[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012214914A - Inorganic fiber for fiber bundle and inorganic fiber bundle for composite material including the inorganic fiber for fiber bundle, and ceramic-based composite material reinforced with the fiber bundle - Google Patents

Inorganic fiber for fiber bundle and inorganic fiber bundle for composite material including the inorganic fiber for fiber bundle, and ceramic-based composite material reinforced with the fiber bundle Download PDF

Info

Publication number
JP2012214914A
JP2012214914A JP2011078979A JP2011078979A JP2012214914A JP 2012214914 A JP2012214914 A JP 2012214914A JP 2011078979 A JP2011078979 A JP 2011078979A JP 2011078979 A JP2011078979 A JP 2011078979A JP 2012214914 A JP2012214914 A JP 2012214914A
Authority
JP
Japan
Prior art keywords
fiber
fiber bundle
composite material
inorganic
inorganic fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011078979A
Other languages
Japanese (ja)
Other versions
JP5668575B2 (en
Inventor
Michiyuki Suzuki
道之 鈴木
Kazutoshi Shimizu
和敏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011078979A priority Critical patent/JP5668575B2/en
Publication of JP2012214914A publication Critical patent/JP2012214914A/en
Application granted granted Critical
Publication of JP5668575B2 publication Critical patent/JP5668575B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Woven Fabrics (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inorganic fiber for a fiber bundle, that suppresses decrease in the strength of the fiber due to the damage of the fiber during manufacturing the inorganic fiber bundle for a composite material and avoids the contact among the fibers in the fiber bundle under manufacturing the composite material to permit to form an interfacial layer with matrix throughout the surface of the fiber, in order to provide a ceramic-based composite material exhibiting enough strength and destruction energy, and excellent durability when stress is received under a high-temperature and oxidative atmosphere.SOLUTION: The inorganic fiber for a fiber bundle according to the present invention is the inorganic fiber for a fiber bundle composing the inorganic fiber bundle for a composite material and the fiber winds in the longitudinal direction thereof and the diameter of the fiber changes along with the longitudinal direction. Preferably, the fiber has a specific winding pitch and winding width, and is a fiber based on silicon carbide having a specific difference between the maximum diameter and minimum diameter. the winding pitch is between 3 to 40 mm, the winding width is between 0.1 to 5 mm, the difference between the maximum diameter and the minimum diameter is between 2 to 6 μm and the change in the pitch is between 10 to 200 mm.

Description

本発明は、繊維束用無機繊維、及びその繊維束用無機繊維から構成される複合材料用無機繊維束、並びにその繊維束で強化されたセラミックス基複合材料に関するものである。   The present invention relates to an inorganic fiber for a fiber bundle, an inorganic fiber bundle for a composite material composed of the inorganic fiber for the fiber bundle, and a ceramic matrix composite material reinforced with the fiber bundle.

無機繊維で強化されたセラミックス基複合材料は金属にはない優れた耐熱性と従来の単相のセラミックスにはない損傷許容性から次世代の耐熱材料として開発が進められている。セラミックス基複合材料においては強化繊維とマトリックスとの界面の結合を制御し、材料の破壊時に亀裂がこの界面で偏向し、繊維がプルアウトしながら破壊が進行するため、大きな破壊エネルギーを示すことが大きな特徴である。中でも非酸化物系の炭化ケイ素や窒化ケイ素をマトリックスとして、炭化ケイ素系繊維で強化したセラミックス基複合材料は特に注目されている。これらのセラミックス基複合材料の期待されている用途としては、ガスタービン分野等があり、高温・酸化性雰囲気下での耐久性が要求されている。   Ceramic matrix composites reinforced with inorganic fibers are being developed as next-generation heat-resistant materials because of their excellent heat resistance not found in metals and damage tolerance not found in conventional single-phase ceramics. In ceramic-based composite materials, the bond at the interface between the reinforcing fiber and the matrix is controlled, and cracks are deflected at the interface when the material breaks, and the breakage progresses while the fiber pulls out. It is a feature. In particular, a ceramic matrix composite material reinforced with silicon carbide fibers using non-oxide silicon carbide or silicon nitride as a matrix has attracted particular attention. Expected uses of these ceramic matrix composite materials include the gas turbine field and the like, and durability under a high temperature and oxidizing atmosphere is required.

セラミックス基複合材料の製造方法としては、強化材である無機繊維の織物等を所望の形状に成形したプリフォームを製作する。ついで、繊維束の収束に使用されているサイジング剤を600℃以上の高温、アルゴンや窒素等の不活性雰囲気中で分解除去した後、マトリックスとの界面の結合を制御するための界面層を、化学気相蒸着法(CVD法、CVI法)により繊維表面に形成する。界面層としては、主に炭素や窒化ホウ素が選択される。次いで、マトリックスを、同様に、化学気相蒸着法や、あるいは、マトリックス原料となる無機あるいは有機高分子の融液、あるいは溶液に含浸させた後、焼成し、必要であればこの工程を繰り返す方法(含浸・焼成法)により形成させ、セラミックス基複合材料を得る方法等がある。   As a method for producing a ceramic matrix composite material, a preform is produced by molding a woven fabric of inorganic fibers as a reinforcing material into a desired shape. Next, after the sizing agent used to converge the fiber bundle is decomposed and removed in an inert atmosphere such as argon or nitrogen at a high temperature of 600 ° C. or higher, an interface layer for controlling the interface with the matrix is controlled. It is formed on the fiber surface by chemical vapor deposition (CVD method, CVI method). As the interface layer, carbon or boron nitride is mainly selected. Next, the matrix is similarly subjected to chemical vapor deposition, or a method of impregnating an inorganic or organic polymer melt or solution as a matrix raw material, followed by firing, and repeating this step if necessary. There is a method of forming a ceramic matrix composite material by (impregnation / firing method).

この製造過程において、繊維束中の各繊維が接触すると接触点では、均一な界面層が形成されず、複合材料の特性に悪影響を及ぼす問題が指摘されている。例えば、非特許文献1には、炭化ケイ素系繊維で強化された炭化ケイ素マトリックスのセラミックス基複合材料において、繊維束中の繊維の接触点では、窒化ホウ素の界面層が均一に形成されず、材料が高温・酸化雰囲気下で応力を受けた際に、この繊維接触点が優先的に酸化されて、酸化物のガラス層が形成されることが示されている。このガラス層により繊維同士が強固に結合して、応力集中の原因となり、脆性的な破壊を起こし、期待される耐久性が得られないことが指摘されている。したがって、繊維束中の各繊維を、界面層を繊維表面に均一に形成できるように離すことが、セラミックス基複合材料の耐久性を確保する上で重要であるとしている。このような問題を解決するため、繊維表面に耐熱性物質の短繊維、粉末、あるいはウイスカを付着させることが提案されている(特許文献1及び2、非特許文献2)。   In this manufacturing process, when each fiber in the fiber bundle comes into contact, a uniform interface layer is not formed at the contact point, and there is a problem that adversely affects the characteristics of the composite material. For example, in Non-Patent Document 1, in a ceramic matrix composite material of a silicon carbide matrix reinforced with silicon carbide fibers, an interface layer of boron nitride is not uniformly formed at the contact point of the fibers in the fiber bundle. It is shown that when the fiber is subjected to stress in a high temperature / oxidizing atmosphere, the fiber contact point is preferentially oxidized to form an oxide glass layer. It has been pointed out that fibers are firmly bonded by this glass layer, causing stress concentration, causing brittle fracture, and the expected durability cannot be obtained. Therefore, it is said that it is important for ensuring the durability of the ceramic matrix composite material that the fibers in the fiber bundle are separated so that the interface layer can be uniformly formed on the fiber surface. In order to solve such a problem, it has been proposed to attach short fibers, powder, or whiskers of a heat-resistant substance to the fiber surface (Patent Documents 1 and 2, Non-Patent Document 2).

特開昭63−59473号公報JP-A-63-59473 特開昭62−299568号公報JP-A-62-299568

J.Am.Ceram. Soc.,83[6] 1441−49(2000)J. et al. Am. Ceram. Soc. , 83 [6] 1441-49 (2000) Mater.Trans.,44[6] 1172−80(2003)Mater. Trans. 44 [6] 1172-80 (2003)

しかしながら、これらの耐熱性物質を繊維表面に付着させることにより、繊維束中の繊維同士の接触は回避できるが、耐熱性物質は、サイジング剤除去工程、界面層形成工程およびマトリックス形成工程においても分解しないため、複合材料中に残存する。特に、界面層形成工程において、耐熱性物質が繊維表面に付着した箇所では、繊維表面には界面層が形成されず、破壊時に繊維のプルアウトが抑制されるため、得られる複合材料が十分な破壊エネルギーを示さない。さらに、耐熱性物質は無機繊維同様に高硬度であり、また異形状でエッジ状の形状もあるため、繊維表面への付着工程、あるいは、繊維を織物等に製織する工程で、ガイド、ローラー等との摩擦により、耐熱性物質が繊維にダメージを与えて繊維強度が低下するため、得られる複合材料の強度も低下する問題があった。   However, by attaching these heat-resistant substances to the fiber surface, it is possible to avoid contact between the fibers in the fiber bundle, but the heat-resistant substances are also decomposed in the sizing agent removal process, interface layer formation process and matrix formation process. Does not remain in the composite material. In particular, in the interface layer forming step, where the heat-resistant substance adheres to the fiber surface, the interface layer is not formed on the fiber surface, and fiber pull-out is suppressed at the time of destruction. Does not show energy. Furthermore, the heat-resistant substance has a high hardness like inorganic fibers, and also has an irregular shape and an edge shape, so in the process of adhering to the fiber surface or the process of weaving the fibers into a woven fabric, guides, rollers, etc. Due to the friction, the heat-resistant substance damages the fiber and the fiber strength is lowered. Therefore, there is a problem that the strength of the obtained composite material is also lowered.

本発明は、このような従来技術の問題に鑑みて、十分な強度と破壊エネルギー、および高温・酸化雰囲気下で応力を受けた際に優れた耐久性を示すセラミックス基複合材料を得るため、複合材料用無機繊維束の製造中の繊維の損傷による繊維強度の低下を抑制し、かつ、複合材料製造中の繊維束中の繊維同士の接触を回避して、繊維の表面全体にマトリックスとの界面層を形成できる繊維束用無機繊維、及びその繊維束用無機繊維から構成される複合材料用無機繊維束、並びにその繊維束で強化されたセラミックス基複合材料を提供することを目的とする。   In view of such problems of the prior art, the present invention provides a ceramic-based composite material exhibiting sufficient strength and fracture energy, and excellent durability when subjected to stress in a high temperature / oxidizing atmosphere. Suppressing the decrease in fiber strength due to fiber damage during production of inorganic fiber bundles for materials, and avoiding contact between fibers in fiber bundles during production of composite materials, and interfacing with the matrix on the entire fiber surface An object of the present invention is to provide an inorganic fiber for a fiber bundle capable of forming a layer, an inorganic fiber bundle for a composite material composed of the inorganic fiber for the fiber bundle, and a ceramic matrix composite material reinforced with the fiber bundle.

本発明者等は、このような条件を満たす複合材料用無機繊維束について鋭意検討した結果、長手方向に蛇行し、特定の蛇行ピッチ、蛇行巾を有し、繊維直径が長手方向に変化しており、特定の最大直径と最小直径の差を有する無機繊維からなる繊維束とすることにより、上記の本発明の目的を達成できることを見出した。   As a result of intensive studies on the inorganic fiber bundles for composite materials satisfying such conditions, the present inventors meandered in the longitudinal direction, had a specific meandering pitch and meandering width, and the fiber diameter changed in the longitudinal direction. The present inventors have found that the object of the present invention can be achieved by forming a fiber bundle composed of inorganic fibers having a difference between a specific maximum diameter and a minimum diameter.

