す。
精密質量分析:LC−MS m/z = 393.907 (100.0%), 395.904(97.3%)
以上の分析結果から、合成したものが、化合物(5)の構造と矛盾が無いことを確認した。
The analysis results of compound (5) are shown below.
Accurate mass spectrometry: LC-MS m / z = 393.907 (100.0%), 395.904 (97.3%)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (5).

〈化合物(6)の合成〉
下記反応式(スキーム)に従って化合物(6)を合成した。
<Synthesis of Compound (6)>
Compound (6) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

500mLの丸底フラスコに化合物(5)(4.2g、10.6mmol)を入れアルゴンガスで置換した後、THF(300mL)を入れ、氷冷下0℃で、ナトリウムメトキシド−メタノール溶液(25wt%、24mL)を加えて、そのままの温度で6時間攪拌した。水(300mL)を加えて、酢酸エチル(100mL)で4回抽出し、飽和食塩水(100mL)で2回洗浄し、硫酸ナトリウムで乾燥させ、濾液を濃縮することで褐色の液体を得た。これをカラム精製することにより、無色の結晶として化合物(6)を得た(収量1.2g、収率41.0%)。   Compound (5) (4.2 g, 10.6 mmol) was placed in a 500 mL round-bottomed flask and purged with argon gas. Then, THF (300 mL) was added, and sodium methoxide-methanol solution (25 wt. %, 24 mL) was added and stirred at that temperature for 6 hours. Water (300 mL) was added, extracted four times with ethyl acetate (100 mL), washed twice with saturated brine (100 mL), dried over sodium sulfate, and the filtrate was concentrated to give a brown liquid. This was subjected to column purification to obtain compound (6) as colorless crystals (yield 1.2 g, yield 41.0%).

以下に化合物(6)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 1.70 (d, 1H, J =3.4 Hz), 2.58−2.61 (m, 2H), 4.76 (q , 1H, J =6.3 Hz), 6.04 (q, 1H, J =5.2 Hz), 6.47 (d, 1H, J =9.8 Hz), 7.13 (d, 1H, J =8.1 Hz), 7.47 (d, 1H, J =1.7 Hz), 7.57 (J=8.1 Hz J =1.7 Hz)
質量分析:GC−MS m/z = 272 (M+)
以上の分析結果から、合成したものが、化合物(6)の構造と矛盾が無いことを確認した。
The analysis results of compound (6) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 1.70 (d, 1H, J = 3.4 Hz), 2.58-2.61 (m, 2H), 4.76 (q, 1H, J = 6.3 Hz), 6.04 (q, 1H, J = 5.2 Hz), 6.47 (d, 1H, J = 9.8 Hz), 7.13 (d, 1H, J = 8.1 Hz), 7.47 (d, 1H, J = 1.7 Hz), 7.57 (J 1 = 8.1 Hz J 2 = 1.7 Hz)
Mass spectrometry: GC-MS m / z = 272 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (6).

〈化合物(7−1)の合成〉
下記反応式(スキーム)に従って化合物(7−1)を合成した。
<Synthesis of Compound (7-1)>
Compound (7-1) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

50mLの丸底フラスコに化合物(6)(680mg、2.5mmol)、DMAP(15.3mg、0.125mmol)、を入れアルゴンガスで置換した後、ピリジン(15mL)を加えて、氷冷下0℃にて、ヘキサノイルクロライド(370mg、2.75mmol)を滴下し、そのままの温度で3時間攪拌した。反応溶液に水を加え、酢酸エチル(50mL)で3回抽出し、有機層を飽和炭酸水素ナトリウム溶液、続けて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。濾液を濃縮し、褐色の液体を得た。酢酸エチル/ヘキサン(95/5)に液体を溶解させ、厚さ3cmのシリカゲルパッドを通し、濾液を濃縮することで無色の液体として化合物(7−1)を得た(収量560g、収率60.5%)。   Compound (6) (680 mg, 2.5 mmol) and DMAP (15.3 mg, 0.125 mmol) were placed in a 50 mL round-bottomed flask and replaced with argon gas. Then, pyridine (15 mL) was added, and the mixture was cooled to 0 ° C. under ice-cooling. At 0 ° C., hexanoyl chloride (370 mg, 2.75 mmol) was added dropwise, and the mixture was stirred at the same temperature for 3 hours. Water was added to the reaction solution, followed by extraction three times with ethyl acetate (50 mL), and the organic layer was washed with a saturated sodium hydrogen carbonate solution, followed by saturated brine, and dried over magnesium sulfate. The filtrate was concentrated to give a brown liquid. The liquid was dissolved in ethyl acetate / hexane (95/5), passed through a silica gel pad having a thickness of 3 cm, and the filtrate was concentrated to obtain a compound (7-1) as a colorless liquid (yield 560 g, yield 60). .5%).

以下に化合物(7−1)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 0.86 (t, 3H, J =7.2 Hz), 1.21−1.30 (m, 4H) , 1.54−1.60 (m, 2H), 2.23 (td, 2H, J=7.5 Hz J = 2.3 Hz ), 2.58−2.62 (m, 2H), 5.95 (t, 1H, J =5.2 Hz), 6.03 (quint, 1H, J=4.6 Hz), 6.48 (d, 1H, J=9.8 Hz), 7.10 (d, 1H, J=8.0 Hz), 7.48 (d, 1H, J=1.7 Hz), 7.54 (dd, 1H, J1=8.0 Hz, J2=1.8 Hz)
質量分析:GC−MS m/z = 370(M+)、254 (熱分解物)
以上の分析結果から、合成したものが、化合物(7−1)の構造と矛盾が無いことを確認した。
The analysis result of the compound (7-1) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 3H, J = 7.2 Hz), 1.21-1.30 (m, 4H), 1.54-1. 60 (m, 2H), 2.23 (td, 2H, J 1 = 7.5 Hz J 2 = 2.3 Hz), 2.58-2.62 (m, 2H), 5.95 (t, 1H, J = 5.2 Hz), 6.03 (quint, 1H, J = 4.6 Hz), 6.48 (d, 1H, J = 9.8 Hz), 7.10 (d, 1H, J = 8.0 Hz), 7.48 (d, 1H, J = 1.7 Hz), 7.54 (dd, 1H, J1 = 8.0 Hz, J2 = 1.8 Hz)
Mass spectrometry: GC-MS m / z = 370 (M +), 254 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (7-1).

〈化合物(7−2)の合成〉
下記反応式(スキーム)に従って化合物(7−2)を合成した。
<Synthesis of Compound (7-2)>
Compound (7-2) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

50mLの丸底フラスコに化合物(6)(680mg、2.5mmol)、THF(15mL)、を入れアルゴンガスで置換した後、氷冷下0℃にて、水素化ナトリウム(3.0mmol,72.0mg)を加えて、そのままの温度で30分間攪拌した。ヨウ化メチル(3.0mmol、426mg)を滴下し、そのままの温度で1時間攪拌を行った。反応溶液に水を加え、水層を酢酸エチル(50mL)で3回抽出し、合わせた有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。濾液を濃縮し、褐色の液体を得た。酢酸エチル/ヘキサン(90/10)に液体を溶解させ、厚さ3cmのシリカゲルパッドを通し、濾液を濃縮することで無色の油状固体として化合物(7−2)を得た(収量607mg、収率85.0%)。   Compound (6) (680 mg, 2.5 mmol) and THF (15 mL) were placed in a 50 mL round-bottom flask and replaced with argon gas, and then sodium hydride (3.0 mmol, 72. 0 mg) was added and the mixture was stirred at the same temperature for 30 minutes. Methyl iodide (3.0 mmol, 426 mg) was added dropwise, and the mixture was stirred at the same temperature for 1 hour. Water was added to the reaction solution, and the aqueous layer was extracted three times with ethyl acetate (50 mL). The combined organic layer was washed with saturated brine and dried over magnesium sulfate. The filtrate was concentrated to give a brown liquid. The liquid was dissolved in ethyl acetate / hexane (90/10), passed through a 3 cm thick silica gel pad, and the filtrate was concentrated to obtain compound (7-2) as a colorless oily solid (yield 607 mg, yield). 85.0%).

以下に化合物(7−2)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 2.57−2.61 (m, 2H),3.38 (s, 3H), 5.90 (t, 1H, J =5.2 Hz), 6.03 (quint, 1H, J=4.6 Hz), 6.48 (d, 1H, J=9.8 Hz), 7.10 (d, 1H, J=8.0 Hz), 7.48 (d, 1H, J=1.7 Hz), 7.54 (dd, 1H, J=1.8 Hz)
質量分析:GC−MS m/z = 286(M+)、254 (熱分解物)
以上の分析結果から、合成したものが、化合物(7−1)の構造と矛盾が無いことを確認した。
The analysis result of the compound (7-2) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 2.57-2.61 (m, 2H), 3.38 (s, 3H), 5.90 (t, 1H, J = 5.2) Hz), 6.03 (quint, 1H, J = 4.6 Hz), 6.48 (d, 1H, J = 9.8 Hz), 7.10 (d, 1H, J = 8.0 Hz) 7.48 (d, 1H, J = 1.7 Hz), 7.54 (dd, 1H, J = 1.8 Hz)
Mass spectrometry: GC-MS m / z = 286 (M +), 254 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (7-1).

〈化合物(7−3)の合成〉
下記反応式(スキーム)に従って化合物(7−3)を合成した。
<Synthesis of Compound (7-3)>
Compound (7-3) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

50mLの丸底フラスコに化合物(6)(680mg、2.5mmol)、DMAP(15.3mg、0.125mmol)、を入れアルゴンガスで置換した後、ピリジン(15mL)を加えて、氷冷下0℃にて、クロロぎ酸アミル(414mg、2.75mmol)を滴下し、そのままの温度で5時間攪拌した。反応溶液に水を加え、酢酸エチル(50mL)で3回抽出し、有機層を飽和炭酸水素ナトリウム溶液、続けて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。濾液を濃縮し、褐色の液体を得た。酢酸エチル/ヘキサン(95/5)に液体を溶解させ、厚さ3cmのシリカゲルパッドを通し、濾液を濃縮することで無色の液体として化合物(7−3)を得た(収量535mg、収率55.5%)。   Compound (6) (680 mg, 2.5 mmol) and DMAP (15.3 mg, 0.125 mmol) were placed in a 50 mL round-bottomed flask and replaced with argon gas. Then, pyridine (15 mL) was added, and the mixture was cooled to 0 ° C. under ice-cooling. At ° C, amyl chloroformate (414 mg, 2.75 mmol) was added dropwise and stirred at the same temperature for 5 hours. Water was added to the reaction solution, followed by extraction three times with ethyl acetate (50 mL), and the organic layer was washed with a saturated sodium hydrogen carbonate solution, followed by saturated brine, and dried over magnesium sulfate. The filtrate was concentrated to give a brown liquid. The liquid was dissolved in ethyl acetate / hexane (95/5), passed through a 3 cm thick silica gel pad, and the filtrate was concentrated to obtain a compound (7-3) as a colorless liquid (yield 535 mg, yield 55). .5%).

以下に化合物(7−3)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 0.86 (t, 3H, J =7.2 Hz), 1.21−1.30 (m, 4H) , 1.60−1.65 (m, 2H), 2.58−2.62 (m, 2H), 4.15−4.17 (m, 2H),5.94 (t, 1H, J =5.2 Hz), 6.02 (quint, 1H, J=4.6 Hz), 6.50 (d, 1H, J=9.8 Hz), 7.08 (d, 1H, J=8.0 Hz), 7.47 (d, 1H, J=1.7 Hz), 7.53 (dd, 1H, J=1.8 Hz)
質量分析:GC−MS m/z = 386(M+)、254 (熱分解物)
以上の分析結果から、合成したものが、化合物(7−3)の構造と矛盾が無いことを確認した。
The analysis result of the compound (7-3) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 3H, J = 7.2 Hz), 1.21-1.30 (m, 4H), 1.60-1. 65 (m, 2H), 2.58-2.62 (m, 2H), 4.15-4.17 (m, 2H), 5.94 (t, 1H, J = 5.2 Hz), 6 .02 (quint, 1H, J = 4.6 Hz), 6.50 (d, 1H, J = 9.8 Hz), 7.08 (d, 1H, J = 8.0 Hz), 7.47 (D, 1H, J = 1.7 Hz), 7.53 (dd, 1H, J = 1.8 Hz)
Mass spectrometry: GC-MS m / z = 386 (M +), 254 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (7-3).

〈化合物(7−4)の合成〉
下記反応式(スキーム)に従って化合物(7−4)を合成した。
<Synthesis of Compound (7-4)>
Compound (7-4) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

50mLの丸底フラスコに化合物(6)(680mg、2.5mmol)、THF(20mL)、を入れアルゴンガスで置換した後、トリエチルアミン(3mL)を加えて、氷冷下0℃にて、トリメチルシリルクロライド(300mg、2.75mmol)を滴下し、そのままの温度で1時間攪拌した。氷浴を外して、室温に戻してさらに7時間攪拌を行った。
反応溶液に水を加え、酢酸エチル(50mL)で3回抽出し、有機層を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。濾液を濃縮し、褐色の液体を得た。酢酸エチル/ヘキサン(95/5)に液体を溶解させ、厚さ3cmのシリカゲルパッドを通し、濾液を濃縮することで無色の油状固体として化合物(7−3)を得た(収量688mg、収率80.0%)。
Compound (6) (680 mg, 2.5 mmol) and THF (20 mL) were placed in a 50 mL round-bottom flask, and replaced with argon gas. (300 mg, 2.75 mmol) was added dropwise, and the mixture was stirred at the same temperature for 1 hour. The ice bath was removed, the temperature was returned to room temperature, and the mixture was further stirred for 7 hours.
Water was added to the reaction solution, followed by extraction three times with ethyl acetate (50 mL). The organic layer was washed with saturated brine and dried over magnesium sulfate. The filtrate was concentrated to give a brown liquid. The liquid was dissolved in ethyl acetate / hexane (95/5), passed through a 3 cm thick silica gel pad, and the filtrate was concentrated to obtain compound (7-3) as a colorless oily solid (yield 688 mg, yield). 80.0%).

以下に化合物(7−4)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 0.04 (s, 9H), 2.50−2.55 (m, 2H), 5.15 (t, 1H, J =5.2 Hz), 6.02 (quint, 1H, J=4.6 Hz), 6.53 (d, 1H, J=9.8 Hz), 7.07 (d, 1H, J=8.0 Hz), 7.44 (d, 1H, J=1.7 Hz), 7.54 (dd, 1H, J=1.8 Hz)
質量分析:GC−MS m/z =344(M+)、254 (熱分解物)
以上の分析結果から、合成したものが、化合物(7−4)の構造と矛盾が無いことを確認した。
The analysis result of the compound (7-4) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.04 (s, 9H), 2.50-2.55 (m, 2H), 5.15 (t, 1H, J = 5.2) Hz), 6.02 (quant, 1H, J = 4.6 Hz), 6.53 (d, 1H, J = 9.8 Hz), 7.07 (d, 1H, J = 8.0 Hz) , 7.44 (d, 1H, J = 1.7 Hz), 7.54 (dd, 1H, J = 1.8 Hz)
Mass spectrometry: GC-MS m / z = 344 (M +), 254 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (7-4).

〈化合物(7−5)の合成〉
下記反応式(スキーム)に従って化合物(7−5)を合成した。
<Synthesis of Compound (7-5)>
Compound (7-5) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

化合物(7−1)の合成において、カプロン酸クロライドに換えて2−ブチルオクタノイルクロライドを用いて以外は量論比は同様にして合成、精製を行い、淡黄色の液体として化合物(7−5)を得た(収量1.33g、収率97.8%)。   In the synthesis of compound (7-1), the stoichiometric ratio was synthesized and purified in the same manner except that 2-butyloctanoyl chloride was used instead of caproic acid chloride, and compound (7-5) was obtained as a pale yellow liquid. (Yield 1.33 g, Yield 97.8%).

以下に化合物(7−5)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ):0.74−0.83 (m, 6H), 1.10−1.32 (m, 12H) , 1.36−1.43 (m, 2H), 1.50−1.60(m, 2H), 2.27−2.32 (m, 1H), 2.58−2.62 (m, 2H), 5.95 (t, 1H, J =5.2 Hz), 6.03 (quint, 1H, J=4.6 Hz), 6.48 (d, 1H, J=9.8 Hz), 7.10 (d, 1H, J=8.0 Hz), 7.48 (d, 1H, J=1.8 Hz), 7.54 (dd, 1H, J1=8.0 Hz, J2=1.8 Hz)
質量分析:GC−MS m/z = 454(M+)、254 (熱分解物)
以上の分析結果から、合成したものが、化合物(7−5)の構造と矛盾が無いことを確認した。
The analysis result of the compound (7-5) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.74-0.83 (m, 6H), 1.10-1.32 (m, 12H), 1.36-1.43 (m , 2H), 1.50-1.60 (m, 2H), 2.27-2.32 (m, 1H), 2.58-2.62 (m, 2H), 5.95 (t, 1H) , J = 5.2 Hz), 6.03 (quint, 1H, J = 4.6 Hz), 6.48 (d, 1H, J = 9.8 Hz), 7.10 (d, 1H, J = 8.0 Hz), 7.48 (d, 1H, J = 1.8 Hz), 7.54 (dd, 1H, J1 = 8.0 Hz, J2 = 1.8 Hz)
Mass spectrometry: GC-MS m / z = 454 (M +), 254 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (7-5).

[合成例2]
〔化合物中間体の合成2〕
〈化合物(8)の合成〉
下記反応式(スキーム)に従って化合物(8)を合成した。
[Synthesis Example 2]
[Synthesis of Compound Intermediate 2]
<Synthesis of Compound (8)>
Compound (8) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

十分に乾燥させた200mLの丸底フラスコに、チエノ[3,2−b]チオフェン(2.81g、20.0mmol)を入れ、アルゴン置換を行った後、脱水テトラヒドロフラン(以下、THFと略)(50mL)を加え、アセトン−ドライアイス浴で−78℃まで冷却し、n−ブチルリチウム(2.2eq、28.1mL(1.6Mヘキサン溶液)、44mmol)を15分かけて滴下し、反応系内を室温まで昇温し、そのまま16時間攪拌を行った。再び−78℃に冷却し、トリメチルスズクロリド(2.5eq、50mL(1.0Mヘキサン溶液)、50mmol)を一度に加え、反応系内を室温まで昇温させ、24時間攪拌を行った。水(80mL)を加えて、クエンチし、酢酸エチルを加えて有機層を分離した。有機層を飽和フッ化カリウム水溶液、続けて飽和食塩水で洗浄し、さらに硫酸ナトリウムで乾燥を行い、濾液を濃縮し、褐色の固体を得た。これをアセトニトリルから再結晶(繰り返し3回)することにより、無色の結晶として化合物(8)を得た(収量5.0g、54.1%)。   Thieno [3,2-b] thiophene (2.81 g, 20.0 mmol) was placed in a well-dried 200 mL round bottom flask, and after argon substitution, dehydrated tetrahydrofuran (hereinafter abbreviated as THF) ( 50 mL), cooled to −78 ° C. in an acetone-dry ice bath, and n-butyllithium (2.2 eq, 28.1 mL (1.6 M hexane solution), 44 mmol) was added dropwise over 15 minutes. The interior was warmed to room temperature and stirred for 16 hours. The mixture was cooled again to −78 ° C., trimethyltin chloride (2.5 eq, 50 mL (1.0 M hexane solution), 50 mmol) was added all at once, the temperature of the reaction system was raised to room temperature, and the mixture was stirred for 24 hours. Water (80 mL) was added to quench, and ethyl acetate was added to separate the organic layer. The organic layer was washed with a saturated aqueous potassium fluoride solution and then with a saturated saline solution, further dried over sodium sulfate, and the filtrate was concentrated to obtain a brown solid. This was recrystallized from acetonitrile (repeated three times) to obtain Compound (8) as colorless crystals (yield 5.0 g, 54.1%).

以下に化合物(8)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 0.38 (s, 18H), 7.23 (s, 2H)
質量分析:GC−MS m/z = 466(M+)
以上の分析結果から、合成したものが、化合物(8)の構造と矛盾が無いことを確認した。
The analysis results of compound (8) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.38 (s, 18H), 7.23 (s, 2H)
Mass spectrometry: GC-MS m / z = 466 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (8).

〈化合物(9)の合成〉
下記反応式(スキーム)に従って化合物(9)を合成した。
<Synthesis of Compound (9)>
Compound (9) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

充分に乾燥させた200mLの丸底フラスコに、ベンゾ[1,2−b:4,5−b’]ジチオフェン(3.81g,20.0mmol)を入れ、アルゴン置換を行なった後、脱水THF(50mL)を加え、アセトン−ドライアイス浴で−78℃まで冷却し、n−ブチルリチウム(2.2eq,28.1mL(1.6Mヘキサン溶液),44mmol)を15分かけて滴下し、反応系内を室温まで昇温し、16時間攪拌を行なった。再び−78℃に冷却し、トリメチルスズクロリド(2.5eq,50mL(1.0Mヘキサン溶液),50mmol)を一度に加え、反応系内を室温まで昇温させ、24時間攪拌を行なった。
水(80mL)を加えて、クエンチし、酢酸エチルを加えて有機層を分離した。有機層を飽和フッ化カリウム水溶液、続けて飽和食塩水で洗浄し、さらに硫酸ナトリウムで乾燥を行ない、濾液を濃縮し、褐色の固体を得た。これをアセトニトリルから再結晶(繰り返し3回)することにより、薄黄色の結晶として化合物(9)を得た。(収量7.48g,72.5%)
Benzo [1,2-b: 4,5-b ′] dithiophene (3.81 g, 20.0 mmol) was placed in a well-dried 200 mL round-bottom flask, and after argon substitution, dehydrated THF ( 50 mL), cooled to −78 ° C. in an acetone-dry ice bath, and n-butyllithium (2.2 eq, 28.1 mL (1.6 M hexane solution), 44 mmol) was added dropwise over 15 minutes. The inside was warmed to room temperature and stirred for 16 hours. The mixture was cooled again to −78 ° C., trimethyltin chloride (2.5 eq, 50 mL (1.0 M hexane solution), 50 mmol) was added all at once, the temperature of the reaction system was raised to room temperature, and the mixture was stirred for 24 hours.
Water (80 mL) was added to quench, and ethyl acetate was added to separate the organic layer. The organic layer was washed with a saturated aqueous potassium fluoride solution and then with a saturated saline solution, further dried over sodium sulfate, and the filtrate was concentrated to obtain a brown solid. This was recrystallized from acetonitrile (repeated three times) to obtain Compound (9) as pale yellow crystals. (Yield 7.48 g, 72.5%)

以下に化合物(9)の分析結果を示す。
H NMR(500MHz,CDCl3,TMS,δ):0.44(s,18H),7.41(s,2H),8.27(s,2H)
質量分析:GC−MS m/z=518(M+)
以上の分析結果から、合成したものが、化合物(9)の構造と矛盾がないことを確認した。
The analysis results of compound (9) are shown below.
1 H NMR (500 MHz, CDCl 3, TMS, δ): 0.44 (s, 18 H), 7.41 (s, 2 H), 8.27 (s, 2 H)
Mass spectrometry: GC-MS m / z = 518 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (9).

〈化合物(10)の合成〉
下記反応式(スキーム)に従って化合物(10)を合成した。
<Synthesis of Compound (10)>
Compound (10) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

100mLの丸底フラスコに原料である2−ブロモフェニル酢酸(5.12g,23.8mmol)、トルエン(20mL)、メタノール(10mL)を入れ、そこへトリメチルシリルジアゾメタンの2Mヘキサン溶液(12.5mL)を徐々に滴下し、15分間攪拌を行った。過剰のトリメチルシリルジアゾメタンを酢酸でクエンチし、反応溶液をエバポレーターで減圧濃縮した。残渣にトルエンを加え、溶液を3cm厚のシリカゲルパッドを通じ、再度濃縮することで淡黄色の液体として化合物(10)を得た。
(収量5.1g,94%)
2-Bromophenylacetic acid (5.12 g, 23.8 mmol), toluene (20 mL) and methanol (10 mL) as raw materials are put into a 100 mL round bottom flask, and a 2M hexane solution (12.5 mL) of trimethylsilyldiazomethane is added thereto. The solution was gradually added dropwise and stirred for 15 minutes. Excess trimethylsilyldiazomethane was quenched with acetic acid, and the reaction solution was concentrated under reduced pressure using an evaporator. Toluene was added to the residue, and the solution was concentrated again through a 3 cm thick silica gel pad to obtain Compound (10) as a pale yellow liquid.
(Yield 5.1 g, 94%)

以下に化合物10の分析結果を示す。
精密質量分析:LC−TofMS m/z = 227.966 (実測値), 227.979 (計算値.)
以上の分析結果から、合成したものが、化合物10の構造と矛盾がないことを確認した。
The analysis results of Compound 10 are shown below.
Accurate mass spectrometry: LC-TofMS m / z = 227.966 (actual value), 227.979 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of Compound 10.

〈化合物(11)の合成〉
下記反応式(スキーム)に従って化合物(11)を合成した。
<Synthesis of Compound (11)>
Compound (11) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

充分に乾燥させた200mLの丸底フラスコに、1,6−ジブロモピレン(2.5g,6.9mmol)を入れ、アルゴン置換を行なった後、脱水THF(120mL)を加え、アセトン−ドライアイス浴で−78℃まで冷却し、n−ブチルリチウム(2.15eq,9.1mL(1.6Mヘキサン溶液),14.9mmol)を5分かけて滴下し、2時間攪拌を行なった。−78℃で、2−イソプロポキシ−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン(2.2eq,15.3mmol,3.1mL)を一度に加え、そのままの温度で1時間攪拌した後、反応系内を室温まで昇温させ、さらに2時間攪拌を行なった。
塩化アンモニウム水溶液(50mL)と水(100mL)を加えて、クエンチし、さらにトルエンを加えて有機層を分離した。水層をトルエンで二回抽出し、合わせた有機層を飽和食塩水で洗浄し、続けて硫酸ナトリウムで乾燥を行ない、濾液を濃縮し、黄色の固体を得た。これを最少量のトルエンに溶解させて、シリカゲルカラム(3cm)を通じ、濾液を濃縮し淡黄色の固体を得た。これをトルエン/アセトニトリルから再結晶することで、無色の結晶として化合物(11)を得た。(収量2.2g,70%)
1,200-dibromopyrene (2.5 g, 6.9 mmol) was placed in a well-dried 200 mL round bottom flask, purged with argon, dehydrated THF (120 mL) was added, and an acetone-dry ice bath was added. The mixture was cooled to −78 ° C., n-butyllithium (2.15 eq, 9.1 mL (1.6 M hexane solution), 14.9 mmol) was added dropwise over 5 minutes, and the mixture was stirred for 2 hours. At −78 ° C., 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (2.2 eq, 15.3 mmol, 3.1 mL) was added in one portion and at that temperature. After stirring for 1 hour, the temperature in the reaction system was raised to room temperature, and further stirred for 2 hours.
Aqueous ammonium chloride (50 mL) and water (100 mL) were added to quench, and toluene was added to separate the organic layer. The aqueous layer was extracted twice with toluene, and the combined organic layers were washed with saturated brine, subsequently dried over sodium sulfate, and the filtrate was concentrated to obtain a yellow solid. This was dissolved in a minimum amount of toluene, and the filtrate was concentrated through a silica gel column (3 cm) to obtain a pale yellow solid. This was recrystallized from toluene / acetonitrile to obtain Compound (11) as colorless crystals. (Yield 2.2g, 70%)

以下に化合物(11)の分析結果を示す。
精密質量分析:LC−TofMS m/z = 454.244 (実測値), 454.249 (計算値.)
以上の分析結果から、合成したものが、化合物(11)の構造と矛盾がないことを確認した。
The analysis results of compound (11) are shown below.
Accurate mass spectrometry: LC-TofMS m / z = 454.244 (actual value), 454.249 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (11).

〈化合物(12)の合成〉
下記反応式(スキーム)に従って化合物(12)を合成した。
<Synthesis of Compound (12)>
Compound (12) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

300mLの三口フラスコに、1,4−ベンゼンジメタノール(15.7g,94.6mmol)、ヨウ素(19.2g,75.7mmol)、ヨウ素酸(8.3g,47.3mmol)、クロロホルム(50mL)、酢酸(50mL)、濃硫酸(10mL)をいれ、アルゴンガスで置換した。その後、80℃で3時間攪拌した。その後、ヨウ素、ヨウ素酸をさらに1/4モル追加して、1時間攪拌した。室温まで冷却した後、析出した目的物をPTFEフィルターで濾取した。その残渣に亜硫酸水素ナトリウム水溶液を加え、クロロホルムで抽出を行った。食塩水で洗浄後、溶媒濃縮することで、茶褐色の固体を得た。ろ過物と合せることで、茶褐色固体として、化合物(12)を得た。(収量28.0g,71%)   In a 300 mL three-necked flask, 1,4-benzenedimethanol (15.7 g, 94.6 mmol), iodine (19.2 g, 75.7 mmol), iodic acid (8.3 g, 47.3 mmol), chloroform (50 mL) , Acetic acid (50 mL) and concentrated sulfuric acid (10 mL) were added and replaced with argon gas. Then, it stirred at 80 degreeC for 3 hours. Thereafter, an additional ¼ mol of iodine and iodic acid was added and stirred for 1 hour. After cooling to room temperature, the precipitated target product was collected by filtration with a PTFE filter. A sodium hydrogen sulfite aqueous solution was added to the residue, followed by extraction with chloroform. After washing with brine, the solvent was concentrated to obtain a brown solid. By combining with the filtrate, compound (12) was obtained as a brown solid. (Yield 28.0 g, 71%)

以下に化合物(12)の分析結果を示す。
質量分析:GC−MS m/z = 458(M+)
以上の分析結果から、合成したものが、化合物(12)の構造と矛盾がないことを確認した。
The analysis results of compound (12) are shown below.
Mass spectrometry: GC-MS m / z = 458 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (12).

〈化合物(13)の合成〉
下記反応式(スキーム)に従って化合物(13)を合成した。
<Synthesis of Compound (13)>
Compound (13) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

500mLのナスフラスコに、化合物(12)(4.18g,10mmol)、アセトン30mLを加え室温で攪拌した。そこにジョーンズ試薬(1.94M)を6.18mL加え、還流条件で加熱した。緑色になったのを確認しつつ、追加でジョーンズ試薬を計30.9mL加えた。TLCで反応が十分進行したことを確認し、室温に戻し、2−プロパノールを20mL加えさらに30分攪拌した。析出物をろ過し、水で十分洗浄することで白色固体(13)を得た。(収量3.16g,71%)
FTIRで確認したところ、1750cm−1付近にカルボン酸のCO伸縮が見られた。
Compound (12) (4.18 g, 10 mmol) and 30 mL of acetone were added to a 500 mL eggplant flask and stirred at room temperature. 6.18 mL of Jones reagent (1.94M) was added thereto and heated under reflux conditions. While confirming that the color turned green, an additional 30.9 mL of Jones reagent was added. After confirming that the reaction had sufficiently progressed by TLC, the temperature was returned to room temperature, 20 mL of 2-propanol was added and the mixture was further stirred for 30 minutes. The precipitate was filtered and washed thoroughly with water to obtain a white solid (13). (Yield 3.16 g, 71%)
When confirmed by FTIR, CO stretching of the carboxylic acid was observed in the vicinity of 1750 cm −1 .

以下に化合物(13)の分析結果を示す。
質量分析:GC−MS m/z = 446(M+)
以上の分析結果から、合成したものが、化合物(13)の構造と矛盾がないことを確認した。
The analysis result of the compound (13) is shown below.
Mass spectrometry: GC-MS m / z = 446 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (13).

〈化合物(14)の合成〉
下記反応式(スキーム)に従って化合物(14)を合成した。
<Synthesis of Compound (14)>
Compound (14) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

500mlの4つ口フラスコにTHF(300ml)及び亜鉛粉末(17.23ml、0.263mol)を入れ、氷浴により0℃まで冷却した。そこに四塩化チタン(50.0g,0.263mol)を適下し、1.5時間、還流した。室温に冷却後2‐ブロモベンズアルデヒド(10.16ml、0.0879mol)を加え、5時間還流を行った。
室温に冷却後、飽和炭酸水素ナトリム水溶液(500ml)に反応溶液を加え攪拌し、さらに酢酸エチル(500ml)を加え一夜攪拌した。セライトろ過を行い不溶物をろ別し、得られた溶液を酢酸エチルで抽出した。有機層を水飽和食塩水で洗浄後、有機層を硫酸マグネシウムで乾燥させた。硫酸マグネシウムをろ別し、酢酸エチルで再結晶を行ない、化合物(14)を得た。(収量7.0g、収率54%)
THF (300 ml) and zinc powder (17.23 ml, 0.263 mol) were placed in a 500 ml four-necked flask and cooled to 0 ° C. with an ice bath. Thereto, titanium tetrachloride (50.0 g, 0.263 mol) was appropriately added and refluxed for 1.5 hours. After cooling to room temperature, 2-bromobenzaldehyde (10.16 ml, 0.0879 mol) was added and refluxed for 5 hours.
After cooling to room temperature, the reaction solution was added to a saturated aqueous sodium hydrogen carbonate solution (500 ml) and stirred, and further ethyl acetate (500 ml) was added and stirred overnight. Celite filtration was performed to separate insoluble matters, and the resulting solution was extracted with ethyl acetate. The organic layer was washed with water saturated brine, and then the organic layer was dried over magnesium sulfate. Magnesium sulfate was filtered off and recrystallized with ethyl acetate to obtain Compound (14). (Yield 7.0 g, 54% yield)

以下に化合物(14)の分析結果を示す。
H NMR(500MHz,CDCl,TMS,δ):7.15(t,2H,J=5.5Hz),7.34(t,2H,J=5.5Hz),7.40(s,2H,),7.60(dd,2H,J1=7.9Hz,J2=1.5Hz),7.73(dd,2H,J1=7.9Hz,J2=1.5Hz)
以上の分析結果から、合成したものが、化合物14の構造と矛盾がないことを確認した。
The analysis result of the compound (14) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 7.15 (t, 2H, J = 5.5 Hz), 7.34 (t, 2H, J = 5.5 Hz), 7.40 (s, 2H,), 7.60 (dd, 2H, J1 = 7.9 Hz, J2 = 1.5 Hz), 7.73 (dd, 2H, J1 = 7.9 Hz, J2 = 1.5 Hz)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of Compound 14.

〈化合物(15)の合成〉
下記反応式(スキーム)に従って化合物(15)を合成した。
<Synthesis of Compound (15)>
Compound (15) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

500mlの4つ口フラスコにシクロヘキサン(400ml)、化合物(14)及びヨウ素(0.22g、0.0017mol)を入れた。低圧水銀ランプ(ウシオ社製)を24時間照射した。析出した固体をろ別し、シクロヘキサンで洗浄した。トルエンから再結晶を行い、化合物(15)を得た。(収量1.7g、収率57%)   Cyclohexane (400 ml), compound (14) and iodine (0.22 g, 0.0017 mol) were placed in a 500 ml four-necked flask. A low-pressure mercury lamp (manufactured by Ushio) was irradiated for 24 hours. The precipitated solid was filtered off and washed with cyclohexane. Recrystallization from toluene gave compound (15). (Yield 1.7 g, Yield 57%)

以下に化合物(15)の分析結果を示す。
H−NMR(CDCl3,TMS)σ:7.53(dd,2H,J=8.1Hz,J=7.7Hz),7.94(d,2H,J=8.1Hz),8.31(s,2H,),8.67(d,2H,J=7.7Hz)
以上の分析結果から、合成したものが、化合物(15)の構造と矛盾がないことを確認した。
The analysis result of compound (15) is shown below.
1 H-NMR (CDCl 3, TMS) σ: 7.53 (dd, 2H, J 1 = 8.1 Hz, J 2 = 7.7 Hz), 7.94 (d, 2H, J = 8.1 Hz), 8 .31 (s, 2H,), 8.67 (d, 2H, J = 7.7 Hz)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (15).

〈化合物(16)の合成〉
下記反応式(スキーム)に従って化合物(16)を合成した。
<Synthesis of Compound (16)>
Compound (16) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

200mlの4つ口フラスコにトルエン(60ml)、ビニルトリブチルスズ(1.47ml、0.0050mol)及び、化合物(15)(0.77g、0.0023mol)を入れた。アルゴンガスをバブリングしながら45分攪拌した。テトラキストリフェニルホスフィンパラジウム(0.23g、0.00020mol)を加え、4時間還流した。室温まで冷却し、飽和フッ化カリウム水溶液(100ml)に注ぎ攪拌し、さらに酢酸エチル(100ml)を加え攪拌した。セライトろ過を行い、不溶物をろ別し、得られた溶液を酢酸エチルで抽出した。有機層を水飽和食塩水で洗浄後、有機層を硫酸マグネシウムで乾燥させた。硫酸マグネシウムをろ別し、酢酸エチルから再結晶を行ない、化合物(16)を得た。(収量0.43g、収率82%)。   Toluene (60 ml), vinyltributyltin (1.47 ml, 0.0050 mol) and compound (15) (0.77 g, 0.0023 mol) were placed in a 200 ml four-necked flask. The mixture was stirred for 45 minutes while bubbling with argon gas. Tetrakistriphenylphosphine palladium (0.23 g, 0.00020 mol) was added and refluxed for 4 hours. The mixture was cooled to room temperature, poured into a saturated aqueous potassium fluoride solution (100 ml) and stirred, and further ethyl acetate (100 ml) was added and stirred. Celite filtration was performed, insolubles were filtered off, and the resulting solution was extracted with ethyl acetate. The organic layer was washed with water saturated brine, and then the organic layer was dried over magnesium sulfate. Magnesium sulfate was filtered off and recrystallized from ethyl acetate to obtain Compound (16). (Yield 0.43 g, Yield 82%).

以下に化合物(16)の分析結果を示す。
H−NMR(CDCl3,TMS)σ:5.52(dd,2H,J=17.4Hz,J=1.4Hz),5.81(dd,2H,J=10.9Hz,J=1.4Hz)、7.55(dd,2H,J=17.4Hz,J=10.9Hz),7.64(dd,2H,J=8.0Hz,J=7.2Hz),7.74(d,2H,J=7.2Hz),8.10(s,2H,),8.68(d,2H,J=8.0Hz)
以上の分析結果から、合成したものが、化合物(16)の構造と矛盾がないことを確認した。
The analysis result of the compound (16) is shown below.
1 H-NMR (CDCl 3, TMS) σ: 5.52 (dd, 2H, J 1 = 17.4 Hz, J 2 = 1.4 Hz), 5.81 (dd, 2H, J 1 = 10.9 Hz, J 2 = 1.4 Hz), 7.55 (dd, 2H, J 1 = 17.4 Hz, J 2 = 10.9 Hz), 7.64 (dd, 2H, J 1 = 8.0 Hz, J 2 = 7. 2 Hz), 7.74 (d, 2H, J = 7.2 Hz), 8.10 (s, 2H,), 8.68 (d, 2H, J = 8.0 Hz)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (16).

〈化合物(18)の合成〉
下記反応式(スキーム)に従って化合物(18)を合成した。
<Synthesis of Compound (18)>
Compound (18) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

2L丸底フラスコに、非特許文献Advanced Materials,2009,21,213−216.記載の方法で合成した化合物(17)ジチエノ[2,3−d;2’,3’−d’]ベンゾ[1,2−b;4,5−b’]ジチオフェン(12.7g,42mmol)を入れ、アルゴンガスで置換を行った後、脱水クロロホルム(600mL)、酢酸(600mL)を入れ、氷浴を用いて容器内温を0−3℃に保った。次に、遮光下、N−ヨードスクシンイミド(20.8g,92.4mmol)を徐々に加えた。1時間攪拌後、氷浴を外し、室温に戻し、そのまま一晩攪拌を続けた。沈殿を濾取し、沈殿を飽和亜硫酸水素ナトリウム水溶液、続けてエタノール、トルエン、エタノールの順で洗浄した。沈殿を真空下乾燥させ、淡黄色の固体を得た。これには、2置換体である化合物(20)の他に、1置換体が僅かに含まれていたが、この段階では分離せず以下の反応で精製せずそのまま用いた。(収量21.5g,収率92.3%)   In a 2 L round bottom flask, non-patent literature Advanced Materials, 2009, 21, 213-216. Compound (17) dithieno [2,3-d; 2 ′, 3′-d ′] benzo [1,2-b; 4,5-b ′] dithiophene (12.7 g, 42 mmol) synthesized by the method described After replacing with argon gas, dehydrated chloroform (600 mL) and acetic acid (600 mL) were added, and the internal temperature of the container was kept at 0-3 ° C. using an ice bath. Next, N-iodosuccinimide (20.8 g, 92.4 mmol) was gradually added under light shielding. After stirring for 1 hour, the ice bath was removed, the temperature was returned to room temperature, and stirring was continued overnight. The precipitate was collected by filtration, and the precipitate was washed with a saturated aqueous sodium hydrogen sulfite solution followed by ethanol, toluene, and ethanol. The precipitate was dried under vacuum to give a pale yellow solid. This contained a small amount of the 1-substituted product in addition to the 2-substituted compound (20), but it was not separated at this stage and used as it was without purification in the following reaction. (Yield 21.5 g, Yield 92.3%)

以下に化合物(18)の分析結果を示す。
質量分析:GC−MS m/z = 554 (M+),428 (M+ −I)
以上の分析結果から、合成したものが、化合物(18)が主生成物であることを確認した。
The analysis result of the compound (18) is shown below.
Mass spectrometry: GC-MS m / z = 554 (M +), 428 (M + -I)
From the above analysis results, it was confirmed that the synthesized compound (18) was the main product.

〈化合物(19)の合成〉
下記反応式(スキーム)に従って化合物(19)を合成した。
<Synthesis of Compound (19)>
Compound (19) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

300mL丸底フラスコに、化合物(22)(2.55g,4.60mmol)、ヨウ化銅(43.7mg,0.23mmol)を入れ、アルゴンガスで置換を行った後、テトラヒドロフラン(以下THF、100mL)、ジイソプロピルエチルアミン(6.5mL)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)(以下、PdCl(PPh97.2mg,0.138mmol)を加え、十分に攪拌しながら、トリメチルシリルアセチレン(1.4mL,10.12mmol)を徐々に加えた。そのまま、室温で一晩攪拌し、赤色の均一溶液を得た。水(200mL)およびトルエン(100mL)を加え、有機層を分離した。水層をトルエン(50mL)で3回抽出し、合わせた有機層を飽和食塩水(100mL)で洗浄し、硫酸ナトリウムで乾燥させた。濾液を濃縮し、カラム精製(固定相ト:シリカゲル、移動相:トルエン)に付し、赤色の固体を得た。これをトルエン/アセトニトリルより再結晶することで、黄色の針状結晶として化合物(19)を得た。(収量:1.35g、収率:59.1%) A 300 mL round bottom flask was charged with compound (22) (2.55 g, 4.60 mmol) and copper iodide (43.7 mg, 0.23 mmol), and replaced with argon gas, followed by tetrahydrofuran (hereinafter THF, 100 mL). ), Diisopropylethylamine (6.5 mL), dichlorobis (triphenylphosphine) palladium (II) (hereinafter, PdCl 2 (PPh 3 ) 2 97.2 mg, 0.138 mmol) are added, and trimethylsilylacetylene ( 1.4 mL, 10.12 mmol) was added slowly. The mixture was stirred at room temperature overnight to obtain a red uniform solution. Water (200 mL) and toluene (100 mL) were added and the organic layer was separated. The aqueous layer was extracted three times with toluene (50 mL), and the combined organic layer was washed with saturated brine (100 mL) and dried over sodium sulfate. The filtrate was concentrated and subjected to column purification (stationary phase: silica gel, mobile phase: toluene) to obtain a red solid. This was recrystallized from toluene / acetonitrile to obtain a compound (19) as yellow needle crystals. (Yield: 1.35 g, Yield: 59.1%)

以下に化合物(19)の分析結果を示す。
質量分析:GC−MS m/z =494.0(M+)
以上の分析結果から、合成したものが、化合物(19)の構造と矛盾が無いことを確認した。
The analysis result of the compound (19) is shown below.
Mass spectrometry: GC-MS m / z = 494.0 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (19).

〈化合物(20)の合成〉
下記反応式(スキーム)に従って化合物(20)を合成した。
<Synthesis of Compound (20)>
Compound (20) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

300mLの丸底フラスコに化合物(19)(2.3g,4.65mmol)、THF(100mL)、メタノール(30mL)を入れ、水酸化カリウム溶液(1.2gを水15mLに溶解)を加えた。そのまま3時間攪拌し、水(100mL)、メタノール(100mL)を加え、析出した沈殿を濾取した。沈殿を、水、メタノールの順で洗浄し、真空下で乾燥させることで、褐色の固体として化合物(20)を得た。(収量1.62g,99.5%)   Compound (19) (2.3 g, 4.65 mmol), THF (100 mL) and methanol (30 mL) were placed in a 300 mL round bottom flask, and potassium hydroxide solution (1.2 g dissolved in 15 mL of water) was added. The mixture was stirred as it was for 3 hours, water (100 mL) and methanol (100 mL) were added, and the deposited precipitate was collected by filtration. The precipitate was washed with water and methanol in this order, and dried under vacuum to obtain Compound (20) as a brown solid. (Yield 1.62 g, 99.5%)

以下に化合物(20)の分析結果を示す。
質量分析:GC−MSm/z=349.9(M+)
以上の分析結果から、合成したものが、化合物(20)の構造と矛盾が無いことを確認した。
The analysis result of the compound (20) is shown below.
Mass spectrometry: GC-MS m / z = 349.9 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (20).

〈化合物(21)の合成〉
下記反応式(スキーム)に従って化合物(21)を合成した。原料の2,7−ジヨード−9,10−ジヒドロフェナンスレンは、Chem.Mater.,2008,20(20),pp6289−6291に記載の方法に従って、合成したものを用いた。
<Synthesis of Compound (21)>
Compound (21) was synthesized according to the following reaction formula (scheme). The starting material 2,7-diiodo-9,10-dihydrophenanthrene was obtained from Chem. Mater. , 2008, 20 (20), pp 6289-6291, and the one synthesized.

Figure 2012216669
Figure 2012216669

300mLの丸底フラスコに、2,7−ジヨード−9,10−ジヒドロフェナンスレン(8.21g,19mmol)、AIBN(0.38mmol,62.4mg)、NBS(22.8mmol,4.06g)、四塩化炭素(150mL)を取り、アルゴン雰囲気下、還流温度で2時間攪拌を行った。室温まで冷却した後、沈殿を濾取し、水、続けて熱水、続けてメタノールで洗浄し、減圧下乾燥を行い、淡黄色の固体として化合物(21)を得た。(収量7.41g,収率91%)   In a 300 mL round bottom flask, 2,7-diiodo-9,10-dihydrophenanthrene (8.21 g, 19 mmol), AIBN (0.38 mmol, 62.4 mg), NBS (22.8 mmol, 4.06 g) Then, carbon tetrachloride (150 mL) was taken and stirred at reflux temperature for 2 hours under an argon atmosphere. After cooling to room temperature, the precipitate was collected by filtration, washed with water, followed by hot water, followed by methanol, and dried under reduced pressure to obtain compound (21) as a pale yellow solid. (Yield 7.41 g, Yield 91%)

以下に化合物(21)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 7.63 (s, 2H), 7.91 (dd, 2H, J=8.5 Hz, J=1.7 Hz), 8.26 (d, 2H, J=1.7 Hz), 8.35 (d, 2H, J=8.5 Hz)
質量分析:GC−fMS m/z = 430(M+)
以上の分析結果から、合成したものが、化合物(21)の構造と矛盾がないことを確認した。
The analysis result of the compound (21) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 7.63 (s, 2H), 7.91 (dd, 2H, J 1 = 8.5 Hz, J 2 = 1.7 Hz), 8 .26 (d, 2H, J = 1.7 Hz), 8.35 (d, 2H, J = 8.5 Hz)
Mass spectrometry: GC-fMS m / z = 430 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (21).

〈化合物(22)の合成〉
下記反応式(スキーム)に従って化合物(22)を合成した。
<Synthesis of Compound (22)>
Compound (22) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

2Lの丸底フラスコに、化合物(21)(14mmol,6.02g)、クロロホルム(300mL)を加え、水浴(20℃)で冷却しながら、次亜塩素酸ナトリウム水溶液(関東化学製、塩素濃度5%,pH8〜10,750mL)、テトラブチルアンモニウム硫酸水素ナトリウム(7mmol,2.38g)を加えて、20℃で5時間攪拌を行った。氷水(400mL)を加えて、有機層を分離し、水層をクロロホルムで2回抽出した。合わせた有機層は水、続けて飽和食塩水で洗浄し、炭酸カリウムで乾燥させた。濾液を濃縮し、カラム精製(固定相:シリカゲル、移動相:トルエン)し、淡黄色の固体として化合物(22)を得た。(収量1.25g,収率20.0%)   Compound (21) (14 mmol, 6.02 g) and chloroform (300 mL) were added to a 2 L round bottom flask, and cooled with a water bath (20 ° C.), sodium hypochlorite aqueous solution (manufactured by Kanto Chemical Co., Ltd., chlorine concentration 5) %, PH 8-10, 750 mL) and sodium tetrabutylammonium hydrogen sulfate (7 mmol, 2.38 g) were added, and the mixture was stirred at 20 ° C. for 5 hours. Ice water (400 mL) was added, the organic layer was separated, and the aqueous layer was extracted twice with chloroform. The combined organic layers were washed with water followed by saturated brine and dried over potassium carbonate. The filtrate was concentrated and subjected to column purification (stationary phase: silica gel, mobile phase: toluene) to obtain compound (22) as a pale yellow solid. (Yield 1.25g, Yield 20.0%)

以下に化合物(22)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ):4.50 (s, 2H), 7.45 (dd, 2H, J1=8.6 Hz, J2=2.3 Hz), 7.65 (d, 2H, J=2.3 Hz), 7.97 (d, 2H, J=8.6 Hz)
質量分析:GC−fMS m/z =446(M+)
以上の分析結果から、合成したものが、化合物(22)の構造と矛盾がないことを確認した。
The analysis result of the compound (22) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 4.50 (s, 2H), 7.45 (dd, 2H, J1 = 8.6 Hz, J2 = 2.3 Hz), 7.65 (D, 2H, J = 2.3 Hz), 7.97 (d, 2H, J = 8.6 Hz)
Mass spectrometry: GC-fMS m / z = 446 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (22).

〈化合物(23)の合成〉
下記反応式(スキーム)に従って化合物(23)を合成した。
<Synthesis of Compound (23)>
Compound (23) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

300mLの丸底フラスコに化合物(22)(4.46g,10mmol)、ジエチルエーテル(200mL)を入れ、アルゴンガスで置換した後、水素化リチウムアルミニウム(12mmol,455mg)を加え、還流下4時間攪拌を行った。水(0.5mL)、続けて1.0N水酸化ナトリウム水溶液(0.5mL)、続けて水(1.5mL)を加え、室温で1時間攪拌を行った。反応溶液をセライト濾過し、濾液を減圧濃縮し油状固体を得た。これを精製せず、そのまま次の反応に用いた。   A compound (22) (4.46 g, 10 mmol) and diethyl ether (200 mL) were placed in a 300 mL round bottom flask, and replaced with argon gas. Then, lithium aluminum hydride (12 mmol, 455 mg) was added, and the mixture was stirred under reflux for 4 hours. Went. Water (0.5 mL) was added followed by 1.0 N aqueous sodium hydroxide solution (0.5 mL), followed by water (1.5 mL), and the mixture was stirred at room temperature for 1 hour. The reaction solution was filtered through Celite, and the filtrate was concentrated under reduced pressure to obtain an oily solid. This was used for the next reaction without purification.

別の200mL丸底フラスコに上記油状固体(4.48g)、THF(30mL),ピリジン(5mL),DMAP(0.5mmol,61mg)を取り、氷冷下カプロン酸クロライド(1.1eq,11mmol,1.48g)を徐々に滴下し、0℃で1時間攪拌し、氷浴を外して室温で6時間攪拌を行った。10%炭酸水素ナトリウム水溶液(100mL)を加え30分間攪拌した後、クロロホルム(50mL)を加え、有機層を分離した。水層はクロロホルムで2回抽出を行い、合わせた有機層を10%炭酸水素ナトリウム水溶液、続けて水、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた。濾液を濃縮し、淡黄色のオイルとして化合物(23)を得た。(収量3.55g,65%)   In a separate 200 mL round bottom flask, the oily solid (4.48 g), THF (30 mL), pyridine (5 mL), DMAP (0.5 mmol, 61 mg) were taken, and caproic acid chloride (1.1 eq, 11 mmol, 1.48 g) was gradually added dropwise and stirred at 0 ° C. for 1 hour, the ice bath was removed and the mixture was stirred at room temperature for 6 hours. A 10% aqueous sodium hydrogen carbonate solution (100 mL) was added and stirred for 30 minutes, chloroform (50 mL) was added, and the organic layer was separated. The aqueous layer was extracted twice with chloroform, and the combined organic layer was washed with 10% aqueous sodium hydrogen carbonate solution, followed by water and saturated brine, and dried over sodium sulfate. The filtrate was concentrated to obtain compound (23) as a pale yellow oil. (Yield 3.55g, 65%)

以下に化合物(23)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ):0.86 (t, 3H, J =7.2 Hz), 1.21−1.30 (m, 4H) , 1.54−1.60 (m, 2H), 2.20―2.23 (m, 2H), 3.05 (d, 2H), 6.05(t, 1H), 7.45−7.95 (m, 6H)
質量分析:GC−fMS m/z =546(M+)、430(熱分解物)
以上の分析結果から、合成したものが、化合物(23)の構造と矛盾がないことを確認した。
The analysis result of the compound (23) is shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 3H, J = 7.2 Hz), 1.21-1.30 (m, 4H), 1.54-1. 60 (m, 2H), 2.20-2.23 (m, 2H), 3.05 (d, 2H), 6.05 (t, 1H), 7.45-7.95 (m, 6H)
Mass spectrometry: GC-fMS m / z = 546 (M +), 430 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (23).

[合成例3]
〈化合物(比較1)の合成〉
下記反応式(スキーム)に従って化合物(比較1)を合成した。
中間体であるヨードテトラリン誘導体(7’)および化合物(比較1)は特願2010−004324号に記載の方法に従って合成した。
[Synthesis Example 3]
<Synthesis of Compound (Comparative 1)>
A compound (Comparative 1) was synthesized according to the following reaction formula (scheme).
Intermediate iodotetralin derivative (7 ′) and compound (Comparative 1) were synthesized according to the method described in Japanese Patent Application No. 2010-004324.

Figure 2012216669
Figure 2012216669

100mLの丸底フラスコに、化合物(7’)(973mg,2.0mmol)、化合物8(466mg,1mmol)、DMF(10mL)を入れ、アルゴンガスを30分間バブリングした後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(18.3mg、0.02mmol)、トリ(オルトトリル)ホスフィン(24.4mg、0.08mmol)を加え、アルゴン雰囲気下室温で20時間攪拌した。反応溶液をクロロホルムで希釈し、セライト濾過で不溶物を除去し、水を加え、有機層を分離した。水層はクロロホルムで3回抽出を行ない、合わせた有機層を飽和フッ化カリウム水溶液、続けて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。濾液を濃縮し、赤色の液体を得た。これをカラムクロマトグラフィー(固定層:(中性シリカゲル(関東化学製)+10wt%フッ化カリウム,溶媒:ヘキサン/酢酸エチル、9/1→8/2、v/v)にて精製することにより、黄色の固体を得た。これをヘキサン/エタノールから再結晶することにより、黄色の固体として化合物(比較1)を得た(収量680mg,収率79.3%)。   A 100 mL round bottom flask was charged with compound (7 ′) (973 mg, 2.0 mmol), compound 8 (466 mg, 1 mmol), DMF (10 mL), bubbled with argon gas for 30 minutes, and then tris (dibenzylideneacetone). Di-palladium (0) (18.3 mg, 0.02 mmol) and tri (ortho-tolyl) phosphine (24.4 mg, 0.08 mmol) were added, and the mixture was stirred at room temperature for 20 hours under an argon atmosphere. The reaction solution was diluted with chloroform, insoluble material was removed by Celite filtration, water was added, and the organic layer was separated. The aqueous layer was extracted three times with chloroform, and the combined organic layers were washed with a saturated aqueous potassium fluoride solution, followed by saturated brine, and dried over magnesium sulfate. The filtrate was concentrated to give a red liquid. By purifying this with column chromatography (fixed layer: (neutral silica gel (manufactured by Kanto Chemical) + 10 wt% potassium fluoride, solvent: hexane / ethyl acetate, 9/1 → 8/2, v / v), A yellow solid was obtained, which was recrystallized from hexane / ethanol to obtain a compound (Comparative 1) as a yellow solid (yield 680 mg, yield 79.3%).

以下に化合物(比較1)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ):0.87−0.89(m,12H),1.28−1.33(m,16H),1.61−1.69(m,8H),1.96−2.01(m,4H),2.28−2.36(m,12H),6.08(d,4H,J=12.1Hz),7.37(d,2H,J=8.6Hz),7.48(s,2H),7.57−7.59(m,4H)
元素分析(C5064):C,69.92;H,7.67;O,14.85;S,7.44(実測値)、C,70.06;H,7.53;O,14.93;S,7.48(理論値)
融点:113.7−114.7℃
以上の分析結果から、合成したものが、化合物(比較1)の構造と矛盾がないことを確認した。
The analysis results of the compound (Comparative 1) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.87-0.89 (m, 12H), 1.28-1.33 (m, 16H), 1.61-1.69 (m , 8H), 1.96-2.01 (m, 4H), 2.28-2.36 (m, 12H), 6.08 (d, 4H, J = 12.1 Hz), 7.37 (d , 2H, J = 8.6 Hz), 7.48 (s, 2H), 7.57-7.59 (m, 4H)
Elemental analysis (C 50 H 64 O 8 S 2): C, 69.92; H, 7.67; O, 14.85; S, 7.44 ( Found), C, 70.06; H, 7 .53; O, 14.93; S, 7.48 (theoretical value)
Melting point: 113.7-114.7 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Comparative 1).

次に、上記合成例で合成した特定化合物中間体を用いて、本発明で用いたπ電子共役系化合物前駆体の合成を行った。   Next, using the specific compound intermediate synthesized in the above synthesis example, the π-electron conjugated compound precursor used in the present invention was synthesized.

次に、上記合成例で合成した特定化合物中間体を用いて、本発明で用いたπ電子共役系化合物前駆体の合成を行った。
〈化合物(実1)の合成〉
下記反応式(スキーム)に従って化合物(実1)を合成した。
Next, using the specific compound intermediate synthesized in the above synthesis example, the π-electron conjugated compound precursor used in the present invention was synthesized.
<Synthesis of Compound (Act 1)>
A compound (Ex. 1) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

100mLの丸底フラスコに、化合物(7−1)(550mg、1.49mmol)、化合物(8)(346mg、0.74mmol)、N,N−ジメチルホルムアミド(以下DMFと略、10mL)を入れ、アルゴンガスを30分間バブリングした後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(18.3mg、0.02mmol)、トリ(オルトトリル)ホスフィン(24.4mg、0.08mmol)を加え、アルゴン雰囲気下室温で24時間攪拌した。反応溶液をジクロロメタンで希釈し、水を加え、有機層を分離した。水槽はジクロロメタンで3回抽出を行い、合わせた有機層を飽和フッ化カリウム水溶液、続けて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥させた。濾液を、シリカゲルパッド(厚さ3cm)を通した後、濃縮し、赤色の固体を得た。これをメタノール、ヘキサンで洗浄することで黄緑色の固体を得た(収量235mg)。
リサイクル分取HPLC(日本分析工業社製、LC−9104)にて分離精製することにより、黄色の結晶として化合物(実1)および化合物(実2)を得た[化合物(実1):収量85mg、化合物(実2):収量110mg]。
In a 100 mL round bottom flask, put compound (7-1) (550 mg, 1.49 mmol), compound (8) (346 mg, 0.74 mmol), N, N-dimethylformamide (hereinafter abbreviated as DMF, approximately 10 mL), After bubbling with argon gas for 30 minutes, tris (dibenzylideneacetone) dipalladium (0) (18.3 mg, 0.02 mmol), tri (ortho-tolyl) phosphine (24.4 mg, 0.08 mmol) were added, and an argon atmosphere was added. Stir at room temperature for 24 hours. The reaction solution was diluted with dichloromethane, water was added, and the organic layer was separated. The water bath was extracted three times with dichloromethane, and the combined organic layers were washed with a saturated aqueous potassium fluoride solution, followed by saturated brine, and dried over magnesium sulfate. The filtrate was passed through a silica gel pad (thickness 3 cm) and then concentrated to obtain a red solid. This was washed with methanol and hexane to obtain a yellowish green solid (yield 235 mg).
Separation and purification by recycle preparative HPLC (manufactured by Nihon Analytical Industrial Co., Ltd., LC-9104) gave compounds (Act 1) and Compound (Act 2) as yellow crystals [Compound (Act 1): Yield 85 mg. Compound (Ac. 2): Yield 110 mg].

以下に化合物(実1)の分析結果を示す。
〔化合物(実1)〕;
H NMR (500 MHz, CDCl, TMS, δ) : 0.86 (t, 6H, J = 6.9 Hz), 1.21−1.31 (m, 8H) , 1.57−1.63 (m, 4H), 2.27 (td, 2H, J=7.6 Hz J = 1.7 Hz ), 2.60−2.70 (m, 4H), 5.95 (t, 1H, J = 5.2 Hz), 6.03−6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8.1 Hz), 7.49 (s, 2H), 7.491 (dd, 2H, J = 7.7Hz, J = 2.3 Hz)
精密質量(LC−TofMS) (m/z):624.232 (実測値), 624.237(計算値)
以上の分析結果から、合成したものが、化合物(実1)および化合物(実2)の構造と矛盾がないことを確認した。
The analysis results of the compound (Ex. 1) are shown below.
[Compound (Act 1)];
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 6H, J = 6.9 Hz), 1.21-1.31 (m, 8H), 1.57-1. 63 (m, 4H), 2.27 (td, 2H, J 1 = 7.6 Hz J 2 = 1.7 Hz), 2.60-2.70 (m, 4H), 5.95 (t, 1H, J = 5.2 Hz), 6.03-6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8 .1 Hz), 7.49 (s, 2H), 7.491 (dd, 2H, J 1 = 7.7 Hz, J 2 = 2.3 Hz)
Accurate mass (LC-TofMS) (m / z): 624.232 (actual value), 624.237 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structures of the compound (Act 1) and the compound (Act 2).

〈化合物(実2)の合成〉
上記反応式(スキーム)に従って、化合物(実1)の合成法により、化合物(実1)と共に化合物(実2)を合成し、上記のように、リサイクル分取HPLC(日本分析工業社製、LC−9104)にて分離精製することにより、黄色の結晶として化合物(実2)を得た化合物(実2):収量110mg]。
<Synthesis of Compound (Act 2)>
According to the above reaction formula (scheme), the compound (Act 1) was synthesized together with the compound (Act 1) by the synthesis method of the compound (Act 1). -9104) to obtain the compound (Act 2) as yellow crystals (Act 2): Yield 110 mg].

以下に化合物(実2)の分析結果を示す。
〔化合物(実2)〕;
H NMR (500 MHz, CDCl, TMS, δ) : 0.86 (t, 3H, J =7.5 Hz), 1.22−1.32 (m, 4H) , 1.57−1.64 (m, 2H), 2.28 (td, 2H, J=7.7 Hz J = 1.2 Hz ), 2.62−2.72 (m, 2H), 6.03−6.10 (m, 2H), 6.63 (d, 1H, J = 9.8 Hz), 7.40−7.42 (m, 2H,), 7.46−7.52 (m, 3H), 7.53 (s, 1H), 7.61 (s, 1H), 7.79 (dd, 2H, J = 8.6 Hz J = 1.7 Hz), 7.84 (d, 1H, J = 8.1 Hz), 7.88 (d, 2H, J = 8.1 Hz), 8.07 (d, 1H, J = 8.1 Hz),
精密質量(LC−TofMS) (m/z):508.149(実測値), 508.153(計算値)
以上の分析結果から、合成したものが、化合物(実2)の構造と矛盾がないことを確認した。
The analysis results of the compound (Ex. 2) are shown below.
[Compound (Act 2)];
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 3H, J = 7.5 Hz), 1.22-1.32 (m, 4H), 1.57-1. 64 (m, 2H), 2.28 (td, 2H, J 1 = 7.7 Hz J 2 = 1.2 Hz), 2.62-2.72 (m, 2H), 6.03-6. 10 (m, 2H), 6.63 (d, 1H, J = 9.8 Hz), 7.40-7.42 (m, 2H,), 7.46-7.52 (m, 3H), 7.53 (s, 1H), 7.61 (s, 1H), 7.79 (dd, 2H, J 1 = 8.6 Hz J 2 = 1.7 Hz), 7.84 (d, 1H, J = 8.1 Hz), 7.88 (d, 2H, J = 8.1 Hz), 8.07 (d, 1H, J = 8.1 Hz),
Accurate mass (LC-TofMS) (m / z): 508.149 (actual value), 508.153 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 2).

〈化合物(実3)の合成〉
下記反応式(スキーム)に従って化合物(実3)を合成した。
<Synthesis of Compound (Act 3)>
A compound (Act 3) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例2において化合物(7−1)を化合物(7−2)に置き換えた以外は同様に反応を行い、精製することで黄色の結晶として化合物(実3)を得た。(収量253mg,収率75%)。   The reaction was conducted in the same manner as in Example 2 except that the compound (7-1) was replaced with the compound (7-2), and the compound (Act 3) was obtained as a yellow crystal by purification. (Yield 253 mg, 75% yield).

以下に化合物(実3)の分析結果を示す。
〔化合物(実3)〕;
H NMR (500 MHz, CDCl, TMS, δ) : 2.60−2.70 (m, 4H), 3.38 (s, 6H), 5.90 (t, 2H, J = 5.2 Hz), 6.03−6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8.1 Hz), 7.49 (s, 2H), 7.50 (dd, 2H, J = 7.7Hz, J = 2.3 Hz)
精密質量(LC−TofMS) (m/z):456.127 (実測値), 456.122 (計算値)
以上の分析結果から、合成したものが、化合物(実3)の構造と矛盾がないことを確認した。
The analysis results of the compound (Act 3) are shown below.
[Compound (Act 3)];
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 2.60-2.70 (m, 4H), 3.38 (s, 6H), 5.90 (t, 2H, J = 5.2) Hz), 6.03-6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8.1 Hz), 7. 49 (s, 2H), 7.50 (dd, 2H, J 1 = 7.7Hz, J 2 = 2.3 Hz)
Accurate mass (LC-TofMS) (m / z): 456.127 (actual measured value), 456.122 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 3).

〈化合物(実4)の合成〉
下記反応式(スキーム)に従って化合物(実4)を合成した。
<Synthesis of Compound (Act 4)>
Compound (Act 4) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例2において化合物(7−1)を化合物(7−3)に置き換えた以外は同様に反応を行い、精製することで黄色の結晶として化合物(実4)を得た。(収量291mg,収率60%)。
以下に化合物(実4)の分析結果を示す。
The reaction was conducted in the same manner as in Example 2 except that the compound (7-1) was replaced with the compound (7-3), and purification was carried out to obtain a compound (Act 4) as yellow crystals. (Yield 291 mg, 60% yield).
The analysis results of the compound (Ex. 4) are shown below.

〔化合物(実4)〕;
H NMR (500 MHz, CDCl, TMS, δ) : 0.86 (t, 6H, J = 6.9 Hz), 1.21−1.31 (m, 8H) , 1.57−1.63 (m, 4H), 2.60−2.70 (m, 4H), 4.15−4.17 (m, 2H), 5.95 (t, 2H, J = 5.2 Hz), 6.03−6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8.1 Hz), 7.49 (s, 2H), 7.491 (dd, 2H, J = 7.7Hz, J = 2.3 Hz)
精密質量(LC−TofMS) (m/z):656.232 (実測値) 656.227 (計算値)
以上の分析結果から、合成したものが、化合物(実4)の構造と矛盾がないこと確認した。
[Compound (Act 4)];
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 6H, J = 6.9 Hz), 1.21-1.31 (m, 8H), 1.57-1. 63 (m, 4H), 2.60-2.70 (m, 4H), 4.15-4.17 (m, 2H), 5.95 (t, 2H, J = 5.2 Hz), 6 .03-6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8.1 Hz), 7.49 (s, 2H), 7.491 (dd, 2H , J 1 = 7.7Hz, J 2 = 2.3 Hz)
Accurate mass (LC-TofMS) (m / z): 656.232 (actual value) 656.227 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 4).

〈化合物(実5)の合成〉
下記反応式(スキーム)に従って化合物(実5)を合成した。
<Synthesis of Compound (Real 5)>
Compound (Act 5) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例2において化合物(7−1)を化合物(7−4)に置き換えた以外は同様に反応を行い、精製することで黄色の結晶として化合物(実5)を得た。(収量193mg,収率45.5%)。
(ここで、上記式中においてTMS基はトリメチルシリル基の略称である。)
The reaction was conducted in the same manner as in Example 2 except that the compound (7-1) was replaced with the compound (7-4), and purification was performed to obtain the compound (Actu 5) as yellow crystals. (Yield 193 mg, Yield 45.5%).
(Here, in the above formula, TMS group is an abbreviation for trimethylsilyl group.)

以下に化合物(実5)の分析結果を示す。
〔化合物(実5)〕;
H NMR (500 MHz, CDCl, TMS, δ) : 0.04 (s, 18H), 2.60−2.70 (m, 4H), 5.15 (t, 2H, J =5.2 Hz), 6.00 (t, 2H, J = 5.2 Hz), 6.03−6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7.40 (d, 4H, J = 8.1 Hz), 7.48 (s, 2H), 7.50 (dd, 2H, J = 7.7Hz, J = 2.3 Hz)
精密質量(LC−TofMS) (m/z):572.175 (実測値), 572.170 (計算値)
以上の分析結果から、合成したものが、化合物(実5)の構造と矛盾がないことを確認した。
The analysis results of the compound (Act 5) are shown below.
[Compound (Actual 5)];
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.04 (s, 18H), 2.60-2.70 (m, 4H), 5.15 (t, 2H, J = 5.2) Hz), 6.00 (t, 2H, J = 5.2 Hz), 6.03-6.09 (m, 4H), 6.63 (d, 2H, J = 9.7 Hz), 7. 40 (d, 4H, J = 8.1 Hz), 7.48 (s, 2H), 7.50 (dd, 2H, J 1 = 7.7Hz, J 2 = 2.3 Hz)
Accurate mass (LC-TofMS) (m / z): 572.175 (actual measured value), 572.170 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 5).

[化合物(実6)の合成]
下記反応式(スキーム)に従って化合物(実6)を合成した。
[Synthesis of Compound (Act 6)]
Compound (Act 6) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

[化合物(実6−1)の合成]
200mLの3つ口フラスコに、化合物9(2.58g,5mmol)、化合物10(2.2eq,11mmol,2.52g)、トルエン(100mL)を取り、アルゴンガスで30分間バブリングを行った後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(229mg、0.25mmol)、トリ(オルトトリル)ホスフィン(304mg、1.0mmol)を加え、アルゴン雰囲気下8時間還流した。
反応溶液をシリカゲルパッド(厚さ3cm)で濾過し、濾液を濃縮し、褐色の固体を得た。これをトルエンから再結晶することで、淡黄色の結晶として化合物(実6−1)を得た。
(収量1.85g,収率76%)
[Synthesis of Compound (Act 6-1)]
In a 200 mL three-necked flask, compound 9 (2.58 g, 5 mmol), compound 10 (2.2 eq, 11 mmol, 2.52 g) and toluene (100 mL) were taken, and after bubbling with argon gas for 30 minutes, Tris (dibenzylideneacetone) dipalladium (0) (229 mg, 0.25 mmol) and tri (orthotolyl) phosphine (304 mg, 1.0 mmol) were added, and the mixture was refluxed for 8 hours under an argon atmosphere.
The reaction solution was filtered through a silica gel pad (thickness 3 cm), and the filtrate was concentrated to obtain a brown solid. By recrystallizing this from toluene, a compound (Ex. 6-1) was obtained as pale yellow crystals.
(Yield 1.85 g, Yield 76%)

以下に化合物(実6−1)の分析結果を示す。
質量分析:GC−MS m/z = 486(M+)
以上の分析結果から、合成したものが、化合物(実6−1)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 6-1) are shown below.
Mass spectrometry: GC-MS m / z = 486 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 6-1).

[化合物(実6−2)の合成]
300mLの丸底フラスコに、化合物(実6−1)(1.8g,3.7mmol)、水(30mL)、メタノール(30mL)、THF(90mL)をいれ、アルゴンガスで置換した後、水酸化リチウム1水和物(3eq,11.1mmol,466mg)を加え、80℃で3時間攪拌した。室温まで冷却した後、濃塩酸を加えて系内を酸性にし、析出した沈殿をPTFEフィルターで濾取し、これを水、続けてヘキサンで洗浄し、減圧下で60℃で乾燥を行い淡黄色の固体として、化合物(実6−2)を得た。(収量1.6g,94%)
[Synthesis of Compound (Ex. 6-2)]
A 300 mL round bottom flask was charged with compound (real 6-1) (1.8 g, 3.7 mmol), water (30 mL), methanol (30 mL), THF (90 mL), and replaced with argon gas. Lithium monohydrate (3 eq, 11.1 mmol, 466 mg) was added, and the mixture was stirred at 80 ° C. for 3 hr. After cooling to room temperature, the system is acidified by adding concentrated hydrochloric acid, and the deposited precipitate is filtered through a PTFE filter, washed with water and then with hexane, dried at 60 ° C. under reduced pressure, and pale yellow Compound (Ex. 6-2) was obtained as a solid. (Yield 1.6g, 94%)

以下に化合物(実6−2)の分析結果を示す。
質量分析:GC−MS m/z = 458(M+)
H NMR (500 MHz, CDCl, TMS, δ) : 3.79 (s, 4H),7.39−7.44 (m, 6H), 7.47 (s, 2H), 7.53 (dd, 2H, J= 6.9 Hz, J= 1.7 Hz), 8.49 (s, 2H), 12.3−12.5 (br, 2H)
以上の分析結果から、合成したものが、化合物(実6−2)の構造と矛盾がないことを確認した。
The analysis results of the compound (Ex. 6-2) are shown below.
Mass spectrometry: GC-MS m / z = 458 (M +)
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 3.79 (s, 4H), 7.39-7.44 (m, 6H), 7.47 (s, 2H), 7.53 ( dd, 2H, J 1 = 6.9 Hz, J 2 = 1.7 Hz), 8.49 (s, 2H), 12.3-12.5 (br, 2H)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 6-2).

[化合物(実6−3)の合成]
100mLの丸底フラスコに、化合物(実6−2)(2mmol,916mg)を取り、アルゴンガスで置換した後、氷冷下トリフルオロメタンスルホン酸無水物無水物(10mL)、五酸化二リン(0.5g)を加え、そのままの温度で2時間攪拌した。内容物を氷水(200g)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、黄色の固体として、化合物(実6−3)を得た。これ以上精製することなく、次の反応に用いた。
[Synthesis of Compound (Ex. 6-3)]
In a 100 mL round bottom flask, the compound (ex. 6-2) (2 mmol, 916 mg) was taken and replaced with argon gas, and then trifluoromethanesulfonic anhydride (10 mL), diphosphorus pentaoxide (0 mL) under ice cooling. 0.5 g) was added and stirred at that temperature for 2 hours. The contents were poured into ice water (200 g), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain the compound (Ex. 6-3) as a yellow solid. Used in the next reaction without further purification.

以下に化合物(実6−3)の分析結果を示す。
質量分析:GC−MS m/z = 422(M+)
IR:1720 (C=O, ketone)
以上の分析結果から、合成したものが、化合物(実6−3)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 6-3) are shown below.
Mass spectrometry: GC-MS m / z = 422 (M +)
IR: 1720 (C = O, ketone)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 6-3).

[化合物(実6)の合成]
100mLの丸底フラスコに、化合物(実6−3)(2mmol,844mg)を取り、メタノール(20mL)、THF(40mL)を加え、氷冷下、水素化ホウ素ナトリウム(5eq,10mmol,378mg)を加えて、そのままの温度で2時間攪拌した。内容物を氷水(200g)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、淡黄色の固体を得た。これ以上精製することなく、減圧乾燥後、次の反応に用いた。
別の100mLの丸底フラスコに上記固体、DMAP(0.1mmol,12.2mg)を取り、アルゴンガスで置換した後、THF(20mL)、ピリジン(2mL)を加え、氷冷下カプロン酸クロライド(4eq,8mmol,1.07g)を5分間かけて滴下し、そのままの温度で原料が消失するまで4時間攪拌した。反応溶液に水(100mL)と酢酸エチル(100mL)を加え、有機層を分離した。水層を酢酸エチル(30mL)で二回抽出し、合わせた有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させた。濾液を濃縮し、黄色の固体として化合物(実6)の粗生成物を得た。これをカラムクロマトグラフィー(固定相:シリカゲル、移動相:トルエン)で生成し、淡黄色の固体を得た。さらに、トルエン/エタノールから再結晶し、淡黄色の結晶として化合物(実6)を得た。(収量149mg,収率12%)
[Synthesis of Compound (Act 6)]
In a 100 mL round bottom flask, take compound (Ex. 6-3) (2 mmol, 844 mg), add methanol (20 mL), THF (40 mL), and add sodium borohydride (5 eq, 10 mmol, 378 mg) under ice cooling. In addition, the mixture was stirred at the same temperature for 2 hours. The contents were poured into ice water (200 g), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain a pale yellow solid. It was used for the next reaction after drying under reduced pressure without further purification.
In a separate 100 mL round bottom flask, the above solid, DMAP (0.1 mmol, 12.2 mg) was taken and replaced with argon gas. After adding THF (20 mL) and pyridine (2 mL), caproic acid chloride ( 4 eq, 8 mmol, 1.07 g) was added dropwise over 5 minutes, and the mixture was stirred for 4 hours at the same temperature until the raw material disappeared. Water (100 mL) and ethyl acetate (100 mL) were added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate (30 mL), and the combined organic layer was washed with saturated brine and dried over sodium sulfate. The filtrate was concentrated to obtain a crude product of the compound (Act 6) as a yellow solid. This was produced by column chromatography (stationary phase: silica gel, mobile phase: toluene) to obtain a pale yellow solid. Further, recrystallization from toluene / ethanol gave the compound (Act 6) as pale yellow crystals. (Yield 149 mg, Yield 12%)

以下に化合物(実6)の分析結果を示す。
精密質量(LC−TofMS) (m/z):622.228 (実測値), 622.221 (計算値.)
質量分析:GC−MS m/z = 622(M+), 390 (熱分解物)
分解温度:200度以下
以上の分析結果から、合成したものが、化合物(実6)の構造と矛盾がないことを確認した。
The analysis results of the compound (Act 6) are shown below.
Accurate mass (LC-TofMS) (m / z): 622.228 (actual value), 622.221 (calculated value)
Mass spectrometry: GC-MS m / z = 622 (M +), 390 (thermal decomposition product)
Decomposition temperature: 200 degrees or less From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Act 6).

[化合物(実7)の合成]
下記反応式(スキーム)に従って化合物(実7)を合成した。
[Synthesis of Compound (Act 7)]
Compound (Act 7) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

[化合物(実7−1)の合成]
200mLの3つ口フラスコに、化合物10(2.0g,8.7mmol)、化合物11(3.92mmol,1.78g)、リン酸カリウム水和物(13g)、DMF/トルエン(1/1,100mL)を取り、アルゴンガスで30分間バブリングを行った後、トリス(ジベンジリデンアセトン)ジパラジウム(0)(383mg、0.42mmol)、トリ(オルトトリル)ホスフィン(510mg、1.67mmol)を加え、アルゴン雰囲気下85℃で7時間攪拌した。反応溶液に飽和塩化アンモニウム溶液、水、トルエンを加えて、有機層を分離し、水層をトルエンで2回抽出した。合わせた有機層を水、続けて飽和食塩水で洗浄し、硫酸マグネシウムで乾燥を行った。濾液を濃縮し、黄色の固体を得た。
これをカラム精製(固定相:シリカゲル、移動相:トルエン→トルエン/酢酸エチル=9/1)し、黄色の固体として化合物(実7−1)を得た。
(収量1.09g,収率56%)
[Synthesis of Compound (Act 7-1)]
In a 200 mL three-necked flask, compound 10 (2.0 g, 8.7 mmol), compound 11 (3.92 mmol, 1.78 g), potassium phosphate hydrate (13 g), DMF / toluene (1/1, 100 mL) and bubbling with argon gas for 30 minutes, then added tris (dibenzylideneacetone) dipalladium (0) (383 mg, 0.42 mmol), tri (orthotolyl) phosphine (510 mg, 1.67 mmol), The mixture was stirred at 85 ° C. for 7 hours under an argon atmosphere. A saturated ammonium chloride solution, water and toluene were added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted twice with toluene. The combined organic layers were washed with water followed by saturated brine and dried over magnesium sulfate. The filtrate was concentrated to give a yellow solid.
This was subjected to column purification (stationary phase: silica gel, mobile phase: toluene → toluene / ethyl acetate = 9/1) to obtain the compound (ex. 7-1) as a yellow solid.
(Yield 1.09 g, 56% yield)

以下に化合物(実7−1)の分析結果を示す。
質量分析:GC−MS m/z = 498 (M+)
以上の分析結果から、合成したものが、化合物(実7−1)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 7-1) are shown below.
Mass spectrometry: GC-MS m / z = 498 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 7-1).

[化合物(実7−2)の合成]
300mLの丸底フラスコに、化合物(実7−1)(498mg,1mmol)、水(5mL)、メタノール(5mL)、THF(15mL)をいれ、アルゴンガスで置換した後、水酸化リチウム1水和物(3eq,140mg)を加え、80℃で2時間攪拌した。室温まで冷却した後、1N塩酸を加えて系内を酸性にし、酢酸エチルを加えて、有機層を分離した。水層を繰り返し2回酢酸エチルで抽出し、合わせた有機層を水、続けて飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた。濾液を濃縮し、黄色の固体として、化合物実7−2を得た。(収量447mg,収率95%)
[Synthesis of Compound (Act 7-2)]
A 300 mL round bottom flask was charged with compound (real 7-1) (498 mg, 1 mmol), water (5 mL), methanol (5 mL), THF (15 mL), purged with argon gas, and then lithium hydroxide monohydrate. The product (3 eq, 140 mg) was added and stirred at 80 ° C. for 2 hours. After cooling to room temperature, 1N hydrochloric acid was added to acidify the system, and ethyl acetate was added to separate the organic layer. The aqueous layer was repeatedly extracted twice with ethyl acetate and the combined organic layers were washed with water followed by saturated brine and dried over sodium sulfate. The filtrate was concentrated to give compound real 7-2 as a yellow solid. (Yield 447 mg, Yield 95%)

以下に化合物(実7−2)の分析結果を示す。
質量分析:GC−MS m/z = 470(M+)
以上の分析結果から、合成したものが、化合物(実7−2)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 7-2) are shown below.
Mass spectrometry: GC-MS m / z = 470 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 7-2).

[化合物(実7−3)の合成]
100mLの丸底フラスコに、化合物(実7−2)(0.8mmol,376mg)を取り、アルゴンガスで置換した後、氷冷下トリフルオロメタンスルホン酸無水物(10mL)、五酸化二リン(0.5g)を加え、そのままの温度で2時間攪拌した。内容物を氷水(200g)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、黄色の固体として、化合物(実7−3)を得た。これ以上精製することなく、次の反応に用いた。
[Synthesis of Compound (Act 7-3)]
In a 100 mL round bottom flask, the compound (7-2) (0.8 mmol, 376 mg) was taken and replaced with argon gas, and then trifluoromethanesulfonic anhydride (10 mL), diphosphorus pentaoxide (0 0.5 g) was added and stirred at that temperature for 2 hours. The contents were poured into ice water (200 g), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain the compound (ex. 7-3) as a yellow solid. Used in the next reaction without further purification.

以下に化合物(実7−3)の分析結果を示す。
質量分析:GC−MS m/z = 434(M+)
IR:1724 (C=O, ketone)
以上の分析結果から、合成したものが、化合物(実7−3)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 7-3) are shown below.
Mass spectrometry: GC-MS m / z = 434 (M +)
IR: 1724 (C = O, ketone)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 7-3).

[化合物(実7)の合成]
100mLの丸底フラスコに、化合物(実7−3)(0.8mmol,376mg)を取り、メタノール(20mL)、THF(40mL)を加え、氷冷下、水素化ホウ素ナトリウム(5eq,4.0mmol,151mg)を加えて、そのままの温度で2時間攪拌した。
内容物を氷水(200g)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、淡黄色の固体を得た。これ以上精製することなく、減圧乾燥後、次の反応に用いた。
別の100mLの丸底フラスコに上記固体、DMAP(0.1mmol,12.2mg)を取り、アルゴンガスで置換した後、THF(20mL)、ピリジン(2mL)を加え、氷冷下2−エチルヘキサノイルクロライド(4eq,3.2mmol,517mg)を5分間かけて滴下し、そのままの温度で原料が消失するまで6時間攪拌した。反応溶液に水(100mL)と酢酸エチル(100mL)を加え、有機層を分離した。水層を酢酸エチル(30mL)で二回抽出し、合わせた有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させた。濾液を濃縮し、黄色の固体として化合物(実7)の粗生成物を得た。これをカラムクロマトグラフィー(固定相:シリカゲル、移動相:トルエン→トルエン/酢酸エチル=95/5)で精製し、淡黄色の固体を得た。さらに、トルエン/エタノールから再結晶し、淡黄色の固体として化合物(実7)を得た。(収量57.5mg,収率10%)
[Synthesis of Compound (Act 7)]
In a 100 mL round-bottom flask, take compound (Ex. 7-3) (0.8 mmol, 376 mg), add methanol (20 mL) and THF (40 mL), and add sodium borohydride (5 eq, 4.0 mmol) under ice cooling. 151 mg), and the mixture was stirred at the same temperature for 2 hours.
The contents were poured into ice water (200 g), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain a pale yellow solid. It was used for the next reaction after drying under reduced pressure without further purification.
In a separate 100 mL round bottom flask, the above solid, DMAP (0.1 mmol, 12.2 mg) was taken and replaced with argon gas, and then THF (20 mL) and pyridine (2 mL) were added. Noyl chloride (4 eq, 3.2 mmol, 517 mg) was added dropwise over 5 minutes, and the mixture was stirred at the same temperature for 6 hours until the raw material disappeared. Water (100 mL) and ethyl acetate (100 mL) were added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate (30 mL), and the combined organic layer was washed with saturated brine and dried over sodium sulfate. The filtrate was concentrated to obtain a crude product of the compound (Act 7) as a yellow solid. This was purified by column chromatography (stationary phase: silica gel, mobile phase: toluene → toluene / ethyl acetate = 95/5) to obtain a pale yellow solid. Further, recrystallization from toluene / ethanol gave the compound (Act 7) as a pale yellow solid. (Yield 57.5 mg, Yield 10%)

以下に化合物(実7)の分析結果を示す。
精密質量(LC−TofMS)(m/z):718.408 (実測値), 718.402 (計算値.)
質量分析:GC−MS m/z = 718(M+), 402 (熱分解物)
分解温度:200度以下
以上の分析結果から、合成したものが、化合物(実7)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Act 7) are shown below.
Accurate mass (LC-TofMS) (m / z): 718.408 (actual value), 718.402 (calculated value)
Mass spectrometry: GC-MS m / z = 718 (M +), 402 (thermal decomposition product)
Decomposition temperature: 200 degrees or less From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 7).

[化合物(実8)の合成]
下記反応式(スキーム)に従って化合物(実8)を合成した。
[Synthesis of Compound (Act 8)]
A compound (Act 8) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

[化合物(実8−1)の合成]
200mLの三口フラスコに、化合物13(1.6g,3.6mmol)、炭酸カリウム飽和水溶液20mL、THF40mLを加え、アルゴンバブリングを30分行った。その後、2−ナフタレンボロン酸(1.55g、9.0mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)208mg、0.36mM)を加え、75度で8時間加熱攪拌した。TLCで反応が終了していることを確認し、室温まで冷却し、析出した目的物をろ別した。トルエンで再結晶することで実8−1の目的物を得た。収量800mg、収率50%
[Synthesis of Compound (Act 8-1)]
Compound 13 (1.6 g, 3.6 mmol), potassium carbonate saturated aqueous solution 20 mL, and THF 40 mL were added to a 200 mL three-necked flask, and argon bubbling was performed for 30 minutes. Thereafter, 2-naphthaleneboronic acid (1.55 g, 9.0 mmol) and tetrakis (triphenylphosphine) palladium (0) 208 mg, 0.36 mM) were added, and the mixture was heated and stirred at 75 ° C. for 8 hours. After confirming the completion of the reaction by TLC, the reaction mixture was cooled to room temperature and the precipitated target product was filtered off. Recrystallization with toluene gave the target product of Ex. Yield 800 mg, Yield 50%

以下に化合物(実8−1)の分析結果を示す。
質量分析:GC−MS m/z = 446(M+)
以上の分析結果およびTLCのRf値から、合成したものが、化合物(実8−1)の構造と矛盾がないことを確認した。
The analysis results of the compound (Ex. 8-1) are shown below.
Mass spectrometry: GC-MS m / z = 446 (M +)
From the above analysis results and the Rf value of TLC, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 8-1).

100mLの丸底フラスコに、化合物(実8−1)(821mg、2mmol)を取り、アルゴンガスで置換した後、氷冷下トリフルオロメタンスルホン酸無水物無水物(10mL)、五酸化二リン(0.5g)を加え、そのままの温度で2時間攪拌した。内容物を氷水(200g)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、黄色の固体として、化合物(実8−2)を得た。化合物(実8−2)以外に互変異性体であるエノール体も見られたが、これ以上精製することなく、次の反応に用いた。   In a 100 mL round bottom flask, the compound (Ex. 8-1) (821 mg, 2 mmol) was taken and replaced with argon gas, and then trifluoromethanesulfonic anhydride (10 mL), diphosphorus pentaoxide (0 0.5 g) was added and stirred at that temperature for 2 hours. The contents were poured into ice water (200 g), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain the compound (Act 8-2) as a yellow solid. In addition to the compound (Ex. 8-2), an enol which is a tautomer was also observed, but it was used in the next reaction without further purification.

以下に化合物(実8−2)の分析結果を示す。
質量分析:GC−MS m/z = 410(M+)
以上の分析結果から、合成したものが、化合物(実8−2)の構造と矛盾がないことを確認した。
The analysis results of the compound (Ex. 8-2) are shown below.
Mass spectrometry: GC-MS m / z = 410 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 8-2).

[化合物(実8)の合成]
100mLの丸底フラスコに、化合物(実8−2)(1mmol,410mg)を取り、エタノール(20mL)、THF(40mL)を加え、氷冷下、水素化ホウ素ナトリウム(5eq,5mmol,189mg)を加えて、そのままの温度で2時間攪拌した。内容物を氷水(200g)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、淡黄色の固体を得た。これ以上精製することなく、減圧乾燥後、次の反応に用いた。
別の100mLの丸底フラスコに上記固体およびDMAP(0.1mmol,12.2mg)を取り、アルゴンガスで置換した後、THF(50mL)、ピリジン(2mL)を加え、氷冷下ピバロイルクロライド(4eq,8mmol,1.07g)を5分間かけて滴下し、そのままの温度で原料が消失するまで4時間攪拌した。反応溶液に水(100mL)と酢酸エチル(100mL)を加え、有機層を分離した。水層を酢酸エチル(30mL)で二回抽出し、合わせた有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させた。濾液を濃縮し、黄色の固体として化合物(実8)の粗生成物を得た。これをカラムクロマトグラフィー(固定相:シリカゲル、移動相:トルエン)で精製し、淡黄色の固体を得た。さらに、トルエン/エタノールから再結晶し、淡黄色の結晶として化合物(実8)を得た。(収量87mg,収率15%)
[Synthesis of Compound (Act 8)]
In a 100 mL round-bottom flask, take compound (Ex. 8-2) (1 mmol, 410 mg), add ethanol (20 mL) and THF (40 mL), and add sodium borohydride (5 eq, 5 mmol, 189 mg) under ice cooling. In addition, the mixture was stirred at the same temperature for 2 hours. The contents were poured into ice water (200 g), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain a pale yellow solid. It was used for the next reaction after drying under reduced pressure without further purification.
In a separate 100 mL round bottom flask, the above solid and DMAP (0.1 mmol, 12.2 mg) were taken and replaced with argon gas. Then, THF (50 mL) and pyridine (2 mL) were added, and pivaloyl chloride was added under ice cooling. (4 eq, 8 mmol, 1.07 g) was added dropwise over 5 minutes, and the mixture was stirred for 4 hours at the same temperature until the raw material disappeared. Water (100 mL) and ethyl acetate (100 mL) were added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate (30 mL), and the combined organic layer was washed with saturated brine and dried over sodium sulfate. The filtrate was concentrated to obtain a crude product of the compound (Ex. 8) as a yellow solid. This was purified by column chromatography (stationary phase: silica gel, mobile phase: toluene) to obtain a pale yellow solid. Further, recrystallization from toluene / ethanol gave the compound (Ex. 8) as pale yellow crystals. (Yield 87 mg, Yield 15%)

以下に化合物(実8)の分析結果を示す。
精密質量(LC−TofMS) (m/z):582.273 (実測値), 582.277 (計算値.)
以上の分析結果から、合成したものが、化合物(実8)と矛盾がないことを確認した。
The analysis results of the compound (Ex. 8) are shown below.
Accurate mass (LC-TofMS) (m / z): 582.273 (actual value), 582.2277 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the compound (Ex. 8).

[化合物(実9)の合成]
下記反応式(スキーム)に従って化合物(実9)を合成した。
[Synthesis of Compound (Act 9)]
Compound (Act 9) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

[化合物(実9−1)の合成]
200mLの三口フラスコに、化合物13(1.6g,1.0mmol)、リン酸カリウム0.5g、DMF30mLを加え、アルゴンバブリングを30分行った。その後、1−ピレニルボロン酸(0.62g、2.5mmol)、テトラキス(トリフェニルホスフィン)パラジウム(0)(104mg、0.18mM)を加え、70度で8時間加熱攪拌した。室温まで冷却し、析出した目的物をろ別した。ヘキサンで洗浄し、トルエンで再結晶することで実9−1の目的物を得た。収量500mg、収率84.1%。
以下に化合物(実8−1)の分析結果を示す。
質量分析:GC−MS m/z = 594(M+)
以上の分析結果から、合成したものが、化合物(実9−1)の構造と矛盾が無いことを確認した。
[Synthesis of Compound (Act 9-1)]
Compound 13 (1.6 g, 1.0 mmol), potassium phosphate 0.5 g, and DMF 30 mL were added to a 200 mL three-necked flask, and argon bubbling was performed for 30 minutes. Thereafter, 1-pyrenylboronic acid (0.62 g, 2.5 mmol) and tetrakis (triphenylphosphine) palladium (0) (104 mg, 0.18 mM) were added, and the mixture was heated and stirred at 70 degrees for 8 hours. After cooling to room temperature, the precipitated target product was filtered off. By washing with hexane and recrystallizing with toluene, the target product of Example 9-1 was obtained. Yield 500 mg, yield 84.1%.
The analysis results of the compound (Ex. 8-1) are shown below.
Mass spectrometry: GC-MS m / z = 594 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 9-1).

[化合物(実9−2)の合成]
100mLの丸底フラスコに、化合物(実9−1)(1.49g、2.5mmol)を取り、アルゴンガスで置換した後、氷冷下トリフルオロメタンスルホン酸無水物無水物(50mL)、五酸化二リン(1g)を加え、そのままの温度で8時間攪拌した。内容物を氷水(計1kg)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、黄色の固体として、化合物(実9−2)を得た。化合物(実9−2)以外に互変異性体であるエノール体も見られたが、これ以上精製することなく、次の反応に用いた。
[Synthesis of Compound (Act 9-2)]
In a 100 mL round-bottom flask, the compound (Ex. 9-1) (1.49 g, 2.5 mmol) was taken and replaced with argon gas, and then trifluoromethanesulfonic anhydride (50 mL), pentoxide was cooled with ice. Diphosphorus (1 g) was added and stirred at that temperature for 8 hours. The contents were poured into ice water (1 kg in total), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain the compound (Act 9-2) as a yellow solid. In addition to the compound (Ex. 9-2), an enol form which is a tautomer was also seen, but it was used in the next reaction without further purification.

以下に化合物(実9−2)の分析結果を示す。
質量分析:GC−MS m/z = 558(M+)
以上の分析結果から、合成したものが、化合物(実9−2)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 9-2) are shown below.
Mass spectrometry: GC-MS m / z = 558 (M +)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 9-2).

[化合物(実9)の合成]
300mLの丸底フラスコに、化合物(実9−2)(1.3mmol,726mg)を取り、エタノール(50mL)、THF(200mL)を加え、氷冷下、水素化ホウ素ナトリウム(7.8mmol,295mg)を加えて、そのままの温度で2.5時間攪拌した。
内容物を氷水(1Kg)に注ぎ込み、析出した沈殿を濾取し、水、続けてヘキサンで洗浄し、淡黄色の固体を得た。これ以上精製することなく、減圧乾燥後、次の反応に用いた。
別の300mLの丸底フラスコに上記固体およびDMAP(0.13mmol,15.9mg)を取り、アルゴンガスで置換した後、THF(200mL)、ピリジン(10mL)を加え、氷冷下2−ブチルオクタノイルクロライド(1.13g、5.2mmol)をそのまま滴下し、0度で原料が消失するまで4時間攪拌した。室温に戻した後、反応溶液に水(100mL)と酢酸エチル(100mL)を加え、有機層を分離した。水層を酢酸エチル(30mL)で二回抽出し、合わせた有機層を飽和食塩水で洗浄後、硫酸ナトリウムで乾燥させた。濾液を濃縮し、黄色の固体として化合物(実9)の粗生成物を得た。これをカラムクロマトグラフィー(固定相:シリカゲル、移動相:トルエン)で精製し、淡黄色固体を得た。(収量84mg,収率7%)
[Synthesis of Compound (Act 9)]
In a 300 mL round bottom flask, the compound (real 9-2) (1.3 mmol, 726 mg) is taken, ethanol (50 mL) and THF (200 mL) are added, and sodium borohydride (7.8 mmol, 295 mg) is cooled with ice. ) And stirred at the same temperature for 2.5 hours.
The contents were poured into ice water (1 Kg), and the deposited precipitate was collected by filtration and washed with water and then with hexane to obtain a pale yellow solid. It was used for the next reaction after drying under reduced pressure without further purification.
In a separate 300 mL round-bottom flask, the above solid and DMAP (0.13 mmol, 15.9 mg) were taken and replaced with argon gas, and then THF (200 mL) and pyridine (10 mL) were added. Noyl chloride (1.13 g, 5.2 mmol) was added dropwise as it was, and the mixture was stirred for 4 hours until the raw material disappeared at 0 degrees. After returning to room temperature, water (100 mL) and ethyl acetate (100 mL) were added to the reaction solution, and the organic layer was separated. The aqueous layer was extracted twice with ethyl acetate (30 mL), and the combined organic layer was washed with saturated brine and dried over sodium sulfate. The filtrate was concentrated to obtain a crude product of the compound (Real 9) as a yellow solid. This was purified by column chromatography (stationary phase: silica gel, mobile phase: toluene) to obtain a pale yellow solid. (Yield 84 mg, Yield 7%)

以下に化合物(実9)の分析結果を示す。
精密質量(LC−TofMS)(m/z):926.533 実測値), 926.527 (計算値.)
以上の分析結果から、合成したものが、化合物(実9)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Act 9) are shown below.
Accurate mass (LC-TofMS) (m / z): 926.533 measured value), 926.527 (calculated value.)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Act 9).

[化合物(実10)の合成]
下記反応式(スキーム)に従って化合物(実10)を合成した。
[Synthesis of Compound (Act 10)]
Compound (Act 10) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

[実10−1の合成]
100mlの4つ口フラスコにDMF(30ml)、化合物(17)(0.20g、0.89mmol)、化合物(7−1)(2.2eq,g、1.96mmol,726mg)、トリフェニルホスフィン(9.1mg、0.034mol)、トリエチルアミン(0.34mL、2.4mmol)を入れた。アルゴンガスをバブリングしながら45分攪拌した。酢酸パラジウム(3.9mg、0.017mmol)を加え、50度で24時間攪拌した。
室温まで冷却し、セライトろ過を行い、得られた溶液をクロロホルムで抽出した。有機層を水飽和食塩水で洗浄後、有機層を硫酸マグネシウムで乾燥させた。硫酸マグネシウムをろ別し、濃縮して得られた固体を最少量のトルエンに溶解させて、シリカゲルパッド(厚さ2cm)を通じて、再度濃縮した固体をリサイクルGPC(日本分析工業社製)により副生成物との分離、精製を行い、黄色の固体として、化合物(実9−1)を得た。(収量444mg,収率70%)
[Synthesis of Real 10-1]
In a 100 ml four-necked flask, DMF (30 ml), compound (17) (0.20 g, 0.89 mmol), compound (7-1) (2.2 eq, g, 1.96 mmol, 726 mg), triphenylphosphine ( 9.1 mg, 0.034 mol) and triethylamine (0.34 mL, 2.4 mmol) were added. The mixture was stirred for 45 minutes while bubbling with argon gas. Palladium acetate (3.9 mg, 0.017 mmol) was added and stirred at 50 degrees for 24 hours.
The mixture was cooled to room temperature, filtered through celite, and the resulting solution was extracted with chloroform. The organic layer was washed with water saturated brine, and then the organic layer was dried over magnesium sulfate. Magnesium sulfate is filtered off and the solid obtained by concentration is dissolved in a minimum amount of toluene, and the concentrated solid is regenerated through a silica gel pad (thickness 2 cm) by recycle GPC (manufactured by Nihon Analytical Industries, Ltd.) The product (Ex. 9-1) was obtained as a yellow solid. (Yield 444 mg, Yield 70%)

以下に化合物(実10−1)の分析結果を示す。
精密質量(LC−TofMS) (m/z):714.378 (実測値), 714.372 (計算値.)
質量分析:GC−MS m/z =714(M+), 483 (熱分解物)
以上の分析結果から、合成したものが、化合物(実10−1)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 10-1) are shown below.
Accurate mass (LC-TofMS) (m / z): 714.378 (actual measured value), 714.372 (calculated value.)
Mass spectrometry: GC-MS m / z = 714 (M +), 483 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 10-1).

[化合物(実10)の合成]
500mlの4つ口フラスコにシクロヘキサン(300ml)、化合物(実10−1)(130mg、0.182mmol)及びヨウ素(30mg、0.117mmol)を入れた。低圧水銀ランプ(ウシオ社製)を5時間照射した。シクロヘキサンを減圧留去したのち、残渣に水、クロロホルムを加えて、有機層を分離し、水層をクロロホルムで2回抽出した。合わせた有機層を、チオ硫酸ナトリウム水溶液、水および飽和食塩水で洗浄したのち、硫酸ナトリウムで乾燥させた。濾液を濃縮し、黄色油状固体を得た。これをリサイクルGPC(日本分析工業社製)により副生成物との分離、精製を行い、淡黄色の固体として、化合物(実10)を得た。(収量28.6mg,収率22%)
[Synthesis of Compound (Act 10)]
Cyclohexane (300 ml), compound (real 10-1) (130 mg, 0.182 mmol) and iodine (30 mg, 0.117 mmol) were placed in a 500 ml four-necked flask. A low-pressure mercury lamp (manufactured by Ushio) was irradiated for 5 hours. After cyclohexane was distilled off under reduced pressure, water and chloroform were added to the residue, the organic layer was separated, and the aqueous layer was extracted twice with chloroform. The combined organic layers were washed with aqueous sodium thiosulfate solution, water and saturated brine, and then dried over sodium sulfate. The filtrate was concentrated to give a yellow oily solid. This was separated from by-products and purified by recycled GPC (manufactured by Nihon Analytical Industrial Co., Ltd.) to obtain a compound (Act 10) as a pale yellow solid. (Yield 28.6 mg, Yield 22%)

以下に化合物(実10)の分析結果を示す。
精密質量(LC−TofMS) (m/z):714.336 (実測値), 714.340 (計算値.)
質量分析:GC−MS m/z =714(M+), 479 (熱分解物)
分解温度:200℃以下
以上の分析結果から、合成したものが、化合物(実10)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 10) are shown below.
Accurate mass (LC-TofMS) (m / z): 714.336 (actual value), 714.340 (calculated value)
Mass spectrometry: GC-MS m / z = 714 (M +), 479 (thermal decomposition product)
Decomposition temperature: 200 ° C. or less From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 10).

[化合物(実11)の合成]
下記反応式(スキーム)に従って化合物(実11)を合成した。
[Synthesis of Compound (Act 11)]
Compound (Ex. 11) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

100mLの丸底フラスコに化合物(24)(275mg,0.785mmol)、化合物(7−5)(750mg,1.65mmol)、ヨウ化銅(20.0mg)を入れ、THF(30mL)、ジイソプロピルエチルアミン(1.5mL)を加え、アルゴンガスで置換を行った後、PdCl(PPh(16.6mg)を加え、室温で72時間攪拌した。
ジクロロメタン(100mL)、水(100mL)を加えて有機層を分離し、水層をジクロロメタンで2回抽出した。合わせた有機層を水、次に飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた。濾液を濃縮し、最小量のジクロロメタンに溶解させ、溶液をアルミナパッド(活性度II(水分含有量3%))に通じ、再度濃縮し、黄色のオイルを得た。これをリサイクルGPC(日本分析工業社製)により精製を行い、黄色の固体として、化合物(実11)を得た。(収量273mg,収率34.7%)
Compound (24) (275 mg, 0.785 mmol), compound (7-5) (750 mg, 1.65 mmol), copper iodide (20.0 mg) were placed in a 100 mL round bottom flask, and THF (30 mL), diisopropylethylamine was added. (1.5 mL) was added and replaced with argon gas, and then PdCl 2 (PPh 3 ) 2 (16.6 mg) was added and stirred at room temperature for 72 hours.
Dichloromethane (100 mL) and water (100 mL) were added to separate the organic layer, and the aqueous layer was extracted twice with dichloromethane. The combined organic layers were washed with water and then with saturated brine and dried over sodium sulfate. The filtrate was concentrated and dissolved in a minimum amount of dichloromethane and the solution was passed through an alumina pad (activity II (water content 3%)) and concentrated again to give a yellow oil. This was purified by recycled GPC (manufactured by Nihon Analytical Industrial Co., Ltd.) to obtain a compound (Act 11) as a yellow solid. (Yield 273 mg, Yield 34.7%)

以下に化合物(実11)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ): 0.74−0.83 (m, 12H), 1.10−1.32 (m, 24H) , 1.36−1.43 (m, 4H), 1.50−1.60(m, 4H), 2.2−2.32 (m, 2H), 2.56−2.62 (m, 2H), 2.65−2.71 (m, 2H), 6.03−6.08 (m, 4H), 6.56 (d, 2H, J=9.0 Hz), 7.33 (s, 2H), 7.36−7.41 (m, 4H), 7.48 (s, 2H), 8.28 (s, 2H)
精密質量(LC−TofMS) (m/z):714.336 (実測値), 714.340 (計算値.)
質量分析:GC−MS m/z =1003(M+), 603 (熱分解物)
以上の分析結果から、合成したものが、化合物(実11)の構造と矛盾が無いことを確認した。
The analysis results of the compound (Ex. 11) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.74-0.83 (m, 12H), 1.10-1.32 (m, 24H), 1.36-1.43 (m , 4H), 1.50-1.60 (m, 4H), 2.2-2.32 (m, 2H), 2.56-2.62 (m, 2H), 2.65-2.71 (M, 2H), 6.03-6.08 (m, 4H), 6.56 (d, 2H, J = 9.0 Hz), 7.33 (s, 2H), 7.36-7. 41 (m, 4H), 7.48 (s, 2H), 8.28 (s, 2H)
Accurate mass (LC-TofMS) (m / z): 714.336 (actual value), 714.340 (calculated value)
Mass spectrometry: GC-MS m / z = 1003 (M +), 603 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 11).

[化合物(実12)の合成]
12下記反応式(スキーム)に従って化合物(実12)を合成した。
[Synthesis of Compound (Real 12)]
12 A compound (Ex. 12) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

100mLの丸底フラスコに化合物(23)(546mg,1.0mmol)、エチニルベンゼン(224mg,2.2mmol)、ヨウ化銅(30.0mg)を入れ、THF(30 mL)、ジイソプロピルエチルアミン(2.5mL)を加え、アルゴンガスで置換を行った後、PdCl(PPh(32.0mg)を加え、室温で72時間攪拌した。ジクロロメタン(100mL)、水(100mL)を加えて有機層を分離し、水層をジクロロメタンで2回抽出した。合わせた有機層を水、次に飽和食塩水で洗浄し、硫酸ナトリウムで乾燥させた。濾液を濃縮し、最小量のジクロロメタンに溶解させ、溶液をアルミナパッド(活性度II(水分含有量3%))に通じ、再度濃縮し、黄色のオイルを得た。これをリサイクルGPC(日本分析工業社製)により精製を行い、淡黄色の固体として、化合物(実12)を得た。(収量292mg,収率59.0%) Compound (23) (546 mg, 1.0 mmol), ethynylbenzene (224 mg, 2.2 mmol) and copper iodide (30.0 mg) were placed in a 100 mL round bottom flask, and THF (30 mL) and diisopropylethylamine (2. 5 mL) was added, and the atmosphere was replaced with argon gas. Then, PdCl 2 (PPh 3 ) 2 (32.0 mg) was added, and the mixture was stirred at room temperature for 72 hours. Dichloromethane (100 mL) and water (100 mL) were added to separate the organic layer, and the aqueous layer was extracted twice with dichloromethane. The combined organic layers were washed with water and then with saturated brine and dried over sodium sulfate. The filtrate was concentrated and dissolved in a minimum amount of dichloromethane and the solution was passed through an alumina pad (activity II (water content 3%)) and concentrated again to give a yellow oil. This was purified by recycled GPC (manufactured by Nihon Analytical Industrial Co., Ltd.) to obtain a compound (Act 12) as a pale yellow solid. (Yield 292 mg, Yield 59.0%)

以下に化合物(実12)の分析結果を示す。
H NMR (500 MHz, CDCl, TMS, δ):0.86 (t, 3H, J =7.2 Hz), 1.21−1.30 (m, 4H) , 1.54−1.60 (m, 2H), 2.20―2.23 (m, 2H), 3.05 (d, 2H), 6.05(t, 1H), 7.2−7.95 (m, 16H)
質量分析:GC−MS m/z =495 (M+), 378(熱分解物)
以上の分析結果から、合成したものが、化合物(実12)の構造と矛盾がないことを確認した。
The analysis results of the compound (Ex. 12) are shown below.
1 H NMR (500 MHz, CDCl 3 , TMS, δ): 0.86 (t, 3H, J = 7.2 Hz), 1.21-1.30 (m, 4H), 1.54-1. 60 (m, 2H), 2.20-2.23 (m, 2H), 3.05 (d, 2H), 6.05 (t, 1H), 7.2-7.95 (m, 16H)
Mass spectrometry: GC-MS m / z = 495 (M +), 378 (thermal decomposition product)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of the compound (Ex. 12).

<置換基脱離による変換例>
次に、上記実施例で合成したπ電子共役系化合物前駆体の置換基脱離によるπ電子共役系化合物(特定化合物)への変換例を示す。
<Example of conversion by substitution group elimination>
Next, a conversion example of the π-electron conjugated compound precursor synthesized in the above example to a π-electron conjugated compound (specific compound) by elimination of substituents is shown.

〔π電子共役系化合物前駆体化合物(7)の置換基脱離による2−ヨードナフタレンへの変換〕 [Conversion of π-Electron Conjugated Compound Precursor Compound (7) to 2-iodonaphthalene by Substituent Elimination]

〈2−ヨードナフタレンの合成〉
下記反応式(スキーム)に従って2−ヨードナフタレンを合成した。
<Synthesis of 2-iodonaphthalene>
2-Iodonaphthalene was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

合成例1の<化合物(7−1)の合成>で合成した化合物(7−1)(100mg)を丸底フラスコに入れ、フラスコを内温140℃のまま1時間攪拌した。フラスコを50℃で1時間真空乾燥を行った後、フラスコ内に残った無色の結晶を掻き取った(収量68.5mg、収率99.8%)。   The compound (7-1) (100 mg) synthesized in <Synthesis of Compound (7-1)> in Synthesis Example 1 was placed in a round bottom flask, and the flask was stirred for 1 hour while maintaining the internal temperature at 140 ° C. The flask was vacuum-dried at 50 ° C. for 1 hour, and then colorless crystals remaining in the flask were scraped off (yield 68.5 mg, yield 99.8%).

以下にこの結晶の分析結果を示す。
H NMR (400 MHz, CDCl, TMS, δ) :7.46−7.52(m,2H),7.55−7.58(m,1H),7.68−7.74(m,2H),7.76−7.82(m,1H),8.22−8.26(m,1H)
元素分析値(C10I):C,47.11;H,2.94(実測値)、C,47.27;H,2.78(理論値)
質量分析:GC−MS m/z=254(M+)
融点:50.5−52.0℃
以上の結果から、上記反応で得られた無色の結晶が2−ヨードナフタレンであることが確認された。
The analysis results of this crystal are shown below.
1 H NMR (400 MHz, CDCl 3 , TMS, δ): 7.46-7.52 (m, 2H), 7.55-7.58 (m, 1H), 7.68-7.74 (m , 2H), 7.76-7.82 (m, 1H), 8.22-8.26 (m, 1H)
Elemental analysis (C 10 H 7 I): C, 47.11; H, 2.94 ( Found), C, 47.27; H, 2.78 ( theoretical value)
Mass spectrometry: GC-MS m / z = 254 (M +)
Melting point: 50.5-52.0 ° C
From the above results, it was confirmed that the colorless crystals obtained by the above reaction were 2-iodonaphthalene.

[比較例1]
〔π電子共役系化合物前駆体化合物(7’)を用いた場合の2−ヨードナフタレンへの変換の試み〕
実施例13で用いた化合物(7−1)を、合成例3で用いた化合物(7’)に変えた以外は実施例13と同様にして、置換基脱離による2−ヨードナフタレンへの変換を試みた。
フラスコ内に残った薄黄色の液体を分析したところ、置換基脱離による2−ヨードナフタレンへの変換は行われず、化合物(7’)のままであることが確認された。
[Comparative Example 1]
[Trial of conversion to 2-iodonaphthalene when π-electron conjugated compound precursor compound (7 ′) is used]
Conversion to 2-iodonaphthalene by elimination of a substituent in the same manner as in Example 13 except that the compound (7-1) used in Example 13 was changed to the compound (7 ′) used in Synthesis Example 3. Tried.
When the pale yellow liquid remaining in the flask was analyzed, it was confirmed that conversion to 2-iodonaphthalene by elimination of the substituent was not performed and the compound (7 ′) remained as it was.

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実1)の置換基脱離による化合物(24)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of a π-electron conjugated compound precursor compound (Ex. 1) into a compound (24) by elimination of substituents]

〈有機半導体化合物〔化合物(24)〕の合成〉
下記反応式(スキーム)に従って化合物(24)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (24)]>
Compound (24) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

前記実施例1で合成した化合物(実1)(50mg,0.159mmol)を丸底フラスコに入れ、アルゴン雰囲気下、140℃(フラスコ内温)で1時間加熱攪拌を行った。鮮やかな黄色の固体が得られた。これをトルエン、続けてメタノールで洗浄し、真空下乾燥することで黄色の結晶として化合物(24)を得た(収量30.2mg、収率96.1%)。   The compound synthesized in Example 1 (Real 1) (50 mg, 0.159 mmol) was placed in a round bottom flask, and heated and stirred at 140 ° C. (flask temperature) for 1 hour under an argon atmosphere. A bright yellow solid was obtained. This was washed with toluene, followed by methanol, and dried under vacuum to obtain compound (24) as yellow crystals (yield 30.2 mg, yield 96.1%).

化合物(24)の分析結果を以下に示す。
元素分析値(C2616):C, 79.54; H, 4.00; S, 16.20 (実測値) C, 79.55; H, 4.11; S, 16.34 (理論値)
精密質量分析:LC−MS (m/z) = 392.068 (実測値), 392.069(計算値)
融点:357.7℃
以上の分析結果から、合成したものが、化合物(24)の構造と矛盾がないことを確認した。
The analysis result of the compound (24) is shown below.
Elemental analysis (C 26 H 16 S 2 ): C, 79.54; H, 4.00; S, 16.20 (actual value) C, 79.55; H, 4.11; S, 16.34 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 392.068 (actual value), 392.069 (calculated value)
Melting point: 357.7 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (24).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実2)の置換基脱離による化合物(24)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (act 2) to the compound (24) by elimination of substituents]

〈有機半導体化合物〔化合物(24)〕の合成〉
実施例14において、化合物(実1)に換えて、化合物(実2)を用いて加熱温度を140℃から130℃に変更した以外は同様に反応を行い、目的物を得た。(収率97.0%)
得られた黄色の結晶の分析結果を以下に示す。
<Synthesis of Organic Semiconductor Compound [Compound (24)]>
In Example 14, the reaction was carried out in the same manner as in Example 14 except that the heating temperature was changed from 140 ° C. to 130 ° C. using the compound (real 2) instead of the compound (real 1) to obtain the desired product. (Yield 97.0%)
The analysis results of the obtained yellow crystals are shown below.

元素分析値(C2616):C, 79.50; H, 4.01; S, 16.23 (実測値)、C, 79.55; H, 4.11; S, 16.34 (理論値)
精密質量分析:LC−MS (m/z) = 392.066 (実測値), 392.069(計算値)
融点:357.9℃
以上の分析結果から、合成したものが、化合物(24)の構造と矛盾がないことを確認した。
Elemental analysis (C 26 H 16 S 2 ): C, 79.50; H, 4.01; S, 16.23 (actual value), C, 79.55; H, 4.11; S, 16. 34 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 392.066 (actual value), 392.069 (calculated value)
Melting point: 357.9 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (24).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実3)の置換基脱離による化合物(24)への変換〕
実施例14において、化合物(実1)に換えて、化合物(実3)を用いて加熱温度を140℃から180℃に変更し、加熱時間を1時間から4時間に変更した以外は同様に反応を行い、目的物を得た。(収率95.5%)
得られた黄色の結晶の分析結果を以下に示す。
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (act 3) to the compound (24) by elimination of substituents]
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 180 ° C. and the heating time was changed from 1 hour to 4 hours using the compound (real 3) instead of the compound (real 1). To obtain the target product. (Yield 95.5%)
The analysis results of the obtained yellow crystals are shown below.

元素分析値(C2616):C, 79.50; H, 4.05; S, 16.24 (実測値)、C, 79.55; H, 4.11; S, 16.34 (理論値)
精密質量分析:LC−MS (m/z) = 392.072 (実測値), 392.069(計算値)
融点:358.3℃
以上の分析結果から、合成したものが、化合物(24)の構造と矛盾がないことを確認した。
Elemental analysis (C 26 H 16 S 2 ): C, 79.50; H, 4.05; S, 16.24 (actual value), C, 79.55; H, 4.11; S, 16. 34 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 392.072 (actual value), 392.069 (calculated value)
Melting point: 358.3 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (24).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実4)の置換基脱離による化合物(24)への変換〕
実施例14において、化合物(実1)に換えて、化合物(実4)を用いて同様に反応を行い、目的物を得た。(収率97.3%)
得られた黄色の結晶の分析結果を以下に示す。
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (act 4) to the compound (24) by elimination of substituents]
In Example 14, instead of the compound (Ex. 1), the reaction was carried out in the same manner using the compound (Ex. 4) to obtain the desired product. (Yield 97.3%)
The analysis results of the obtained yellow crystals are shown below.

元素分析値(C2616):C, 79.51; H, 4.04; S, 16.30 (実測値)、C, 79.55; H, 4.11; S, 16.34 (理論値)
精密質量分析:LC−MS (m/z) = 392.075 (実測値), 392.069(計算値)
融点:358.0℃
以上の分析結果から、合成したものが、化合物(24)の構造と矛盾がないことを確認した。
Elemental analysis (C 26 H 16 S 2 ): C, 79.51; H, 4.04; S, 16.30 (actual value), C, 79.55; H, 4.11; S, 16. 34 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 392.075 (actual measured value), 392.069 (calculated value)
Melting point: 358.0 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (24).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実5)の置換基脱離による化合物(24)への変換〕
実施例14において、化合物(実1)に換えて、化合物(実5)を用いて加熱温度を140℃から180℃に変更し、加熱時間を1時間から4時間に変更以外は同様に反応を行い、目的物を得た。(収率95.0%)
得られた黄色の結晶の分析結果を以下に示す。
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (act 5) to the compound (24) by elimination of substituents]
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 180 ° C. and the heating time was changed from 1 hour to 4 hours using the compound (real 5) instead of the compound (real 1). The target product was obtained. (Yield 95.0%)
The analysis results of the obtained yellow crystals are shown below.

元素分析値(C2616):C, 79.51; H, 4.05; S, 16.28 (実測値)、C, 79.55; H, 4.11; S, 16.34 (理論値)
精密質量分析:LC−MS (m/z) = 392.073 (実測値), 392.069(計算値)
融点:357.9℃
以上の分析結果から、合成したものが、化合物(24)の構造と矛盾がないことを確認した。
Elemental analysis (C 26 H 16 S 2 ): C, 79.51; H, 4.05; S, 16.28 (actual value), C, 79.55; H, 4.11; S, 16. 34 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 392.073 (actual value), 392.069 (calculated value)
Melting point: 357.9 ° C
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (24).

[比較例2]
<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(比較1)の置換基脱離による化合物(24)への変換の試み〕
実施例14において、化合物(実1)に換えて、化合物(比較1)を用いて同様に反応を行ったところ、黄色の結晶ではなく薄黄色の固体が得られた。得られた固体をトルエン、続けてメタノールで洗浄したところ、固体は全て溶解してしまい、目的とする結晶は得られなかった。この溶液を濃縮し、得られた固体の分析を行ったところ、その値から未変換の化合物(比較1)であることが確認された。
[Comparative Example 2]
<Example of conversion by substitution group elimination>
[Trial of conversion of compound precursor compound (Comparative 1) to compound (24) by elimination of substituents]
In Example 14, the reaction was carried out in the same manner using the compound (Comparative 1) in place of the compound (Act 1). As a result, a light yellow solid was obtained instead of a yellow crystal. When the obtained solid was washed with toluene and subsequently with methanol, the solid was completely dissolved, and the target crystals were not obtained. When this solution was concentrated and the obtained solid was analyzed, the value was confirmed to be an unconverted compound (Comparative 1).

実施例13乃至18および比較例1、2について、以下のように纏めることができる。
本発明のπ電子共役系化合物前駆体によれば、従来π電子共役系化合物前駆体よりも低い温度(同一骨格での比較で)での加熱(エネルギー付与:外部刺激)で概ね95%以上の高収率で難溶性の有機半導体化合物を高収率、高純度で得ることが可能であることが示された。この結果、ナフタレンの様な低分子だけでなく、本来であれば難溶性であるπ共役系化合物(特に有機半導体化合物)の製造においても有効な方法であることが示唆された。これは、有機半導体以外にも有機顔料、その他多くの分子においても適用が可能である。
Examples 13 to 18 and Comparative Examples 1 and 2 can be summarized as follows.
According to the π-electron conjugated compound precursor of the present invention, approximately 95% or more by heating (energy application: external stimulation) at a lower temperature (in comparison with the same skeleton) than the conventional π-electron conjugated compound precursor. It was shown that it is possible to obtain a high yield and low solubility organic semiconductor compound with high yield and high purity. As a result, it was suggested that this is an effective method not only for producing a low molecular weight compound such as naphthalene but also for producing a π-conjugated compound (especially an organic semiconductor compound) that is hardly soluble in nature. This can be applied to organic pigments and many other molecules besides organic semiconductors.

同一の脱離基および変換後の骨格を有する、実施例11と比較例1および実施例12と比較例2より、本発明のπ電子共役系化合物前駆体特有の骨格(シクロヘキサジエン骨格)が変換温度の低温化に寄与していることが分かった。従来、置換基脱離には250〜300℃以上の加熱条件が必要とされていた、アシルオキシ基以外のシリルエーテル、アルキルエーテルについても、本発明の主骨格に組み込むことにより、200℃以下での変換が確認された。   From Example 11, Comparative Example 1, Example 12, and Comparative Example 2 having the same leaving group and converted skeleton, the skeleton (cyclohexadiene skeleton) unique to the π-electron conjugated compound precursor of the present invention is converted. It was found that it contributed to lowering the temperature. Conventionally, heating conditions of 250 to 300 ° C. or higher have been required for elimination of substituents, and silyl ethers and alkyl ethers other than acyloxy groups are also incorporated into the main skeleton of the present invention at 200 ° C. or lower. Conversion was confirmed.

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実6)の置換基脱離による化合物(25)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (act 6) to the compound (25) by elimination of substituents]

〈有機半導体化合物〔化合物(25)〕の合成〉
下記反応式(スキーム)に従って化合物(25)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (25)]>
Compound (25) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実6)を用いて加熱温度を140℃から150℃に変更し、加熱時間を1時間から2時間に変更した以外は同様に反応を行った。得られた橙色の結晶の分析結果を以下に示す。   In Example 14, the reaction was performed in the same manner except that the heating temperature was changed from 140 ° C. to 150 ° C. and the heating time was changed from 1 hour to 2 hours using the compound (real 6) instead of the compound (real 1). Went. The analysis results of the obtained orange crystals are shown below.

元素分析値(C2614):C, 79.50; H, 4.01; S, 16.23 (実測値)、C, 79.55; H, 4.11; S, 16.34 (理論値)
精密質量分析:LC−MS (m/z) = 390.060 (実測値), 390.054(計算値)
以上の分析結果から、合成したものが、化合物(25)の構造と矛盾がないことを確認した。
Elemental analysis (C 26 H 14 S 2 ): C, 79.50; H, 4.01; S, 16.23 (actual value), C, 79.55; H, 4.11; S, 16. 34 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 390.060 (actual value), 390.054 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (25).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実7)の置換基脱離による化合物(26)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of π-electron conjugated compound precursor compound (act 7) to compound (26) by substituent elimination)

〈有機半導体化合物〔化合物(26)〕の合成〉
下記反応式(スキーム)に従って化合物(26)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (26)]>
Compound (26) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実7)を用いて加熱温度を140℃から150℃に変更し、加熱時間を1時間から2時間に変更した以外は同様に反応を行い、目的物を得た。(収率94.9%)
得られた結晶の分析結果を以下に示す。
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 150 ° C. and the heating time was changed from 1 hour to 2 hours using the compound (real 7) instead of the compound (real 1). To obtain the target product. (Yield 94.9%)
The analysis results of the obtained crystals are shown below.

元素分析値(C3218):C, 95.25; H, 4.71 (実測値)、C, 95.49; H, 4.51 (理論値)
精密質量分析:LC−MS (m/z) = 402.149 (実測値), 402.141(計算値)
以上の分析結果から、合成したものが、化合物(26)の構造と矛盾がないことを確認した。
Elemental analysis (C 32 H 18 ): C, 95.25; H, 4.71 (actual value), C, 95.49; H, 4.51 (theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 402.149 (actual value), 402.141 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (26).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実8)の置換基脱離による化合物(27)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (actual 8) to the compound (27) by elimination of substituents]

〈有機半導体化合物〔化合物(27)〕の合成〉
下記反応式(スキーム)に従って化合物(27)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (27)]>
Compound (27) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実8)を用いて加熱温度を140℃から150℃に変更し、加熱時間を1時間から3時間に変更した以外は同様に反応を行い、目的物を得た。(収率95.3%)
得られた結晶の分析結果を以下に示す。
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 150 ° C. and the heating time was changed from 1 hour to 3 hours using the compound (real 8) instead of the compound (real 1). To obtain the target product. (Yield 95.3%)
The analysis results of the obtained crystals are shown below.

元素分析値(C3018):C, 95.11; H, 4.88 (実測値)、C, 95.21; H, 4.79 (理論値)
精密質量分析:LC−MS (m/z) = 378.136 (実測値), 378.141(計算値)
以上の分析結果から、合成したものが、化合物(27)の構造と矛盾がないことを確認した。
Elemental analysis (C 30 H 18): C , 95.11; H, 4.88 ( Found), C, 95.21; H, 4.79 ( theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 378.136 (actual value), 378.141 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (27).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実9)の置換基脱離による化合物(28)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of π-electron conjugated compound precursor compound (act 9) to compound (28) by substituent elimination)

〈有機半導体化合物〔化合物(28)〕の合成〉
下記反応式(スキーム)に従って化合物(28)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (28)]>
Compound (28) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実9)を用いて加熱温度を140℃から150℃に変更し、加熱時間を1時間から4時間に変更した以外は同様に反応を行い、目的物を得た。(収率95.1%)
得られた結晶の分析結果を以下に示す。
In Example 14, the reaction was performed in the same manner except that the heating temperature was changed from 140 ° C. to 150 ° C. and the heating time was changed from 1 hour to 4 hours using the compound (real 9) instead of the compound (real 1). To obtain the target product. (Yield 95.1%)
The analysis results of the obtained crystals are shown below.

元素分析値(C4242): C, 95.59; H, 4.41(実測値)、C, 95.79; H, 4.21 (理論値)
精密質量分析:LC−MS (m/z) = 526.167 (実測値), 526.172(計算値)
以上の分析結果から、合成したものが、化合物(28)の構造と矛盾がないことを確認した。
Elemental analysis (C 42 H 42): C , 95.59; H, 4.41 ( Found), C, 95.79; H, 4.21 ( theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 526.167 (actual value), 526.172 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (28).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実10)の置換基脱離による化合物(29)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (actual 10) to the compound (29) by elimination of substituents]

〈有機半導体化合物〔化合物(29)〕の合成〉
下記反応式(スキーム)に従って化合物(29)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (29)]>
Compound (29) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実10)を用いて加熱温度を140℃から150℃に変更し、加熱時間を1時間から2時間に変更した以外は同様に反応を行い、目的物を得た。(収率93.3%)
得られた結晶の分析結果を以下に示す。
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 150 ° C. and the heating time was changed from 1 hour to 2 hours using the compound (real 10) instead of the compound (real 1). To obtain the target product. (Yield 93.3%)
The analysis results of the obtained crystals are shown below.

元素分析値(C3822): C, 95.25; H, 4.71 (実測値)、C, 95.37; H, 4.63 (理論値)
精密質量分析:LC−MS (m/z) = 478.165 (実測値), 478.172(計算値)
以上の分析結果から、合成したものが、化合物(29)の構造と矛盾がないことを確認した。
Elemental analysis value (C 38 H 22 ): C, 95.25; H, 4.71 (actual value), C, 95.37; H, 4.63 (theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 478.165 (actual value), 478.172 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (29).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実11)の置換基脱離による化合物(30)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of the π-electron conjugated compound precursor compound (Ex. 11) to the compound (30) by elimination of substituents]

〈有機半導体化合物〔化合物(30)〕の合成〉
下記反応式(スキーム)に従って化合物(30)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (30)]>
Compound (30) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実11)を用いて加熱温度を140℃から160℃に変更し、加熱時間を1時間から4時間に変更した以外は同様に反応を行い、目的物を得た。(収率93.3%)
得られた結晶の分析結果を以下に示す。
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 160 ° C. and the heating time was changed from 1 hour to 4 hours using the compound (real 11) instead of the compound (real 1). To obtain the target product. (Yield 93.3%)
The analysis results of the obtained crystals are shown below.

元素分析値(C3818):C, 75.79; H, 3.11; S, 21.07 (実測値)、C, 75.71; H, 3.01; S, 21.28 (理論値)
精密質量分析:LC−MS (m/z) = 602.023 (実測値), 602.029(計算値)

以上の分析結果から、合成したものが、化合物(30)の構造と矛盾がないことを確認した。
Elemental analysis (C 38 H 18 S 4 ): C, 75.79; H, 3.11; S, 21.07 (actual value), C, 75.71; H, 3.01; S, 21. 28 (Theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 602.023 (actual value), 602.029 (calculated value)

From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (30).

<置換基脱離による変換例>
〔π電子共役系化合物前駆体化合物(実12)の置換基脱離による化合物(31)への変換〕
<Example of conversion by substitution group elimination>
[Conversion of π-electron conjugated compound precursor compound (Ex. 12) to compound (31) by elimination of substituents]

〈有機半導体化合物〔化合物(31)〕の合成〉
下記反応式(スキーム)に従って化合物(31)を合成した。
<Synthesis of Organic Semiconductor Compound [Compound (31)]>
Compound (31) was synthesized according to the following reaction formula (scheme).

Figure 2012216669
Figure 2012216669

実施例14において、化合物(実1)に換えて、化合物(実12)を用いて加熱温度を140℃から160℃に変更し、加熱時間を1時間から2時間に変更した以外は同様に反応を行い、目的物を得た。(収率95.4%)
得られた結晶の分析結果を以下に示す。
In Example 14, the reaction was carried out in the same manner except that the heating temperature was changed from 140 ° C. to 160 ° C. and the heating time was changed from 1 hour to 2 hours using the compound (real 12) instead of the compound (real 1). To obtain the target product. (Yield 95.4%)
The analysis results of the obtained crystals are shown below.

元素分析値(C3818):C, 95.16; H, 4.60 (実測値)、C, 95.21; H, 4.79 (理論値)
精密質量分析:LC−MS (m/z) = 378.148 (実測値), 378.141(計算値)
以上の分析結果から、合成したものが、化合物(31)の構造と矛盾がないことを確認した。
Elemental analysis (C 38 H 18 S 4 ): C, 95.16; H, 4.60 (actual value), C, 95.21; H, 4.79 (theoretical value)
Accurate mass spectrometry: LC-MS (m / z) = 378.148 (actual value), 378.141 (calculated value)
From the above analysis results, it was confirmed that the synthesized product was consistent with the structure of compound (31).

<有機半導体前駆体のインク化(溶解度の評価)>
実施例1、3、5、6、7、8、9、10、11、12で得られた化合物およびそれに対応する特定化合物(24)乃至化合物(33)をそれぞれトルエン、THF、アニソール、クロロホルム(各2.0mg)に溶け残りが出るまで添加し、溶媒還流下で10分間攪拌し、室温まで冷却し、さらに1時間攪拌し、16時間静置した後、上澄みを0.2μmのPTFEフィルターで濾過して飽和溶液を得た。これを減圧下乾燥させることにより、各溶媒に対する該化合物の溶解度を算出した。結果を下記表1に示す。
表1における評価基準は以下のとおりである。
◎:溶解度が0.5wt%以上、
○:0.1wt%以上0.5wt%未満、
△:0.005wt%以上0.1wt%未満、
×:0.005wt%未満
<Inkization of organic semiconductor precursor (evaluation of solubility)>
The compounds obtained in Examples 1, 3, 5, 6, 7, 8, 9, 10, 11, 12 and the corresponding specific compounds (24) to (33) were respectively converted to toluene, THF, anisole, chloroform ( 2.0 mg) until the residue remains, stirred for 10 minutes under reflux of the solvent, cooled to room temperature, further stirred for 1 hour, allowed to stand for 16 hours, and the supernatant was filtered with a 0.2 μm PTFE filter. Filtration gave a saturated solution. This was dried under reduced pressure to calculate the solubility of the compound in each solvent. The results are shown in Table 1 below.
The evaluation criteria in Table 1 are as follows.
A: Solubility is 0.5 wt% or more,
○: 0.1 wt% or more and less than 0.5 wt%
Δ: 0.005 wt% or more and less than 0.1 wt%,
X: Less than 0.005 wt%

Figure 2012216669
Figure 2012216669

表1の結果より、本発明のπ電子共役系化合物前駆体は複数の極性の異なる溶媒に対して概ね0.1wt%以上の溶解性を有していることが分かり、これは従来のシクロヘキセン骨格に対して二つ脱離基が導入されたものと比べても遜色がなく、引き続き塗布プロセスにおける溶媒の選択性に富むことが明らかとなった。このように高い溶解性を有しているので、インクジェット塗布、スピンコート法、溶液キャスト法、ディップコーティング法やスクリーン印刷、グラビア印刷などの種々の製膜、印刷方法を適用することができる。
一方変換後の材料である化合物(24)乃至化合物(31)はこれら全ての溶媒に0.005wt%以下の溶解性であり、π電子共役系化合物前駆体を構成する溶解性基の寄与が大きいことが分かる。即ち、脱離反応により変換された化合物が不溶化することを示している。また、化合物(33)のように、それほど分子サイズが大きくない場合は、置換基脱離を行った後も溶解性を示すことが分かる。
From the results of Table 1, it can be seen that the π-electron conjugated compound precursor of the present invention has a solubility of about 0.1 wt% or more in a plurality of solvents having different polarities, which is a conventional cyclohexene skeleton. On the other hand, it was clarified that there was no inferiority compared to the case in which two leaving groups were introduced, and that the selectivity of the solvent in the coating process was still high. Since it has such high solubility, various film forming and printing methods such as inkjet coating, spin coating, solution casting, dip coating, screen printing, and gravure printing can be applied.
On the other hand, compound (24) to compound (31), which are the materials after conversion, have a solubility of 0.005 wt% or less in all of these solvents, and the contribution of the soluble group constituting the π-electron conjugated compound precursor is large. I understand that. That is, the compound converted by the elimination reaction is insolubilized. Further, it can be seen that when the molecular size is not so large as in the compound (33), the compound shows solubility even after the elimination of the substituent.

<化合物(実1)の脱離挙動の観察例>
実施例1で合成した化合物(実1)の熱分解挙動を、TG−DTA[リファレンスAl、窒素気流下(200mL/min)、EXSTAR6000(商品名)、Seiko Instruments Inc.製]を用いて25℃から500℃の範囲を5℃/minのレートで昇温し、観察した。
また、相変化挙動をDSC[リファレンスAl、窒素気流下(200mL/min)、EXSTAR6000(商品名)、Seiko Instruments Inc.製]を用いて25℃から500℃の範囲を5℃/minのレートで昇温し、観察した。
上記の結果を図4に示す。なお、図4において横軸は温度[℃]、縦軸左は重量変化[mg]、縦軸右は熱流[mW]である。
TG−DTAにおいて120℃から225℃にかけて、36.4%の重量減少が見られた。これはカプロン酸2分子(理論値37.1%)とほぼ一致する。また、357.4℃に融点の存在が認められた。これは化合物(24)の値と一致する。
以上の結果から、化合物(実1)が加熱によって化合物(24)へと変換されることが示された。
<Observation Example of Desorption Behavior of Compound (Act 1)>
The thermal decomposition behavior of the compound synthesized in Example 1 (Ex. 1) was measured using TG-DTA [reference Al 2 O 3 , under a nitrogen stream (200 mL / min), EXSTAR 6000 (trade name), Seiko Instruments Inc. The temperature was raised from 25 ° C. to 500 ° C. at a rate of 5 ° C./min.
In addition, the phase change behavior was determined by DSC [reference Al 2 O 3 , under a nitrogen stream (200 mL / min), EXSTAR 6000 (trade name), Seiko Instruments Inc. The temperature was raised from 25 ° C. to 500 ° C. at a rate of 5 ° C./min.
The above results are shown in FIG. In FIG. 4, the horizontal axis represents temperature [° C.], the left vertical axis represents weight change [mg], and the right vertical axis represents heat flow [mW].
In TG-DTA, a weight reduction of 36.4% was observed from 120 ° C to 225 ° C. This is almost in agreement with 2 molecules of caproic acid (theoretical value: 37.1%). The presence of a melting point was observed at 357.4 ° C. This is consistent with the value of compound (24).
From the above results, it was shown that the compound (Ex. 1) was converted to the compound (24) by heating.

<化合物(実2)の脱離挙動の観察例>
化合物(実1)を化合物(実2)に換えた以外は実施例27と同様にして、熱分解挙動および相変化挙動の観察を行った。結果を図5に示す。なお、図5において、横軸は温度[℃]、縦軸左は重量変化[mg]、縦軸右は熱流[mW]である。
TG−DTAにおいて115℃から200℃にかけて、21.9%の重量減少が見られた。これはカプロン酸1分子(理論値22.7%)とほぼ一致する。また、357.9℃に融点の存在が認められた。これは化合物(24)の値と一致する。
以上の結果から、化合物(実2)が加熱により化合物(24)へと変換されることが示された。
<Observation Example of Desorption Behavior of Compound (Act 2)>
The thermal decomposition behavior and phase change behavior were observed in the same manner as in Example 27 except that the compound (Act 1) was changed to the compound (Act 2). The results are shown in FIG. In FIG. 5, the horizontal axis represents temperature [° C.], the left vertical axis represents weight change [mg], and the right vertical axis represents heat flow [mW].
In TG-DTA, a weight loss of 21.9% was observed from 115 ° C to 200 ° C. This is almost identical to one molecule of caproic acid (theoretical value: 22.7%). The presence of a melting point was observed at 357.9 ° C. This is consistent with the value of compound (24).
From the above results, it was shown that the compound (Ex. 2) was converted to the compound (24) by heating.

本発明のπ電子共役系化合物前駆体(有機半導体前駆体)は従来[例えば、化合物(比較1)]と比べて100℃以上も低い温度領域において脱離基の脱離が起こり、続けて分子の結晶化が起こっていることが明らかとなった(DSCの発熱ピーク参照)。また、有機半導体前駆体を構成する溶解基(脱離性置換基)の数が1つのものは2つのものと比べて、脱離温度が低温化し、重量減少の完了温度が低いことも分かった。   In the π-electron conjugated compound precursor (organic semiconductor precursor) of the present invention, elimination of the leaving group occurs in a temperature range lower than 100 ° C. compared to the conventional [for example, compound (Comparative 1)], followed by a molecule. It was found that crystallization of (see DSC exothermic peak) occurred. In addition, it was also found that when the number of soluble groups (leaving substituents) constituting the organic semiconductor precursor is one, the elimination temperature is lowered and the weight reduction completion temperature is low compared to two. .

〈薄膜の作製例〉
実施例1で合成した化合物(実1)、及び、化合物(実2)をそれぞれ(各5mg)THFに0.1wt%の濃度になるように溶解させ、0.2μmのフィルターで濾過して溶液を調製した。濃硫酸に24時間付けおき洗浄した膜厚300nmの熱酸化膜を有するN型のシリコン基板上に、調製した溶液をピペットを用いて100μL滴下またはインクジェット装置(リコープリンティングシステム製)を用いて5pLの液滴を50回塗出し、シャーレを被せてそのまま溶媒が乾燥するまで静置し、各薄膜を作製した。各薄膜を偏光顕微鏡および走査型プローブ顕微鏡[コンタクトモード、Nanopics(商品名)、Seiko Instruments Inc.製]によって行ったところ、薄膜の形成方法に拠らずいずれも平滑な連続したアモルファス膜が得られていることが分かった。次に前記2つの薄膜を、アルゴン雰囲気下、150℃で30分間アニール処理した後に、前記と同様にして膜の観察を行った。アニール処理後は、偏光顕微鏡で色のついたドメインが複数観測され、平滑な結晶質の膜が得られていることが分かった。これらの膜の偏光顕微鏡写真を図6に示す。これは、前駆体である化合物(実1)および化合物(実2)が溶解性基であるエステル基を脱離することにより、膜中でより分子間相互作用の強い化合物(24)へと変換され、結晶質になったためである。それぞれの薄膜は、25℃のクロロホルム、THF、トルエン等に不溶であった。
<Example of thin film production>
The compound (actual 1) and the compound (actual 2) synthesized in Example 1 were each dissolved in THF (5 mg each) to a concentration of 0.1 wt%, and filtered through a 0.2 μm filter. Was prepared. On an N-type silicon substrate having a 300 nm thick thermal oxide film washed for 24 hours in concentrated sulfuric acid, 100 μL of the prepared solution was dropped using a pipette or 5 pL using an inkjet apparatus (manufactured by Ricoh Printing System). The liquid droplets were applied 50 times, covered with a petri dish, and allowed to stand until the solvent was dried to prepare each thin film. Each thin film was subjected to a polarizing microscope and a scanning probe microscope [Contact Mode, Nanopics (trade name), Seiko Instruments Inc. As a result, it was found that a smooth continuous amorphous film was obtained regardless of the thin film formation method. Next, the two thin films were annealed at 150 ° C. for 30 minutes in an argon atmosphere, and the films were observed in the same manner as described above. After the annealing treatment, a plurality of colored domains were observed with a polarization microscope, and it was found that a smooth crystalline film was obtained. The polarization micrographs of these films are shown in FIG. This is because the precursor compound (Act 1) and compound (Act 2) are converted into a compound (24) having a stronger intermolecular interaction in the film by eliminating the ester group which is a soluble group. This is because it became crystalline. Each thin film was insoluble in chloroform, THF, toluene and the like at 25 ° C.

[比較例3]
化合物(実1)、化合物(実2)を、化合物(実1)、化合物(実2)から変換された前記化合物(24)に変え、THFの代わりに150℃に加熱したオルトジクロロベンゼンを用いた以外は実施例28と同様にして溶液の調整、薄膜の作製を行った。いずれの膜においても、目視で分かるほどに結晶が析出しており、不連続な膜になっているのが確認された。偏光顕微鏡においても、不連続で色のついたドメインが複数観測された。走査型プローブ顕微鏡で確認したところ100μm以上の表面荒さが認められた。
[Comparative Example 3]
Compound (Act 1) and Compound (Act 2) were replaced with Compound (Act 1) and Compound (Act 24) converted from Compound (Act 2), and orthodichlorobenzene heated to 150 ° C. was used instead of THF. A solution was prepared and a thin film was prepared in the same manner as in Example 28 except that. In any of the films, crystals were deposited to the extent that they were visually confirmed, and it was confirmed that the films were discontinuous. Even in the polarization microscope, a plurality of discontinuous and colored domains were observed. When confirmed with a scanning probe microscope, a surface roughness of 100 μm or more was observed.

以上の結果から、一部の高沸点溶媒に対しても難溶性であり、結晶が析出しやすい化合物の薄膜化において、本発明の製造方法が有効であることが示された。   From the above results, it was shown that the production method of the present invention is effective in thinning a compound that is hardly soluble in some high-boiling solvents and easily precipitates crystals.

[溶液プロセスによる有機薄膜トランジスタの作製・評価]
実施例28と同様にして、化合物(実1)を含む薄膜を作製した。前記薄膜をアルゴン雰囲気下、150℃で60分間アニール処理をすることで、有機半導体である前記化合物(24)からなる薄膜(膜厚50nm)に変換を行った。
この薄膜上部にシャドウマスクを用いて金を真空蒸着(背圧〜10−4Pa、蒸着レート:1〜2Å/s、膜厚:50nm)することによりソース、ドレイン電極(チャネル長50μm、チャネル幅2mm)を形成し、図1(D)の構造の電界効果型トランジスタ(FET)素子を作製した。金電極とは異なる部位の有機半導体層およびシリコン酸化膜を削り取り、その部分に導電性ペースト(導電性ペースト、藤倉化成製)を付け溶媒を乾燥させた。この部分を用いて、ゲート電極としてのシリコン基板に電圧を印加した。
こうして得られたFET素子の電気特性をAgilent社製 半導体パラメーターアナライザーB1500Aを用いて(測定条件:ソースドレイン電圧を−100V固定、ゲート電圧−20Vから+100Vまで掃引)評価した結果、p型のトランジスタ素子としての特性を示した。このFET素子のI−V特性図を図7に示す。
図7において白丸は縦軸左(ドレイン電流の絶対値)に対応し、黒丸は縦軸右(ドレイン電流の絶対値の平方根)に対応する。横軸は印加したゲート電圧である。
この有機薄膜トランジスタの電流−電圧(I−V)特性における飽和領域から、電界効果移動度を求めた。
尚、有機薄膜トランジスタの電界効果移動度の算出には、下記数式(1)を用いた。
[Production and evaluation of organic thin-film transistors by solution process]
A thin film containing the compound (Ex. 1) was produced in the same manner as in Example 28. The thin film was subjected to an annealing treatment at 150 ° C. for 60 minutes in an argon atmosphere to convert it into a thin film (film thickness: 50 nm) made of the compound (24) that is an organic semiconductor.
By using a shadow mask on the thin film, gold is vacuum-deposited (back pressure: 10 −4 Pa, deposition rate: 1 to 2 Å / s, film thickness: 50 nm) to form source and drain electrodes (channel length 50 μm, channel width) 2 mm) to form a field effect transistor (FET) element having the structure of FIG. The organic semiconductor layer and the silicon oxide film at portions different from the gold electrode were scraped off, and a conductive paste (conductive paste, manufactured by Fujikura Kasei) was applied to the portion, and the solvent was dried. Using this portion, a voltage was applied to the silicon substrate as the gate electrode.
As a result of evaluating the electrical characteristics of the FET element thus obtained using a semiconductor parameter analyzer B1500A manufactured by Agilent (measurement conditions: source drain voltage fixed at −100 V, gate voltage swept from −20 V to +100 V), p-type transistor element As a characteristic. FIG. 7 shows an IV characteristic diagram of this FET element.
In FIG. 7, the white circle corresponds to the left side of the vertical axis (the absolute value of the drain current), and the black circle corresponds to the right side of the vertical axis (the square root of the absolute value of the drain current). The horizontal axis is the applied gate voltage.
The field effect mobility was determined from the saturation region in the current-voltage (IV) characteristics of the organic thin film transistor.
In addition, the following numerical formula (1) was used for calculation of the field effect mobility of an organic thin-film transistor.

Ids=μCinW(Vg−Vth)2/2L ・・・(1)       Ids = μCinW (Vg−Vth) 2 / 2L (1)

(ただし式中、Cinはゲート絶縁膜の単位面積あたりのキャパシタンス、Wはチャネル幅、Lはチャネル長、Vgはゲート電圧、Idsはソースドレイン電流、μは移動度、Vthはチャネルが形成し始めるゲートの閾値電圧である。)
また、ゲート電圧40Vにおけるオン電流と同0Vにおけるオフ電流の比をオンオフ比として算出した。その結果を下記表2に示す。
(Where Cin is the capacitance per unit area of the gate insulating film, W is the channel width, L is the channel length, Vg is the gate voltage, Ids is the source / drain current, μ is the mobility, and Vth is the channel begins to form. (This is the threshold voltage of the gate.)
Further, the ratio of the on current at the gate voltage of 40V to the off current at 0V was calculated as the on / off ratio. The results are shown in Table 2 below.

実施例29における化合物(実1)を化合物(実2)に替えて、有機半導体である化合物(24)からなる薄膜に変換した以外は実施例29と同様にして、FET素子を作製し、特性評価を行った。その結果を下記表2に示す。   An FET device was prepared in the same manner as in Example 29 except that the compound (Example 1) in Example 29 was replaced with the compound (Example 2) and converted to a thin film made of the compound (24) which is an organic semiconductor. Evaluation was performed. The results are shown in Table 2 below.

[比較例4]
比較例3に記載のオルトジクロロベンゼン溶液を用いて、実施例29と同様の基板上に有機半導体である化合物(24)からなる薄膜を形成し、FET素子を作製して特性評価を行った。その結果を下記表2に示す。
[Comparative Example 4]
Using the orthodichlorobenzene solution described in Comparative Example 3, a thin film made of the compound (24), which is an organic semiconductor, was formed on the same substrate as in Example 29, and an FET device was fabricated and evaluated. The results are shown in Table 2 below.

[比較例5]
実施例29において化合物(実1)を化合物(実比較)に換えた以外は、実施例29と同様にしてアニール処理[有機半導体である化合物(24)からなる薄膜への変換を目的とするための処理]を施して薄膜を形成し、FET素子を作製して特性評価を行った。その結果を下記表2に示す。
[Comparative Example 5]
Except that the compound (Act 1) was replaced with the compound (Actual comparison) in Example 29, an annealing treatment [for the purpose of conversion to a thin film composed of the compound (24) which is an organic semiconductor] was performed in the same manner as in Example 29. The thin film was formed by applying the above process, and an FET element was fabricated and evaluated for characteristics. The results are shown in Table 2 below.

Figure 2012216669
Figure 2012216669

実施例29における化合物(実1)を化合物(実6)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 6) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

実施例29における化合物(実1)を化合物(実7)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 7) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

実施例29における化合物(実1)を化合物(実8)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 8) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

実施例29における化合物(実1)を化合物(実9)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 9) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

実施例29における化合物(実1)を化合物(実10)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 10) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

実施例29における化合物(実1)を化合物(実11)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 11) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

実施例29における化合物(実1)を化合物(実12)に置き換えて薄膜の形成、トランジスタの作製を行った結果を実施例32とした。この活性層を用いたトランジスタも実施例29,30と同様の良好なp型のトランジスタ特性を示した。   Example 32 was obtained by replacing the compound (Example 1) in Example 29 with the compound (Example 12) to form a thin film and produce a transistor. The transistor using this active layer also showed good p-type transistor characteristics similar to those of Examples 29 and 30.

表2に示す特性評価の結果から、難溶性の有機半導体化合物[化合物(24)]を高沸点溶媒に溶かして製膜するのみでは、良好なFET特性は得られず(比較例4)、また前駆体の膜を変換する手法においても従来のもの[化合物(比較1)]では150℃程度の処理では良好なFET特性が得られていない(比較例5)ことが分かった。
一方、本発明のπ電子共役系化合物前駆体を有機半導体前駆体として用い、有機半導体化合物を含む膜に変換することで、溶液プロセスを用い、且つ150℃程度の比較的低温の処理によって良好なFET特性が得られることが明らかとなった(実施例29乃至実施例38)。
From the results of the characteristic evaluation shown in Table 2, good FET characteristics cannot be obtained only by dissolving a poorly soluble organic semiconductor compound [compound (24)] in a high boiling point solvent (Comparative Example 4). Also in the method of converting the precursor film, it was found that the conventional [Compound (Comparative 1)] did not obtain good FET characteristics by the treatment at about 150 ° C. (Comparative Example 5).
On the other hand, by using the π-electron conjugated compound precursor of the present invention as an organic semiconductor precursor and converting it to a film containing an organic semiconductor compound, a solution process is used and a relatively low temperature treatment of about 150 ° C. is preferable. It became clear that FET characteristics could be obtained (Examples 29 to 38).

即ち、本発明の有機薄膜トランジスタはいずれも良好なホール移動度、電流オンオフ比を示し、有機薄膜トランジスタとして優れた特性を有している。このことから、本発明の製造方法は有機薄膜トランジスタのような有機電子デバイス素子の作製においても有用であることが示された。   That is, all of the organic thin film transistors of the present invention exhibit good hole mobility and current on / off ratio, and have excellent characteristics as organic thin film transistors. From this, it was shown that the production method of the present invention is useful also in the production of an organic electronic device element such as an organic thin film transistor.

上記結果から、本発明のπ電子共役系化合物前駆体は、各種有機溶剤への溶解性に優れ、従来のもの[例えば、化合物(比較1)]より低いエネルギーの付与(加温などの外部刺激の印加)においても起こり得る脱離反応を利用して、末端オレフィンを生成することなく特定の化合物(有機半導体化合物等)を高収率で合成することが可能であるため、エネルギー量の点でも、プロセスアビリティーにおいても優れている。
また、難溶性であるために従来製膜が困難な有機半導体化合物であっても、本発明の置換基脱離化合物を前記有機半導体化合物の前駆体として用い、一旦製膜した後に熱などを加えて目的とする前記有機半導体化合物へと変換させる製造方法も適用することで、容易に連続した有機半導体膜を得ることができる。このように形成された有機半導体膜は、有機電子デバイスへの応用が可能であり、特に半導体などの電子デバイス、EL発光素子などの光学−電子デバイス、電子ペーパー、各種センサー、RFIDs(radio frequency identification)などの分野に応用できると期待される。
From the above results, the π-electron conjugated compound precursor of the present invention is excellent in solubility in various organic solvents, and is applied with lower energy (external stimulus such as heating) than the conventional one (eg, compound (Comparative 1)). It is possible to synthesize a specific compound (organic semiconductor compound, etc.) in high yield without producing a terminal olefin by utilizing the elimination reaction that can occur even in the application of Also excellent in process ability.
Moreover, even if it is an organic semiconductor compound that has been difficult to form due to poor solubility, the substituent-elimination compound of the present invention is used as a precursor of the organic semiconductor compound, and after the formation of the film, heat is applied. By applying the production method for converting into the target organic semiconductor compound, a continuous organic semiconductor film can be easily obtained. The organic semiconductor film thus formed can be applied to an organic electronic device, and in particular, an electronic device such as a semiconductor, an optical-electronic device such as an EL light emitting element, electronic paper, various sensors, and RFIDs (radio frequency identification). ) Is expected to be applicable to such fields.

1 有機半導体層
2 ソース電極
3 ドレイン電極
4 ゲート電極
5 絶縁膜
1 Organic semiconductor layer 2 Source electrode 3 Drain electrode 4 Gate electrode 5 Insulating film

特開平5−055568号公報Japanese Patent Laid-Open No. 5-05568 WO2006−077888号公報WO2006-077788 特開平7−188234号公報JP-A-7-188234 特開2008−226959号公報JP 2008-226959 A 特開2007−224019号公報JP 2007-224019 A 特開2008−270843号公報JP 2008-270843 A 特開2009−188386号公報JP 2009-188386 A 特開2009−215547号公報JP 2009-215547 A 特開2009−239293号公報JP 2009-239293 A 特開2009−28394号公報JP 2009-28394 A 特開2009−84555号公報JP 2009-84555 A 特開2009−88483号公報JP 2009-88483 A 特開2006−352143号公報JP 2006-352143 A 特開2009−275032号公報JP 2009-275032 A 特願2009−209911号明細書Japanese Patent Application No. 2009-209911

Appl.Phys.Lett.72,p1854 (1998)Appl.Phys.Lett.72, p1854 (1998) J.Am.Chem.Soc. 128,p12604 (2006)J.Am.Chem.Soc. 128, p12604 (2006) Nature,.388,p131, (1997)Nature, .388, p131, (1997) Adv. Mater.,11,p480 (1999),Adv. Mater., 11, p480 (1999), J.Appl.Phys.100, p034502 (2006)J.Appl.Phys.100, p034502 (2006) Appl.Phys.Lett.84,12, p2085 (2004)Appl.Phys.Lett.84,12, p2085 (2004) J.Am.Chem.Soc.126, p1596 (2004)J. Am. Chem. Soc. 126, p1596 (2004)

Claims (11)

π電子共役系化合物前駆体A−(B)mを含む溶媒の塗工液を基材に塗布して形成された塗工膜より、下記一般式(II)で示される脱離性置換基を脱離させA−(C)mで示されるπ電子共役系化合物を含有する膜状体を生成することを特徴とする膜状体の製造方法。
Figure 2012216669
(ここでAはπ電子共役系置換基であり、Bは上記一般式(I)で表される構造を少なくとも部分構造として有している溶媒可溶性置換基である。mは自然数である。ただし、Bは上記一般式(I)中、Q乃至Q上の任意の原子と、A上の任意の原子とで共有結合を介して連結しているか、A上の任意の原子と縮環している。Cは上記一般式(Ia)で表される構造を少なくとも部分構造として有している。
[式(I)、(Ia)、(II)中、XおよびYは水素原子もしくは脱離性置換基を表し、該XおよびYのうち一方は脱離性置換基であり、他方は水素原子である。Q乃至Qはそれぞれ独立して水素原子、ハロゲン原子または、1価の有機基であり、QとQは水素原子、ハロゲン原子または、前記脱離性置換基以外の一価の有機基である。Q乃至Qは隣り合った基同士でそれぞれ結合して環を形成していてもよい。]
From the coating film formed by applying a coating solution of a solvent containing the π-electron conjugated compound precursor A- (B) m to a substrate, a detachable substituent represented by the following general formula (II) is added. A method for producing a film-like body, characterized in that a film-like body containing a π-electron conjugated compound represented by A- (C) m is produced.
Figure 2012216669
(Here, A is a π-electron conjugated substituent, and B is a solvent-soluble substituent having at least a partial structure of the structure represented by the general formula (I). M is a natural number. , B is linked to any atom on Q 1 to Q 6 and any atom on A in the above general formula (I) via a covalent bond, or is fused with any atom on A C has at least a partial structure of the structure represented by the above general formula (Ia).
[In the formulas (I), (Ia) and (II), X and Y represent a hydrogen atom or a detachable substituent, and one of the X and Y is a detachable substituent, and the other is a hydrogen atom. It is. Q 2 to Q 5 are each independently a hydrogen atom, a halogen atom or a monovalent organic group, and Q 1 and Q 6 are a monovalent organic other than a hydrogen atom, a halogen atom or the above-mentioned leaving substituent. It is a group. Q 1 to Q 6 may be bonded to each other between adjacent groups to form a ring. ]
前記、脱離性置換基XまたはYが、置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、該XおよびYのうち一方は置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、他方は水素原子であることを特徴とする請求項1に記載の膜状体の製造方法。 The leaving substituent X or Y is an optionally substituted [ether group or acyloxy group] having 1 or more carbon atoms, and one of X and Y may be substituted. The method for producing a film-like body according to claim 1, wherein one or more [ether group or acyloxy group] and the other is a hydrogen atom. 前記塗工液の塗布が、インクジェット塗布、スピンコート法、溶液キャスト法、ディップコーティング法からなる群から選択される方法により行われることを特徴とする請求項1又は2に記載の膜状体の製造方法。   The film-like body according to claim 1 or 2, wherein the coating liquid is applied by a method selected from the group consisting of inkjet coating, spin coating, solution casting, and dip coating. Production method. 前記置換基Aが、(i)1つ以上の芳香族炭化水素環および芳香族ヘテロ環、若しくは2つ以上の前記環が縮環された化合物、及び、(ii)前記(i)の環同士が共有結合を介して連結された化合物、からなる群から少なくとも一つ以上選択されるπ電子共役系化合物であることを特徴とする請求項1乃至3のいずれかに記載の膜状体の製造方法。   The substituent A includes (i) one or more aromatic hydrocarbon rings and aromatic heterocycles, or a compound in which two or more rings are condensed, and (ii) the rings of (i) 4. The production of a film-like body according to claim 1, wherein at least one π-electron conjugated compound is selected from the group consisting of compounds linked by a covalent bond. Method. 前記化合物A−(B)mより脱離する一般式(II)で示される脱離成分がハロゲン化水素または置換されていても良いカルボン酸または置換されていても良いアルコール、二酸化炭素のいずれかを含むことを特徴とする請求項1乃至4のいずれかに記載の膜状体の製造方法。   The elimination component represented by the general formula (II) desorbed from the compound A- (B) m is either a hydrogen halide, an optionally substituted carboxylic acid, an optionally substituted alcohol, or carbon dioxide. The method for producing a film-like body according to any one of claims 1 to 4, wherein: 前記化合物A−(B)mが溶媒可溶性であり、前記脱離性置換基の脱離により生成する前記化合物A−(C)mが溶媒不溶性であることを特徴とする請求項1乃至5のいずれかに記載の膜状体の製造方法。   6. The compound A- (B) m is solvent-soluble, and the compound A- (C) m produced by elimination of the detachable substituent is solvent-insoluble. The manufacturing method of the film-like body in any one. π電子共役系化合物前駆体A−(B)mより、下記一般式(II)で示される脱離性置換基を脱離させA−(C)mで示されるπ電子共役系化合物を生成することを特徴とするπ電子共役系化合物の製造方法。
Figure 2012216669
(ここでAはπ電子共役系置換基であり、Bは上記一般式(I)で表される構造を少なくとも部分構造として有している溶媒可溶性置換基である。mは自然数である。ただし、Bは上記一般式(I)中、Q乃至Q上の任意の原子と、A上の任意の原子とで共有結合を介して連結しているか、A上の任意の原子と縮環している。Cは上記一般式(Ia)で表される構造を少なくとも部分構造として有している。
[式(I)、(Ia)、(II)中、XおよびYは水素原子もしくは脱離性置換基を表し、該XおよびYのうち一方は脱離性置換基であり、他方は水素原子である。Q乃至Qはそれぞれ独立して水素原子、ハロゲン原子または、1価の有機基であり、QとQは水素原子、ハロゲン原子または、前記脱離性置換基以外の一価の有機基である。Q乃至Qは隣り合った基同士でそれぞれ結合して環を形成していてもよい。]
From the π-electron conjugated compound precursor A- (B) m, the detachable substituent represented by the following general formula (II) is eliminated to produce a π-electron conjugated compound represented by A- (C) m. A method for producing a π-electron conjugated compound characterized by the above.
Figure 2012216669
(Here, A is a π-electron conjugated substituent, and B is a solvent-soluble substituent having at least a partial structure of the structure represented by the general formula (I). M is a natural number. , B is linked to any atom on Q 1 to Q 6 and any atom on A in the above general formula (I) via a covalent bond, or is fused with any atom on A C has at least a partial structure of the structure represented by the above general formula (Ia).
[In the formulas (I), (Ia) and (II), X and Y represent a hydrogen atom or a detachable substituent, and one of the X and Y is a detachable substituent, and the other is a hydrogen atom. It is. Q 2 to Q 5 are each independently a hydrogen atom, a halogen atom or a monovalent organic group, and Q 1 and Q 6 are a monovalent organic other than a hydrogen atom, a halogen atom or the above-mentioned leaving substituent. It is a group. Q 1 to Q 6 may be bonded to each other between adjacent groups to form a ring. ]
前記、脱離性置換基XまたはYが、置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、該XおよびYのうち一方は置換されていてもよい炭素数1以上の、[エーテル基またはアシルオキシ基]であり、他方は水素原子であることを特徴とする請求項7に記載のπ電子共役系化合物の製造方法。   The leaving substituent X or Y is an optionally substituted [ether group or acyloxy group] having 1 or more carbon atoms, and one of X and Y may be substituted. The method for producing a π-electron conjugated compound according to claim 7, wherein one or more [ether group or acyloxy group] and the other is a hydrogen atom. 前記置換基Aが、(i)1つ以上の芳香族炭化水素環および芳香族ヘテロ環、若しくは2つ以上の前記環が縮環された化合物、及び、(ii)前記(i)の環同士が共有結合を介して連結された化合物、からなる群から少なくとも一つ以上選択されるπ電子共役系化合物であることを特徴とする請求項7又は8に記載の記載のπ電子共役系化合物の製造方法。   The substituent A includes (i) one or more aromatic hydrocarbon rings and aromatic heterocycles, or a compound in which two or more rings are condensed, and (ii) the rings of (i) The π-electron conjugated compound according to claim 7, wherein at least one π-electron conjugated compound is selected from the group consisting of compounds linked via a covalent bond. Production method. 前記化合物A−(B)mが溶媒可溶性であり、前記脱離性置換基の脱離により生成する前記化合物A−(C)mが溶媒不溶性であることを特徴とする請求項7乃至9のいずれかに記載のπ電子共役系化合物の製造方法。   10. The compound A- (B) m is solvent-soluble, and the compound A- (C) m produced by elimination of the detachable substituent is solvent-insoluble. The manufacturing method of the pi electron conjugated compound in any one. 請求項7乃至10のいずれかに記載の方法で製造されたものであることを特徴とする前記π電子共役化合物系化合物。   The π-electron conjugated compound compound produced by the method according to claim 7.
JP2011080630A 2010-06-15 2011-03-31 Method for producing film-like body containing π-electron conjugated compound having aromatic ring, and method for producing π-electron conjugated compound Expired - Fee Related JP5807359B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011080630A JP5807359B2 (en) 2011-03-31 2011-03-31 Method for producing film-like body containing π-electron conjugated compound having aromatic ring, and method for producing π-electron conjugated compound
PCT/JP2011/063999 WO2011158953A1 (en) 2010-06-15 2011-06-14 Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
TW100120772A TWI492950B (en) 2010-06-15 2011-06-14 Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-elec
CN2011800396200A CN103080068A (en) 2010-06-15 2011-06-14 Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
KR1020137000560A KR20130021439A (en) 2010-06-15 2011-06-14 Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
EP11795855.3A EP2582655B1 (en) 2010-06-15 2011-06-14 Method for producing film-like product comprising pi-electron conjugated compound
US13/704,480 US20130095605A1 (en) 2010-06-15 2011-06-14 Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-electron conjugated compound and method for producing the pi electron conjugated compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011080630A JP5807359B2 (en) 2011-03-31 2011-03-31 Method for producing film-like body containing π-electron conjugated compound having aromatic ring, and method for producing π-electron conjugated compound

Publications (2)

Publication Number Publication Date
JP2012216669A true JP2012216669A (en) 2012-11-08
JP5807359B2 JP5807359B2 (en) 2015-11-10

Family

ID=47269182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011080630A Expired - Fee Related JP5807359B2 (en) 2010-06-15 2011-03-31 Method for producing film-like body containing π-electron conjugated compound having aromatic ring, and method for producing π-electron conjugated compound

Country Status (1)

Country Link
JP (1) JP5807359B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020987A (en) * 2010-06-15 2012-02-02 Ricoh Co Ltd Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor, and display device using the same
WO2015137304A1 (en) * 2014-03-12 2015-09-17 Dic株式会社 Compound, organic semiconductor material containing same, organic semiconductor ink, and organic transistor
JP2017052721A (en) * 2015-09-09 2017-03-16 Dic株式会社 Organic compound, manufacturing method thereof, organic semiconductor material containing the same and organic transistor containing the same
JPWO2016039216A1 (en) * 2014-09-09 2017-04-27 富士フイルム株式会社 Composition for forming organic semiconductor film, and method for producing organic semiconductor film
CN109954383A (en) * 2019-04-22 2019-07-02 天津大学 It is generated based on photo-thermal steam and the energy storage of molecule photo-thermal assists the carbon capture system and its control method that desorb

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352143A (en) * 2005-06-18 2006-12-28 Samsung Sdi Co Ltd Patterning method of organic semiconductor
JP2009215547A (en) * 2008-02-13 2009-09-24 Mitsubishi Chemicals Corp Organic pigment precursor and method for producing organic pigment using same, method for producing organic electronic element using organic pigment, and new compound
WO2011030918A1 (en) * 2009-09-11 2011-03-17 Ricoh Company, Ltd. Leaving substituent-containing compound, organic semiconductor material, organic semiconductor film containing the material, organic electronic device containing the film, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352143A (en) * 2005-06-18 2006-12-28 Samsung Sdi Co Ltd Patterning method of organic semiconductor
JP2009215547A (en) * 2008-02-13 2009-09-24 Mitsubishi Chemicals Corp Organic pigment precursor and method for producing organic pigment using same, method for producing organic electronic element using organic pigment, and new compound
WO2011030918A1 (en) * 2009-09-11 2011-03-17 Ricoh Company, Ltd. Leaving substituent-containing compound, organic semiconductor material, organic semiconductor film containing the material, organic electronic device containing the film, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012020987A (en) * 2010-06-15 2012-02-02 Ricoh Co Ltd Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor, and display device using the same
WO2015137304A1 (en) * 2014-03-12 2015-09-17 Dic株式会社 Compound, organic semiconductor material containing same, organic semiconductor ink, and organic transistor
JP6047261B2 (en) * 2014-03-12 2016-12-21 Dic株式会社 Compound, organic semiconductor material containing the same, organic semiconductor ink, and organic transistor
JPWO2016039216A1 (en) * 2014-09-09 2017-04-27 富士フイルム株式会社 Composition for forming organic semiconductor film, and method for producing organic semiconductor film
JP2017052721A (en) * 2015-09-09 2017-03-16 Dic株式会社 Organic compound, manufacturing method thereof, organic semiconductor material containing the same and organic transistor containing the same
CN109954383A (en) * 2019-04-22 2019-07-02 天津大学 It is generated based on photo-thermal steam and the energy storage of molecule photo-thermal assists the carbon capture system and its control method that desorb

Also Published As

Publication number Publication date
JP5807359B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5765559B2 (en) Substituent leaving compound and organic semiconductor material obtained therefrom, organic electronic device, organic thin film transistor and display device using the same
EP2475640B1 (en) Leaving substituent-containing compound, organic semiconductor material, organic semiconductor film containing the material, organic electronic device containing the film, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
EP2582655B1 (en) Method for producing film-like product comprising pi-electron conjugated compound
EP2265619B1 (en) [1]benzothieno[3,2-b][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
JP5733553B2 (en) Substituent elimination compound, organic semiconductor material, film thereof and organic transistor using the same
JP2010083884A (en) New compound and organic semiconductor material
KR101348436B1 (en) Tetrathiafulvalene derivative, and organic film and organic transistor using the same
KR20130030803A (en) Organic semiconductive material precursor containing dithienobenzodithiophene derivative, ink, insulating member, charge-transporting member, and organic electronic device
JP5807359B2 (en) Method for producing film-like body containing π-electron conjugated compound having aromatic ring, and method for producing π-electron conjugated compound
JP5664897B2 (en) A method for producing a film-like body containing a π-electron conjugated compound having a benzene ring, and a method for producing the π-electron conjugated compound.
JP5708980B2 (en) Organic electronic device manufacturing method and organic electronic device
JP2013035814A (en) Novel organic semiconductor material and electronic device using the same
JP6069971B2 (en) Manufacturing method of organic film
JP2012193316A (en) ELECTRONIC DEVICE INK COMPOSITION USING π ELECTRON CONJUGATED COMPOUND PRECURSOR, AND USE THEREOF
JP2013026448A (en) Thin film transistor and electronic device using the same
JP2013026591A (en) Thin-film transistor and electronic device using the same
GB2542563A (en) Pentacene derivatives with C-alkyne solubilising units and their applications as small molecule organic semiconductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150319

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R151 Written notification of patent or utility model registration

Ref document number: 5807359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees