JP2012211283A - Polymerizable liquid crystal composition - Google Patents
Polymerizable liquid crystal composition Download PDFInfo
- Publication number
- JP2012211283A JP2012211283A JP2011078622A JP2011078622A JP2012211283A JP 2012211283 A JP2012211283 A JP 2012211283A JP 2011078622 A JP2011078622 A JP 2011078622A JP 2011078622 A JP2011078622 A JP 2011078622A JP 2012211283 A JP2012211283 A JP 2012211283A
- Authority
- JP
- Japan
- Prior art keywords
- group
- liquid crystal
- polymerizable liquid
- crystal composition
- general formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 164
- 239000000203 mixture Substances 0.000 title claims abstract description 96
- 150000001875 compounds Chemical class 0.000 claims abstract description 64
- 238000012719 thermal polymerization Methods 0.000 claims abstract description 42
- 239000003505 polymerization initiator Substances 0.000 claims abstract description 29
- 239000003999 initiator Substances 0.000 claims abstract description 8
- 230000003287 optical effect Effects 0.000 claims description 63
- -1 tetrahydropyran-2,5-diyl group Chemical group 0.000 claims description 41
- 125000004432 carbon atom Chemical group C* 0.000 claims description 30
- 125000005843 halogen group Chemical group 0.000 claims description 22
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 19
- 125000001140 1,4-phenylene group Chemical group [H]C1=C([H])C([*:2])=C([H])C([H])=C1[*:1] 0.000 claims description 16
- 125000003545 alkoxy group Chemical group 0.000 claims description 16
- 125000001424 substituent group Chemical group 0.000 claims description 15
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 12
- 125000004955 1,4-cyclohexylene group Chemical group [H]C1([H])C([H])([H])C([H])([*:1])C([H])([H])C([H])([H])C1([H])[*:2] 0.000 claims description 10
- 125000000524 functional group Chemical group 0.000 claims description 9
- 125000002252 acyl group Chemical group 0.000 claims description 8
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 8
- 125000006850 spacer group Chemical group 0.000 claims description 8
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 7
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 6
- 150000002430 hydrocarbons Chemical group 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 125000004959 2,6-naphthylene group Chemical group [H]C1=C([H])C2=C([H])C([*:1])=C([H])C([H])=C2C([H])=C1[*:2] 0.000 claims description 4
- 125000002947 alkylene group Chemical group 0.000 claims description 4
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 229910052760 oxygen Inorganic materials 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 125000004434 sulfur atom Chemical group 0.000 claims description 4
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical group CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims description 2
- 125000005714 2,5- (1,3-dioxanylene) group Chemical group [H]C1([H])OC([H])([*:1])OC([H])([H])C1([H])[*:2] 0.000 claims description 2
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 claims description 2
- 101150065749 Churc1 gene Proteins 0.000 claims description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 2
- 102100038239 Protein Churchill Human genes 0.000 claims description 2
- 125000004423 acyloxy group Chemical group 0.000 claims description 2
- 125000003342 alkenyl group Chemical group 0.000 claims description 2
- 125000003302 alkenyloxy group Chemical group 0.000 claims description 2
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 125000005580 triphenylene group Chemical group 0.000 claims description 2
- YGPLLMPPZRUGTJ-UHFFFAOYSA-N truxene Chemical class C1C2=CC=CC=C2C(C2=C3C4=CC=CC=C4C2)=C1C1=C3CC2=CC=CC=C21 YGPLLMPPZRUGTJ-UHFFFAOYSA-N 0.000 claims description 2
- 230000001588 bifunctional effect Effects 0.000 claims 2
- 125000001997 phenyl group Chemical class [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 39
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 238000006116 polymerization reaction Methods 0.000 abstract description 6
- 239000012071 phase Substances 0.000 description 76
- 230000000052 comparative effect Effects 0.000 description 32
- 239000000758 substrate Substances 0.000 description 29
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 24
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 description 18
- 239000010408 film Substances 0.000 description 14
- 239000002904 solvent Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 239000004642 Polyimide Substances 0.000 description 9
- 239000011521 glass Substances 0.000 description 9
- 229920001721 polyimide Polymers 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 8
- 229910052753 mercury Inorganic materials 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- SFLRURCEBYIKSS-UHFFFAOYSA-N n-butyl-2-[[1-(butylamino)-2-methyl-1-oxopropan-2-yl]diazenyl]-2-methylpropanamide Chemical compound CCCCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCCCC SFLRURCEBYIKSS-UHFFFAOYSA-N 0.000 description 2
- 239000012788 optical film Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Chemical class 0.000 description 2
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- DKCPKDPYUFEZCP-UHFFFAOYSA-N 2,6-di-tert-butylphenol Chemical compound CC(C)(C)C1=CC=CC(C(C)(C)C)=C1O DKCPKDPYUFEZCP-UHFFFAOYSA-N 0.000 description 1
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 1
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- LYPGJGCIPQYQBW-UHFFFAOYSA-N 2-methyl-2-[[2-methyl-1-oxo-1-(prop-2-enylamino)propan-2-yl]diazenyl]-n-prop-2-enylpropanamide Chemical compound C=CCNC(=O)C(C)(C)N=NC(C)(C)C(=O)NCC=C LYPGJGCIPQYQBW-UHFFFAOYSA-N 0.000 description 1
- 150000004786 2-naphthols Chemical class 0.000 description 1
- JBIJLHTVPXGSAM-UHFFFAOYSA-N 2-naphthylamine Chemical class C1=CC=CC2=CC(N)=CC=C21 JBIJLHTVPXGSAM-UHFFFAOYSA-N 0.000 description 1
- JIGUICYYOYEXFS-UHFFFAOYSA-N 3-tert-butylbenzene-1,2-diol Chemical class CC(C)(C)C1=CC=CC(O)=C1O JIGUICYYOYEXFS-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- 102100021860 Endothelial cell-specific molecule 1 Human genes 0.000 description 1
- 101710153170 Endothelial cell-specific molecule 1 Proteins 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000005264 High molar mass liquid crystal Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Chemical class 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002367 Polyisobutene Polymers 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical class 0.000 description 1
- 125000005192 alkyl ethylene group Chemical group 0.000 description 1
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 1
- 150000008052 alkyl sulfonates Chemical class 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001934 cyclohexanes Chemical class 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- LHGVFZTZFXWLCP-UHFFFAOYSA-N guaiacol Chemical compound COC1=CC=CC=C1O LHGVFZTZFXWLCP-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 1
- 150000002828 nitro derivatives Chemical class 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- NWVVVBRKAWDGAB-UHFFFAOYSA-N p-methoxyphenol Chemical compound COC1=CC=C(O)C=C1 NWVVVBRKAWDGAB-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 1
- 150000003232 pyrogallols Chemical class 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal Substances (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本願発明は、液晶ディスプレイ等の光学補償フィルム製造に使用される重合性液晶組成物に関する。 The present invention relates to a polymerizable liquid crystal composition used for producing an optical compensation film such as a liquid crystal display.
半透過型液晶表示装置や三次元表示可能な液晶表示素子への応用が期待される任意形状に位相差を有する部分と位相差が無い部分(等方性部分)がパターン化された光学素子を簡易かつ安価に製造する技術(特許文献1)が開示されている。これは、基板に塗布した重合性液晶に、フォトマスクを介して活性エネルギー線を照射して、照射部分のみ重合性液晶を硬化させて位相差を有する部分を形成し、さらに基板を加熱することにより、未硬化状態にある重合性液晶を等方相状態にし、その状態で熱重合させて等方性部分を形成する工程を含んでいることを特徴としている。また、当該文献には熱重合を円滑にすることを目的として、当該文献には熱重合開始剤の併用も開示されている。この方法を用いると、位相差が無い部分の重合性液晶を有機溶剤で除去する必要が無いため、環境負荷を少なくできるという長所がある。しかしながら、この製造方法では、基板の加熱時に、重合性液晶の硬化膜にひび割れや段差、白濁を生じやすいという問題があった。 An optical element in which a part having a phase difference and a part having no phase difference (isotropic part) are patterned in an arbitrary shape expected to be applied to a transflective liquid crystal display device or a liquid crystal display element capable of three-dimensional display A technique (Patent Document 1) for manufacturing simply and inexpensively is disclosed. This involves irradiating the polymerizable liquid crystal applied to the substrate with active energy rays through a photomask, curing the polymerizable liquid crystal only at the irradiated portion to form a portion having a phase difference, and further heating the substrate. Thus, the method includes a step of forming an isotropic portion by bringing the polymerizable liquid crystal in an uncured state into an isotropic phase state and performing thermal polymerization in that state. In addition, for the purpose of facilitating thermal polymerization, this document discloses the combined use of a thermal polymerization initiator. When this method is used, it is not necessary to remove the portion of the polymerizable liquid crystal having no phase difference with an organic solvent, so that there is an advantage that the environmental load can be reduced. However, this manufacturing method has a problem that cracks, steps, and white turbidity are likely to occur in the cured film of the polymerizable liquid crystal when the substrate is heated.
また、上記製造方法に限らず、重合性液晶を用いた光学素子の製造においては、活性エネルギー線の照射に加えて、経時変化を抑制することを目的として、熱処理の併用が多くなされている。この熱処理によって、ひび割れや段差発生が問題になることがあった。 In addition to the above production method, in the production of an optical element using a polymerizable liquid crystal, in addition to the irradiation with active energy rays, a combination of heat treatment is often used for the purpose of suppressing a change with time. This heat treatment may cause problems such as cracks and steps.
本願発明の目的は、基板に塗布した重合性液晶に、フォトマスクを介して活性エネルギー線を照射して、照射部分のみ重合性液晶を硬化させ、さらに基板を加熱することにより、未硬化状態にある重合性液晶を等方相状態にし、その状態で(熱)重合させて等方層を形成する工程など、重合性液晶の硬化のために活性エネルギー線の照射と加熱処理を併用する工程を用いて製造する光学素子において、ひび割れや段差、白濁の無い良質な状態を実現できる重合性液晶材料を提供することにある。 The purpose of the present invention is to irradiate the polymerizable liquid crystal applied to the substrate with active energy rays through a photomask, cure the polymerizable liquid crystal only at the irradiated portion, and further heat the substrate to bring the polymer liquid crystal into an uncured state. A process that combines irradiation with active energy rays and heat treatment for curing the polymerizable liquid crystal, such as a process in which a certain polymerizable liquid crystal is brought into an isotropic phase state and isotropically (thermally) polymerized to form an isotropic layer. It is an object of the present invention to provide a polymerizable liquid crystal material capable of realizing a high-quality state free from cracks, steps and white turbidity in an optical element manufactured using the same.
上記目的を達成するために鋭意検討した結果、ひび割れや段差発生は加熱時における熱重合が進みにくいこと、また白濁は加熱時において、重合性液晶が等方性液体相に完全に転移する前に重合が進行しやすいことに関係していることを明らかにし、重合性液晶材料に特定の熱重合開始剤を添加すればよいことを見出し、本願発明の完成に至った。
本願発明は、重合性液晶化合物、光重合開始剤、及び熱重合開始剤を含有する重合性液晶組成物において、該熱重合開始剤の10時間半減温度が70〜93℃であることを特徴とする重合性液晶組成物を提供する。
As a result of diligent studies to achieve the above-mentioned purpose, it is difficult to cause thermal polymerization during heating when cracks and steps occur, and clouding occurs before complete transfer of the polymerizable liquid crystal to the isotropic liquid phase during heating. It has been clarified that the polymerization is likely to proceed, and it has been found that a specific thermal polymerization initiator may be added to the polymerizable liquid crystal material, and the present invention has been completed.
The invention of the present application is characterized in that, in a polymerizable liquid crystal composition containing a polymerizable liquid crystal compound, a photopolymerization initiator, and a thermal polymerization initiator, the thermal polymerization initiator has a 10 hour half-life temperature of 70 to 93 ° C. A polymerizable liquid crystal composition is provided.
本願発明の重合性液晶組成物を使用すると、熱重合時に発生するひび割れや段差、白濁を抑制でき、良質な光学素子が得られる。 When the polymerizable liquid crystal composition of the present invention is used, cracks, steps and white turbidity generated during thermal polymerization can be suppressed, and a high-quality optical element can be obtained.
本発明において、熱重合開始剤の「10時間半減温度」とは、熱重合開始剤を10時間その温度においた場合において、半分の分子が分解する温度を意味する。本発明の重合性液晶組成物用いる熱重合開始剤の10時間半減温度は、70℃以上93℃以下であるが、80℃以上92℃以下が好ましく、85℃以上91℃以下が特に好ましい。70℃より低いと熱重合開始剤が加熱途中で開始剤が開裂する(ラジカルを発生する)可能性が高くなり、得られる光学フィルムが白濁する傾向がある。重合性液晶組成物の透明点より低い温度で、開始剤の開裂が起きると、その白濁は極めて大きくなってしまう。また、93℃より高いと、加熱しても熱重合開始剤が開裂するタイミングが遅く、その際に望ましくない流動がおき、フィルムに段差が発生する傾向がある。 In the present invention, the “10 hour half-temperature” of the thermal polymerization initiator means a temperature at which half of the molecules are decomposed when the thermal polymerization initiator is kept at that temperature for 10 hours. The 10-hour half-life temperature of the thermal polymerization initiator used in the polymerizable liquid crystal composition of the present invention is 70 ° C to 93 ° C, preferably 80 ° C to 92 ° C, and particularly preferably 85 ° C to 91 ° C. When the temperature is lower than 70 ° C., the thermal polymerization initiator is likely to be cleaved (generates radicals) during heating, and the resulting optical film tends to become cloudy. When the initiator is cleaved at a temperature lower than the clearing point of the polymerizable liquid crystal composition, the cloudiness becomes extremely large. On the other hand, when the temperature is higher than 93 ° C., the timing at which the thermal polymerization initiator is cleaved is delayed even when heated, and an undesired flow occurs at that time, and there is a tendency that a step is generated in the film.
また、熱重合開始剤の分子骨格に、シクロヘキサン環を有することが好ましい。シクロヘキサン環を有すると、重合性液晶材料との相溶性を確保することができる。このような化合物として、特に好ましいのは、式(a) Moreover, it is preferable to have a cyclohexane ring in the molecular skeleton of the thermal polymerization initiator. When it has a cyclohexane ring, compatibility with the polymerizable liquid crystal material can be ensured. Particularly preferred as such compounds are those of formula (a)
熱重合開始剤の重合性液晶組成物中の添加量は、0.1~3質量%が好ましく、0.5~2質量%が更に好ましく、0.7~1.2質量%が特に好ましい。添加量が少ないとひび割れや段差が発生しやすくなり、添加量が多いと重合性液晶組成物の液晶としての性質が損なわれやすくなる。更に、得られる硬化物において光散乱が大きくなってしまう。
The addition amount of the thermal polymerization initiator in the polymerizable liquid crystal composition is preferably 0.1 to 3% by mass, more preferably 0.5 to 2% by mass, and particularly preferably 0.7 to 1.2% by mass. If the addition amount is small, cracks and steps are likely to occur, and if the addition amount is large, the properties of the polymerizable liquid crystal composition as liquid crystals are likely to be impaired. Furthermore, light scattering will become large in the hardened | cured material obtained.
光重合開始剤としては、この技術分野で光重合開始剤として認識されているものであれば、特に制限なく使用することができる。このような光重合開始剤としては例えば、ベンジルジメチルケタール化合物であるIrgacure-651(BASFジャパン)、α‐ヒドロキシアルキルフェノン化合物であるIrgacure-184(BASFジャパン)、α‐アミノアルキルフェノン化合物であるIrgacure-907(BASFジャパン:式(B)) Any photopolymerization initiator can be used without particular limitation as long as it is recognized as a photopolymerization initiator in this technical field. Examples of such photopolymerization initiators include Irgacure-651 (BASF Japan) which is a benzyldimethyl ketal compound, Irgacure-184 (BASF Japan) which is an α-hydroxyalkylphenone compound, and Irgacure which is an α-aminoalkylphenone compound. -907 (BASF Japan: Formula (B))
をあげることができる。これらの中でも、活性エネルギー線の照射時における空気中での硬化性を確保する(UVなどの活性エネルギー線の照射時に、窒素などの不活性ガスで置換をする必要がなくす)ことを可能にする観点から、α‐アミノアルキルフェノン化合物、もしくはオキシムエステル化合物を選択するのが好ましい。α‐アミノアルキルフェノン化合物としてはIrgacure-907を選択するのが好ましく、オキシムエステル化合物としてはIrgacure OXE 01を選択するのが好ましい。光重合開始剤の添加量は、活性エネルギー線の照射条件によって異なるが、重合性液晶組成物中において0.1〜5質量%が好ましく、1〜4%が更に好ましく、2〜3%が特に好ましい。
本願発明の重合性液晶組成物に用いられる重合性液晶化合物としては一般式(I)
Can give. Among these, it is possible to ensure curability in the air when irradiated with active energy rays (no need to replace with an inert gas such as nitrogen when irradiated with active energy rays such as UV). From the viewpoint, it is preferable to select an α-aminoalkylphenone compound or an oxime ester compound. Irgacure-907 is preferably selected as the α-aminoalkylphenone compound, and Irgacure OXE 01 is preferably selected as the oxime ester compound. Although the addition amount of a photoinitiator changes with irradiation conditions of an active energy ray, 0.1-5 mass% is preferable in a polymeric liquid crystal composition, 1-4% is further more preferable, and 2-3% is especially preferable.
The polymerizable liquid crystal compound used in the polymerizable liquid crystal composition of the present invention is represented by the general formula (I)
一般式(I)において、Spがアルキレン基を表し(該アルキレン基は1つ以上のハロゲン原子又はCNにより置換されていても良く、この基中に存在する1つのCH2基又は隣接していない2つ以上のCH2基はそれぞれ相互に独立して、酸素原子が相互に直接結合しない形で、-O-、-S-、-NH-、-N(CH3)-、-CO-、-COO-、-OCO-、-OCOO-、-SCO-、-COS-又は-C≡C-により置き換えられていても良い。)、MGが一般式(I-b) In the general formula (I), Sp represents an alkylene group (the alkylene group may be substituted by one or more halogen atoms or CN, and is not adjacent to one CH 2 group present in the group) Two or more CH 2 groups are independently of each other, in a form in which oxygen atoms are not directly bonded to each other, —O—, —S—, —NH—, —N (CH 3 ) —, —CO—, -COO-, -OCO-, -OCOO-, -SCO-, -COS- or -C≡C- may be substituted.), MG is represented by the general formula (Ib)
(式中、R21、R22、R23、R31、R32、R33はそれぞれ独立的に水素原子、ハロゲン原子又は炭素原子数1〜5のアルキル基を表し、nは0又は1を表す。)で表される置換基からなる群より選ばれる置換基を表すことが好ましい。
一般式(I)で表される化合物のうち、重合性官能基を一つ有する化合物として具体的には一般式(II)
(Wherein R 21 , R 22 , R 23 , R 31 , R 32 and R 33 each independently represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 5 carbon atoms, and n represents 0 or 1) It is preferable to represent a substituent selected from the group consisting of substituents represented by:
Of the compounds represented by the general formula (I), specific examples of the compound having one polymerizable functional group include those represented by the general formula (II)
一般式(II)で表される化合物は、液晶下限温度を下げる効果を有するために有用であるが、その添加量は0〜60%が好ましく、0〜50%が更に好ましく、0〜40%が特に好ましい。添加量が多いと得られる光学フィルムの耐熱性を損なう傾向がある。 The compound represented by the general formula (II) is useful because it has an effect of lowering the liquid crystal lower limit temperature, but the addition amount is preferably 0 to 60%, more preferably 0 to 50%, and more preferably 0 to 40%. Is particularly preferred. When the addition amount is large, the heat resistance of the obtained optical film tends to be impaired.
一般式(II)で表される化合物には、液晶性骨格を重合性官能基の間にスペーサーを有する化合物と有さない化合物を含む。一般式(II)において、W3が単結合以外の置換基を表し、vが2〜18の整数を表す場合がスペーサーを有する化合物に相当し、具体的には以下の一般式(II-1)から一般式(II-9)で表される化合物が好ましい。 The compound represented by the general formula (II) includes a compound having a liquid crystalline skeleton and a compound having a spacer between polymerizable functional groups and a compound having no spacer. In the general formula (II), the case where W 3 represents a substituent other than a single bond and v represents an integer of 2 to 18 corresponds to a compound having a spacer. Specifically, the following general formula (II-1 To the compound represented by the general formula (II-9).
(式中、X1は水素原子又はメチル基を表し、Rは炭素原子数1から20のアルキル基を表す。)。X1としては水素原子が好ましく、Sとしては3、4、6が好ましい。そのような化合物の中でも、式(IV-5)、式(IV-1)、式(IV-6)の化合物が好ましい。式(IV-1)の化合物の場合、Rとしてはメチル基が特に好ましい。 (Wherein, X 1 represents a hydrogen atom or a methyl group, and R represents an alkyl group having 1 to 20 carbon atoms). X1 is preferably a hydrogen atom, and S is preferably 3, 4, or 6. Among such compounds, compounds of formula (IV-5), formula (IV-1), and formula (IV-6) are preferable. In the case of the compound of formula (IV-1), R is particularly preferably a methyl group.
一方、一般式(II)において、W3が単結合を表し、vが0を表す場合がスペーサーを有さない化合物に相当し、具体的に以下の構造が好ましい。 On the other hand, in the general formula (II), the case where W 3 represents a single bond and v represents 0 corresponds to a compound having no spacer, and specifically the following structures are preferred.
(式中、シクロヘキサン環はトランスシクロヘキサン環を表し、数字は相転移温度を表し、Cは結晶相、Nはネマチック相、Sはスメクチック相、Iは等方性液体相をそれぞれ表す。)
一般式(I)で表される化合物のうち、重合性官能基を二つ有する化合物としては一般式(III)
(In the formula, a cyclohexane ring represents a transcyclohexane ring, a number represents a phase transition temperature, C represents a crystalline phase, N represents a nematic phase, S represents a smectic phase, and I represents an isotropic liquid phase.)
Of the compounds represented by the general formula (I), the compound having two polymerizable functional groups is represented by the general formula (III)
(式中、Z5、 Z6は水素原子、メチル基を表し、G、H及びIはそれぞれ独立的に、1,4−フェニレン基、隣接しないCH基が窒素で置換された1,4−フェニレン基、1,4−シクロヘキシレン基、1つ又は隣接しない2つのCH2基が酸素又は硫黄原子で置換された1,4−シクロヘキシレン基、1,4−シクロヘキセニレン基を表すが、式中に存在する1,4−フェニレン基は炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基又はハロゲン原子で一つ以上置換されていても良く、mは0から3の整数を表し、W1及びW2はそれぞれ独立的に単結合、-O-、-COO-又は-OCO-を表し、Y1及びY2はそれぞれ独立的に単結合、-COO-、-OCO-、-CH2CH2COO-、-CH2CH2OCO-、-COOCH2CH2-、-OCOCH2CH2-を表し、r及びsはそれぞれ独立的に2〜18の整数を表すが、式中に存在する1,4−フェニレン基は炭素原子数1〜7のアルキル基、アルコキシ基、アルカノイル基、シアノ基、又はハロゲン原子で一つ以上置換されていても良い。)で表される化合物が好ましい。 更に具体的には以下に挙げることができる。 (In the formula, Z 5 and Z 6 represent a hydrogen atom and a methyl group, G, H and I are each independently 1,4-phenylene group and 1,4- A phenylene group, a 1,4-cyclohexylene group, a 1,4-cyclohexylene group or a 1,4-cyclohexenylene group in which one or two non-adjacent CH2 groups are substituted with an oxygen or sulfur atom. The 1,4-phenylene group present therein may be substituted by one or more alkyl groups having 1 to 7 carbon atoms, alkoxy groups, alkanoyl groups, cyano groups or halogen atoms, and m is an integer of 0 to 3 W 1 and W 2 each independently represent a single bond, —O—, —COO— or —OCO—, and Y 1 and Y 2 each independently represent a single bond, —COO—, —OCO— , -CH 2 CH 2 COO -, - CH 2 CH 2 OCO -, - COOCH 2 CH2 -, - OCOCH 2 CH 2 - represents, r and s represent each independently 2 to 18 integer, formula Exist in The 1,4-phenylene group may be substituted with one or more alkyl groups having 1 to 7 carbon atoms, alkoxy groups, alkanoyl groups, cyano groups, or halogen atoms. More specifically, the following can be mentioned.
(式中、j、k、l及びmはそれぞれ独立的に2〜18の整数を表す。)
以上のような化合物の中でも、(III-30)であらわされる化合物が好ましい。(III-30)は、溶解性に優れ、液晶下限温度がおよそ50〜70℃であるので組成物中の成分として有効である。組成物中の濃度として、5%以上が好ましく、10%以上が更に好ましく、15%以上が特に好ましい。また、(III-9)であらわされる化合物も好ましい。(III-9)の化合物も溶解性に優れ、また配向性に優れるので組成物中の成分として有効である。組成物中の濃度として、5%以上が好ましく、10%以上が更に好ましく、15%以上が特に好ましい。(III-30)であらわされる化合物、および(III-9)であらわされる化合物濃度の和は、10%以上であることが好ましく、20%以上であることが更に好ましく、30%以上であることが特に好ましい。j、kは3、4、6である化合物を用いることが化合物製造コスト及び液晶温度範囲を適切に設定できる点から好ましい。
(Wherein j, k, l and m each independently represent an integer of 2 to 18)
Among the above compounds, a compound represented by (III-30) is preferable. (III-30) is effective as a component in the composition because of its excellent solubility and a liquid crystal lower limit temperature of about 50 to 70 ° C. The concentration in the composition is preferably 5% or more, more preferably 10% or more, and particularly preferably 15% or more. A compound represented by (III-9) is also preferred. The compound of (III-9) is also effective as a component in the composition because of its excellent solubility and orientation. The concentration in the composition is preferably 5% or more, more preferably 10% or more, and particularly preferably 15% or more. The sum of the concentration of the compound represented by (III-30) and the compound represented by (III-9) is preferably 10% or more, more preferably 20% or more, and 30% or more. Is particularly preferred. It is preferable to use a compound in which j and k are 3, 4, and 6 because the compound production cost and the liquid crystal temperature range can be appropriately set.
また、本発明の重合性液晶組成物に円盤状化合物を添加しても良い。このような円盤状化合物としては、ベンゼン誘導体、トリフェニレン誘導体、トルキセン誘導体、フタロシアニン誘導体又はシクロヘキサン誘導体を分子の中心の母核とし、直鎖のアルキル基、直鎖のアルコキシ基又は置換ベンゾイルオキシ基がその側鎖として放射状に置換した構造であることが好ましく、一般式(IV) Further, a discotic compound may be added to the polymerizable liquid crystal composition of the present invention. As such a discotic compound, a benzene derivative, a triphenylene derivative, a truxene derivative, a phthalocyanine derivative or a cyclohexane derivative is used as a mother nucleus at the center of the molecule, and a linear alkyl group, a linear alkoxy group, or a substituted benzoyloxy group is included. Preferably, the structure is a radially substituted structure as a side chain.
さらに、一般式(V-a)は具体的には一般式(IV-e) Further, the general formula (V-a) specifically represents the general formula (IV-e)
本発明の重合性液晶組成物には、塗布したときに良好なプラナー配向を迅速に得ることを目的として、一般式(V) The polymerizable liquid crystal composition of the present invention has the general formula (V) for the purpose of quickly obtaining good planar alignment when applied.
一般式(V)で表される化合物は、例えばポリエチレン、ポリプロピレン、ポリイソブチレン、パラフィン、流動パラフィン、塩素化ポリプロピレン、塩素化パラフィン、又は塩素化流動パラフィンが挙げられる。これ以外にも、フッ素原子が導入された化合物はムラ抑制の観点からも有効である。
一般式(V)で表される繰り返し単位を有する化合物のうち、好適な構造として、式(V-a)〜式(V-f)
Examples of the compound represented by the general formula (V) include polyethylene, polypropylene, polyisobutylene, paraffin, liquid paraffin, chlorinated polypropylene, chlorinated paraffin, and chlorinated liquid paraffin. In addition to this, a compound in which a fluorine atom is introduced is also effective from the viewpoint of suppressing unevenness.
Among the compounds having a repeating unit represented by the general formula (V), as a preferred structure, the formula (Va) to the formula (Vf)
で表される繰り返し単位を有する化合物が挙げられる。中でも、式(V-a)〜式(V-e)で表される構造がより好ましく、式(V-a)及び式(V-c)で表される構造が特に好ましい。又、式(V-a)〜式(V-f)で表される繰り返し単位を有する化合物を2種以上共重合させた共重合体も好ましい。この場合、式(V-a)及び式(V-b)を有する共重合体、式(V-a)及び式(V-c)を有する共重合体、式(V-a)及び式(V-f)を有する共重合体、及び、式(V-a)、(V-b)及び式(V-f)を有する共重合体がより好ましく、式(V-a)及び式(V-b)を有する共重合体、及び、式(V-a)、(V-b)及び式(V-f)を有する共重合体が特に好ましい。 The compound which has a repeating unit represented by these is mentioned. Among these, structures represented by the formulas (Va) to (Ve) are more preferable, and structures represented by the formulas (Va) and (Vc) are particularly preferable. A copolymer obtained by copolymerizing two or more compounds having a repeating unit represented by the formula (Va) to the formula (Vf) is also preferable. In this case, a copolymer having the formula (Va) and the formula (Vb), a copolymer having the formula (Va) and the formula (Vc), a copolymer having the formula (Va) and the formula (Vf), and More preferred are copolymers having formula (Va), (Vb) and formula (Vf), copolymers having formula (Va) and formula (Vb), and formulas (Va), (Vb) and formula (V A copolymer having Vf) is particularly preferred.
該化合物の重量平均分子量は、小さすぎるとチルト角を減じる効果が乏しくなり、大きすぎると配向が長時間安定しないため最適な範囲が存在する。具体的には、200〜1000000であることが好ましく、300〜100000であることがさらに好ましく、400〜80000であることが特に好ましい。
又、該化合物を、重合性液晶組成物中に0.01〜5質量%含有することが好ましく、0.05〜2質量%含有することがより好ましく、0.1〜1質量%含有することが特に好ましい。
If the weight average molecular weight of the compound is too small, the effect of reducing the tilt angle is poor. Specifically, it is preferably 200 to 1000000, more preferably 300 to 100000, and particularly preferably 400 to 80000.
Moreover, it is preferable to contain 0.01-5 mass% of this compound in a polymeric liquid crystal composition, It is more preferable to contain 0.05-2 mass%, Containing 0.1-1 mass% Is particularly preferred.
本発明の重合性液晶組成物はキラルネマチック相を得ることを目的としてキラル化合物を含有しても良い。キラル化合物のなかでも、分子中に重合性官能基を有する化合物が特に好ましい。
キラル化合物中の重合性官能基としては、アクリロイルオキシ基が特に好ましい。キラル化合物の添加量は、化合物の螺旋誘起力によって適宜調整することが必要であるが、12%以下が好ましい。
キラル化合物の具体的例としては、式(ch-1)〜(ch-8)の化合物を挙げることができる。
The polymerizable liquid crystal composition of the present invention may contain a chiral compound for the purpose of obtaining a chiral nematic phase. Of the chiral compounds, compounds having a polymerizable functional group in the molecule are particularly preferred.
As the polymerizable functional group in the chiral compound, an acryloyloxy group is particularly preferable. The addition amount of the chiral compound needs to be appropriately adjusted depending on the helical induction force of the compound, but is preferably 12% or less.
Specific examples of the chiral compound include compounds of the formulas (ch-1) to (ch-8).
(式中、nは2〜12の整数を表す)これらの化合物のなかでも(ch-1)の化合物が好ましい。この場合、nは2もしくは4が合成コストの観点からもっとも好ましい。 (Wherein n represents an integer of 2 to 12) Among these compounds, the compound of (ch-1) is preferable. In this case, n is most preferably 2 or 4 from the viewpoint of synthesis cost.
重合性液晶組成物には、塗布した際に表面の平滑性を確保することを目的として、界面活性剤を添加することが好ましい。界面活性剤は、イオン性界面活性剤、非イオン性界面活性剤の区別はない。含有することができる界面活性剤としては、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類、シリコーン誘導体等をあげることができ、特に含フッ素界面活性剤、シリコーン誘導体が好ましい。更に具体的には「MEGAFAC F−110」、「MEGAFACF−113」、「MEGAFAC F−120」、「MEGAFAC F−812」、「MEGAFAC F−142D」、「MEGAFAC F−144D」、「MEGAFAC F−150」、「MEGAFAC F−171」、「MEGAFACF−173」、「MEGAFAC F−177」、「MEGAFAC F−183」、「MEGAFAC F−195」、「MEGAFAC F−824」、「MEGAFAC F−833」、「MEGAFAC F−114」、「MEGAFAC F−410」、「MEGAFAC F−493」、「MEGAFAC F−494」、「MEGAFAC F−443」、「MEGAFAC F−444」、「MEGAFAC F−445」、「MEGAFAC F−446」、「MEGAFAC F−470」、「MEGAFAC F−471」、「MEGAFAC F−474」、「MEGAFAC F−475」、「MEGAFAC F−477」、「MEGAFAC F−478」、「MEGAFAC F−479」、「MEGAFAC F−480SF」、「MEGAFAC F−482」、「MEGAFAC F−483」、「MEGAFAC F−484」、「MEGAFAC F−486」、「MEGAFAC F−487」、「MEGAFAC F−489」、「MEGAFAC F−172D」、「MEGAFAC F−178K」、「MEGAFAC F−178RM」、「MEGAFAC R−08」、「MEGAFAC R−30」、「MEGAFAC F−472SF」、「MEGAFAC BL−20」、「MEGAFAC R−61」、「MEGAFAC R−90」、「MEGAFAC ESM−1」、「MEGAFAC MCF−350SF」(以上、DIC株式会社製)、 A surfactant is preferably added to the polymerizable liquid crystal composition for the purpose of ensuring surface smoothness when it is applied. As the surfactant, there is no distinction between an ionic surfactant and a nonionic surfactant. Surfactants that can be included include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, fluoro Examples thereof include alkylethylene oxide derivatives, polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts, silicone derivatives and the like, and fluorine-containing surfactants and silicone derivatives are particularly preferable. More specifically, “MEGAFAC F-110”, “MEGAFACCF-113”, “MEGAFAC F-120”, “MEGAFAC F-812”, “MEGAFAC F-142D”, “MEGAFAC F-144D”, “MEGAFAC F-” 150 "," MEGAFAC F-171 "," MEGAFACCF-173 "," MEGAFAC F-177 "," MEGAFAC F-183 "," MEGAFAC F-195 "," MEGAFAC F-824 "," MEGAFAC F-833 " , “MEGAFAC F-114”, “MEGAFAC F-410”, “MEGAFAC F-493”, “MEGAFAC F-494”, “MEGAFAC F-443”, “MEGAFAC F-444”, “MEGAFAC F-445”, "ME GAFAC F-446, MEGAFAC F-470, MEGAFAC F-471, MEGAFAC F-474, MEGAFAC F-475, MEGAFAC F-477, MEGAFAC F-478, MEGAFAC F-479, MEGAFAC F-480SF, MEGAFAC F-482, MEGAFAC F-483, MEGAFAC F-484, MEGAFAC F-486, MEGAFAC F-487, MEGAFAC F -489 "," MEGAFAC F-172D "," MEGAFAC F-178K "," MEGAFAC F-178RM "," MEGAFAC R-08 "," MEGAFAC R-30 "," MEGAFAC F-472SF "," MEGAFAC " "BL-20", "MEGAFAC R-61", "MEGAFAC R-90", "MEGAFAC ESM-1", "MEGAFAC MCF-350SF" (above, manufactured by DIC Corporation),
「フタージェント100」、「フタージェント100C」、「フタージェント110」、「フタージェント150」、「フタージェント150CH」、「フタージェントA」、「フタージェント100A-K」、「フタージェント501」、「フタージェント300」、「フタージェント310」、「フタージェント320」、「フタージェント400SW」、「FTX-400P」、「フタージェント251」、「フタージェント215M」、「フタージェント212MH」、「フタージェント250」、「フタージェント222F」、「フタージェント212D」、「FTX-218」、「FTX-209F」、「FTX-213F」、「FTX-233F」、「フタージェント245F」、「FTX-208G」、「FTX-240G」、「FTX-206D」、「FTX-220D」、「FTX-230D」、「FTX-240D」、「FTX-207S」、「FTX-211S」、「FTX-220S」、「FTX-230S」、「FTX-750FM」、「FTX-730FM」、「FTX-730FL」、「FTX-710FS」、「FTX-710FM」、「FTX-710FL」、「FTX-750LL」、「FTX-730LS」、「FTX-730LM」、「FTX-730LL」、「FTX-710LL」(以上、ネオス社製)、 “Furgent 100”, “Furgent 100C”, “Furgent 110”, “Furgent 150”, “Furgent 150CH”, “Furgent A”, “Furgent 100A-K”, “Furgent 501”, "Factent 300", "Factent 310", "Factent 320", "Factent 400SW", "FTX-400P", "Factent 251", "Factent 215M", "Factent 212MH", "Footer Gent 250, Fategent 222F, Fategent 212D, FTX-218, FTX-209F, FTX-213F, FTX-233F, Fate 245F, FTX-208G ”,“ FTX-240G ”,“ FT -206D "," FTX-220D "," FTX-230D "," FTX-240D "," FTX-207S "," FTX-211S "," FTX-220S "," FTX-230S "," FTX-750FM " ”,“ FTX-730FM ”,“ FTX-730FL ”,“ FTX-710FS ”,“ FTX-710FM ”,“ FTX-710FL ”,“ FTX-750LL ”,“ FTX-730LS ”,“ FTX-730LM ”, "FTX-730LL", "FTX-710LL" (above, manufactured by Neos),
「BYK−300」、「BYK−302」、「BYK−306」、「BYK−307」、「BYK−310」、「BYK−315」、「BYK−320」、「BYK−322」、「BYK−323」、「BYK−325」、「BYK−330」、「BYK−331」、「BYK−333」、「BYK−337」、「BYK−340」、「BYK−344」、「BYK−370」、「BYK−375」、「BYK−377」、「BYK−350」、「BYK−352」、「BYK−354」、「BYK−355」、「BYK−356」、「BYK−358N」、「BYK−361N」、「BYK−357」、「BYK−390」、「BYK−392」、「BYK−UV3500」、「BYK−UV3510」、「BYK−UV3570」、「BYK−Silclean3700」(以上、ビックケミー・ジャパン社製)、 “BYK-300”, “BYK-302”, “BYK-306”, “BYK-307”, “BYK-310”, “BYK-315”, “BYK-320”, “BYK-322”, “BYK” -323 "," BYK-325 "," BYK-330 "," BYK-331 "," BYK-333 "," BYK-337 "," BYK-340 "," BYK-344 "," BYK-370 " ”,“ BYK-375 ”,“ BYK-377 ”,“ BYK-350 ”,“ BYK-352 ”,“ BYK-354 ”,“ BYK-355 ”,“ BYK-356 ”,“ BYK-358N ”, “BYK-361N”, “BYK-357”, “BYK-390”, “BYK-392”, “BYK-UV3500”, “BYK-UV3510”, “BYK-UV3570”, “B K-Silclean3700 "(manufactured by BYK Japan KK),
「TEGO Rad2100」、「TEGO Rad2200N」、「TEGO Rad2250」、「TEGO Rad2300」、「TEGO Rad2500」、「TEGO Rad2600」、「TEGO Rad2700」(以上、テゴ社製)等の例をあげることができる。界面活性剤の好ましい添加量は、重合性液晶組成物中に含有される界面活性剤以外の成分や、使用温度等によって異なるが、重合性液晶組成物中に0.01〜1質量%含有することが好ましく、0.02〜0.5質量%含有することがさらに好ましく、0.03〜0.1質量%含有することが特に好ましい。含有量が0.01質量%より低いときは膜厚ムラ低減効果が得にくい。一般式(VI)で表される繰り返し単位を有する重量平均分子量が100以上である化合物の含有量と界面活性剤の含有量の合計が0.02〜0.5質量%であることが好ましく、0.05〜0.4質量%含有することがさらに好ましく、0.1〜0.2質量%含有することが特に好ましい。 Examples include “TEGO Rad2100”, “TEGO Rad2200N”, “TEGO Rad2250”, “TEGO Rad2300”, “TEGO Rad2500”, “TEGO Rad2600”, “TEGO Rad2700” (manufactured by TEGO). The preferred addition amount of the surfactant varies depending on components other than the surfactant contained in the polymerizable liquid crystal composition, the use temperature, etc., but is contained in the polymerizable liquid crystal composition in an amount of 0.01 to 1% by mass. The content is preferably 0.02 to 0.5 mass%, more preferably 0.03 to 0.1 mass%. When the content is lower than 0.01% by mass, it is difficult to obtain the effect of reducing film thickness unevenness. The total content of the surfactant and the content of the compound having a weight average molecular weight of 100 or more having the repeating unit represented by the general formula (VI) is preferably 0.02 to 0.5% by mass, It is more preferable to contain 0.05-0.4 mass%, and it is especially preferable to contain 0.1-0.2 mass%.
本発明の重合性液晶組成物には100〜2000ppmの重合性禁止剤を含有させることが好ましい。重合禁止剤としては、例えば、ヒドロキノン、ヒドロキノンモノアルキルエーテル類、第三ブチルカテコール類、ピロガロール類、チオフェノール類、ニトロ化合物類、β−ナフチルアミン類、β−ナフトール類、ニトロソ化合物等が挙げられる。より具体的にはメトキシフェノール、2,6-ジ-tert-ブチルフェノールを挙げることができる。 The polymerizable liquid crystal composition of the present invention preferably contains 100 to 2000 ppm of a polymerizable inhibitor. Examples of the polymerization inhibitor include hydroquinone, hydroquinone monoalkyl ethers, tert-butylcatechols, pyrogallols, thiophenols, nitro compounds, β-naphthylamines, β-naphthols, nitroso compounds and the like. More specific examples include methoxyphenol and 2,6-di-tert-butylphenol.
本発明の光学異方体は、例えば、本発明の重合性液晶組成物を基板上に坦持させて、材料が配向した後、紫外線もしくは電子線を照射により硬化させることによって得ることができる。重合性液晶組成物を坦持させる場合には、重合性液晶組成物を溶媒に溶解させ、これを基板上に塗布し、さらに溶媒を揮発させる方法を挙げることができる。重合性液晶を溶剤に溶解させないで、そのまま、基板上に塗布することも可能である。好適な有機溶媒として例えばトルエン、キシレン、クメンなどのアルキル置換ベンゼンやプロピレングリコールモノメチルエーテルアセテート、酢酸ブチル、シクロヘキサノン、シクロペンンタノン等を挙げることができる。さらにこれらの溶媒にジメチルホルムアミド、γ−ブチロラクトン、N-メチルピロリジノン、メチルエチルケトン、酢酸エチル等を添加しても良い。溶媒を揮発させる方法としては60〜150℃、さらに好ましくは80℃〜120℃での加熱を、15〜120秒、さらに好ましくは30〜90秒の間行う方法を例示することができる。この加熱の他に、減圧乾燥を組み合わせることもできる。塗布の方法としては、スピンコーティング、ダイコーティング、エクストルージョンコーティング、ロールコーティング、ワイヤーバーコーティング、グラビアコーティング、スプレーコーティング、ディッピング、プリント法等を挙げることができる。基板としてはガラスなどの無機材料、プラスチックフィルムなどの有機材料のどちらを使用しても良い。これらの基板は、配向処理を施すことが好ましい。配向処理としては、基板を布などで擦るラビング処理やポリイミドなどの有機薄膜を基板上に形成してからのラビング処理、もしくは光配向膜を基板上に形成してから更に偏光紫外線を照射する光配向処理などを挙げることができる。 The optical anisotropic body of the present invention can be obtained, for example, by supporting the polymerizable liquid crystal composition of the present invention on a substrate and aligning the material, followed by curing by irradiation with ultraviolet rays or electron beams. In the case where the polymerizable liquid crystal composition is carried, a method in which the polymerizable liquid crystal composition is dissolved in a solvent, applied onto a substrate, and the solvent is volatilized can be exemplified. It is also possible to apply the polymerizable liquid crystal directly onto the substrate without dissolving it in the solvent. Suitable organic solvents include, for example, alkyl-substituted benzenes such as toluene, xylene, cumene, propylene glycol monomethyl ether acetate, butyl acetate, cyclohexanone, cyclopentanone and the like. Further, dimethylformamide, γ-butyrolactone, N-methylpyrrolidinone, methyl ethyl ketone, ethyl acetate and the like may be added to these solvents. Examples of the method for volatilizing the solvent include a method in which heating at 60 to 150 ° C., more preferably 80 to 120 ° C. is performed for 15 to 120 seconds, more preferably 30 to 90 seconds. In addition to this heating, vacuum drying can be combined. Examples of the application method include spin coating, die coating, extrusion coating, roll coating, wire bar coating, gravure coating, spray coating, dipping, and printing. As the substrate, either an inorganic material such as glass or an organic material such as a plastic film may be used. These substrates are preferably subjected to an alignment treatment. Alignment treatment includes rubbing treatment that rubs the substrate with a cloth, rubbing treatment after an organic thin film such as polyimide is formed on the substrate, or light that is irradiated with polarized ultraviolet light after the photo-alignment film is formed on the substrate. An alignment process etc. can be mentioned.
活性エネルギー線としては、電子線、UV光を使用することができる。UV光としては、波長280〜360nmの光を使用できる。強度としては、1〜100mW/cm2が好ましく、2〜50mW/cm2が更に好ましく、5〜30mW/cm2が特に好ましい。照射エネルギーとしては5〜200mJ/cm2が好ましく、10〜150mJ/cm2が更に好ましく、20〜120mJ/cm2が特に好ましい。 As the active energy ray, an electron beam or UV light can be used. As the UV light, light having a wavelength of 280 to 360 nm can be used. The intensity is preferably 1 to 100 mW / cm 2, more preferably 2~50mW / cm 2, 5~30mW / cm 2 is particularly preferred. Preferably 5 to 200 mJ / cm 2 as irradiation energy, more preferably 10~150mJ / cm 2, 20~120mJ / cm 2 is particularly preferred.
活性エネルギー線をパターンマスクを通して照射する場合、パターンマスクと重合性液晶組成物層との距離は10〜300μmが好ましく、50〜200μmが更に好ましく、100〜150μmが特に好ましい。距離が小さいほど、パターンの分解能は向上するが、小さくすると重合性液晶組成物層がマスクに付着してしまう危険がある。
活性エネルギー線を照射した後の加熱処理温度は、100〜240℃が好ましく、150〜235℃が更に好ましく、180〜230℃が特に好ましい。加熱時間は10〜80分が好ましく、20〜70分が更に好ましく、30〜60分が特に好ましい。加熱時間が短いと、熱重合が十分に進行せずに信頼性が悪化する傾向があり、加熱時間が長いと熱劣化が進行する傾向がある。
When irradiating an active energy ray through a pattern mask, the distance between the pattern mask and the polymerizable liquid crystal composition layer is preferably 10 to 300 μm, more preferably 50 to 200 μm, and particularly preferably 100 to 150 μm. As the distance is smaller, the resolution of the pattern is improved. However, if the distance is smaller, the polymerizable liquid crystal composition layer may be attached to the mask.
The heat treatment temperature after irradiation with active energy rays is preferably from 100 to 240 ° C, more preferably from 150 to 235 ° C, particularly preferably from 180 to 230 ° C. The heating time is preferably 10 to 80 minutes, more preferably 20 to 70 minutes, and particularly preferably 30 to 60 minutes. If the heating time is short, thermal polymerization does not proceed sufficiently and the reliability tends to deteriorate, and if the heating time is long, thermal degradation tends to proceed.
以下、実施例を挙げて本願発明を更に詳述するが、本願発明はこれらの実施例に限定されるものではない。なお、%は質量%を表す。正面位相差Reは大塚電子製のRETS-100にて測定した(波長は589nm)。
(参考例1) 重合性液晶組成物の調製
式(III-8-a)の液晶性アクリレート化合物10.00%
EXAMPLES Hereinafter, although an Example is given and this invention is further explained in full detail, this invention is not limited to these Examples. In addition,% represents mass%. The front phase difference Re was measured with RETS-100 manufactured by Otsuka Electronics (wavelength 589 nm).
(Reference Example 1) Liquid crystalline acrylate compound of the formula (III-8-a) for preparation of polymerizable liquid crystal composition 10.00%
(実施例1)
参考例1で調製した重合性液晶組成物(A-1)が99.00%、式(a)の熱重合開始剤1,1'-Azobis(cyclohexane-1-carbonitrile)が1.00%からなる重合性液晶組成物(A-2)を調製した。式(a)の熱重合開始剤の10時間半減温度は、88℃である。
Example 1
Polymerization comprising 99.00% of the polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 and 1.00% of the thermal polymerization initiator 1,1′-Azobis (cyclohexane-1-carbonitrile) of the formula (a) Liquid crystal composition (A-2) was prepared. The 10-hour half-life temperature of the thermal polymerization initiator of formula (a) is 88 ° C.
更に重合性液晶組成物(A-2)35%、シクロペンタノン65%からなる重合性液晶溶液(A-3)を調製した。これをラビング処理を施したポリイミド配向膜付きのガラス基板にスピンコート(800回転/分、15秒)した。スピンコートした基板を80℃で2分間加熱して溶媒を揮発させた後、2分間室温で放置した。この状態で重合性液晶組成物層を観察したところ、水平1軸配向していることが確かめられた。このようにして得られた重合性液晶組成物層に、高圧水銀ランプから発生する紫外線(バンドパスフィルターを通したもの。波長365nmにおいて強度20mW/cm2)を空気中でマスクパターン(一部に1mmピッチのラインパターンを持つ)と通して0.31秒照射した。マスクパターンと重合性液晶組成物層の間の距離は150μmに保った。このようにして、一部に1mmの幅で紫外線が照射されたところと、1mmの幅で紫外線が未照射のところが繰り返された状態にした。これを230℃のオーブンに1時間静置して、紫外線が未照射だった部分を熱重合させた。このようにして得られた光学異方体を室温まで冷却したのちに観察したところ、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、等方性液体相の状態で熱重合したために、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は338nmであった。 Further, a polymerizable liquid crystal solution (A-3) comprising 35% of the polymerizable liquid crystal composition (A-2) and 65% of cyclopentanone was prepared. This was spin coated (800 rpm) for 15 seconds on a glass substrate with a polyimide alignment film that had been rubbed. The spin-coated substrate was heated at 80 ° C. for 2 minutes to volatilize the solvent, and then allowed to stand at room temperature for 2 minutes. When the polymerizable liquid crystal composition layer was observed in this state, it was confirmed that horizontal uniaxial alignment was achieved. The polymerizable liquid crystal composition layer thus obtained was irradiated with ultraviolet light generated from a high-pressure mercury lamp (passed through a band-pass filter. Intensity 20 mW / cm 2 at a wavelength of 365 nm) in a mask pattern (in part). With a line pattern of 1 mm pitch) for 0.31 seconds. The distance between the mask pattern and the polymerizable liquid crystal composition layer was kept at 150 μm. In this way, a portion where the ultraviolet rays were partially irradiated with a width of 1 mm and a portion where the ultraviolet rays were not irradiated with a width of 1 mm were repeated. This was allowed to stand in an oven at 230 ° C. for 1 hour, and the portion that had not been irradiated with ultraviolet rays was thermally polymerized. When the optically anisotropic body thus obtained was observed after cooling to room temperature, the polymerizable liquid crystal material was cured over the entire area. It was confirmed that there was no phase difference due to the thermal polymerization in the state. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 338 nm.
(実施例2)
実施例1において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は353nmであった。
(Example 2)
The experiment was performed in the same manner as in Example 1 except that the UV irradiation time was 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 353 nm.
(実施例3)
実施例1において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は377nmであった。
(Example 3)
The experiment was performed in the same manner as in Example 1 except that the UV irradiation time was 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 377 nm.
(実施例4)
実施例1において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は394nmであった。
Example 4
In Example 1, the experiment was performed in the same manner except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 394 nm.
(比較例1)
参考例1で調製した重合性液晶組成物(A-1)35%、シクロペンタノン65%からなる重合性液晶溶液(B-3)を調製した。これをラビング処理を施したポリイミド配向膜付きのガラス基板にスピンコート(800回転/分、15秒)した。スピンコートした基板を80℃で2分間加熱して溶媒を揮発させた後、2分間室温で放置した。この状態で重合性液晶組成物層を観察したところ、水平1軸配向していることが確かめられた。このようにして得られた重合性液晶組成物層に、高圧水銀ランプから発生する紫外線(バンドパスフィルターを通したもの。波長365nmにおいて強度20mW/cm2)を空気中でマスクパターン(一部に1mmピッチのラインパターンを持つ)と通して0.31秒照射した。マスクパターンと重合性液晶組成物層の間の距離は150μmに保った。このようにして、一部に1mmの幅で紫外線が照射されたところと、1mmの幅で紫外線が未照射のところが繰り返された状態にした。これを230℃のオーブンに1時間静置して、紫外線が未照射だった部分を熱重合させた。このようにして得られた光学異方体を室温まで冷却したのちに観察したところ、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、等方性液体相の状態で熱重合したために、位相差を持っていないことが確かめられた。しかし、パターン部にひび割れが多数観察された。UV照射した部分は光学異方性を持っており、位相差は293nmであった。
(Comparative Example 1)
A polymerizable liquid crystal solution (B-3) comprising 35% of the polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 and 65% of cyclopentanone was prepared. This was spin coated (800 rpm) for 15 seconds on a glass substrate with a polyimide alignment film that had been rubbed. The spin-coated substrate was heated at 80 ° C. for 2 minutes to volatilize the solvent, and then allowed to stand at room temperature for 2 minutes. When the polymerizable liquid crystal composition layer was observed in this state, it was confirmed that horizontal uniaxial alignment was achieved. The polymerizable liquid crystal composition layer thus obtained was irradiated with ultraviolet light generated from a high-pressure mercury lamp (passed through a band-pass filter. Intensity 20 mW / cm 2 at a wavelength of 365 nm) in a mask pattern (in part). With a line pattern of 1 mm pitch) for 0.31 seconds. The distance between the mask pattern and the polymerizable liquid crystal composition layer was kept at 150 μm. In this way, a portion where the ultraviolet rays were partially irradiated with a width of 1 mm and a portion where the ultraviolet rays were not irradiated with a width of 1 mm were repeated. This was allowed to stand in an oven at 230 ° C. for 1 hour, and the portion that had not been irradiated with ultraviolet rays was thermally polymerized. When the optically anisotropic body thus obtained was observed after cooling to room temperature, the polymerizable liquid crystal material was cured over the entire area. It was confirmed that there was no phase difference due to the thermal polymerization in the state. However, many cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 293 nm.
(比較例2)
比較例1において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。パターン部にひび割れが観察された。UV照射した部分は光学異方性を持っており、位相差は309nmであった。
(Comparative Example 2)
In Comparative Example 1, the experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Cracks were observed in the pattern area. The UV irradiated part had optical anisotropy and the phase difference was 309 nm.
(比較例3)
比較例1において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は325nmであった。
(Comparative Example 3)
An experiment was conducted in the same manner as in Comparative Example 1 except that the UV irradiation time was changed to 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 325 nm.
(比較例4)
比較例1において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は333nmであった。
(Comparative Example 4)
An experiment was conducted in the same manner as in Comparative Example 1 except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 333 nm.
(比較例5)
参考例1で調製した重合性液晶組成物(A-1)が99.00%、式(r1)の熱重合開始剤2,2'-Azobis(isobutyronitrile)が1.00%からなる重合性液晶組成物(C-2)を調製した。式(r1)の熱重合開始剤の10時間半減温度は、60℃である。
(Comparative Example 5)
Polymerizable liquid crystal composition comprising 99.00% of the polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 and 1.00% of the thermal polymerization initiator 2,2′-Azobis (isobutyronitrile) of the formula (r1). (C-2) was prepared. The 10-hour half-life temperature of the thermal polymerization initiator of the formula (r1) is 60 ° C.
(比較例6)
比較例5において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。パターン部にひび割れは若干観察された。UV照射した部分は光学異方性を持っており、位相差は308nmであった。
(Comparative Example 6)
In Comparative Example 5, the experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Some cracks were observed in the pattern area. The UV irradiated part had optical anisotropy and the phase difference was 308 nm.
(比較例7)
比較例5において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は332nmであった。
(Comparative Example 7)
In Comparative Example 5, the experiment was performed in the same manner except that the UV irradiation time was 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 332 nm.
(比較例8)
比較例5において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は354nmであった。
(Comparative Example 8)
In Comparative Example 5, the experiment was performed in the same manner except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 354 nm.
(比較例9)
参考例1で調製した重合性液晶組成物(A-1)が99.00%、式(r2)の熱重合開始剤2,2'-Azobis(isobutylate)が1.00%からなる重合性液晶組成物(D-2)を調製した。式(r2)の熱重合開始剤の10時間半減温度は、66℃である。
(Comparative Example 9)
Polymerizable liquid crystal composition comprising 99.00% of the polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 and 1.00% of the thermal polymerization initiator 2,2′-Azobis (isobutylate) of the formula (r2). (D-2) was prepared. The 10-hour half-life temperature of the thermal polymerization initiator of the formula (r2) is 66 ° C.
(比較例10)
比較例9において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。パターン部にひび割れは観察された。UV照射した部分は光学異方性を持っており、位相差は376nmであった。
(Comparative Example 10)
In Comparative Example 9, the experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Cracks were observed in the pattern area. The UV irradiated part had optical anisotropy and the phase difference was 376 nm.
(比較例11)
比較例9において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは若干観察された。UV照射した部分は光学異方性を持っており、位相差は392nmであった。
(Comparative Example 11)
In Comparative Example 9, the experiment was performed in the same manner except that the UV irradiation time was set to 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Further, some cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 392 nm.
(比較例12)
実施例9において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は419nmであった。
(Comparative Example 12)
The experiment was performed in the same manner as in Example 9 except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 419 nm.
(比較例13)
参考例1で調製した重合性液晶組成物(A-1)が99.00%、式(r3)の熱重合開始剤2,2'-Azobis[N-(2-propenyl)-2-methylpropionamide]が1.00%からなる重合性液晶組成物(E-2)を調製した。式(r3)の熱重合開始剤の10時間半減温度は、96℃である。
(Comparative Example 13)
The polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 was 99.00%, and the thermal polymerization initiator 2,2′-Azobis [N- (2-propenyl) -2-methylpropionamide] of the formula (r3) was 1 A polymerizable liquid crystal composition (E-2) consisting of 0.00% was prepared. The 10-hour half-life temperature of the thermal polymerization initiator of the formula (r3) is 96 ° C.
(比較例14)
比較例13において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。パターン部にひび割れが若干観察された。UV照射した部分は光学異方性を持っており、位相差は359nmであった。
(Comparative Example 14)
In Comparative Example 13, the experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Some cracks were observed in the pattern area. The UV irradiated part had optical anisotropy and the phase difference was 359 nm.
(比較例15)
比較例13において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は396nmであった。
(Comparative Example 15)
In Comparative Example 13, the experiment was performed in the same manner except that the UV irradiation time was changed to 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 396 nm.
(比較例16)
実施例13において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は408nmであった。
(Comparative Example 16)
The experiment was performed in the same manner as in Example 13 except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 408 nm.
(比較例17)
参考例1で調製した重合性液晶組成物(A-1)が99.00%、式(r4)の熱重合開始剤2,2'-Azobis(N-butyl-2-methylpropionamide)が1.00%からなる重合性液晶組成物(F-2)を調製した。式(r4)の熱重合開始剤の10時間半減温度は、110℃である。
(Comparative Example 17)
The polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 is 99.00%, and the thermal polymerization initiator 2,2′-Azobis (N-butyl-2-methylpropionamide) of the formula (r4) is from 1.00%. A polymerizable liquid crystal composition (F-2) was prepared. The 10-hour half-life temperature of the thermal polymerization initiator of the formula (r4) is 110 ° C.
(比較例18)
比較例17において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。パターン部にひび割れが観察された。UV照射した部分は光学異方性を持っており、位相差は278nmであった。
(Comparative Example 18)
In Comparative Example 17, the experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Cracks were observed in the pattern area. The UV irradiated part had optical anisotropy and the phase difference was 278 nm.
(比較例19)
比較例17において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は295nmであった。
(Comparative Example 19)
In Comparative Example 17, the experiment was performed in the same manner except that the UV irradiation time was set to 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 295 nm.
(比較例20)
実施例17において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は313nmであった。
(Comparative Example 20)
The experiment was performed in the same manner as in Example 17 except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 313 nm.
(実施例5)
参考例1で調製した重合性液晶組成物(A-1)が99.50%、式(a)の熱重合開始剤1,1'-Azobis(cyclohexane-1-carbonitrile)が0.50%からなる重合性液晶組成物(G-2)を調製した。
更に重合性液晶組成物(G-2)35%、シクロペンタノン65%からなる重合性液晶溶液(G-3)を調製した。これをラビング処理を施したポリイミド配向膜付きのガラス基板にスピンコート(800回転/分、15秒)した。スピンコートした基板を80℃で2分間加熱して溶媒を揮発させた後、2分間室温で放置した。この状態で重合性液晶組成物層を観察したところ、水平1軸配向していることが確かめられた。このようにして得られた重合性液晶組成物層に、高圧水銀ランプから発生する紫外線(バンドパスフィルターを通したもの。波長360nmにおいて強度20mW/cm2)を空気中でマスクパターン(一部に1mmピッチのラインパターンを持つ)と通して0.31秒照射した。マスクパターンと重合性液晶組成物層の間の距離は150μmに保った。このようにして、一部に1mmの幅で紫外線が照射されたところと、1mmの幅で紫外線が未照射のところが繰り返された状態にした。これを230℃のオーブンに1時間静置して、紫外線が未照射だった部分を熱重合させた。このようにして得られた光学異方体を室温まで冷却したのちに観察したところ、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、等方性液体相の状態で熱重合したために、位相差を持っていないことが確かめられた。また、パターン部にひび割れが若干観察された。UV照射した部分は光学異方性を持っており、位相差は337nmであった。
(Example 5)
Polymerizable liquid crystal comprising 99.50% of the polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 and 0.50% of the thermal polymerization initiator 1,1′-Azobis (cyclohexane-1-carbonitrile) of the formula (a) A composition (G-2) was prepared.
Further, a polymerizable liquid crystal solution (G-3) comprising 35% of a polymerizable liquid crystal composition (G-2) and 65% of cyclopentanone was prepared. This was spin coated (800 rpm) for 15 seconds on a glass substrate with a polyimide alignment film that had been rubbed. The spin-coated substrate was heated at 80 ° C. for 2 minutes to volatilize the solvent, and then allowed to stand at room temperature for 2 minutes. When the polymerizable liquid crystal composition layer was observed in this state, it was confirmed that horizontal uniaxial alignment was achieved. The polymerizable liquid crystal composition layer thus obtained was irradiated with ultraviolet rays generated from a high-pressure mercury lamp (passed through a bandpass filter. The intensity was 20 mW / cm 2 at a wavelength of 360 nm) in air in a mask pattern (partially With a line pattern of 1 mm pitch) for 0.31 seconds. The distance between the mask pattern and the polymerizable liquid crystal composition layer was kept at 150 μm. In this way, a portion where the ultraviolet rays were partially irradiated with a width of 1 mm and a portion where the ultraviolet rays were not irradiated with a width of 1 mm were repeated. This was allowed to stand in an oven at 230 ° C. for 1 hour, and the portion that had not been irradiated with ultraviolet rays was thermally polymerized. When the optically anisotropic body thus obtained was observed after cooling to room temperature, the polymerizable liquid crystal material was cured over the entire area. It was confirmed that there was no phase difference due to the thermal polymerization in the state. Moreover, some cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 337 nm.
(実施例6)
実施例5において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは若干観察された。UV照射した部分は光学異方性を持っており、位相差は357nmであった。
(Example 6)
In Example 5, an experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. Further, some cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 357 nm.
(実施例7)
実施例5において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は384nmであった。
(Example 7)
In Example 5, an experiment was performed in the same manner except that the UV irradiation time was set to 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 384 nm.
(実施例8)
実施例5において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられた。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は400nmであった。
(Example 8)
In Example 5, the experiment was performed in the same manner except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 400 nm.
(実施例9)
参考例1で調製した重合性液晶組成物(A-1)が99.50%、式(a)の熱重合開始剤1,1'-Azobis(cyclohexane-1-carbonitrile)が2.00%からなる重合性液晶組成物(H-2)を調製した。
更に重合性液晶組成物(H-2)35%、シクロペンタノン65%からなる重合性液晶溶液(H-3)を調製した。これをラビング処理を施したポリイミド配向膜付きのガラス基板にスピンコート(800回転/分、15秒)した。スピンコートした基板を80℃で2分間加熱して溶媒を揮発させた後、2分間室温で放置した。この状態で重合性液晶組成物層を観察したところ、水平1軸配向していることが確かめられた。このようにして得られた重合性液晶組成物層に、高圧水銀ランプから発生する紫外線(バンドパスフィルターを通したもの。波長360nmにおいて強度20mW/cm2)を空気中でマスクパターン(一部に1mmピッチのラインパターンを持つ)と通して0.31秒照射した。マスクパターンと重合性液晶組成物層の間の距離は150μmに保った。このようにして、一部に1mmの幅で紫外線が照射されたところと、1mmの幅で紫外線が未照射のところが繰り返された状態にした。これを230℃のオーブンに1時間静置して、紫外線が未照射だった部分を熱重合させた。このようにして得られた光学異方体を室温まで冷却したのちに観察したところ、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、等方性液体相の状態で熱重合したために、位相差を持っていないことが確かめられたが、若干の白濁があった。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は322nmであった。
Example 9
Polymerizable liquid crystal comprising 99.50% of the polymerizable liquid crystal composition (A-1) prepared in Reference Example 1 and 2.00% of the thermal polymerization initiator 1,1′-Azobis (cyclohexane-1-carbonitrile) of the formula (a) A composition (H-2) was prepared.
Furthermore, a polymerizable liquid crystal solution (H-3) comprising 35% of a polymerizable liquid crystal composition (H-2) and 65% of cyclopentanone was prepared. This was spin coated (800 rpm) for 15 seconds on a glass substrate with a polyimide alignment film that had been rubbed. The spin-coated substrate was heated at 80 ° C. for 2 minutes to volatilize the solvent, and then allowed to stand at room temperature for 2 minutes. When the polymerizable liquid crystal composition layer was observed in this state, it was confirmed that horizontal uniaxial alignment was achieved. The polymerizable liquid crystal composition layer thus obtained was irradiated with ultraviolet rays generated from a high-pressure mercury lamp (passed through a bandpass filter. The intensity was 20 mW / cm 2 at a wavelength of 360 nm) in air in a mask pattern (partially With a line pattern of 1 mm pitch) for 0.31 seconds. The distance between the mask pattern and the polymerizable liquid crystal composition layer was kept at 150 μm. In this way, a portion where the ultraviolet rays were partially irradiated with a width of 1 mm and a portion where the ultraviolet rays were not irradiated with a width of 1 mm were repeated. This was allowed to stand in an oven at 230 ° C. for 1 hour, and the portion that had not been irradiated with ultraviolet rays was thermally polymerized. When the optically anisotropic body thus obtained was observed after cooling to room temperature, the polymerizable liquid crystal material was cured over the entire area. It was confirmed that there was no phase difference due to the thermal polymerization in the state, but there was some cloudiness. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 322 nm.
(実施例6)
実施例9において、UV照射時間を0.63秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられたが、若干の白濁があった。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は353nmであった。
(Example 6)
In Example 9, the experiment was performed in the same manner except that the UV irradiation time was set to 0.63 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference, but there was some cloudiness. It was. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 353 nm.
(実施例7)
実施例9において、UV照射時間を1.25秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられたが、若干の白濁があった。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は377nmであった。
(Example 7)
In Example 9, the experiment was performed in the same manner except that the UV irradiation time was 1.25 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference, but there was some cloudiness. It was. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 377 nm.
(実施例8)
実施例5において、UV照射時間を2.5秒にした以外は同様にして実験を行った。得られた光学異方体において、重合性液晶材料は面積全体にわたって硬化していること、紫外線が未照射だった部分は、位相差を持っていないことが確かめられたが、若干の白濁があった。また、パターン部にひび割れは観察されなかった。UV照射した部分は光学異方性を持っており、位相差は387nmであった。
以上の結果を表1にまとめた。これらの結果から、UV照射量が少ないと、ひび割れが誘起されやすいが、本発明の重合性液晶組成物はひび割れが起きにくく、良質な硬化膜が得られることがわかる。
(Example 8)
In Example 5, the experiment was performed in the same manner except that the UV irradiation time was 2.5 seconds. In the obtained optical anisotropic body, it was confirmed that the polymerizable liquid crystal material was cured over the entire area, and the portion that had not been irradiated with ultraviolet rays had no phase difference, but there was some cloudiness. It was. In addition, no cracks were observed in the pattern portion. The UV irradiated part had optical anisotropy and the phase difference was 387 nm.
The above results are summarized in Table 1. From these results, it can be seen that when the UV irradiation amount is small, cracks are likely to be induced, but the polymerizable liquid crystal composition of the present invention is unlikely to crack and a good quality cured film can be obtained.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011078622A JP2012211283A (en) | 2011-03-31 | 2011-03-31 | Polymerizable liquid crystal composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011078622A JP2012211283A (en) | 2011-03-31 | 2011-03-31 | Polymerizable liquid crystal composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015113930A Division JP2015166887A (en) | 2015-06-04 | 2015-06-04 | polymerizable liquid crystal composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012211283A true JP2012211283A (en) | 2012-11-01 |
Family
ID=47265504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011078622A Pending JP2012211283A (en) | 2011-03-31 | 2011-03-31 | Polymerizable liquid crystal composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012211283A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281331A (en) * | 1996-04-15 | 1997-10-31 | Teijin Ltd | Production of optical anisotropic body |
WO2009028576A1 (en) * | 2007-08-31 | 2009-03-05 | Asahi Glass Company, Limited | Polymer liquid crystal, optically anisotropic film and optical device |
JP2009109689A (en) * | 2007-10-30 | 2009-05-21 | Hitachi Displays Ltd | Semi-transmissive liquid crystal display and manufacturing method therefor |
JP2009186960A (en) * | 2007-07-17 | 2009-08-20 | Sony Chemical & Information Device Corp | Method of manufacturing image display |
JP2010138282A (en) * | 2008-12-11 | 2010-06-24 | Fujifilm Corp | Polymerizable liquid crystal composition, retardation film, substrate for image display and liquid crystal display |
-
2011
- 2011-03-31 JP JP2011078622A patent/JP2012211283A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09281331A (en) * | 1996-04-15 | 1997-10-31 | Teijin Ltd | Production of optical anisotropic body |
JP2009186960A (en) * | 2007-07-17 | 2009-08-20 | Sony Chemical & Information Device Corp | Method of manufacturing image display |
WO2009028576A1 (en) * | 2007-08-31 | 2009-03-05 | Asahi Glass Company, Limited | Polymer liquid crystal, optically anisotropic film and optical device |
JP2009109689A (en) * | 2007-10-30 | 2009-05-21 | Hitachi Displays Ltd | Semi-transmissive liquid crystal display and manufacturing method therefor |
JP2010138282A (en) * | 2008-12-11 | 2010-06-24 | Fujifilm Corp | Polymerizable liquid crystal composition, retardation film, substrate for image display and liquid crystal display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5725325B2 (en) | Polymerizable liquid crystal composition | |
JP5750819B2 (en) | Polymerizable liquid crystal composition | |
JP5712472B2 (en) | Polymerizable liquid crystal composition | |
JP5748031B2 (en) | Polymerizable composition solution and optical anisotropic body using the same | |
JP5685806B2 (en) | Polymerizable liquid crystal composition | |
JP6554777B2 (en) | Copolymer for photo-alignment film | |
JPWO2017038267A1 (en) | Compound having mesogenic group, composition containing the same, polymer obtained by polymerizing polymerizable composition, optical anisotropic body, and retardation film | |
JP2007246896A (en) | Polymerizable liquid crystal composition | |
JP6296135B2 (en) | Polymerizable composition and film using the same | |
JP5776920B2 (en) | Method for producing biaxial retardation film | |
JP2007262288A (en) | Polymerizable liquid crystal composition | |
JP5604773B2 (en) | Polymerizable liquid crystal composition | |
JP5211844B2 (en) | Patterned retardation film | |
JPWO2014192657A1 (en) | Polymerizable liquid crystal composition, retardation film, retardation patterning film, and homogeneous alignment liquid crystal film | |
JP2013035938A (en) | Polymerizable cholesteric liquid crystal composition and cholesteric reflective film using the same | |
JP6209864B2 (en) | Polymerizable liquid crystal composition, retardation film, retardation patterning film, and homogeneous alignment liquid crystal film | |
JP5051417B2 (en) | Photoinitiator and polymerizable composition | |
JP5211845B2 (en) | Process for producing patterned retardation film | |
JP2015166887A (en) | polymerizable liquid crystal composition | |
JP2012211283A (en) | Polymerizable liquid crystal composition | |
JP4899828B2 (en) | Manufacturing method of optical anisotropic body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150305 |