すなわち本発明は、複合材料用無機繊維束を構成する繊維束用無機繊維において、長手方向に蛇行し、蛇行ピッチが3〜40mmであり、蛇行巾が0.1〜5mmであり、直径が長手方向に変化しており、最大直径と最小直径の差が、2〜6μmで、変化のピッチが、10〜200mmであることを特徴する繊維束用無機繊維に関する。   That is, the present invention relates to an inorganic fiber for a fiber bundle constituting an inorganic fiber bundle for a composite material, meandering in the longitudinal direction, a meandering pitch of 3 to 40 mm, a meandering width of 0.1 to 5 mm, and a diameter of The present invention relates to an inorganic fiber for fiber bundles, characterized in that the difference between the maximum diameter and the minimum diameter is 2 to 6 μm and the change pitch is 10 to 200 mm.

また、本発明は、元素組成が、Si:45〜60質量%、Ti又はZr:0.2〜5質量%、C:20〜45質量%、O:0.1〜20.0質量%を含むことを特徴とする前記繊維束用無機繊維に関する。   In the present invention, the elemental composition is Si: 45-60 mass%, Ti or Zr: 0.2-5 mass%, C: 20-45 mass%, O: 0.1-20.0 mass%. It is related with the said inorganic fiber for fiber bundles characterized by including.

また、本発明は、密度が2.7g/cm以上、引張強度が2GPa以上、弾性率が250GPa以上であり、Si:50〜70質量%、C:28〜45質量%、Al:0.06〜3.8質量%及びB:0.06〜0.5質量%を含み、SiCの焼結構造からなる結晶性炭化ケイ素繊維であることを特徴とする前記繊維束用無機繊維に関する。 Further, the present invention has a density of 2.7 g / cm 3 or more, a tensile strength of 2 GPa or more, and an elastic modulus of 250 GPa or more, Si: 50 to 70% by mass, C: 28 to 45% by mass, Al: 0.00. The present invention relates to the inorganic fiber for fiber bundles, characterized in that it is a crystalline silicon carbide fiber comprising 06 to 3.8% by mass and B: 0.06 to 0.5% by mass and having a sintered structure of SiC.

また、本発明は、前記繊維束用無機繊維から構成される複合材料用無機繊維束に関する。   Moreover, this invention relates to the inorganic fiber bundle for composite materials comprised from the said inorganic fiber for fiber bundles.

また、本発明は、前記複合材料用無機繊維束を強化繊維とし、セラミックスをマトリックスとすることを特徴とするセラミックス基複合材料に関する。   The present invention also relates to a ceramic matrix composite material characterized in that the inorganic fiber bundle for composite material is a reinforcing fiber and ceramic is a matrix.

また、本発明は、前記複合材料用無機繊維束の形態が2次元若しくは3次元織物又は一方向シート状物、又はそれらの積層物であることを特徴とする前記セラミックス基複合材料に関する。   In addition, the present invention relates to the ceramic matrix composite material, wherein the inorganic fiber bundle for composite material is a two-dimensional or three-dimensional fabric, a unidirectional sheet-like material, or a laminate thereof.

本発明に係る繊維束用無機繊維から構成される複合材料用無機繊維束は、無機繊維束中の繊維にダメージを与えることなく繊維同士の接触を回避して、各繊維の表面全体に界面層を形成できるため、本発明に係る複合材料用無機繊維束を用いることにより十分な強度と破壊エネルギー、および高温・酸化雰囲気下で応力を受けた際に優れた耐久性を示すセラミックス基複合材料を得ることができる。   The inorganic fiber bundle for composite materials composed of inorganic fibers for fiber bundles according to the present invention avoids contact between fibers without damaging the fibers in the inorganic fiber bundle, and an interfacial layer on the entire surface of each fiber By using the inorganic fiber bundle for composite materials according to the present invention, a ceramic matrix composite material exhibiting sufficient strength and fracture energy and excellent durability when subjected to stress in a high temperature / oxidizing atmosphere. Can be obtained.

本発明に係る繊維束用無機繊維の蛇行ピッチ、蛇行巾を示す光学顕微鏡写真である。It is an optical microscope photograph which shows the meander pitch and meander width of the inorganic fiber for fiber bundles which concerns on this invention. 繊維長手方向の直径の変化の測定結果の一例である。It is an example of the measurement result of the change of the diameter of a fiber longitudinal direction. (a)実施例1、(b)比較例1、(c)実施例2、(d)比較例2、(e)実施例3、(f)比較例3の各繊維束の断面の光学顕微鏡写真である。(A) Example 1, (b) Comparative example 1, (c) Example 2, (d) Comparative example 2, (e) Example 3, (f) Optical microscope of the cross section of each fiber bundle of Comparative example 3 It is a photograph.

本発明に係る繊維束用無機繊維は、耐熱性、耐酸化性から炭化ケイ素系繊維が好ましい。本発明に係る繊維束用無機繊維は、長手方向に蛇行し、蛇行ピッチが、3〜40mm、好ましくは5〜15mmであり、蛇行巾が0.1〜5mmで、好ましくは0.2〜2mmで、直径が長手方向に変化しており、最大直径と最小直径の差が、2〜6μmで、さらに好ましくは、3〜5μmであり、変化のピッチが、10〜200mmで、さらに好ましくは、30〜150mmとすることにより、繊維束を構成した場合、繊維束中の各繊維間に繊維直径の変化による空間ができ、繊維束中の繊維同士の接触をほぼ回避することができ、繊維の表面全体にマトリックスとの界面層を形成できる。蛇行ピッチが3mm未満では、複合材料中の繊維束の配向方向に対し、各繊維の蛇行による配向の偏位が大きくなり、繊維強度が有効に作用せず、複合材料の力学特性を低下させるため、好ましくない。蛇行ピッチが40mmより大きくなると、蛇行による空間が不十分になり、繊維束中の繊維同士の接触が増加し、好ましくない。蛇行巾が0.1mmより小さくなると蛇行による空間が不十分になり、繊維束中の繊維同士の接触が増加し、好ましくない。蛇行巾が5mmより大きくなると、複合材料中の繊維束の配向方向に対し、各繊維の蛇行による配向の偏位が大きくなり、繊維強度が有効に作用せず、複合材料の力学特性を低下させるため、好ましくない。最大直径と最小直径の差が、2μm未満では、繊維直径の変化による空間が不十分になり、繊維束中の繊維同士の接触が増加し、好ましくない。また、繊維強度は、最小径部に依存するため、最大直径と最小直径の差が、6μmより大きくなると、最小径部が小さくなって、低荷重で破断するため、複合材料の力学特性を低下させ、好ましくない。炭化ケイ素系繊維の平均直径は、11〜20μm、さらに好ましくは、13〜17μmが好ましい。11μmより細くなると、繊維直径に対する、直径の長手方向の変化が大きくなりすぎ、繊維強度が低下する。20μmより大きくなると、繊維のしなやかさが損なわれ、繊維束の製織等の加工が困難になる。   The inorganic fiber for a fiber bundle according to the present invention is preferably a silicon carbide fiber in view of heat resistance and oxidation resistance. The inorganic fiber for a fiber bundle according to the present invention meanders in the longitudinal direction, the meandering pitch is 3 to 40 mm, preferably 5 to 15 mm, and the meandering width is 0.1 to 5 mm, preferably 0.2 to 2 mm. And the difference between the maximum diameter and the minimum diameter is 2 to 6 μm, more preferably 3 to 5 μm, and the pitch of the change is 10 to 200 mm, more preferably, When the fiber bundle is configured by setting the fiber bundle to 30 to 150 mm, a space is formed between the fibers in the fiber bundle due to a change in the fiber diameter, and contact between the fibers in the fiber bundle can be substantially avoided. An interface layer with the matrix can be formed on the entire surface. When the meandering pitch is less than 3 mm, the deviation of orientation due to meandering of each fiber increases with respect to the orientation direction of the fiber bundle in the composite material, and the fiber strength does not act effectively, thereby reducing the mechanical properties of the composite material. It is not preferable. When the meandering pitch is larger than 40 mm, the space due to meandering becomes insufficient, and contact between fibers in the fiber bundle increases, which is not preferable. If the meandering width is less than 0.1 mm, the space due to meandering becomes insufficient, and the contact between the fibers in the fiber bundle increases, which is not preferable. When the meandering width is larger than 5 mm, the deviation of orientation due to meandering of each fiber increases with respect to the orientation direction of the fiber bundle in the composite material, the fiber strength does not act effectively, and the mechanical properties of the composite material are deteriorated. Therefore, it is not preferable. If the difference between the maximum diameter and the minimum diameter is less than 2 μm, the space due to the change in the fiber diameter becomes insufficient, and contact between the fibers in the fiber bundle increases, which is not preferable. In addition, since the fiber strength depends on the minimum diameter part, if the difference between the maximum diameter and the minimum diameter is larger than 6 μm, the minimum diameter part becomes small and breaks at a low load, thus lowering the mechanical properties of the composite material. It is not preferable. The average diameter of the silicon carbide fiber is preferably 11 to 20 μm, more preferably 13 to 17 μm. When it becomes thinner than 11 μm, the change in the longitudinal direction of the diameter with respect to the fiber diameter becomes too large, and the fiber strength is lowered. When it is larger than 20 μm, the flexibility of the fiber is impaired, and processing such as weaving of the fiber bundle becomes difficult.

ここで、本発明に係る繊維束用無機繊維において、長手方向に蛇行とは、繊維が蛇行しながら延びた状態をいい、蛇行ピッチとは、延長方向に繰り返される山と谷のうち、互いに隣接する山と山又は谷と谷の頂点間の延長方向の距離をいい、蛇行巾とは、延長方向に繰り返される山と谷のうち、任意の山とそれに隣接する谷の頂点間の延長方向に対する垂直方向(巾方向)の距離をいう。この蛇行ピッチは、図1に示すように光学顕微鏡で1本の繊維を長手方向に連続的に撮影し、その光学顕微鏡写真から任意の山と隣接する谷の頂点の間の延長方向の距離を測定し、その10本の平均値を2倍することによって求めることができる。また、蛇行巾は、同様に光学顕微鏡から任意の山と隣接する谷の頂点の間の巾方向の距離を測定し、その10本の平均値から求めることができる。   Here, in the inorganic fiber for a fiber bundle according to the present invention, the meandering in the longitudinal direction means a state in which the fibers extend while meandering, and the meandering pitch is adjacent to each other among peaks and troughs repeated in the extending direction. The meandering width is the distance between the peaks of a mountain and a valley or the peak of a valley and a valley. This is the distance in the vertical direction (width direction). As shown in FIG. 1, this meandering pitch is obtained by continuously photographing a single fiber in the longitudinal direction with an optical microscope, and measuring the distance in the extension direction between an arbitrary peak and the apex of an adjacent valley from the optical microscope photograph. It can be determined by measuring and doubling the 10 average values. Similarly, the meandering width can be obtained from an average value of 10 measured distances in the width direction between an arbitrary peak and the apex of the adjacent valley from an optical microscope.

ここで、本発明に係る繊維束用無機繊維において、最大直径と最小直径の差は、光学顕微鏡で長さ300mmの5本の繊維をそれぞれ長手方向に10mm間隔で撮影し、その光学顕微鏡写真から繊維径を測定し、それぞれの繊維の最大値と最小値の差を求め、その平均値から求めることができる。変化のピッチは、それぞれの繊維について、測定箇所の繊維径が両側の繊維径より大きい箇所間の間隔の平均値を求め、その平均値から求められる。   Here, in the inorganic fiber for a fiber bundle according to the present invention, the difference between the maximum diameter and the minimum diameter was obtained by photographing five fibers having a length of 300 mm with an optical microscope at intervals of 10 mm in the longitudinal direction. The fiber diameter is measured, the difference between the maximum value and the minimum value of each fiber is obtained, and the average value can be obtained. The change pitch is obtained from the average value of the distances between the portions where the fiber diameter at the measurement location is larger than the fiber diameters on both sides for each fiber.

本発明に係る繊維束用無機繊維は、元素組成が、Si:45〜60質量%、Ti又はZr:0.2〜5質量%、C:20〜45質量%、O:0.1〜20.0質量%を含むことが好ましい。このような炭化ケイ素系繊維としては、宇部興産(株)製のZMI繊維、LoxM繊維(登録商標)がある。Ti又はZrを添加することにより、耐熱性が改善され、特にZrを添加することにより耐酸化性、アルカリ性も改善することができる。この繊維束用無機繊維から構成される複合材料用無機繊維束を強化繊維とすることにより、優れた特性のセラミックス基複合材料が得られる。   The inorganic fiber for a fiber bundle according to the present invention has an element composition of Si: 45-60 mass%, Ti or Zr: 0.2-5 mass%, C: 20-45 mass%, O: 0.1-20. It is preferable to contain 0.0 mass%. Examples of such silicon carbide fibers include ZMI fiber and LoxM fiber (registered trademark) manufactured by Ube Industries, Ltd. By adding Ti or Zr, the heat resistance is improved, and in particular by adding Zr, the oxidation resistance and alkalinity can also be improved. By using the inorganic fiber bundle for composite material composed of the inorganic fiber for fiber bundle as a reinforcing fiber, a ceramic matrix composite material having excellent characteristics can be obtained.

また、本発明に係る繊維束用無機繊維は、密度が2.7g/cm以上、引張強度が2GPa以上、弾性率が250GPa以上であり、Si:50〜70質量%、C:28〜45質量%、Al:0.06〜3.8質量%、好ましくは0.13〜1.25質量%、及びB:0.06〜0.5質量%、好ましくは0.06〜0.19質量%を含み、SiCの焼結構造からなる結晶性炭化ケイ素繊維であることが好ましい。このような結晶性炭化ケイ素繊維としては、宇部興産(株)製のSA繊維(登録商標)がある。アルミニウムの割合が過度に少ないと、結晶性炭化ケイ素繊維の耐アルカリ性が低下し、その割合が過度に高くなると高温における力学的特性が低下するようになる。ホウ素の割合が過度に少ないと、充分に焼結した結晶性繊維とならず、繊維の密度が低下するようになり、逆に、その割合が過度に高いと、繊維の耐アルカリ性が低下するようになる。結晶性とすることにより得られる優れた耐熱性と高い強度及び弾性率、さらにアルミニウムの存在により、優れた耐アルカリ性を示す、結晶性炭化ケイ素繊維が得られ、この繊維束用無機繊維から構成される複合材料用無機繊維束を強化繊維とすることにより、優れた特性のセラミックス基複合材料が得られる。 The inorganic fiber for a fiber bundle according to the present invention has a density of 2.7 g / cm 3 or more, a tensile strength of 2 GPa or more, and an elastic modulus of 250 GPa or more, Si: 50 to 70% by mass, C: 28 to 45. % By mass, Al: 0.06 to 3.8% by mass, preferably 0.13 to 1.25% by mass, and B: 0.06 to 0.5% by mass, preferably 0.06 to 0.19% by mass It is preferable that it is a crystalline silicon carbide fiber containing a sintered structure of SiC. As such crystalline silicon carbide fiber, there is SA fiber (registered trademark) manufactured by Ube Industries, Ltd. When the proportion of aluminum is excessively small, the alkali resistance of the crystalline silicon carbide fiber is lowered, and when the proportion is excessively high, mechanical properties at high temperatures are lowered. If the proportion of boron is too small, it will not be a sufficiently sintered crystalline fiber, and the density of the fiber will decrease, conversely, if the proportion is too high, the alkali resistance of the fiber will decrease. become. Crystalline silicon carbide fibers exhibiting excellent alkali resistance due to excellent heat resistance and high strength and elastic modulus obtained by making them crystalline, and excellent presence of aluminum are obtained, and are composed of inorganic fibers for this fiber bundle. By using the inorganic fiber bundle for composite materials as reinforcing fibers, a ceramic-based composite material having excellent characteristics can be obtained.

本発明に係る繊維束用無機繊維の製造方法は、有機ケイ素重合体を紡糸する紡糸工程と、得られた紡糸繊維を酸化性雰囲気中での熱処理あるいは電子線照射により不融化する不融化工程と、得られた不融化繊維を不活性雰囲気あるいは還元性雰囲気中で焼成する焼成工程とを備える。   The method for producing an inorganic fiber for a fiber bundle according to the present invention includes a spinning step of spinning an organosilicon polymer, and an infusibilization step of insolubilizing the obtained spun fiber by heat treatment in an oxidizing atmosphere or electron beam irradiation. And a firing step of firing the obtained infusible fiber in an inert atmosphere or a reducing atmosphere.

紡糸工程は、先ず、カルボシラン(−Si−CH2−)結合単位、及びポリシラン(−Si−Si−)結合単位から主としてなり、ケイ素の側鎖に水素原子、低級アルキル基、アリール基、フェニル基及びシリル基からなる群から選択される基を有する有機ケイ素重合体に、Ti又はZrのアルコキシド、アセチルアセトキシ化合物、カルボニル化合物、シクロペンタジエニル化合物及びアミン化合物からなる群から選択される化合物を加熱反応してTi又はZr含有有機ケイ素重合体を調製する。次いで、このTi又はZr含有有機ケイ素重合体を溶融紡糸することによって行なわれる。この紡糸時の速度を100〜300m/分とすることが好ましい。さらに好ましくは、紡糸ノズルにポリマーを供給するギアポンプに、突出の脈動の大きなポンプの選択や、回転数を周期的に変化させることにより、紡糸ノズルに供給するポリマー量を変動させることにより、紡糸の過程で、繊維の直径を長手方向に変化させることができる。300m/分より早くすると、紡糸時の繊維にかかる張力が高くなって、直径の変化が小さくなり、好ましくない。100m/分より遅くすると、直径の変化が大きくなり、生産性も低下するため、好ましくない。 The spinning process first comprises a carbosilane (—Si—CH 2 —) bond unit and a polysilane (—Si—Si—) bond unit, and a hydrogen atom, lower alkyl group, aryl group, phenyl group on the side chain of silicon. And an organosilicon polymer having a group selected from the group consisting of silyl groups, and heating a compound selected from the group consisting of an alkoxide of Ti or Zr, an acetylacetoxy compound, a carbonyl compound, a cyclopentadienyl compound, and an amine compound A Ti or Zr-containing organosilicon polymer is prepared by reaction. Next, this Ti or Zr-containing organosilicon polymer is melt-spun. The spinning speed is preferably 100 to 300 m / min. More preferably, for the gear pump that supplies the polymer to the spinning nozzle, a pump with a large pulsation of protrusion is selected, and the amount of polymer supplied to the spinning nozzle is varied by periodically changing the rotation speed. In the process, the fiber diameter can be changed in the longitudinal direction. If it is faster than 300 m / min, the tension applied to the fiber during spinning becomes high and the change in diameter becomes small, which is not preferable. If it is slower than 100 m / min, the change in diameter becomes large and the productivity is also lowered, which is not preferable.

不融化工程は、例えば、得られた紡糸繊維を不融化することによって行なわれる。不融化は、それ自体公知の方法を採用でき、酸化性雰囲気中での不融化温度は、50〜300℃で行われ、電子線照射は、2〜4MVの加速電圧で、2〜15KGy/秒dose、10〜20MGydoseで行われる。   The infusibilization step is performed, for example, by infusibilizing the obtained spun fiber. For infusibility, a method known per se can be adopted, the infusibility temperature in an oxidizing atmosphere is 50 to 300 ° C., and the electron beam irradiation is 2 to 4 MV at an acceleration voltage of 2 to 15 KGy / sec. dose, 10-20 MGydose.

焼成工程は、得られた不融化繊維を、不活性雰囲気中で、好ましくは1100〜1600℃の範囲において、繊維に張力を掛けずにおこなわれる。それによって、繊維を長手方向に蛇行させることができる。繊維に張力を掛けないようにするとは、不融化繊維が焼成時に無機化する過程で、重量減少と繊維の径方向と長手方向に収縮して体積収縮を伴うが、体積収縮を拘束しないようにすることである。これにより、不融化繊維が無機化する過程で、長手方向に繊維を蛇行させることができる。この焼成過程では、上記の、紡糸の工程で導入された、直径の長手方向に変化は、相似形で変化するため、ほぼ維持することができ、前記の蛇行ピッチ、蛇行巾、及び、最大直径と最小直径の差と変化のピッチを有する繊維束用無機繊維を提供できる。   The firing step is performed on the obtained infusible fiber in an inert atmosphere, preferably in the range of 1100 to 1600 ° C. without applying tension to the fiber. Thereby, the fibers can be meandered in the longitudinal direction. In order not to apply tension to the fiber, in the process in which the infusibilized fiber is mineralized during firing, the fiber shrinks in the radial direction and the longitudinal direction of the fiber in order to reduce the weight. It is to be. Thereby, a fiber can meander in a longitudinal direction in the process in which an infusible fiber mineralizes. In this firing process, the change in the longitudinal direction of the diameter introduced in the spinning step described above changes in a similar shape, so it can be almost maintained, and the meandering pitch, meandering width, and maximum diameter can be maintained. And a fiber bundle inorganic fiber having a minimum diameter difference and a changing pitch.

焼成時に繊維に張力を掛けずにおこなう方法としては、紡糸をケンス方式で行い、所定長さ(通常は、500〜1000m)を直径20〜50cmの円形状にトレイ上に紡糸し、これを酸化性雰囲気中での熱処理、あるいは電子線照射により不融化を行う。次いで、バッチ方式の焼成炉、あるいは、不融化繊維がセットされた複数のトレイを連続的に焼成できるプッシャータイプの焼成炉を使用して、不活性雰囲気中で焼成することにより達成される。   As a method of carrying out without applying tension to the fiber at the time of firing, spinning is carried out by a cans method, a predetermined length (usually 500 to 1000 m) is spun into a circular shape with a diameter of 20 to 50 cm on a tray, and this is oxidized. Infusibilization is performed by heat treatment in a neutral atmosphere or electron beam irradiation. Next, this is achieved by firing in an inert atmosphere using a batch-type firing furnace or a pusher-type firing furnace capable of continuously firing a plurality of trays on which infusibilized fibers are set.

あるいは、紡糸をドラムに連続的に巻き取る方式で行い、その後トレイに所定長さ(通常は、500〜1000m)を直径20〜50cmの円形状に垂下した後、不融化を行う。または、不融化した後、トレイに所定長さ(通常は、500〜1000m)を直径20〜50cmの円形状に垂下する。その後、前記と同様に、バッチ方式の焼成炉、あるいは、不融化繊維がセットされた複数のトレイを連続的に焼成できるプッシャータイプの焼成炉を使用して、不活性雰囲気中で焼成してもよい。   Alternatively, the spinning is continuously wound around a drum, and then a predetermined length (usually 500 to 1000 m) is suspended in a circular shape having a diameter of 20 to 50 cm on a tray and then infusibilized. Alternatively, after infusibilization, a predetermined length (usually 500 to 1000 m) is suspended in a circular shape having a diameter of 20 to 50 cm on the tray. After that, similarly to the above, it may be fired in an inert atmosphere using a batch-type firing furnace or a pusher-type firing furnace capable of continuously firing a plurality of trays in which infusible fibers are set. Good.

本発明に係る繊維束用無機繊維は、不活性雰囲気中の焼成後、ボビンに巻き替え、複合材料用無機繊維束として実用に供することができる。この際、繊維束のハンドリング性向上のため、樹脂性サイジング剤を溶解させた、水、有機溶媒又は両者の混合液に浸漬し、乾燥させながら巻き取ることが好ましい。   The inorganic fiber for a fiber bundle according to the present invention can be practically used as an inorganic fiber bundle for a composite material after being fired in an inert atmosphere and wound around a bobbin. At this time, in order to improve the handleability of the fiber bundle, it is preferable to immerse in water, an organic solvent or a mixture of both in which a resinous sizing agent is dissolved and wind it while drying.

樹脂性サイジング剤としては、それ自体公知の樹脂を全て使用することができ、その具体例としては、ポバール樹脂、ポリエチレンオキサイド、エポキシ樹脂、変性エポキシ樹脂、ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、シリコン樹脂、フェノキシ樹脂、ポリフェニレンサルファイド、フッ素樹脂、炭化水素系樹脂、含ハロゲン系樹脂、アクリル酸系樹脂及びABS樹脂が挙げられる。特に、ポバール樹脂、ポリエチレンオキサイドは、市販されている無機繊維に使用されており、特に好ましい。付着量としては、特に、制限はないが、無機繊維に対して、0.01〜10質量%、特に、0.1〜5質量%が好ましい。0.01質量%未満では、繊維束が収束せず、10質量%より多くしても収束の程度は変わらず、サイジング剤を無駄に使用することになる。   As the resinous sizing agent, all known resins can be used. Specific examples thereof include poval resin, polyethylene oxide, epoxy resin, modified epoxy resin, polyester resin, polyimide resin, phenol resin, polyurethane resin. , Polyamide resin, polycarbonate resin, silicon resin, phenoxy resin, polyphenylene sulfide, fluorine resin, hydrocarbon resin, halogen-containing resin, acrylic acid resin, and ABS resin. In particular, poval resin and polyethylene oxide are used for commercially available inorganic fibers, and are particularly preferable. Although there is no restriction | limiting in particular as an adhesion amount, 0.01-10 mass% with respect to inorganic fiber, Especially 0.1-5 mass% is preferable. If it is less than 0.01% by mass, the fiber bundle does not converge, and if it exceeds 10% by mass, the degree of convergence does not change and the sizing agent is used wastefully.

また、本発明に係る繊維束用無機繊維が、前記SiCの焼結構造からなる結晶性炭化ケイ素繊維である場合、繊維束用無機繊維は、Alを0.05〜3質量%、Bを0.05〜0.4質量%、及び余剰の炭素を1〜3質量%含有し、前記の最大直径と最小直径の差と変化のピッチを有する非晶質炭化ケイ素系繊維を1600〜2100℃の範囲内の温度及び不活性雰囲気中で張力を掛けずに焼成処理し、結晶化させることによって得ることができる。繊維に張力を掛けないようにするとは、非晶質炭化ケイ素系繊維が加熱時に結晶化する過程で、重量減少と繊維の径方向と長手方向に収縮して体積収縮を伴うが、体積収縮を拘束しないようにすることである。これにより、前記の蛇行ピッチ、蛇行巾、及び、最大直径と最小直径の差と変化のピッチを有する結晶性炭化ケイ素繊維を提供できる。前記非晶質炭化ケイ素系繊維は、酸素を8〜16質量%含むことが好ましい。非晶質炭化ケイ素系繊維を加熱する際に、この酸素は前述の余剰の炭素をCOガスとして脱離させ、SiとCの比をSiCの化学量論比に近づけて、結晶性炭化ケイ素繊維を得ることができる。   When the inorganic fiber for a fiber bundle according to the present invention is a crystalline silicon carbide fiber having a sintered structure of SiC, the inorganic fiber for a fiber bundle has 0.05 to 3% by mass of Al and 0% of B. 0.05 to 0.4% by mass, and 1 to 2% by mass of surplus carbon, and an amorphous silicon carbide fiber having a difference between the maximum diameter and the minimum diameter and a pitch of change is 1600 to 2100 ° C. It can be obtained by baking and crystallizing without applying tension in a temperature and in an inert atmosphere within the range. In order not to apply tension to the fiber, the process of crystallizing amorphous silicon carbide fiber during heating causes weight loss and shrinkage in the radial and longitudinal directions of the fiber, accompanied by volume shrinkage. It is to avoid restraint. Thereby, the crystalline silicon carbide fiber having the meandering pitch, the meandering width, and the difference between the maximum diameter and the minimum diameter and the change pitch can be provided. The amorphous silicon carbide fiber preferably contains 8 to 16% by mass of oxygen. When heating the amorphous silicon carbide fiber, this oxygen desorbs the above-mentioned excess carbon as CO gas, and brings the ratio of Si and C close to the stoichiometric ratio of SiC, so that the crystalline silicon carbide fiber Can be obtained.

この非晶質炭化ケイ素系繊維は、例えば、以下のような方法で調製することができる。まず、例えば、「有機ケイ素化合物の化学」化学同人(1972年)に記載の方法に従って、1種類以上のジクロロシランをナトリウムによって脱塩素反応させて鎖状又は環状のポリシランを調製する。ポリシランの数平均分子量は通常300〜1000である。本明細書において、ポリシランは、上記の鎖状又は環状のポリシランを400〜700℃の範囲の温度に加熱することにより、あるいは上記の鎖状又は環状のポリシランにフェニル基含有ポリボロシロキサンを添加して250〜500℃の範囲の温度に加熱することによって得られる、一部にカルボシラン結合を有するポリシランも包含する。ポリシランは、ケイ素の側鎖として、水素原子、低級アルキル基、アリール基、フェニル基あるいはシリル基を有することができる。   This amorphous silicon carbide fiber can be prepared, for example, by the following method. First, for example, according to the method described in “Chemistry of Organosilicon Compounds” Chemistry Dojin (1972), one or more dichlorosilanes are dechlorinated with sodium to prepare a linear or cyclic polysilane. The number average molecular weight of polysilane is usually 300-1000. In this specification, the polysilane is obtained by heating the chain or cyclic polysilane to a temperature in the range of 400 to 700 ° C., or adding a phenyl group-containing polyborosiloxane to the chain or cyclic polysilane. Also included is a polysilane partially having a carbosilane bond obtained by heating to a temperature in the range of 250 to 500 ° C. The polysilane can have a hydrogen atom, a lower alkyl group, an aryl group, a phenyl group or a silyl group as a side chain of silicon.

次いで、ポリシランに対して、アルミニウムのアルコキシド、アセチルアセトキシド化合物、カルボニル化合物、又はシクロペンタジエニル化合物の所定量を添加し、不活性ガス中、通常250〜350℃の範囲の温度で1〜10時間反応することにより、紡糸原料であるアルミニウム含有有機ケイ素重合体を調製する。アルミニウムの化合物の使用量は、ポリシラン1g当たり、通常0.14〜0.86ミリモルである。   Next, a predetermined amount of aluminum alkoxide, acetylacetoxide compound, carbonyl compound, or cyclopentadienyl compound is added to polysilane, and 1 to 10 at a temperature usually in the range of 250 to 350 ° C. in an inert gas. By reacting for a time, an aluminum-containing organosilicon polymer that is a raw material for spinning is prepared. The amount of the aluminum compound used is usually 0.14 to 0.86 mmol per 1 g of polysilane.

アルミニウム含有有機ケイ素重合体を、溶融紡糸により紡糸繊維を調製する。この紡糸時の速度を100〜300m/分とすることが好ましい。さらに好ましくは、紡糸ノズルにポリマーを供給するギアポンプに、突出の脈動の大きなポンプの選択や、回転数を周期的に変化させることにより、紡糸ノズルに供給するポリマー量を変動させることにより、紡糸の過程で、繊維の直径を長手方向に変化させることができる。300m/分より早くすると、紡糸時の繊維にかかる張力が高くなって、直径の変化が小さくなり、好ましくない。100m/分より遅くすると、直径の変化が大きくなり、生産性も低下するため、好ましくない。次に、この紡糸繊維を酸化性雰囲気で不融化処理して不融化繊維を調製し、次いで、窒素、アルゴンのような不活性ガス中、1100〜1600℃の範囲の温度で焼成して、非晶質炭化ケイ素系繊維が調製される。本焼成と、これに続く、前記した1600〜2100℃の範囲内の温度及び不活性雰囲気中で焼成する過程で重量減少と体積減少を伴うが、紡糸の過程で導入された、直径の長手方向に変化は、相似形で変化するため、ほぼ維持することができる。   A spun fiber is prepared by melt spinning an aluminum-containing organosilicon polymer. The spinning speed is preferably 100 to 300 m / min. More preferably, for the gear pump that supplies the polymer to the spinning nozzle, a pump with a large pulsation of protrusion is selected, and the amount of polymer supplied to the spinning nozzle is varied by periodically changing the rotation speed. In the process, the fiber diameter can be changed in the longitudinal direction. If it is faster than 300 m / min, the tension applied to the fiber during spinning becomes high and the change in diameter becomes small, which is not preferable. If it is slower than 100 m / min, the change in diameter becomes large and the productivity is also lowered, which is not preferable. Next, the spinning fiber is infusibilized in an oxidizing atmosphere to prepare an infusible fiber, and then fired in an inert gas such as nitrogen or argon at a temperature in the range of 1100 to 1600 ° C. A crystalline silicon carbide based fiber is prepared. In the longitudinal direction of the diameter, which is accompanied by weight reduction and volume reduction during the main firing and the subsequent firing in an inert atmosphere at a temperature in the range of 1600 to 2100 ° C., which was introduced in the spinning process. Since the change changes in a similar manner, it can be almost maintained.

本発明に係るセラミックス基複合材料は、上記のようにして得られた複合材料用無機繊維束を強化繊維とし、セラミックスをマトリックスとすることを特徴とする。この複合材料用無機繊維束の形態には特に制限はなく、平織、朱子織等の2次元若しくは3次元織物又は一方向シート状物、又はそれらの積層物であってもよい。複合材料中の無機繊維の体積率については特別の制限はないが、10〜50%が一般的である。   The ceramic matrix composite material according to the present invention is characterized in that the inorganic fiber bundle for composite material obtained as described above is used as a reinforcing fiber and ceramic is used as a matrix. There is no restriction | limiting in particular in the form of this inorganic fiber bundle for composite materials, Two-dimensional or three-dimensional textiles, such as a plain weave and a satin weave, a one-way sheet-like thing, or those laminated bodies may be sufficient. Although there is no special restriction | limiting about the volume ratio of the inorganic fiber in a composite material, 10 to 50% is common.

複合化方法としては、特に制限はないが、無機繊維を製織したプリフォームに、界面層として窒化ホウ素、あるいは炭素を被覆させた後、セラミックスの前駆体重合体、たとえば、ポリカルボシラン、ポリメタロカルボシラン、ポリシラザン等をキシレン等の溶媒に溶解させた溶液に含浸・乾燥した後に加熱焼成することにより複合化を行うポリマー含浸・焼成法、マトリックスの原料粉末のスラリーを含浸し、ホットプレス等により高温で加圧焼結する方法、マトリックス元素のアルコキシドを原料にしたゾルゲル法、又は高温で反応ガスの反応によりマトリックスを形成させる化学気相蒸着法、及び高温で溶融金属を含浸させ反応によりセラミックス化させる反応焼結法が利用できる。また、化学気相蒸着法でマトリックスの一部を形成させた後、残りの空間を反応焼結法やポリマー含浸・焼成法により緻密化する方法もある。   The composite method is not particularly limited, but after coating a preform woven with inorganic fibers with boron nitride or carbon as an interface layer, a ceramic precursor polymer such as polycarbosilane, polymetallocarbohydrate, etc. A polymer impregnation / firing method in which silane, polysilazane, etc. are dissolved in a solvent such as xylene, impregnated and dried, and then heated and fired to form a composite, impregnated with a slurry of matrix raw material powder, and hot press etc. Pressure-sintering method, sol-gel method using matrix element alkoxide as raw material, chemical vapor deposition method that forms matrix by reaction of reaction gas at high temperature, and impregnation with molten metal at high temperature to make ceramic by reaction A reaction sintering method can be used. There is also a method in which a part of the matrix is formed by chemical vapor deposition and then the remaining space is densified by reaction sintering or polymer impregnation / firing.

本発明のセラミックスマトリックスとしては、結晶質又は非晶質の酸化物セラミックス、結晶質又は非晶質の非酸化物セラミックス、ガラス、結晶化ガラス、これらの混合物、これらのセラミックスを粒子分散したものが好ましい。   The ceramic matrix of the present invention includes crystalline or amorphous oxide ceramics, crystalline or amorphous non-oxide ceramics, glass, crystallized glass, a mixture thereof, and those obtained by dispersing these ceramic particles. preferable.

酸化物セラミックスの具体例としては、アルミニウム、マグネシウム、ケイ素、イットリウム、インジウム、ウラン、カルシウム、スカンジウム、タンタル、ニオブ、ネオジウム、ランタン、ルテニウム、ロジウム、ベリリウム、チタン、錫、ストロンチウム、バリウム、亜鉛、ジルコニウム、鉄のような元素の酸化物、これら金属の複合酸化物が挙げられる。   Specific examples of oxide ceramics include aluminum, magnesium, silicon, yttrium, indium, uranium, calcium, scandium, tantalum, niobium, neodymium, lanthanum, ruthenium, rhodium, beryllium, titanium, tin, strontium, barium, zinc, zirconium. And oxides of elements such as iron and complex oxides of these metals.

非酸化物セラミックスの具体例としては、炭化物、窒化物、硼化物を挙げることができる。炭化物の具体例としては、ケイ素、チタン、ジルコニウム、アルミニウム、ウラン、タングステン、タンタル、ハフニウム、ホウ素、鉄、マンガンのような元素の炭化物、これら元素の複合炭化物が挙げられる。この複合炭化物の例としては、ポリチタノカルボシラン又はポリジルコノカルボシランを加熱焼成して得られる無機物が挙げられる。窒化物の具体例としては、ケイ素、ホウ素、アルミニウム、マグネシウム、モリブデン等の元素の窒化物、これらの元素の複合酸化物、サイアロンが挙げられる。硼化物の具体例としては、チタン、イットリウム、ランタンのような元素の硼化物、CeCoB、CeCo、ErRhのような硼化白金族ランタノイドが挙げられる。 Specific examples of non-oxide ceramics include carbides, nitrides and borides. Specific examples of the carbide include carbides of elements such as silicon, titanium, zirconium, aluminum, uranium, tungsten, tantalum, hafnium, boron, iron, and manganese, and composite carbides of these elements. Examples of this composite carbide include inorganic substances obtained by heating and baking polytitanocarbosilane or polyzirconocarbosilane. Specific examples of nitrides include nitrides of elements such as silicon, boron, aluminum, magnesium, and molybdenum, composite oxides of these elements, and sialon. Specific examples of borides include borides of elements such as titanium, yttrium, and lanthanum, and platinum boride lanthanoids such as CeCoB 2 , CeCo 4 B 4 , and ErRh 4 B 4 .

ガラスの具体例としては、ケイ酸塩ガラス、リン酸塩ガラス、ホウ酸塩ガラスのような非晶質ガラスが挙げられる。結晶化ガラスの具体例としては、主結晶相がβ−スプジューメンであるLiO−Al−MgO−SiO系ガラス及びLiO−Al−MgO−SiO−Nb系ガラス、主結晶相がコージェライトであるMgO−Al−SiO系ガラス、主結晶相がバリウムオスミライトであるBaO−MgO−Al−SiO系ガラス、主結晶相がムライト又はヘキサセルシアンであるBaO−Al−SiO系ガラス、主結晶相がアノーサイトであるCaO−Al−SiO系ガラスが挙げられる。これらの結晶化ガラスの結晶相にはクリストバライトが含まれることがある。本発明におけるセラミックスとして、上記の各種セラミックスの固溶体を挙げることができる。 Specific examples of the glass include amorphous glass such as silicate glass, phosphate glass, and borate glass. Specific examples of the crystallized glass include LiO 2 —Al 2 O 3 —MgO—SiO 2 glass and LiO 2 —Al 2 O 3 —MgO—SiO 2 —Nb 2 O 5 whose main crystal phase is β-spudene. system glass, the main crystal phase MgO-Al 2 O 3 -SiO 2 based glass is cordierite, the main crystal phase is barium male solid light BaO-MgO-Al 2 O 3 -SiO 2 based glass, the main crystalline phase Examples thereof include BaO—Al 2 O 3 —SiO 2 based glass that is mullite or hexacelsian, and CaO—Al 2 O 3 —SiO 2 based glass whose main crystal phase is anorthite. The crystal phase of these crystallized glasses may contain cristobalite. Examples of the ceramic in the present invention include solid solutions of the above-mentioned various ceramics.

セラミックスを粒子分散強化したものの具体例としては、上記のセラミックスマトリックス中に、窒化ケイ素、炭化ケイ素、酸化ジルコニウム、酸化マグネシウム、チタン酸カリウム、硼酸マグネシウム、酸化亜鉛、硼化チタン及びムライトから選択される無機物質の球状粒子、多面体粒子、板状粒子、棒状粒子、ウイスカを0.1〜60体積%均一分散したセラミックスが挙げられる。球状粒子及び多面体粒子の粒径は0.1μm〜1mm、板状粒子、棒状粒子及びウイスカのアスペクト比は一般に1.5〜1000である。   As a specific example of the particle dispersion strengthened ceramics, the ceramic matrix is selected from silicon nitride, silicon carbide, zirconium oxide, magnesium oxide, potassium titanate, magnesium borate, zinc oxide, titanium boride and mullite. Examples include inorganic particles of spherical particles, polyhedral particles, plate-like particles, rod-like particles, and ceramics in which 0.1 to 60% by volume of whiskers are uniformly dispersed. The particle size of spherical particles and polyhedral particles is 0.1 μm to 1 mm, and the aspect ratio of plate-like particles, rod-like particles and whiskers is generally 1.5 to 1000.

次に、本発明をさらに具体的に説明するために実施例を挙げるが、本発明は以下の実施例に限定されるものではない。   Next, examples are given to describe the present invention more specifically, but the present invention is not limited to the following examples.

実施例1
ポリジメチルシラン100質量部にポリボロジフェニルシロキサン0.5質量部を加え、この混合物を窒素雰囲気中、380℃で10時間加熱反応し、重量平均分子量1000のポリカルボシラン約70質量部を合成した。このポリカルボシランにジルコニウムアセチルアセトナートを5質量部添加し、窒素雰囲気中、300℃で3時間加熱反応し、ポリジルコノカルボシランを得た。このポリジルコノカルボシランを400個のマルチホールノズルにより、約250℃で、ポリマーを供給するギアポンプの回転数を20−22rpmの間で周期的に増減させながら、200m/分の速度で、ケンス方式によりカーボン製のトレイ上に直径約40cmの円形状に1000m溶融紡糸した。ついで、空気中、180℃で5時間熱処理することにより不融化を行った。その後、バッチ方式の焼成炉にトレイに乗せた状態でセットし、窒素中1450℃で1時間焼成した。その後、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取り、長手方向に蛇行し、直径が長手方向に変化した繊維束用無機繊維から構成される複合材料用無機繊維束を作製した。
Example 1
0.5 parts by mass of polyborodiphenylsiloxane was added to 100 parts by mass of polydimethylsilane, and this mixture was heated and reacted at 380 ° C. for 10 hours in a nitrogen atmosphere to synthesize about 70 parts by mass of polycarbosilane having a weight average molecular weight of 1000. . 5 parts by mass of zirconium acetylacetonate was added to this polycarbosilane, and the mixture was reacted by heating at 300 ° C. for 3 hours in a nitrogen atmosphere to obtain polyzirconocarbosilane. The polyzirconocarbosilane was squeezed at a speed of 200 m / min with a multi-hole nozzle of 400 at about 250 ° C. while periodically rotating the gear pump for supplying the polymer between 20-22 rpm. According to the method, 1000 m was melt-spun into a circular shape having a diameter of about 40 cm on a carbon tray. Next, infusibilization was performed by heat treatment in air at 180 ° C. for 5 hours. Then, it set in the state put on the tray in the batch-type baking furnace, and baked at 1450 degreeC in nitrogen for 1 hour. Then, it is immersed in an aqueous solution containing 1% by mass of polyethylene oxide, wound on a bobbin while drying at 200 ° C., meandered in the longitudinal direction, and used for a composite material composed of inorganic fibers for fiber bundles whose diameter has changed in the longitudinal direction. An inorganic fiber bundle was produced.

得られた複合材料用無機繊維束は、化学組成が、質量割合で、Si:55.5%、O:9.8%、C:34.1%、Zr:0.6%の炭化ケイ素系繊維(平均直径:16.5μm、400本/繊維束、収束剤:ポリエチレンオキサイド)であった。前記した方法により求めた、蛇行ピッチと蛇行巾、及び、最大径と最小径とその差、及び変化のピッチの測定結果を表1に示す。図2に300mmの長さの繊維の直径を10mm間隔で測定し、繊維の長手方向の直径の変化を測定した一例を示す。   The obtained inorganic fiber bundle for composite material has a silicon carbide-based chemical composition having a mass ratio of Si: 55.5%, O: 9.8%, C: 34.1%, Zr: 0.6%. It was a fiber (average diameter: 16.5 μm, 400 fibers / fiber bundle, sizing agent: polyethylene oxide). Table 1 shows the measurement results of the meandering pitch and meandering width, the maximum and minimum diameters, the difference between them, and the pitch of the change obtained by the method described above. FIG. 2 shows an example in which the diameter of a fiber having a length of 300 mm is measured at intervals of 10 mm, and the change in the diameter in the longitudinal direction of the fiber is measured.

また、このようにして得られた複合材料用無機繊維束中の断面を光学顕微鏡により観察した。その顕微鏡写真を図3の(a)に示す。また、得られた繊維束の引張強度をJISR7601樹脂含浸ストランド法により測定し、その結果を表1に示す。   Moreover, the cross section in the inorganic fiber bundle for composite materials obtained in this way was observed with an optical microscope. The micrograph is shown in FIG. Further, the tensile strength of the obtained fiber bundle was measured by the JIS R7601 resin impregnated strand method, and the results are shown in Table 1.

比較例1
実施例1おいて、ポリマーを供給するギアポンプの回転数を20rpmと一定にし、紡糸速度を400m/分とし、ドラムに連続に巻取りながら溶融紡糸を行った。ついで、空気中、180℃で5時間熱処理することにより不融化を行った。その後、窒素雰囲気中1450℃で、張力200gをかけて連続焼成を行いながら、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取り、複合材料用無機繊維束を作製した。
Comparative Example 1
In Example 1, melt spinning was performed while continuously winding on a drum at a rotation speed of a gear pump for supplying a polymer of 20 rpm, a spinning speed of 400 m / min. Next, infusibilization was performed by heat treatment in air at 180 ° C. for 5 hours. Then, while continuously firing at 1450 ° C. in a nitrogen atmosphere at a tension of 200 g, it is immersed in an aqueous solution added with 1% by mass of polyethylene oxide and wound at 200 ° C. and wound on a bobbin to form an inorganic fiber bundle for composite materials. Produced.

得られた複合材料用無機繊維束は、化学組成が、質量割合で、Si:55.5%、O:9.8%、C:34.1%、Zr:0.6%の炭化ケイ素系繊維(平均直径:14μm、400本/繊維束、収束剤:ポリエチレンオキサイド)であった。実施例1と同じ方法で測定した、蛇行ピッチと蛇行巾、及び、最大径と最小径とその差、及び変化のピッチの測定結果を表1に示す。   The obtained inorganic fiber bundle for composite material has a silicon carbide-based chemical composition having a mass ratio of Si: 55.5%, O: 9.8%, C: 34.1%, Zr: 0.6%. It was a fiber (average diameter: 14 μm, 400 fibers / fiber bundle, sizing agent: polyethylene oxide). Table 1 shows the measurement results of the meandering pitch and meandering width, the maximum diameter and the minimum diameter, the difference between them, and the pitch of the change measured by the same method as in Example 1.

また、このようにして得られた複合材料用無機繊維束中の断面を光学顕微鏡により観察した。その顕微鏡写真を図3の(b)に示す。また、得られた繊維束の引張強度をJISR7601樹脂含浸ストランド法により測定し、その結果を表1に示す。   Moreover, the cross section in the inorganic fiber bundle for composite materials obtained in this way was observed with an optical microscope. The micrograph is shown in FIG. Further, the tensile strength of the obtained fiber bundle was measured by the JIS R7601 resin impregnated strand method, and the results are shown in Table 1.

実施例2
ポリジメチルシラン100質量部にポリボロジフェニルシロキサン0.5質量部を加え、この混合物を窒素雰囲気中、380℃で10時間加熱反応し、重量平均分子量1000のポリカルボシラン約70質量部を合成した。このポリカルボシランにテトラブチルチタネートを10質量部添加し、窒素雰囲気中、300℃で3時間加熱反応し、ポリチタノカルボシランを得た。このポリチタノカルボシランを400個のマルチホールノズルにより、約270℃で、ポリマーを供給するギアポンプの回転数を20−22rpmの間で周期的に増減させながら、250m/分の速度で、ドラムに連続に巻取りながら溶融紡糸を行った。その後、ドラムに巻かれた紡糸繊維をカーボン製のトレイ上に直径約30cmの円形状に700m垂下した。ついで、空気中、180℃で5時間熱処理することにより不融化を行った。その後、これを10組作製し、プッシャータイプの焼成炉を使用して、窒素中1350℃、送り速度1m/時間で焼成した。その後、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取り、長手方向に蛇行し、直径が長手方向に変化した繊維束用無機繊維から構成される複合材料用無機繊維束を作製した。
Example 2
0.5 parts by mass of polyborodiphenylsiloxane was added to 100 parts by mass of polydimethylsilane, and this mixture was heated and reacted at 380 ° C. for 10 hours in a nitrogen atmosphere to synthesize about 70 parts by mass of polycarbosilane having a weight average molecular weight of 1000. . 10 parts by mass of tetrabutyl titanate was added to this polycarbosilane, and the mixture was reacted by heating at 300 ° C. for 3 hours in a nitrogen atmosphere to obtain polytitanocarbosilane. The polytitanocarbosilane was drummed at a speed of 250 m / min with 400 multi-hole nozzles at about 270 ° C. while periodically rotating the speed of the gear pump for supplying the polymer between 20-22 rpm. The melt spinning was carried out while continuously winding. Thereafter, the spun fiber wound around the drum was suspended in a circular shape having a diameter of about 30 cm on a carbon tray by 700 m. Next, infusibilization was performed by heat treatment in air at 180 ° C. for 5 hours. Thereafter, 10 sets of these were produced and fired at 1350 ° C. in nitrogen at a feed rate of 1 m / hour using a pusher-type firing furnace. Then, it is immersed in an aqueous solution containing 1% by mass of polyethylene oxide, wound on a bobbin while drying at 200 ° C., meandered in the longitudinal direction, and used for a composite material composed of inorganic fibers for fiber bundles whose diameter has changed in the longitudinal direction. An inorganic fiber bundle was produced.

得られた複合材料用無機繊維束は、化学組成が、質量割合で、Si:54.4%、O:10.2%、C:33.9%、Ti:1.5%の炭化ケイ素系繊維(平均直径:16μm、400本/繊維束、収束剤:ポリエチレンオキサイド)であった。蛇行ピッチと蛇行巾、及び、最大径と最小径とその差、及び変化のピッチの測定結果を表1に示す。   The obtained inorganic fiber bundle for composite materials has a silicon carbide-based chemical composition with a mass ratio of Si: 54.4%, O: 10.2%, C: 33.9%, Ti: 1.5%. It was a fiber (average diameter: 16 μm, 400 fibers / fiber bundle, sizing agent: polyethylene oxide). Table 1 shows the measurement results of the meandering pitch and meandering width, the maximum and minimum diameters, the difference between them, and the change pitch.

また、このようにして得られた複合材料用無機繊維束中の断面を光学顕微鏡により観察した。その顕微鏡写真を図3の(c)に示す。また、得られた繊維束の引張強度をJISR7601樹脂含浸ストランド法により測定し、その結果を表1に示す。   Moreover, the cross section in the inorganic fiber bundle for composite materials obtained in this way was observed with an optical microscope. The photomicrograph is shown in FIG. Further, the tensile strength of the obtained fiber bundle was measured by the JIS R7601 resin impregnated strand method, and the results are shown in Table 1.

比較例2
実施例2おいて、ポリマーを供給するギアポンプの回転数を20rpmと一定にし、紡糸速度を450m/分とし、ドラムに連続に巻取りながら溶融紡糸を行った。ついで、空気中、180℃で5時間熱処理することにより不融化を行った。その後、窒素雰囲気中1350℃で、張力100gをかけて連続焼成を行いながら、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取り、複合材料用無機繊維束を作製した。
Comparative Example 2
In Example 2, melt spinning was performed while continuously winding on a drum at a rotation speed of a gear pump for supplying a polymer of 20 rpm, a spinning speed of 450 m / min. Next, infusibilization was performed by heat treatment in air at 180 ° C. for 5 hours. Then, while continuously firing at 1350 ° C. under a nitrogen atmosphere at 1350 ° C., it is immersed in an aqueous solution added with 1% by mass of polyethylene oxide and wound at 200 ° C. and wound on a bobbin to form an inorganic fiber bundle for composite materials. Produced.

得られた複合材料用無機繊維束は、化学組成が、質量割合で、Si:54.4%、O:10.2%、C:33.9%、Ti:1.5%の炭化ケイ素系繊維(平均直径:14.2μm、400本/繊維束、収束剤:ポリエチレンオキサイド)であった。蛇行ピッチと蛇行巾、及び、最大径と最小径とその差、及び変化のピッチの測定結果を表1に示す。   The obtained inorganic fiber bundle for composite materials has a silicon carbide-based chemical composition with a mass ratio of Si: 54.4%, O: 10.2%, C: 33.9%, Ti: 1.5%. It was a fiber (average diameter: 14.2 μm, 400 fibers / fiber bundle, sizing agent: polyethylene oxide). Table 1 shows the measurement results of the meander pitch and meander width, the maximum diameter, the minimum diameter, the difference between them, and the change pitch.

また、このようにして得られた複合材料用無機繊維束中の断面を光学顕微鏡により観察した。その顕微鏡写真を図3の(d)に示す。また、得られた繊維束の引張強度をJISR7601樹脂含浸ストランド法により測定し、その結果を表1に示す。   Moreover, the cross section in the inorganic fiber bundle for composite materials obtained in this way was observed with an optical microscope. The micrograph is shown in FIG. Further, the tensile strength of the obtained fiber bundle was measured by the JIS R7601 resin impregnated strand method, and the results are shown in Table 1.

実施例3
ポリジメチルシラン100質量部にポリボロジフェニルシロキサン0.5質量部を加え、この混合物を窒素雰囲気中、380℃で10時間加熱反応し、重量平均分子量1000のポリカルボシラン約70質量部を合成した。このポリカルボシランにアルミニウムトリセカンダリーブトキシドを4質量部添加し、窒素雰囲気中、300℃で3時間加熱反応し、ポリアルミノカルボシランを得た。このポリアルミノカルボシランを400個のマルチホールノズルにより、約250℃で、ポリマーを供給するギアポンプの回転数を20−22rpmの間で周期的に増減させながら、150m/分の速度で、ドラムに連続に巻取りながら、溶融紡糸を行った。ついで、空気中、180℃で5時間熱処理することにより不融化を行った。その後、窒素雰囲気中1400℃で連続焼成を行い、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取った。これにより、Alを1.0質量%、Bを0.2質量%、及び余剰の炭素を1.5質量%含有する非晶質炭化ケイ素系繊維を得た。ついで、カーボン製のトレイ上に直径約30cmの円形状に1000m垂下し、バッチ方式の焼成炉にトレイに乗せた状態でセットし、アルゴン中1800℃で1時間加熱処理し、結晶化させた。その後、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取り、直径が長手方向に変化した繊維束用無機繊維から構成される複合材料用無機繊維束を作製した。
Example 3
0.5 parts by mass of polyborodiphenylsiloxane was added to 100 parts by mass of polydimethylsilane, and this mixture was heated and reacted at 380 ° C. for 10 hours in a nitrogen atmosphere to synthesize about 70 parts by mass of polycarbosilane having a weight average molecular weight of 1000. . 4 parts by mass of aluminum trisecondary butoxide was added to this polycarbosilane, and the mixture was reacted by heating at 300 ° C. for 3 hours in a nitrogen atmosphere to obtain polyaluminocarbosilane. This polyaluminocarbosilane is applied to the drum at a speed of 150 m / min while the number of rotations of the gear pump supplying the polymer is periodically increased or decreased between 20-22 rpm at about 250 ° C. by 400 multi-hole nozzles. Melt spinning was performed while continuously winding. Next, infusibilization was performed by heat treatment in air at 180 ° C. for 5 hours. Thereafter, continuous firing was performed at 1400 ° C. in a nitrogen atmosphere, and the product was immersed in an aqueous solution added with 1% by mass of polyethylene oxide and wound on a bobbin while being dried at 200 ° C. As a result, an amorphous silicon carbide fiber containing 1.0% by mass of Al, 0.2% by mass of B, and 1.5% by mass of surplus carbon was obtained. Next, 1000 m was dropped in a circular shape having a diameter of about 30 cm on a carbon tray, set in a batch-type firing furnace, placed on the tray, and heat-treated at 1800 ° C. in argon for 1 hour for crystallization. Then, it was immersed in an aqueous solution added with 1% by mass of polyethylene oxide and wound on a bobbin while being dried at 200 ° C., to prepare an inorganic fiber bundle for composite materials composed of inorganic fibers for fiber bundles having a diameter changed in the longitudinal direction. .

得られた複合材料用無機繊維束は、化学組成が、質量割合で、Si:67.8%、C:31%、O:0.3%、Al:0.84%、B:0.06%(原子比Si:C:O:Al=1:1.07:0.008:0.013)の結晶性炭化ケイ素繊維(平均直径:15μm、400本/繊維束、収束剤:ポリエチレンオキサイド)であった。蛇行ピッチと蛇行巾、及び、最大径と最小径とその差、及び変化のピッチの測定結果を表1に示す。   The obtained inorganic fiber bundle for composite materials has a chemical composition of mass ratio of Si: 67.8%, C: 31%, O: 0.3%, Al: 0.84%, B: 0.06. % (Atomic ratio Si: C: O: Al = 1: 1.07: 0.008: 0.013) crystalline silicon carbide fiber (average diameter: 15 μm, 400 pieces / fiber bundle, sizing agent: polyethylene oxide) Met. Table 1 shows the measurement results of the meander pitch and meander width, the maximum diameter, the minimum diameter, the difference between them, and the change pitch.

また、このようにして得られた複合材料用無機繊維束中の断面を光学顕微鏡により観察した。その顕微鏡写真を図3の(e)に示す。また、得られた繊維束の引張強度をJISR7601樹脂含浸ストランド法により測定し、その結果を表1に示す。   Moreover, the cross section in the inorganic fiber bundle for composite materials obtained in this way was observed with an optical microscope. The micrograph is shown in FIG. Further, the tensile strength of the obtained fiber bundle was measured by the JIS R7601 resin impregnated strand method, and the results are shown in Table 1.

比較例3
実施例3において、ポリマーを供給するギアポンプの回転数を20rpmと一定にし、紡糸速度を500m/分とした。ついで、同様に、不融化と連続焼成を行い、得られた、Alを1.0質量%、Bを0.2質量%、及び余剰の炭素を1.5質量%含有する非晶質炭化ケイ素系繊維を、張力100gをかけてアルゴン中1800℃で連続的に加熱処理しながら結晶化させ、ポリエチレンオキサイドを1質量%添加した水溶液に浸漬し200℃で乾燥させながらボビンに巻取り、複合材料用無機繊維束を作製した。
Comparative Example 3
In Example 3, the rotation speed of the gear pump for supplying the polymer was kept constant at 20 rpm, and the spinning speed was 500 m / min. Subsequently, similarly, infusibilization and continuous firing were performed, and the obtained amorphous silicon carbide containing 1.0% by mass of Al, 0.2% by mass of B, and 1.5% by mass of excess carbon. The fiber is crystallized under continuous heating at 1800 ° C. under a tension of 100 g, immersed in an aqueous solution to which 1% by mass of polyethylene oxide has been added, wound on a bobbin while being dried at 200 ° C., and a composite material An inorganic fiber bundle was prepared.

得られた複合材料用無機繊維束は、化学組成が、質量割合で、Si:67.8%、C:31%、O:0.3%、Al:0.84%、B:0.06%(原子比Si:C:O:Al=1:1.07:0.008:0.013)の結晶性炭化ケイ素繊維(平均直径:12.5μm、400本/繊維束、収束剤:ポリエチレンオキサイド)であった。蛇行ピッチと蛇行巾、及び、最大径と最小径とその差、及び変化のピッチの測定結果を表1に示す。   The obtained inorganic fiber bundle for composite materials has a chemical composition of mass ratio of Si: 67.8%, C: 31%, O: 0.3%, Al: 0.84%, B: 0.06. % (Atomic ratio Si: C: O: Al = 1: 1.07: 0.008: 0.013) crystalline silicon carbide fiber (average diameter: 12.5 μm, 400 fibers / fiber bundle, sizing agent: polyethylene Oxide). Table 1 shows the measurement results of the meander pitch and meander width, the maximum diameter, the minimum diameter, the difference between them, and the change pitch.

このようにして得られた複合材料用無機繊維束中の断面を光学顕微鏡により観察した。その顕微鏡写真を図3の(f)に示す。また、得られた繊維束の引張強度をJISR7601樹脂含浸ストランド法により測定し、その結果を表1に示す。   The cross section in the inorganic fiber bundle for composite materials thus obtained was observed with an optical microscope. The micrograph is shown in FIG. Further, the tensile strength of the obtained fiber bundle was measured by the JIS R7601 resin impregnated strand method, and the results are shown in Table 1.

Figure 2012214914
Figure 2012214914

実施例1、2、3、および比較例1、2、3で得られた結果について、以下説明する。図3から、実施例1、2、3はそれぞれ比較例1、2、3と比較して、繊維束は広がっており、長手方向に、本発明の蛇行ピッチ、蛇行巾を付与し、繊維直径を長手方向に、本発明の最大直径と最小直径の差を付与する効果が認められる。一方、比較例1、2、3から、長手方向に蛇行し、長手方向に直径を変化させても、本発明の範囲外では、ほとんど繊維束は広がっておらず、効果のないことがわかる。このように、本発明では、繊維強度を維持しつつ、繊維束中の繊維間隔を大きくかつ適度に広げることが可能であることがわかる。   The results obtained in Examples 1, 2, and 3 and Comparative Examples 1, 2, and 3 will be described below. From FIG. 3, Examples 1, 2, and 3 have a fiber bundle that is wider than Comparative Examples 1, 2, and 3, respectively, and in the longitudinal direction, the meandering pitch and meandering width of the present invention are imparted to the fiber diameter. In the longitudinal direction, the effect of imparting the difference between the maximum diameter and the minimum diameter of the present invention is recognized. On the other hand, it can be seen from Comparative Examples 1, 2, and 3 that even if meandering in the longitudinal direction and changing the diameter in the longitudinal direction, the fiber bundle hardly spreads and is not effective outside the scope of the present invention. Thus, in the present invention, it can be seen that the fiber spacing in the fiber bundle can be increased widely and appropriately while maintaining the fiber strength.

実施例4
実施例1の複合材料用無機繊維束を3次元織物(繊維割合は、X:Y:Z=1:1:0.2)に製織した。ついで、アルゴン中、1000℃でサイジング剤を分解除去後、化学気相蒸着法により窒化ホウ素の界面層、および炭化ケイ素のマトリックスを形成して、セラミックス基複合材料を作製した。界面層は、三塩化ホウ素とアンモニアを原料ガス、アルゴンをキャリアガスとして、減圧下、1000℃で約0.5μmの厚さとした。マトリックスはメチルトリクロロシランを原料ガス、ヘリウムをキャリアガスとして、減圧下、1000℃で緻密化を行った。マトリックス形成後の空隙率は約10%で、繊維堆積率は40%であった。
Example 4
The inorganic fiber bundle for composite material of Example 1 was woven into a three-dimensional fabric (fiber ratio is X: Y: Z = 1: 1: 0.2). Subsequently, the sizing agent was decomposed and removed at 1000 ° C. in argon, and then an interface layer of boron nitride and a matrix of silicon carbide were formed by chemical vapor deposition to produce a ceramic matrix composite material. The interface layer had a thickness of about 0.5 μm at 1000 ° C. under reduced pressure using boron trichloride and ammonia as source gases and argon as a carrier gas. The matrix was densified at 1000 ° C. under reduced pressure using methyltrichlorosilane as a source gas and helium as a carrier gas. The porosity after forming the matrix was about 10%, and the fiber deposition rate was 40%.

複合化する前の3次元織物の一部をほぐして、繊維束を抽出し、JISR7601樹脂含浸ストランド法により引張強度を測定した。また、作製したセラミックス基複合材料から引張試験片を加工して、室温での引張強度と破断ひずみを測定した。また、大気中1000℃で、室温での引張強度の60%の応力をかけて破断までの時間を測定し、耐久性を評価した。表2に3次元織物から抽出した繊維の引張強度、作製したセラミックス基複合材料の室温での引張強度と破断ひずみ、及び、室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間を示す。   A part of the three-dimensional woven fabric before complexing was loosened, a fiber bundle was extracted, and the tensile strength was measured by the JIS R7601 resin-impregnated strand method. Moreover, the tensile test piece was processed from the produced ceramic matrix composite material, and the tensile strength and breaking strain at room temperature were measured. In addition, durability was evaluated by measuring the time to break by applying 60% of the tensile strength at room temperature at 1000 ° C. in the atmosphere. Table 2 shows the tensile strength of the fiber extracted from the three-dimensional fabric, the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, and 60% of the tensile strength at room temperature. Time to break at 1000 ° C. is shown.

実施例5
実施例2の複合材料用無機繊維束を用いて、実施例4と同じ方法で、セラミックス基複合材料を作製した。
Example 5
A ceramic matrix composite material was produced in the same manner as in Example 4 using the inorganic fiber bundle for composite material of Example 2.

表2に3次元織物から抽出した繊維の引張強度、作製したセラミックス基複合材料の室温での引張強度と破断ひずみ、及び、室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間を示す。   Table 2 shows the tensile strength of the fiber extracted from the three-dimensional fabric, the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, and 60% of the tensile strength at room temperature. Time to break at 1000 ° C. is shown.

実施例6
実施例3の複合材料用無機繊維束を用いて、実施例4と同じ方法で、セラミックス基複合材料を作製した。
Example 6
A ceramic matrix composite material was produced in the same manner as in Example 4 using the inorganic fiber bundle for composite material of Example 3.

表2に3次元織物から抽出した繊維の引張強度、作製したセラミックス基複合材料の室温での引張強度と破断ひずみ、及び、室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間を示す。   Table 2 shows the tensile strength of the fiber extracted from the three-dimensional fabric, the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, and 60% of the tensile strength at room temperature. Time to break at 1000 ° C. is shown.

比較例4
比較例1の複合材料用無機繊維束を用いて、実施例4と同じ方法で、セラミックス基複合材料を作製し、評価を行った。表2に3次元織物から抽出した繊維の引張強度、作製したセラミックス基複合材料の室温での引張強度と破断ひずみ、及び、室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間を示す。
Comparative Example 4
Using the inorganic fiber bundle for composite material of Comparative Example 1, a ceramic matrix composite material was produced and evaluated in the same manner as in Example 4. Table 2 shows the tensile strength of the fiber extracted from the three-dimensional fabric, the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, and 60% of the tensile strength at room temperature. Time to break at 1000 ° C. is shown.

比較例5
比較例2の複合材料用無機繊維束を用いて、実施例5と同じ方法で、セラミックス基複合材料を作製し、評価を行った。表2に3次元織物から抽出した繊維の引張強度、作製したセラミックス基複合材料の室温での引張強度と破断ひずみ、及び、室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間を示す。
Comparative Example 5
Using the inorganic fiber bundle for composite material of Comparative Example 2, a ceramic matrix composite material was prepared and evaluated in the same manner as in Example 5. Table 2 shows the tensile strength of the fiber extracted from the three-dimensional fabric, the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, and 60% of the tensile strength at room temperature. Time to break at 1000 ° C. is shown.

比較例6
比較例3の複合材料用無機繊維束を用いて、実施例6と同じ方法で、セラミックス基複合材料を作製し、評価を行った。表2に3次元織物から抽出した繊維の引張強度、作製したセラミックス基複合材料の室温での引張強度と破断ひずみ、及び、室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間を示す。
Comparative Example 6
Using the inorganic fiber bundle for composite material of Comparative Example 3, a ceramic matrix composite material was produced and evaluated in the same manner as in Example 6. Table 2 shows the tensile strength of the fiber extracted from the three-dimensional fabric, the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, and 60% of the tensile strength at room temperature. Time to break at 1000 ° C. is shown.

Figure 2012214914
Figure 2012214914

実施例4、5、6と比較例4、5、6で得られた結果について以下説明する。繊維の引張強度については、いずれも低下は認められない。これから、長手方向に蛇行し、長手方向に直径を変化させて、3次元織物のような複雑な製織を行っても、繊維の引張強度は低下しないことがわかる。   The results obtained in Examples 4, 5, and 6 and Comparative Examples 4, 5, and 6 will be described below. There is no decrease in the tensile strength of the fibers. From this, it can be seen that the tensile strength of the fiber does not decrease even when a complicated weaving such as a three-dimensional fabric is performed by meandering in the longitudinal direction and changing the diameter in the longitudinal direction.

セラミックス基複合材料の室温での引張強度と破断ひずみについては、実施例4、5、6のセラミックス基複合材料は、引張強度、破断ひずみともに、それぞれ比較例4、5、6よりも高い値を示している。破面観察から、実施例4、6では、繊維束中の繊維同士の接触はなく、窒化ホウ素の界面層も各繊維表面に均一に形成されていることが確認され、繊維のプルアウトも顕著に観察され、界面層が有効に機能していることが確認された。これが、高い強度、破断ひずみが得られた原因と考えられる。実施例5は、実施例2の繊維束の広がりが実施例1、3の繊維束の広がりよりも小さくなっているため、実施例4、6に比べ、繊維束中の一部に繊維同士の接触が認められた。これらの接触箇所では、窒化ホウ素の界面層が形成されておらず、繊維のプルアウトも少なくなっており、やや低い値となった原因と考えられる。   As for the tensile strength and breaking strain at room temperature of the ceramic matrix composite material, the ceramic matrix composite materials of Examples 4, 5, and 6 have values higher than those of Comparative Examples 4, 5, and 6 in both tensile strength and fracture strain. Show. From the fracture surface observation, in Examples 4 and 6, it was confirmed that there was no contact between the fibers in the fiber bundle, and that the interface layer of boron nitride was uniformly formed on the surface of each fiber, and the pullout of the fibers was also remarkable. Observed, it was confirmed that the interface layer functions effectively. This is considered to be the reason why high strength and fracture strain were obtained. In Example 5, since the spread of the fiber bundle of Example 2 is smaller than the spread of the fiber bundle of Examples 1 and 3, compared with Examples 4 and 6, fibers in a part of the fiber bundle Contact was observed. At these contact points, the boron nitride interface layer is not formed, and the fiber pull-out is reduced, which is considered to be the reason for the slightly lower value.

比較例4、5、6においては、破面観察から、繊維束中のほとんどの繊維同士が互いに接触しており、接触箇所では界面層が形成されていなかった。また、繊維のプルアウトも少なく、繊維の破断が繊維同士の接触点から発生しており、接触点が応力集中の原因であることが確認された。このように、3次元織物に加工するまでの繊維強度の低下はないが、繊維同士の接触点による応力集中と不均一な界面層が、低い強度と破断ひずみを示す原因と考えられる。   In Comparative Examples 4, 5, and 6, most of the fibers in the fiber bundle were in contact with each other from the observation of the fracture surface, and no interface layer was formed at the contact location. Moreover, there was little pull-out of the fiber, and the fiber breakage occurred from the contact point between the fibers, and it was confirmed that the contact point was the cause of stress concentration. Thus, although the fiber strength does not decrease until it is processed into a three-dimensional fabric, the stress concentration due to the contact point between the fibers and the non-uniform interface layer are considered to be causes of low strength and breaking strain.

セラミックス基複合材料の室温での引張強度の60%の応力をかけた状態で、大気中1000℃での破断までの時間については、実施例4、5、6のセラミックス基複合材料は、実施例5でやや低い値となっているが、それぞれ比較例4、5、6よりも長い破断時間を示している。実施例4、6の破面観察では、繊維のプルアウトが、室温での引張試験後の破面に比べて少ないものの、顕著に観察され、繊維や界面層の酸化によるガラス層形成はわずかであった。実施例5では、実施例4、6に比べ、繊維同士の接触により、ガラス層がやや多く観察され、これが、やや低い値となった原因と考えられる。なお、破断時間は、実施例の中では、実施例6が最も長く、実施例5が最も短くなっている。これは、繊維自身の耐熱性に依存しているためで、実施例3の繊維の耐熱性が最も優れており、実施例2の繊維の耐熱性が最も劣っているためである。   With respect to the time to break at 1000 ° C. in the atmosphere with a stress of 60% of the tensile strength at room temperature of the ceramic matrix composite material, the ceramic matrix composite materials of Examples 4, 5, and 6 Although it is a slightly low value at 5, the fracture times longer than those of Comparative Examples 4, 5, and 6 are shown. In the fracture surface observations of Examples 4 and 6, fiber pullout was less than that of the fracture surface after the tensile test at room temperature, but was observed remarkably, and the glass layer formation due to oxidation of the fiber and interface layer was slight. It was. In Example 5, as compared with Examples 4 and 6, a slightly larger amount of the glass layer was observed due to the contact between the fibers, which is considered to be the cause of the slightly lower value. The breaking time is the longest in Example 6 and the shortest in Example 5. This is because it depends on the heat resistance of the fiber itself, the heat resistance of the fiber of Example 3 is the best, and the heat resistance of the fiber of Example 2 is the poorest.

比較例4、5、6の破面観察では、繊維束中のほとんどの繊維同士が接触しており、接触点近傍にガラス層が顕著に観察された。これらの大量の優先的なガラス層の形成により、繊維同士が強固に結合して、応力集中の原因となり、脆性的な破壊を起こし、破断時間を短くした原因と考えられる。なお、破断時間は、比較例の中では、比較例6が最も長く、比較例5が最も短くなっている。これは、前記したように繊維自身の耐熱性に依存しているためで、比較例3の繊維の耐熱性が最も優れており、比較例2の繊維の耐熱性が最も劣っているためである。   In the fracture surface observation of Comparative Examples 4, 5, and 6, most of the fibers in the fiber bundle were in contact with each other, and a glass layer was remarkably observed in the vicinity of the contact point. The formation of a large amount of these preferential glass layers is considered to cause the fibers to be strongly bonded to each other, causing stress concentration, causing brittle fracture, and shortening the fracture time. The breaking time is the longest in Comparative Example 6 and the shortest in Comparative Example 5 among the Comparative Examples. This is because, as described above, it depends on the heat resistance of the fiber itself, the heat resistance of the fiber of Comparative Example 3 is the best, and the heat resistance of the fiber of Comparative Example 2 is the poorest. .

本発明は、セラミックス基複合材料の強化繊維用の無機繊維束とこの繊維で強化されたセラミックス基複合材料の製造に利用することが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for producing inorganic fiber bundles for reinforcing fibers of ceramic matrix composite materials and ceramic matrix composite materials reinforced with these fibers.

Claims (6)

複合材料用無機繊維束を構成する繊維束用無機繊維において、長手方向に蛇行し、蛇行ピッチが3〜40mmであり、蛇行巾が0.1〜5mmであり、直径が長手方向に変化しており、最大直径と最小直径の差が、2〜6μmで、変化のピッチが、10〜200mmあることを特徴する繊維束用無機繊維。   In the inorganic fiber for a fiber bundle constituting the inorganic fiber bundle for a composite material, meandering in the longitudinal direction, the meandering pitch is 3 to 40 mm, the meandering width is 0.1 to 5 mm, and the diameter is changed in the longitudinal direction. An inorganic fiber for a fiber bundle, wherein the difference between the maximum diameter and the minimum diameter is 2 to 6 μm, and the change pitch is 10 to 200 mm. 元素組成が、Si:45〜60質量%、Ti又はZr:0.2〜5質量%、C:20〜45質量%、O:0.1〜20.0質量%を含むことを特徴とする請求項1記載の繊維束用無機繊維。   Elemental composition contains Si: 45-60 mass%, Ti or Zr: 0.2-5 mass%, C: 20-45 mass%, O: 0.1-20.0 mass% The inorganic fiber for fiber bundles according to claim 1. 密度が2.7g/cm以上、引張強度が2GPa以上、弾性率が250GPa以上であり、Si:50〜70質量%、C:28〜45質量%、Al:0.06〜3.8質量%及びB:0.06〜0.5質量%を含み、SiCの焼結構造からなる結晶性炭化ケイ素繊維であることを特徴とする請求項1記載の繊維束用無機繊維。 The density is 2.7 g / cm 3 or more, the tensile strength is 2 GPa or more, the elastic modulus is 250 GPa or more, Si: 50 to 70 mass%, C: 28 to 45 mass%, Al: 0.06 to 3.8 mass % And B: 0.06 to 0.5 mass%, and is a crystalline silicon carbide fiber having a sintered structure of SiC. 請求項1〜3のいずれか一項記載の繊維束用無機繊維から構成される複合材料用無機繊維束。   The inorganic fiber bundle for composite materials comprised from the inorganic fiber for fiber bundles as described in any one of Claims 1-3. 請求項4記載の複合材料用無機繊維束を強化繊維とし、セラミックスをマトリックスとすることを特徴とするセラミックス基複合材料。   A ceramic matrix composite material comprising the inorganic fiber bundle for composite materials according to claim 4 as a reinforcing fiber and ceramics as a matrix. 前記複合材料用無機繊維束の形態が2次元若しくは3次元織物又は一方向シート状物、又はそれらの積層物であることを特徴とする請求項5記載のセラミックス基複合材料。   6. The ceramic matrix composite material according to claim 5, wherein the inorganic fiber bundle for the composite material is a two-dimensional or three-dimensional fabric, a unidirectional sheet, or a laminate thereof.
JP2011078979A 2011-03-31 2011-03-31 Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle Expired - Fee Related JP5668575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011078979A JP5668575B2 (en) 2011-03-31 2011-03-31 Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011078979A JP5668575B2 (en) 2011-03-31 2011-03-31 Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle

Publications (2)

Publication Number Publication Date
JP2012214914A true JP2012214914A (en) 2012-11-08
JP5668575B2 JP5668575B2 (en) 2015-02-12

Family

ID=47267921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011078979A Expired - Fee Related JP5668575B2 (en) 2011-03-31 2011-03-31 Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle

Country Status (1)

Country Link
JP (1) JP5668575B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095484A (en) * 2016-12-08 2018-06-21 三菱重工航空エンジン株式会社 Manufacturing method of ceramic matrix composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299568A (en) * 1986-06-17 1987-12-26 宇部興産株式会社 Inorganic fiber for composite material
JPS6359473A (en) * 1986-08-26 1988-03-15 宇部興産株式会社 Production of inorganic fiber for composite material
JP2006206345A (en) * 2005-01-25 2006-08-10 Hitachi Metals Ltd Boron nitride fiber and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62299568A (en) * 1986-06-17 1987-12-26 宇部興産株式会社 Inorganic fiber for composite material
JPS6359473A (en) * 1986-08-26 1988-03-15 宇部興産株式会社 Production of inorganic fiber for composite material
JP2006206345A (en) * 2005-01-25 2006-08-10 Hitachi Metals Ltd Boron nitride fiber and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018095484A (en) * 2016-12-08 2018-06-21 三菱重工航空エンジン株式会社 Manufacturing method of ceramic matrix composite material

Also Published As

Publication number Publication date
JP5668575B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP5458915B2 (en) Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with the fiber bundle
Flores et al. Ceramic fibers based on SiC and SiCN systems: current research, development, and commercial status
WO1994012448A1 (en) Process for producing ceramic product
WO2011114810A1 (en) Inorganic fibers for fiber bundles, process for production of the inorganic fibers, inorganic fiber bundles for composite material produced using the inorganic fibers, and ceramic-based composite material reinforced by the fiber bundles
JP3760855B2 (en) Boron nitride-coated silicon carbide ceramic fiber, method for producing the same, and ceramic matrix composite material reinforced with the fiber
Yalamaç et al. Ceramic fibers
Ishikawa Ceramic fibers and their applications
JPWO2008035590A1 (en) SiC fiber-bonded ceramics and method for producing the same
JP3979311B2 (en) Silicon carbide ceramic fiber and method for producing the same
JP6559473B2 (en) Method for producing silicon carbide composite
JP2016188439A (en) Crystalline silicon carbide-based ceramic fiber and manufacturing method therefor
JP5668575B2 (en) Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle
JP5668550B2 (en) Inorganic fiber for fiber bundle, inorganic fiber bundle for composite material composed of inorganic fiber for fiber bundle, and ceramic matrix composite material reinforced with fiber bundle
JP7318650B2 (en) Crystalline silicon carbide fiber, method for producing the same, and ceramic composite substrate
JP5370084B2 (en) Opening inorganic fiber bundle for composite material, method for producing the same, and ceramic matrix composite material reinforced with this fiber bundle
JPH03285877A (en) Fiber reinforced ceramic composite material and fiber for reinforcement
JP2018199588A (en) METHOD FOR PRODUCING SiC/SiC COMPOSITE MATERIAL
WO2001038616A1 (en) Organic silicon polymer, inorganic fiber with silicon carbide base, and method of manufacture thereof
Andreas Fabrication of large diameter SiC monofilaments by polymer route
JP4470708B2 (en) Composite material and manufacturing method thereof
JP4058955B2 (en) Ceramics having gradient composition surface layer and method for producing the same
Motz et al. Processing, structure and properties of ceramic fibers
JPH10120472A (en) Inorganic fiber-reinforced ceramic composite material
JPH11171658A (en) Crystalline silicon carbide-based fiber-reinforced ceramic composite material
Torknik et al. Synthesis of SiC nanofibers from a natural biopolymer via carbothermal reduction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141201

R150 Certificate of patent or registration of utility model

Ref document number: 5668575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees