[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012204623A - Bonding structure of thermoelectric conversion element - Google Patents

Bonding structure of thermoelectric conversion element Download PDF

Info

Publication number
JP2012204623A
JP2012204623A JP2011068009A JP2011068009A JP2012204623A JP 2012204623 A JP2012204623 A JP 2012204623A JP 2011068009 A JP2011068009 A JP 2011068009A JP 2011068009 A JP2011068009 A JP 2011068009A JP 2012204623 A JP2012204623 A JP 2012204623A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
electrode
side bonding
conversion element
bonding surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011068009A
Other languages
Japanese (ja)
Inventor
Naoto Morisaku
直人 守作
Hirohisa Kato
裕久 加藤
Yasunari Akiyama
泰有 秋山
Hisamitsu Tanaka
寿光 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011068009A priority Critical patent/JP2012204623A/en
Publication of JP2012204623A publication Critical patent/JP2012204623A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonding structure of a thermoelectric conversion element having high durability.SOLUTION: Electrode plates 5 and 7 in a thermoelectric conversion module are respectively provided with: pairs of electrode-side bonding surfaces 5a and 5b, and 7a and 7b which are spaced apart from each other; and coupling parts 5c and 7c which couple the electrode-side bonding surfaces 5a and 5b, and 7a and 7b, respectively. Thermoelectric conversion elements 9 are each formed in a prismatic shape, and element-side bonding surfaces 9a and 9b are each formed in a rectangular shape. The electrode-side bonding surfaces 5a, 5b, 7a and 7b are similar to the element-side bonding surfaces 9a and 9b. Each of the electrode-side bonding surfaces 5a, 5b, 7a and 7b has an area smaller than that of each of the element-side bonding surfaces 9a and 9b. Each of the electrode-side bonding surfaces 5a and 5b is bonded to the element-side bonding surface 9a via solder 15, and each of the electrode-side bonding surfaces 7a and 7b is bonded to the element-side bonding surface 9b via solder 17. Consequently, solder 15 and 17 is formed thinner on all corners C and peripheral sides L of each of the thermoelectric conversion elements 9 when compared with that on other portions.

Description

本発明は熱電変換素子の接合構造に関する。   The present invention relates to a junction structure of thermoelectric conversion elements.

特許文献1に従来の熱電変換モジュールが開示されている。この熱電変換モジュールは、図1に示すように、互いに対向する内面91a、92aと、互いに背向する外面91b、92bとを有する第1絶縁基板91及び第2絶縁基板92を備えている。また、この熱電変換モジュールは、第1絶縁基板91及び第2絶縁基板92の各内面91a、92aにそれぞれ設けられた複数の電極板93、94と、各電極板93、94によって電気的に直列に接続されるとともに、第1絶縁基板91及び第2絶縁基板92によって熱的に並列に接続される複数の熱電変換素子95とを備えている。   Patent Document 1 discloses a conventional thermoelectric conversion module. As shown in FIG. 1, the thermoelectric conversion module includes a first insulating substrate 91 and a second insulating substrate 92 having inner surfaces 91a and 92a facing each other and outer surfaces 91b and 92b facing each other. The thermoelectric conversion module is electrically connected in series by a plurality of electrode plates 93 and 94 provided on the inner surfaces 91a and 92a of the first insulating substrate 91 and the second insulating substrate 92, respectively. And a plurality of thermoelectric conversion elements 95 that are thermally connected in parallel by the first insulating substrate 91 and the second insulating substrate 92.

図2に示すように、各熱電変換素子95の端面は、はんだ96、97が接合される矩形の素子側接合面95a、95bとされている。一方、各電極板93、94の表面は、はんだ96、97が接合される電極側接合面93a、94aとされている。これにより、各熱電変換素子95の各素子側接合面95a、95bと各電極板93、94の電極側接合面93a、94aとの間にはんだ96、97が存在することとなる。   As shown in FIG. 2, the end faces of the thermoelectric conversion elements 95 are rectangular element-side joining faces 95a and 95b to which solders 96 and 97 are joined. On the other hand, the surfaces of the electrode plates 93 and 94 are electrode side joining surfaces 93a and 94a to which the solders 96 and 97 are joined. Thereby, the solders 96 and 97 exist between the element side bonding surfaces 95a and 95b of the thermoelectric conversion elements 95 and the electrode side bonding surfaces 93a and 94a of the electrode plates 93 and 94, respectively.

この熱電変換モジュールでは、例えば、各熱電変換素子95が生じさせるペルチェ効果により、第1絶縁基板91側で吸熱又は放熱を生じ、第2絶縁基板92側で第1絶縁基板91側とは反対の放熱又は吸熱を生じることが可能となっている。このため、このような熱電変換モジュールは、第1絶縁基板91側と第2絶縁基板92側との間における熱の移動を利用した熱交換媒体等の冷却又は加熱手段として、空調装置等に採用されつつある。また、この熱電変換モジュールは、ゼーベック効果により、温度差に基づく発電を行うことも可能である。   In this thermoelectric conversion module, for example, due to the Peltier effect generated by each thermoelectric conversion element 95, heat absorption or heat dissipation is generated on the first insulating substrate 91 side, and the second insulating substrate 92 side is opposite to the first insulating substrate 91 side. It is possible to generate heat dissipation or heat absorption. For this reason, such a thermoelectric conversion module is employed in an air conditioner or the like as a cooling or heating means for a heat exchange medium or the like using heat transfer between the first insulating substrate 91 side and the second insulating substrate 92 side. It is being done. Moreover, this thermoelectric conversion module can also generate electric power based on a temperature difference by the Seebeck effect.

また、このような熱電変換モジュールでは、吸熱及び放熱の効果又は受熱の効果を高める目的から、第1絶縁基板91や第2絶縁基板92の外面91b、92bに対し、ろう付け等の手段により伝熱部材98、99が設けられ得る。これらの伝熱部材98、99は、上記の目的から伝熱性の高い金属等によって形成されている。   Further, in such a thermoelectric conversion module, it is transmitted to the outer surfaces 91b and 92b of the first insulating substrate 91 and the second insulating substrate 92 by means of brazing or the like for the purpose of enhancing the effects of heat absorption and heat dissipation or heat reception. Thermal members 98, 99 may be provided. These heat transfer members 98 and 99 are formed of a metal having a high heat transfer property for the above purpose.

特開2004−207428号公報JP 2004-207428 A

しかしながら、発明者等の確認によれば、上記のような熱電変換モジュールでは、使用時において、素子側接合面95a、95bにおける角部Cで熱電変換素子95に割れが生じるおそれがある。この不具合は、第1絶縁基板91、92を備えた熱電変換モジュールばかりでなく、電極板93、94とはんだ96、97によって接合される熱電変換素子95とを備えた熱電変換素子の接合構造において生じる。第1、2絶縁基板91、92を備えた熱電変換モジュールにおいては、はんだ96、97による接合時に、図1に示す実線矢印方向で各絶縁基板91、92が熱変形することから、より上記の傾向が強い。   However, according to the confirmation of the inventors, in the thermoelectric conversion module as described above, there is a possibility that the thermoelectric conversion element 95 may be cracked at the corners C in the element side joint surfaces 95a and 95b during use. This defect is caused not only in the thermoelectric conversion module including the first insulating substrates 91 and 92 but also in the junction structure of the thermoelectric conversion element including the electrode plates 93 and 94 and the thermoelectric conversion element 95 joined by the solders 96 and 97. Arise. In the thermoelectric conversion module including the first and second insulating substrates 91 and 92, the insulating substrates 91 and 92 are thermally deformed in the direction of the solid line arrows shown in FIG. The tendency is strong.

本発明は、上記従来の実情に鑑みてなされたものであって、耐久性が高い熱電変換素子の接合構造を提供することを解決すべき課題としている。   This invention is made | formed in view of the said conventional situation, Comprising: It is set as the problem which should be solved to provide the joining structure of the thermoelectric conversion element with high durability.

本発明の熱電変換素子の接合構造は、電極板と、該電極板にはんだによって接合される熱電変換素子とを備えた熱電変換素子の接合構造において、
該熱電変換素子と該はんだとの接合面のうち、該熱電変換素子側である素子側接合面は矩形であり、
該素子側接合面における角部の少なくとも一箇所は、他の部分と比較して該はんだが薄く形成されていることを特徴とする(請求項1)。
The thermoelectric conversion element bonding structure of the present invention is a thermoelectric conversion element bonding structure including an electrode plate and a thermoelectric conversion element bonded to the electrode plate by soldering.
Of the joint surfaces between the thermoelectric conversion element and the solder, the element side joint surface on the thermoelectric conversion element side is rectangular,
In at least one corner of the element-side joint surface, the solder is formed thinner than the other parts (claim 1).

発明者等は、上記不具合について鋭意研究を行い、上記不具合は、図2に示すように、素子側接合面95a、95bにおける角部Cが他の部分と比較してはんだ96、97が厚い場合に生じ易いことを確認し、本発明を完成するに至った。   The inventors have conducted intensive research on the above-described defects. In the above-described defects, as shown in FIG. 2, the corners C of the element-side joint surfaces 95a and 95b are thicker than the other parts. The present invention was completed by confirming that it is likely to occur.

すなわち、上記のような熱電変換モジュールでは、各熱電変換素子95がはんだ96、97によって各電極板93、94に接合されている。この一方、この熱電変換モジュールは、使用時において、例えば、放熱側となった第1絶縁基板91が高温に曝される一方、吸熱側となった第2絶縁基板92が低温に曝されることとなる。このため、この熱電変換モジュールでは、各熱電変換素子95の素子側接合面95aとはんだ96との間や素子側接合面95bとはんだ97との間に熱応力が加わる。ここで、素子側接合面95a、95bにおける角部Cが他の部分と比較してはんだ96、97が厚い場合には、はんだ96、97が変形し難いことから、熱電変換素子95の角部Cに割れを生じる。   That is, in the thermoelectric conversion module as described above, each thermoelectric conversion element 95 is joined to each electrode plate 93, 94 by solder 96, 97. On the other hand, in the thermoelectric conversion module, for example, the first insulating substrate 91 on the heat dissipation side is exposed to a high temperature while the second insulating substrate 92 on the heat absorption side is exposed to a low temperature. It becomes. For this reason, in this thermoelectric conversion module, thermal stress is applied between the element side bonding surface 95 a and the solder 96 of each thermoelectric conversion element 95 and between the element side bonding surface 95 b and the solder 97. Here, when the corners C of the element-side joining surfaces 95a and 95b are thicker than the other parts, the solders 96 and 97 are difficult to deform. C cracks.

これに対し、本発明の熱電変換素子の接合構造では、素子側接合面における角部が他の部分と比較してはんだが薄いため、はんだが変形し易く、素子側接合面における角部で熱電変換素子に割れが生じ難くなっている。   On the other hand, in the junction structure of the thermoelectric conversion element of the present invention, the solder on the element side joint surface is thinner than the other parts, so that the solder is easily deformed, and the thermoelectric element is formed at the corner part on the element side joint surface. Cracks are less likely to occur in the conversion element.

したがって、この熱電変換素子の接合構造は優れた耐久性を発揮することができる。   Therefore, the junction structure of the thermoelectric conversion element can exhibit excellent durability.

本発明において、角部Cとは、その頂点Pを含む所定の範囲を意味する。また、熱電変換素子95の角部Cでは、図13に示すように、頂点Pから所定の範囲内において、熱電変換素子95の損傷が起こりえる一定以上の応力が加わることがシミュレーションにより解明された。そのため、角部Cの頂点Pのみではんだを薄くするだけではなく、角部Cを形成する一対の外周辺Lのそれぞれに対してもはんだを薄く形成することが好ましい。例えば、各外周辺Lの長さを100%とした場合、角部Cの頂点Pから各外周辺Lに沿って5%以上の長さで離れたそれぞれの位置と、頂点Pとを結ぶ三角形内の領域について、はんだを薄く形成することが好ましい。さらには、各外周辺Lの長さを100%とした場合、角部Cの頂点Pから各外周辺Lに沿って10%以上の長さで離れたそれぞれの位置と、頂点Pとを結ぶ三角形内の領域について、はんだを薄く形成することがより好ましい。   In the present invention, the corner portion C means a predetermined range including the vertex P. Further, in the corner portion C of the thermoelectric conversion element 95, as shown in FIG. 13, it has been clarified by simulation that a certain level of stress that may cause damage to the thermoelectric conversion element 95 is applied within a predetermined range from the apex P. . Therefore, it is preferable not only to thin the solder only at the apex P of the corner C, but also to form the solder thinly on each of the pair of outer peripheries L forming the corner C. For example, assuming that the length of each outer periphery L is 100%, a triangle connecting the vertex P with each position separated from the vertex P of the corner C by a length of 5% or more along each outer periphery L It is preferable to form a thin solder for the inner region. Further, assuming that the length of each outer periphery L is 100%, each vertex separated from the vertex P of the corner C by a length of 10% or more along each outer periphery L is connected to the vertex P. It is more preferable to form a thin solder in the region within the triangle.

なお、本発明の熱電変換素子の接合構造に対し、少なくとも第1絶縁基板及び第2絶縁基板を設ければ、熱電変換モジュールが得られる。熱電変換モジュールは、第1絶縁基板及び第2絶縁基板の少なくとも一方にフィン等の伝熱部材を備え得る。   Note that a thermoelectric conversion module can be obtained by providing at least a first insulating substrate and a second insulating substrate for the junction structure of thermoelectric conversion elements of the present invention. The thermoelectric conversion module may include a heat transfer member such as a fin on at least one of the first insulating substrate and the second insulating substrate.

素子側接合面における全ての角部は、他の部分と比較してはんだが薄く形成されていることが好ましい(請求項2)。この場合、熱電変換素子の全ての角部で割れを生じ難く、優れた耐久性を発揮することができる。   It is preferable that solder is formed thinner at all corners on the element-side bonding surface than at other portions. In this case, it is difficult to cause cracks at all corners of the thermoelectric conversion element, and excellent durability can be exhibited.

電極板とはんだとの接合面のうち、電極板側である電極側接合面は、素子側接合面の全ての角部を除く位置に設けられていることが好ましい(請求項3)。このように電極板の電極側接合面を配置すれば、素子側接合面の角部のはんだを容易に薄くすることが可能である。このような電極側接合面は電極板をエッチングしたり、電極板にマスキングを施したりすることによって形成し得る。   Of the bonding surfaces of the electrode plate and the solder, the electrode-side bonding surface on the electrode plate side is preferably provided at a position excluding all corners of the element-side bonding surface. By arranging the electrode side joining surface of the electrode plate in this way, it is possible to easily reduce the solder at the corners of the element side joining surface. Such an electrode-side joining surface can be formed by etching the electrode plate or masking the electrode plate.

また、電極側接合面は、各角部間に位置する外周辺のうち、少なくとも一つの外周辺を除く位置に設けられていることが好ましい(請求項4)。この場合、熱電変換素子の素子側接合面だけでなく、その外周辺部分においても割れが生じ難くなる。   Moreover, it is preferable that the electrode side joining surface is provided in the position except at least one outer periphery among the outer periphery located between each corner | angular part (Claim 4). In this case, cracks are less likely to occur not only at the element-side joint surface of the thermoelectric conversion element but also at the outer peripheral portion thereof.

電極側接合面の外周は電極板の外周で規定され得る(請求項5)この場合、エッチングにより電極板を得ることにより、同時に電極側接合面を得ることが可能となる。   The outer periphery of the electrode-side bonding surface can be defined by the outer periphery of the electrode plate. (Claim 5) In this case, the electrode-side bonding surface can be obtained simultaneously by obtaining the electrode plate by etching.

電極板は、素子側接合面より面積が小さく、素子側接合面の外周辺より内側に設けられる一対の電極側接合面と、各電極側接合面を連結し、各電極側接合面の幅よりも幅の小さい連結部とから構成され得る(請求項6)。この電極板によれば、p型熱電変換素子とn型熱電変換素子とを好適に接続することができる。この電極板も、エッチングやマスキングによって形成し得る。   The electrode plate has a smaller area than the element-side bonding surface, and connects a pair of electrode-side bonding surfaces provided inside the outer periphery of the element-side bonding surface with each electrode-side bonding surface, and from the width of each electrode-side bonding surface Can also be configured with a connecting portion having a small width. According to this electrode plate, the p-type thermoelectric conversion element and the n-type thermoelectric conversion element can be suitably connected. This electrode plate can also be formed by etching or masking.

電極側接合面の形状は素子側接合面の形状と相似であることが可能である(請求項7)。このような電極側接合面は電極板をエッチング等することによって形成可能である。   The shape of the electrode-side bonding surface can be similar to the shape of the element-side bonding surface. Such an electrode-side joining surface can be formed by etching the electrode plate.

また、電極側接合面は、電極板の表面に設けられ、はんだが付着しないマスク材により区画され得る(請求項8)。さらに、電極側接合面は、1つの電極板に対し、相互に離間した状態で素子側接合面よりも面積が小さく、素子側接合面の外周辺より内側に設けられ、かつ一対形成されることが可能である(請求項9)。また、電極側接合面の形状は素子側接合面の形状と相似であることが可能である(請求項10)。   The electrode-side joining surface can be defined by a mask material that is provided on the surface of the electrode plate and to which solder does not adhere (claim 8). Furthermore, the electrode-side bonding surface is smaller than the element-side bonding surface in a state of being separated from each other with respect to one electrode plate, and is provided on the inner side from the outer periphery of the element-side bonding surface and is formed as a pair. (Claim 9). In addition, the shape of the electrode side bonding surface can be similar to the shape of the element side bonding surface.

この熱電変換素子の接合構造は優れた耐久性を発揮することができる。   The junction structure of this thermoelectric conversion element can exhibit excellent durability.

従来の熱電変換モジュールにおけるCAE解析断面図である。It is CAE analysis sectional drawing in the conventional thermoelectric conversion module. 従来の熱電変換モジュールにおける接合構造を示す拡大断面図である。It is an expanded sectional view which shows the joining structure in the conventional thermoelectric conversion module. 実施例1の熱電変換モジュールを示す断面図である。1 is a cross-sectional view showing a thermoelectric conversion module of Example 1. FIG. 実施例1の熱電変換モジュールに係り、電極板を示す背面図である。It is a back view which concerns on the thermoelectric conversion module of Example 1, and shows an electrode plate. 実施例1の熱電変換モジュールに係り、電極板と熱電変換素子との配置を示す上面図である。It is a top view which shows the arrangement | positioning of an electrode plate and a thermoelectric conversion element in connection with the thermoelectric conversion module of Example 1. FIG. 実施例1の熱電変換モジュールに係り、図5におけるA−A’方向の断面図である。FIG. 6 is a cross-sectional view in the A-A ′ direction in FIG. 5 according to the thermoelectric conversion module of Example 1. 実施例2の熱電変換モジュールに係り、電極板と熱電変換素子との配置を示す上面図である。It is a top view which shows the arrangement | positioning of an electrode plate and a thermoelectric conversion element in connection with the thermoelectric conversion module of Example 2. FIG. 実施例3の熱電変換モジュールに係り、電極板と熱電変換素子との配置を示す上面図である。It is a top view which shows the arrangement | positioning of an electrode plate and a thermoelectric conversion element in connection with the thermoelectric conversion module of Example 3. FIG. 実施例4の熱電変換モジュールに係り、電極板と熱電変換素子との配置を示す上面図である。It is a top view which shows the arrangement | positioning of an electrode plate and a thermoelectric conversion element in connection with the thermoelectric conversion module of Example 4. FIG. 実施例5の熱電変換モジュールに係り、電極板と熱電変換素子との配置を示す上面図である。It is a top view which shows the arrangement | positioning of an electrode plate and a thermoelectric conversion element regarding the thermoelectric conversion module of Example 5. FIG. 実施例6の熱電変換モジュールに係り、電極板と熱電変換素子との配置を示す上面図である。It is a top view which concerns on the thermoelectric conversion module of Example 6, and shows arrangement | positioning of an electrode plate and a thermoelectric conversion element. 実施例7の熱電変換モジュールに係り、電極板を示す背面図である。It is a back view which concerns on the thermoelectric conversion module of Example 7, and shows an electrode plate. 従来の熱電変換素子の接合構造における熱電変換素子の応力分布図である。It is a stress distribution figure of the thermoelectric conversion element in the junction structure of the conventional thermoelectric conversion element.

以下、本発明を具体化した実施例1〜7を図面を参照しつつ説明する。   Examples 1 to 7 embodying the present invention will be described below with reference to the drawings.

(実施例1)
図3に示すように、実施例1の熱電変換モジュールは、第1、2絶縁基板1、3と、電極板5、7と、複数の熱電変換素子9と、第1、2コルゲートフィン11、13とを備えている。
Example 1
As shown in FIG. 3, the thermoelectric conversion module of Example 1 includes first and second insulating substrates 1 and 3, electrode plates 5 and 7, a plurality of thermoelectric conversion elements 9, first and second corrugated fins 11, 13.

第1、2絶縁基板1、3は、それぞれ正方形の板状に成形された窒化アルミで得られている。各1、2絶縁基板1、3の各内面1a、3aには、アルミで得られた複数の電極板5、7がそれぞれろう付けにより接合されている。また、各1、2絶縁基板1、3の各外面1b、3bにもアルミ板6、8がろう付けにより接合されている。各電極板5、7には、はんだ15、17により各熱電変換素子9が接合されている。   The first and second insulating substrates 1 and 3 are each made of aluminum nitride formed into a square plate shape. A plurality of electrode plates 5 and 7 made of aluminum are joined to the inner surfaces 1a and 3a of the 1 and 2 insulating substrates 1 and 3 by brazing, respectively. Aluminum plates 6 and 8 are also joined to the outer surfaces 1b and 3b of the 1 and 2 insulating substrates 1 and 3 by brazing. Each thermoelectric conversion element 9 is joined to each electrode plate 5, 7 by solder 15, 17.

第1、2コルゲートフィン11、13は共に同一の構成であり、アルミ板が波型形状に加工されることによって得られている。各コルゲートフィン11、13は、それぞれアルミ板6、8に対してろう付けによって接合されており、各1、2絶縁基板1、3と各コルゲートフィン11、13とは、それぞれ熱的に接合されている。なお、各コルゲートフィン11、13に替えて、各絶縁基板1、3から外側に向かって垂直に延びる板状のフィン等を採用しても良い。   The first and second corrugated fins 11 and 13 have the same configuration, and are obtained by processing an aluminum plate into a corrugated shape. The corrugated fins 11 and 13 are joined to the aluminum plates 6 and 8 by brazing, respectively, and the first and second insulating substrates 1 and 3 and the corrugated fins 11 and 13 are thermally joined to each other. ing. Instead of the corrugated fins 11 and 13, plate-like fins extending vertically from the insulating substrates 1 and 3 toward the outside may be employed.

以下、各電極板5、7、各熱電変換素子9及びこれらの接合構造について詳細に説明する。   Hereinafter, the electrode plates 5 and 7, the thermoelectric conversion elements 9, and their joint structures will be described in detail.

各熱電変換素子9は、公知のp型熱電変換素子又はn型熱電変換素子からなり、ビスマス・テルル系の合金等によって得られている。これらの各熱電変換素子9は同一形状の角柱形状をなしている、各熱電変換素子9の各端面は矩形であり、はんだ15、17が接合される素子側接合面9a、9bとされている。   Each thermoelectric conversion element 9 is composed of a known p-type thermoelectric conversion element or n-type thermoelectric conversion element, and is obtained from a bismuth-tellurium-based alloy or the like. Each of these thermoelectric conversion elements 9 has a prismatic shape of the same shape. Each end face of each thermoelectric conversion element 9 is rectangular, and element side bonding surfaces 9a and 9b to which solders 15 and 17 are bonded are formed. .

図4に示すように、電極板5、7には、エッチング加工により、相互に離間する一対の電極側接合面5a、5b、7a、7bと、各電極側接合面5a、5b、7a、7bを連結する連結部5c、7cがそれぞれ形成されている。これらの電極側接合面5a、5b、7a、7bの各外周は電極板5、7の各外周で規定されている。また、各電極側接合面5a、5b、7a、7bはそれぞれ矩形をなしており、頂点P’が形成されている。これら各電極側接合面5a、5b、7a、7bは、上記の各素子側接合面9a、9bと相似であり、各素子側接合面9a、9bよりも面積が小さく形成されている(図5参照)。また、図4に示すように、各連結部5c、7cは各電極側接合面5a、5b、7a、7bよりも幅が狭く形成されている。   As shown in FIG. 4, the electrode plates 5 and 7 have a pair of electrode-side bonding surfaces 5a, 5b, 7a and 7b which are separated from each other by etching, and the electrode-side bonding surfaces 5a, 5b, 7a and 7b. Connecting portions 5c and 7c for connecting the two are formed. The outer peripheries of these electrode-side joining surfaces 5a, 5b, 7a, and 7b are defined by the outer peripheries of the electrode plates 5 and 7, respectively. Further, each electrode-side joining surface 5a, 5b, 7a, 7b is rectangular, and a vertex P 'is formed. Each of these electrode side bonding surfaces 5a, 5b, 7a, 7b is similar to each of the above element side bonding surfaces 9a, 9b, and is formed to have a smaller area than each of the element side bonding surfaces 9a, 9b (FIG. 5). reference). Moreover, as shown in FIG. 4, each connection part 5c, 7c is narrower than each electrode side joining surface 5a, 5b, 7a, 7b.

図5に示すように、第1絶縁基板1側から上面視した際、各熱電変換素子9は、電極板5に対し、各電極側接合面5aの幅方向の中点αと各素子側接合面9aの幅方向の中点βとを仮想の水平線HL上に位置させるように配置されている。これにより、電極側接合面5a、5bの外周辺L’は、各素子側接合面9aの各外周辺Lより内側に位置し、電極側接合面5a、5bは、各素子側接合面9aの各外周辺Lより内側に設けられることとなる。各電極側接合面5a、5bには、それぞれp型電変換素子の素子側接合面9aとn型電変換素子の素子側接合面9aとが配置されている。そして、各電極側接合面5a、5bとp型電変換素子及びn型電変換素子の各素子接合面9aとがそれぞれはんだ15によって接合されている。図6に示すように、電極板7側も同様に、はんだ17によって接合されている。なお、図5では、はんだ15の図示を省略している。後述の図7〜11も同様である。   As shown in FIG. 5, when viewed from the top side from the first insulating substrate 1 side, each thermoelectric conversion element 9 is connected to the electrode plate 5 in the width direction midpoint α of each electrode side bonding surface 5 a and each element side bonding. The middle point β in the width direction of the surface 9a is arranged on the virtual horizontal line HL. Thereby, the outer periphery L ′ of the electrode-side bonding surfaces 5a and 5b is positioned inside each outer periphery L of each element-side bonding surface 9a, and the electrode-side bonding surfaces 5a and 5b are formed on the respective element-side bonding surfaces 9a. It will be provided inside each outer periphery L. In each of the electrode side bonding surfaces 5a and 5b, an element side bonding surface 9a of a p-type electric conversion element and an element side bonding surface 9a of an n-type electric conversion element are arranged. And each electrode side joining surface 5a, 5b and each element joining surface 9a of a p-type electrical conversion element and an n-type electrical conversion element are joined by the solder 15, respectively. As shown in FIG. 6, the electrode plate 7 side is similarly joined by solder 17. In FIG. 5, illustration of the solder 15 is omitted. The same applies to FIGS. 7 to 11 described later.

これにより、各電極板5、7に対し、p型熱電変換素子とn型熱電変換素子とが格子状に配置されるとともに、各電極板5、7によって電気的に直列に接続され、各熱電変換素子9が第1絶縁基板1及び第2絶縁基板3によって熱的に並列に接続されることとなる。また、各熱電変換素子9の素子側接合面9aと、電極板5の電極側接合面5a、5bとの間には、はんだ15が形成されるとともに、各熱電変換素子9の素子側接合面9bと、電極板7の電極側接合面7a、7bとの間にはんだ17が形成される。   As a result, the p-type thermoelectric conversion elements and the n-type thermoelectric conversion elements are arranged in a grid pattern with respect to the electrode plates 5 and 7, and are electrically connected in series by the electrode plates 5 and 7, respectively. The conversion element 9 is thermally connected in parallel by the first insulating substrate 1 and the second insulating substrate 3. Further, solder 15 is formed between the element side bonding surface 9a of each thermoelectric conversion element 9 and the electrode side bonding surfaces 5a and 5b of the electrode plate 5, and the element side bonding surface of each thermoelectric conversion element 9 is also formed. A solder 17 is formed between 9b and the electrode-side joining surfaces 7a and 7b of the electrode plate 7.

以上のような接合構造によれば、断面視で各電極側接合面5a、5b、7a、7bの各外周辺L’の長さは素子側接合面9a、9bの各外周辺Lの長さよりも短くなる。このため、電極側接合面5a、5bと各素子側接合面9aとの間に形成されるはんだ15では、電極側接合面5a、5b側を頂点として各熱電変換素子9の角部Cから電極側接合面5a、5bの各頂点P’へ向かうフィレットFが形成されることとなる。同様に、電極側接合面7a、7bと各素子側接合面9bとの間に形成されるはんだ17でも、電極側接合面7a、7b側を頂点として各熱電変換素子9の角部Cから電極側接合面7a、7bの各頂点P’へ向かうフィレットFが形成されることとなる。これらのため、この接合構造によれば、各熱電変換素子9の各素子側接合面9a、9bの角部Cのはんだ15、17の厚みT1が図2に示す従来構造における各素子側接合面95a、95bの角部Cのはんだ96、97の厚みT2と比較して薄くなる。   According to the bonding structure as described above, the length of each outer periphery L ′ of each electrode-side bonding surface 5a, 5b, 7a, 7b in a cross-sectional view is greater than the length of each outer periphery L of the element-side bonding surfaces 9a, 9b. Is also shortened. For this reason, in the solder 15 formed between the electrode side bonding surfaces 5a and 5b and each element side bonding surface 9a, the electrode from the corner portion C of each thermoelectric conversion element 9 with the electrode side bonding surfaces 5a and 5b side as a vertex. A fillet F directed to each vertex P ′ of the side joining surfaces 5a and 5b is formed. Similarly, in the solder 17 formed between the electrode-side bonding surfaces 7a and 7b and the element-side bonding surfaces 9b, the electrodes from the corners C of the thermoelectric conversion elements 9 with the electrode-side bonding surfaces 7a and 7b side as apexes. A fillet F directed to each vertex P ′ of the side joining surfaces 7a and 7b is formed. Therefore, according to this bonding structure, the thickness T1 of the solder 15 and 17 at the corner C of each element-side bonding surface 9a and 9b of each thermoelectric conversion element 9 is equal to each element-side bonding surface in the conventional structure shown in FIG. It becomes thinner than the thickness T2 of the solders 96 and 97 at the corners C of 95a and 95b.

また、図4に示すように、各電極側接合面5a、5b、7a、7bは矩形であり、さらに、各電極側接合面5a、5b、7a、7b、すなわち、各電極板5、7は、各素子側接合面9a、9bよりも小さく形成されている(図5参照)。これらのため、各電極側接合面5a、5b、7a、7bの全ての頂点P’及び各電極側接合面5a、5b、7a、7bは、各素子側接合面9a、9bの全ての角部C及び各四つの外周辺Lを除いた位置に配置されることとなる。このため、この接合構造では、各素子側接合面9a、9bの各頂点Pを含む所定の範囲である角部Cの全て及びその外周辺Lの全ては、他の部分と比較してはんだ15、17が薄く形成されることとなる。   Moreover, as shown in FIG. 4, each electrode side joining surface 5a, 5b, 7a, 7b is a rectangle, Furthermore, each electrode side joining surface 5a, 5b, 7a, 7b, ie, each electrode plate 5, 7 is These are formed smaller than the element-side bonding surfaces 9a and 9b (see FIG. 5). For this reason, all the apexes P ′ of each electrode side bonding surface 5a, 5b, 7a, 7b and each electrode side bonding surface 5a, 5b, 7a, 7b are all corners of each element side bonding surface 9a, 9b. It will be arranged at a position excluding C and each of the four outer perimeters L. For this reason, in this joining structure, all of the corner portions C and all of the outer periphery L, which are a predetermined range including each vertex P of each element side joining surface 9a, 9b, are compared with the other portions with the solder 15 , 17 are formed thinly.

このため、この接合構造では、各熱電変換素子9の素子側接合面9aとはんだ15との間や素子側接合面9bとはんだ17との間に熱応力が加わった場合であっても、各熱電変換素子9の全ての角部C及び外周辺Lにおけるはんだ15、17が変形し易く、素子側接合面9a、9bにおける角部Cで熱電変換素子9に割れが生じ難くなっている。   For this reason, in this joining structure, even when thermal stress is applied between the element-side joining surface 9a of each thermoelectric conversion element 9 and the solder 15 or between the element-side joining surface 9b and the solder 17, The solders 15 and 17 at all the corners C and the outer periphery L of the thermoelectric conversion element 9 are easily deformed, and the thermoelectric conversion element 9 is hardly cracked at the corners C at the element-side joining surfaces 9a and 9b.

したがって、この接合構造は優れた耐久性を発揮することが可能であり、この接合構造を有する実施例1の熱電変換モジュールは耐久性が高くなっている。   Therefore, this joining structure can exhibit excellent durability, and the thermoelectric conversion module of Example 1 having this joining structure has high durability.

特に、電極側接合面5a、5b、7a、7b及び連結部5c、7cの外周は電極板5、7の外周で規定されている。このため、エッチングにより電極板5、7を得ることにより、同時に電極側接合面5a、5b、7a、7b及び連結部5c、7cを得ることが可能となっている。   In particular, the outer peripheries of the electrode-side joining surfaces 5a, 5b, 7a, 7b and the connecting portions 5c, 7c are defined by the outer peripheries of the electrode plates 5, 7. For this reason, by obtaining the electrode plates 5 and 7 by etching, it is possible to obtain the electrode-side bonding surfaces 5a, 5b, 7a and 7b and the connecting portions 5c and 7c at the same time.

また、各電極板5、7は、素子側接合面9a、9bより面積が小さく、素子側接合面9a、9bの外周辺Lより内側に設けられる一対の電極側接合面5a、5b、7a、7bと、各電極側接合面5a、5b、7a、7bを連結し、各電極側接合面の幅よりも幅の小さい連結部5c、7cとから構成されている。このため、この熱電変換モジュールでは、電極板5、7により、p型熱電変換素子とn型熱電変換素子とが好適に接続されている。   Each electrode plate 5, 7 has a smaller area than the element side bonding surfaces 9a, 9b, and a pair of electrode side bonding surfaces 5a, 5b, 7a provided inside the outer periphery L of the element side bonding surfaces 9a, 9b. 7b and each electrode side joint surface 5a, 5b, 7a, 7b, and it is comprised from the connection part 5c, 7c with a width | variety smaller than the width | variety of each electrode side joint surface. For this reason, in this thermoelectric conversion module, the p-type thermoelectric conversion element and the n-type thermoelectric conversion element are suitably connected by the electrode plates 5 and 7.

(実施例2)
図7に示すように、実施例2の熱電変換モジュールの第1絶縁基板1の内面1aに設けられる各電極板50は、エッチング加工により、各電極側接合面50a、50bと連結部50cとが幅方向で等しく形成されている。つまり、第1絶縁基板1側から上面視した場合、電極側接合面50a、50b及び連結部50cの外周の形状により、各電極板50は長方形の形状を呈している。また、各電極板50の頂点及び外周辺がそれぞれ電極側接合面50a、50bの頂点P’及び外周辺L’となる。
(Example 2)
As shown in FIG. 7, each electrode plate 50 provided on the inner surface 1 a of the first insulating substrate 1 of the thermoelectric conversion module of Example 2 has the electrode-side bonding surfaces 50 a and 50 b and the connecting portion 50 c by etching. It is equally formed in the width direction. That is, when viewed from the top from the first insulating substrate 1 side, each electrode plate 50 has a rectangular shape due to the outer peripheral shape of the electrode-side joining surfaces 50a and 50b and the connecting portion 50c. Further, the apexes and the outer periphery of each electrode plate 50 are the apexes P ′ and the outer periphery L ′ of the electrode-side joining surfaces 50a and 50b, respectively.

各電極板50幅方向の長さは、各熱電変換素子9の素子側接合面9a幅方向よりも小さくなるように形成されている。また、第1絶縁基板1側から上面視した際、各熱電変換素子9は、各電極板50に対し、各電極板50の幅方向の中点αと各熱電変換素子9の素子側接合面9a幅方向の中点βとを仮想の水平線HL上に位置させるように配置されている。つまり、電極側接合面50a、50bは熱電変換素子9の全ての角部C及び外周辺Lを除く位置に配置されている。各素子側接合面9aと電極側接合面50a、50bとは、はんだ15によって接合されている。第2絶縁基板3の内側3aに設けられる各電極板も同様である。このように、はんだ15による接合を行う際、熱電変換素子9がはんだ15の表面張力等によりその位置がずれてしまうおそれがある場合、各電極板5、7に対する各熱電変換素子9の位置がずれないようにするための位置決め治具を用いることが好ましい。なお、図7では、第2絶縁基板3側となる電極板の連結部の図示を省略している。後述の図8〜11も同様である。他の構成は実施例1の熱電変換モジュールと同様であり、同一の構成については同一の符号を付して構成に関する詳細な説明を省略する。   The length in the width direction of each electrode plate 50 is formed so as to be smaller than the width direction of the element-side bonding surface 9 a of each thermoelectric conversion element 9. When viewed from the top from the first insulating substrate 1 side, each thermoelectric conversion element 9 is in contact with each electrode plate 50 in the width direction midpoint α of each electrode plate 50 and the element side joint surface of each thermoelectric conversion element 9. It is arranged so that the midpoint β in the 9a width direction is positioned on the virtual horizontal line HL. That is, the electrode-side bonding surfaces 50a and 50b are arranged at positions excluding all the corners C and the outer periphery L of the thermoelectric conversion element 9. Each element-side bonding surface 9 a and the electrode-side bonding surfaces 50 a and 50 b are bonded by solder 15. The same applies to each electrode plate provided on the inner side 3 a of the second insulating substrate 3. As described above, when the thermoelectric conversion element 9 is likely to be displaced due to the surface tension of the solder 15 when joining with the solder 15, the position of each thermoelectric conversion element 9 with respect to the electrode plates 5 and 7 is determined. It is preferable to use a positioning jig for preventing the displacement. In FIG. 7, the illustration of the connecting portion of the electrode plate on the second insulating substrate 3 side is omitted. The same applies to FIGS. 8 to 11 described later. Other configurations are the same as those of the thermoelectric conversion module according to the first embodiment. The same components are denoted by the same reference numerals, and detailed description thereof is omitted.

上記のように、電極板50が単純な長方形の形状であることから、実施例1の熱電変換モジュールにおける電極板5、7と比較して、この電極板50は容易に形成することが可能となっている。   As described above, since the electrode plate 50 has a simple rectangular shape, the electrode plate 50 can be easily formed as compared with the electrode plates 5 and 7 in the thermoelectric conversion module of the first embodiment. It has become.

そして、この熱電変換モジュールにおける接合構造においても、電極側接合面50a、50bと各素子側接合面9aとの間に形成されるはんだ15では、電極側接合面50a、50b側を頂点として各熱電変換素子9の各角部Cから電極側接合面5a、5bの各頂点P’や電極板50の外周に向かうフィレットFが形成されることとなる。このため、実施例1における接合構造と同様、熱電変換素子9の角部Cのはんだ15の厚みが薄くなる。第2絶縁基板3側も同様である。他の作用効果も実施例1と同様である。   Also in the junction structure in this thermoelectric conversion module, the solder 15 formed between the electrode side joining surfaces 50a and 50b and each element side joining surface 9a has each thermoelectric as the apex at the electrode side joining surfaces 50a and 50b. A fillet F is formed from each corner C of the conversion element 9 to each vertex P ′ of the electrode-side joining surfaces 5 a and 5 b and the outer periphery of the electrode plate 50. For this reason, the thickness of the solder 15 of the corner | angular part C of the thermoelectric conversion element 9 becomes thin similarly to the joining structure in Example 1. FIG. The same applies to the second insulating substrate 3 side. Other functions and effects are the same as those of the first embodiment.

(実施例3)
図8に示すように、実施例3の熱電変換モジュールの第1絶縁基板1の内面1aに設けられる各電極板51は、エッチング加工により、各電極側接合面51a、51bが上面視で、幅方向の長さが各熱電変換素子9の素子側接合面9aの外周辺Lと等しくされた略十字形状に形成されている。連結部51cは、各電極側接合面51a、51bよりも幅が狭く形成されている。
(Example 3)
As shown in FIG. 8, each electrode plate 51 provided on the inner surface 1a of the first insulating substrate 1 of the thermoelectric conversion module of Example 3 is etched so that the electrode-side bonding surfaces 51a and 51b are in the top view. It is formed in a substantially cross shape whose length in the direction is equal to the outer periphery L of the element side joint surface 9 a of each thermoelectric conversion element 9. The connecting portion 51c is formed to be narrower than the electrode-side bonding surfaces 51a and 51b.

また、各電極側接合面51a、51bにおける頂点P’が各熱電変換素子9の全ての角部Cを除く位置に設けられるように、各電極板51と各熱電変換素子9とが各電極側接合面51a、51bの外周辺L’と素子側接合面9aの外周辺Lとを揃えた状態で配置され、はんだ15によって接合されている。第2絶縁基板3の内側3aに設けられる各電極板も同様である。他の構成は実施例1の熱電変換モジュールと同様である。   In addition, each electrode plate 51 and each thermoelectric conversion element 9 are arranged on each electrode side so that the apex P ′ of each electrode side bonding surface 51a, 51b is provided at a position excluding all corners C of each thermoelectric conversion element 9. The outer periphery L ′ of the bonding surfaces 51 a and 51 b and the outer periphery L of the element-side bonding surface 9 a are arranged in a aligned state and are bonded by the solder 15. The same applies to each electrode plate provided on the inner side 3 a of the second insulating substrate 3. Other configurations are the same as those of the thermoelectric conversion module of the first embodiment.

上記のように、各電極側接合面51a、51bの幅方向の長さが素子側接合面9aと等しいことから、各電極板51と各熱電変換素子9との位置決めが容易となっている。また、電極側接合面51a、51bと各素子側接合面9aとの間に形成されるはんだ15についても、実施例1における接合構造と同様、熱電変換素子9の角部Cが薄くなる。第2絶縁基板3側も同様である。また、他の作用効果についても、素子側接合面9aの外周辺Lにおけるはんだ15の厚みT1を除き、実施例1と同様である。   As described above, since the length in the width direction of each electrode-side bonding surface 51a, 51b is equal to the element-side bonding surface 9a, positioning of each electrode plate 51 and each thermoelectric conversion element 9 is facilitated. As for the solder 15 formed between the electrode-side bonding surfaces 51a and 51b and each element-side bonding surface 9a, the corner portion C of the thermoelectric conversion element 9 is thin as in the bonding structure in the first embodiment. The same applies to the second insulating substrate 3 side. The other effects are the same as those of the first embodiment except for the thickness T1 of the solder 15 in the outer periphery L of the element-side bonding surface 9a.

(実施例4)
図9に示すように、実施例4の熱電変換モジュールの第1絶縁基板1の内面1aに設けられる各電極板52は、エッチング加工により、各電極側接合面52a、52bが上面視で、幅方向が各熱電変換素子9の素子側接合面9aと等しくされた略八角形状に形成されている。連結部52cは、各電極側接合面52a、52bよりも幅が狭く形成されている。
Example 4
As shown in FIG. 9, each electrode plate 52 provided on the inner surface 1 a of the first insulating substrate 1 of the thermoelectric conversion module of Example 4 is etched, so that the electrode-side bonding surfaces 52 a and 52 b have a width as viewed from above. It is formed in a substantially octagonal shape whose direction is equal to the element-side bonding surface 9 a of each thermoelectric conversion element 9. The connecting portion 52c is formed to be narrower than the electrode-side bonding surfaces 52a and 52b.

また、各電極側接合面52a、52bにおける各短辺Sが各熱電変換素子9の素子側接合面9aの全ての角部Cを除く位置に設けられるように、各電極板52と各熱電変換素子9とが各電極側接合面52a、52bの長辺となる外周辺L’と素子側接合面9aの外周辺Lとを揃えた状態で配置され、はんだ15よって接合されている。第2絶縁基板3の内側3aに設けられる各電極板も同様である。他の構成は実施例1の熱電変換モジュールと同様である。   Further, each electrode plate 52 and each thermoelectric conversion are provided so that each short side S of each electrode side bonding surface 52a, 52b is provided at a position excluding all corners C of the element side bonding surface 9a of each thermoelectric conversion element 9. The element 9 is arranged in a state where the outer periphery L ′, which is the long side of each electrode-side bonding surface 52 a, 52 b, and the outer periphery L of the element-side bonding surface 9 a are aligned, and are joined by solder 15. The same applies to each electrode plate provided on the inner side 3 a of the second insulating substrate 3. Other configurations are the same as those of the thermoelectric conversion module of the first embodiment.

上記のように、電極側接合面52a、52bが略八角形状であることから、この電極板52も容易に形成することが可能となっている。また、実施例3の熱電変換モジュールにおける電極板51と同様に、この電極板52の構成においても各電極板51と各熱電変換素子9との位置決めが容易となっている。そして、電極側接合面52a、52bと各素子側接合面9aとの間に形成されるはんだ15では、電極側接合面52a、52b側を頂点として素子側接合面9aの各角部Cから各電極側接合面52a、52bの各短辺Sへ向かうフィレットF(図6参照)が形成されることとなる。このため、この接合構造においても、各素子側接合面9aの角部Cのはんだ15が薄くなる。第2絶縁基板3側も同様である。また、また、他の作用効果についても、素子側接合面9aの外周辺Lにおけるはんだ15の厚みT1を除き、実施例1と同様である。   As described above, since the electrode-side joining surfaces 52a and 52b have a substantially octagonal shape, the electrode plate 52 can also be easily formed. Further, similarly to the electrode plate 51 in the thermoelectric conversion module of Example 3, the positioning of each electrode plate 51 and each thermoelectric conversion element 9 is also easy in the configuration of the electrode plate 52. And in the solder 15 formed between the electrode side joining surfaces 52a and 52b and each element side joining surface 9a, each electrode C from each corner C of the element side joining surface 9a with the electrode side joining surfaces 52a and 52b as a vertex A fillet F (see FIG. 6) is formed toward each short side S of the electrode-side joining surfaces 52a and 52b. For this reason, also in this joining structure, the solder 15 of the corner | angular part C of each element side joining surface 9a becomes thin. The same applies to the second insulating substrate 3 side. In addition, the other effects are the same as those of the first embodiment except for the thickness T1 of the solder 15 in the outer periphery L of the element-side bonding surface 9a.

(実施例5)
図10に示すように、実施例5の熱電変換モジュールの第1絶縁基板1の内面1aに設けられる各電極板53は、実施例4の熱電変換モジュールにおける電極板52を変形させて構成している。各電極板53は、エッチング加工により、各電極側接合面53a、53bが上面視で、幅方向が各熱電変換素子9の素子側接合面9aよりも大きくされた略八角形状に形成されている。連結部53cは、各電極側接合面53a、53bよりも幅が狭く形成されている。第2絶縁基板3の内側3aに設けられる各電極板も同様である。他の構成は、実施例1、4の熱電変換モジュールと同様である。
(Example 5)
As shown in FIG. 10, each electrode plate 53 provided on the inner surface 1a of the first insulating substrate 1 of the thermoelectric conversion module of the fifth embodiment is configured by deforming the electrode plate 52 in the thermoelectric conversion module of the fourth embodiment. Yes. Each electrode plate 53 is formed in an approximately octagonal shape by etching so that the electrode-side bonding surfaces 53a and 53b are larger in the width direction than the element-side bonding surface 9a of each thermoelectric conversion element 9 when viewed from above. . The connecting portion 53c is formed to be narrower than the electrode-side bonding surfaces 53a and 53b. The same applies to each electrode plate provided on the inner side 3 a of the second insulating substrate 3. Other configurations are the same as those of the thermoelectric conversion modules of the first and fourth embodiments.

各電極板53と各熱電変換素子9とは、各電極側接合面53a、53bの長辺となる外周辺L’が素子側接合面9aの外周辺Lよりも外側となる状態で配置され、はんだ15よって接合されている。この電極板53の構成によれば、各電極板53と各熱電変換素子9との位置決めが上記の電極板52よりもさらに容易になっている。他の作用効果は実施例1、4の熱電変換モジュールと同様である。   Each electrode plate 53 and each thermoelectric conversion element 9 are arranged in a state in which the outer periphery L ′ which is the long side of each electrode-side bonding surface 53a, 53b is outside the outer periphery L of the element-side bonding surface 9a. Joined by solder 15. According to the configuration of the electrode plate 53, the positioning of each electrode plate 53 and each thermoelectric conversion element 9 is easier than the electrode plate 52 described above. Other functions and effects are the same as those of the thermoelectric conversion modules of the first and fourth embodiments.

(実施例6)
図11に示すように、実施例6の熱電変換モジュールの第1絶縁基板1の内面1aに設けられる各電極板54は、エッチング加工により、各電極側接合面54a、54bが上面視で、幅方向が各熱電変換素子9の素子側接合面9aの外周辺Lと等しくされるとともに、各角部分が円弧Rとされた角丸略矩形状に形成されている。連結部54cは、各電極側接合面54a、54bよりも幅が狭く形成されている。
(Example 6)
As shown in FIG. 11, each electrode plate 54 provided on the inner surface 1 a of the first insulating substrate 1 of the thermoelectric conversion module of Example 6 is etched so that the electrode-side bonding surfaces 54 a and 54 b have a width as viewed from above. The direction is made equal to the outer periphery L of the element-side joint surface 9 a of each thermoelectric conversion element 9, and each corner portion is formed in a substantially rectangular shape with rounded arcs R. The connecting portion 54c is formed to be narrower than the electrode-side bonding surfaces 54a and 54b.

また、各電極側接合面54a、54bにおける各円弧Rが各熱電変換素子9の素子側接合面9aの全ての角部Cを除く位置に設けられるように、各電極板54と各熱電変換素子9とが各電極側接合面54a、54bの長辺となる外周辺L’と素子側接合面9aの外周辺Lとを揃えた状態で配置され、はんだ15によって接合されている。第2絶縁基板3の内側3aに設けられる各電極板も同様である。他の構成は実施例1の熱電変換モジュールと同様である。   In addition, each electrode plate 54 and each thermoelectric conversion element are provided such that each arc R on each electrode-side bonding surface 54a, 54b is provided at a position excluding all corners C of the element-side bonding surface 9a of each thermoelectric conversion element 9. 9 are arranged in a state where the outer periphery L ′, which is the long side of each electrode-side bonding surface 54 a, 54 b, and the outer periphery L of the element-side bonding surface 9 a are aligned, and are joined by solder 15. The same applies to each electrode plate provided on the inner side 3 a of the second insulating substrate 3. Other configurations are the same as those of the thermoelectric conversion module of the first embodiment.

この電極板54の構成においても各電極板54と各熱電変換素子9との位置決めが容易となっている。そして、電極側接合面54a、54bと各素子側接合面9aとの間に形成されるはんだ15では、電極側接合面54a、54b側を頂点として素子側接合面9aの各角部Cから各電極側接合面54a、54bの各円弧Rへ向かうフィレットF(図6参照)が形成されることとなる。このため、この接合構造においても、熱電変換素子9の角部Cのはんだ15が薄くなる。第2絶縁基板3側も同様である。また、他の作用効果についても、素子側接合面9aの外周辺Lにおけるはんだ15の厚みT1を除き、実施例1と同様である。   In the configuration of the electrode plate 54, the positioning of each electrode plate 54 and each thermoelectric conversion element 9 is easy. In the solder 15 formed between the electrode-side bonding surfaces 54a and 54b and each element-side bonding surface 9a, each of the corners C of the element-side bonding surface 9a starts from each corner C of the electrode-side bonding surfaces 54a and 54b. A fillet F (see FIG. 6) is formed toward each arc R of the electrode-side joining surfaces 54a and 54b. For this reason, also in this joining structure, the solder 15 of the corner | angular part C of the thermoelectric conversion element 9 becomes thin. The same applies to the second insulating substrate 3 side. The other effects are the same as those of the first embodiment except for the thickness T1 of the solder 15 in the outer periphery L of the element-side bonding surface 9a.

(実施例7)
図12に示すように、実施例2の熱電変換モジュールの第1絶縁基板1の内面1aに設けられる各電極板55には、はんだ15、17が付着しない公知のマスク材19が部分的に塗布されている。各電極側接合面55a、55bは、マスク材19によって区画されつつ、マスク材19から矩形状に露出した部分とされている。各電極側接合面55a、55bは、各熱電変換素子9の素子側接合面9aと相似であり、頂点P’及び各外周辺L’が形成されている。また、各電極側接合面55a、55bは、素子側接合面9aよりも面積が小さく形成されており、はんだ15の接合時に素子側接合面9aの外周辺Lより内側に設けられるようになっている。第2絶縁基板3の内側3aに設けられる各電極板も同様に、部分的にマスク材19が塗布されている。他の構成は実施例1の熱電変換モジュールと同様である。
(Example 7)
As shown in FIG. 12, a known mask material 19 to which solder 15, 17 does not adhere is partially applied to each electrode plate 55 provided on the inner surface 1 a of the first insulating substrate 1 of the thermoelectric conversion module of Example 2. Has been. Each of the electrode-side bonding surfaces 55 a and 55 b is a portion exposed by the mask material 19 in a rectangular shape while being partitioned by the mask material 19. Each electrode side joining surface 55a, 55b is similar to the element side joining surface 9a of each thermoelectric conversion element 9, and apex P 'and each outer periphery L' are formed. Further, each electrode-side bonding surface 55a, 55b has a smaller area than the element-side bonding surface 9a, and is provided inside the outer periphery L of the element-side bonding surface 9a when the solder 15 is bonded. Yes. Similarly, each electrode plate provided on the inner side 3 a of the second insulating substrate 3 is partially coated with a mask material 19. Other configurations are the same as those of the thermoelectric conversion module of the first embodiment.

このように、マスク材19により電極板55を部分的に覆うことで各電極側接合面55a、55bを形成した場合も、電極側接合面55a、55bと各素子側接合面9aとの間に形成されるはんだ15では、電極側接合面55a、55b側を頂点として熱電変換素子9の各角部Cから電極側接合面55a、55bの各頂点P’へ向かうフィレットFが形成されることとなる(図6参照)。このため、この接合構造においても、熱電変換素子9の角部C及び外周辺Lのはんだ15が薄くなる。第2絶縁基板3側も同様である。また、他の作用効果も実施例1と同様である。   As described above, even when the electrode-side bonding surfaces 55a and 55b are formed by partially covering the electrode plate 55 with the mask material 19, the electrode-side bonding surfaces 55a and 55b and the element-side bonding surfaces 9a are interposed between the electrode-side bonding surfaces 55a and 55b. In the solder 15 to be formed, a fillet F is formed from each corner C of the thermoelectric conversion element 9 to each vertex P ′ of the electrode-side joining surfaces 55a and 55b with the electrode-side joining surfaces 55a and 55b as the vertices. (See FIG. 6). For this reason, also in this junction structure, the solder 15 of the corner | angular part C and the outer periphery L of the thermoelectric conversion element 9 becomes thin. The same applies to the second insulating substrate 3 side. Other functions and effects are the same as those of the first embodiment.

以上において、本発明を実施例1〜7に即して説明したが、本発明は上記実施例1〜7に制限されるものではなく、その趣旨を逸脱しない範囲で適宜変更して適用できることはいうまでもない。   In the above, the present invention has been described with reference to the first to seventh embodiments. However, the present invention is not limited to the first to seventh embodiments, and can be appropriately modified and applied without departing from the spirit of the present invention. Needless to say.

例えば、実施例1〜7の熱電変換モジュールについて、第1、2絶縁基板1、3を設けずに、いわゆるスケルトン式の熱電変換モジュールとして構成することもできる。   For example, the thermoelectric conversion modules of Examples 1 to 7 can be configured as a so-called skeleton type thermoelectric conversion module without providing the first and second insulating substrates 1 and 3.

また、実施例7における電極側接合面55a、55bについて、実施例3における電極側接合面51a、51b等のように、略十字形状や略八角形状や略角丸矩形状とすることもできる。   In addition, the electrode-side bonding surfaces 55a and 55b in the seventh embodiment can be formed into a substantially cross shape, a substantially octagonal shape, or a substantially rounded rectangular shape like the electrode-side bonding surfaces 51a and 51b in the third embodiment.

本発明は熱電変換モジュールに利用可能である。   The present invention can be used for a thermoelectric conversion module.

5、7、50〜54…電極板
15、17…はんだ
9…熱電変換素子
9a、9b…素子側接合面
C…角部
5a、5b、7a、7b、50a〜54a、50b〜54b…電極側接合面
L、L’…外周辺
5c、7c、50c〜54c…連結部
19…マスク材
5, 7, 50-54 ... Electrode plate 15, 17 ... Solder 9 ... Thermoelectric conversion element 9a, 9b ... Element side joint surface C ... Corner 5a, 5b, 7a, 7b, 50a-54a, 50b-54b ... Electrode side Bonding surface L, L '... Outer periphery 5c, 7c, 50c-54c ... Connection part 19 ... Mask material

Claims (10)

電極板と、該電極板にはんだによって接合される熱電変換素子とを備えた熱電変換素子の接合構造において、
該熱電変換素子と該はんだとの接合面のうち、該熱電変換素子側である素子側接合面は矩形であり、
該素子側接合面における角部の少なくとも一箇所は、他の部分と比較して該はんだが薄く形成されていることを特徴とする熱電変換素子の接合構造。
In the junction structure of a thermoelectric conversion element comprising an electrode plate and a thermoelectric conversion element bonded to the electrode plate by solder,
Of the joint surfaces between the thermoelectric conversion element and the solder, the element side joint surface on the thermoelectric conversion element side is rectangular,
The junction structure of a thermoelectric conversion element, wherein the solder is formed thinner at least at one corner of the element-side joining surface than at other parts.
前記素子側接合面における全ての前記角部は、他の部分と比較して前記はんだが薄く形成されている請求項1記載の熱電変換素子の接合構造。   2. The thermoelectric conversion element bonding structure according to claim 1, wherein the solder is formed thinner at all the corners on the element side bonding surface than at other portions. 前記電極板と前記はんだとの接合面のうち、該電極板側である電極側接合面は、前記素子側接合面の全ての前記角部を除く位置に設けられている請求項2記載の熱電変換素子の接合構造。   3. The thermoelectric device according to claim 2, wherein an electrode-side bonding surface on the electrode plate side among the bonding surfaces of the electrode plate and the solder is provided at a position excluding all the corner portions of the element-side bonding surface. The junction structure of the conversion element. 前記電極側接合面は、各前記角部間に位置する外周辺のうち、少なくとも一つの該外周辺を除く位置に設けられている請求項3記載の熱電変換素子の接合構造。   The thermoelectric conversion element bonding structure according to claim 3, wherein the electrode-side bonding surface is provided at a position excluding at least one of the outer peripheries located between the corners. 前記電極側接合面の外周は前記電極板の該外周で規定されている請求項3又は4記載の熱電変換素子の接合構造。   The thermoelectric conversion element bonding structure according to claim 3 or 4, wherein an outer periphery of the electrode-side bonding surface is defined by the outer periphery of the electrode plate. 前記電極板は、前記素子側接合面より面積が小さく、該素子側接合面の前記外周辺より内側に設けられる一対の前記電極側接合面と、各該電極側接合面を連結し、各該電極側接合面の幅よりも幅の小さい連結部とから構成されている請求項5記載の熱電変換素子の接合構造。   The electrode plate has a smaller area than the element side bonding surface, and connects the pair of electrode side bonding surfaces provided inside the outer periphery of the element side bonding surface and the electrode side bonding surfaces, The thermoelectric conversion element bonding structure according to claim 5, wherein the thermoelectric conversion element bonding structure includes a connecting portion having a width smaller than a width of the electrode-side bonding surface. 前記電極側接合面の形状は前記素子側接合面の形状と相似である請求項6記載の熱電変換素子の接合構造。   The thermoelectric conversion element bonding structure according to claim 6, wherein a shape of the electrode-side bonding surface is similar to a shape of the element-side bonding surface. 前記電極側接合面は、前記電極板の表面に設けられ、前記はんだが付着しないマスク材により区画されている請求項3又は4記載の熱電変換素子の接合構造。   5. The thermoelectric conversion element bonding structure according to claim 3, wherein the electrode-side bonding surface is provided on a surface of the electrode plate and is partitioned by a mask material to which the solder does not adhere. 前記電極側接合面は、1つの前記電極板に対し、相互に離間した状態で前記素子側接合面よりも面積が小さく、該素子側接合面の前記外周辺より内側に設けられ、かつ一対形成されていることを特徴とする請求項8記載の熱電変換素子の接合構造。   The electrode-side bonding surface is smaller than the element-side bonding surface in a state of being separated from each other with respect to one electrode plate, is provided on the inner side of the outer periphery of the element-side bonding surface, and is formed as a pair The thermoelectric conversion element junction structure according to claim 8, wherein the thermoelectric conversion element is bonded. 前記電極側接合面の形状は前記素子側接合面の形状と相似である請求項9記載の熱電変換素子の接合構造。   The thermoelectric conversion element bonding structure according to claim 9, wherein a shape of the electrode-side bonding surface is similar to a shape of the element-side bonding surface.
JP2011068009A 2011-03-25 2011-03-25 Bonding structure of thermoelectric conversion element Withdrawn JP2012204623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068009A JP2012204623A (en) 2011-03-25 2011-03-25 Bonding structure of thermoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068009A JP2012204623A (en) 2011-03-25 2011-03-25 Bonding structure of thermoelectric conversion element

Publications (1)

Publication Number Publication Date
JP2012204623A true JP2012204623A (en) 2012-10-22

Family

ID=47185261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068009A Withdrawn JP2012204623A (en) 2011-03-25 2011-03-25 Bonding structure of thermoelectric conversion element

Country Status (1)

Country Link
JP (1) JP2012204623A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145848A (en) * 2012-01-16 2013-07-25 Kelk Ltd Thermoelectric element and thermoelectric module including the same
JP2013236057A (en) * 2012-04-11 2013-11-21 Panasonic Corp Thermoelectric conversion module
JP2014112587A (en) * 2012-12-05 2014-06-19 Kelk Ltd Thermoelectric module
KR20170135538A (en) * 2016-05-31 2017-12-08 엘지이노텍 주식회사 Thermo electric element
JP2021192409A (en) * 2020-06-05 2021-12-16 リンテック株式会社 Electrode for thermoelectric conversion module

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145848A (en) * 2012-01-16 2013-07-25 Kelk Ltd Thermoelectric element and thermoelectric module including the same
JP2013236057A (en) * 2012-04-11 2013-11-21 Panasonic Corp Thermoelectric conversion module
JP2014112587A (en) * 2012-12-05 2014-06-19 Kelk Ltd Thermoelectric module
KR20170135538A (en) * 2016-05-31 2017-12-08 엘지이노텍 주식회사 Thermo electric element
KR102509339B1 (en) * 2016-05-31 2023-03-13 엘지이노텍 주식회사 Thermo electric element
JP2021192409A (en) * 2020-06-05 2021-12-16 リンテック株式会社 Electrode for thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JP5729468B2 (en) Semiconductor device
JP3166228B2 (en) Thermoelectric converter
JP2012204623A (en) Bonding structure of thermoelectric conversion element
JP2005064457A (en) Thermoelectric converter
KR20120025432A (en) Semiconductor unit
JP2000068564A (en) Peltier element
JP2010245265A (en) Thermoelectric module
JP2005277206A (en) Thermoelectric converter
TWI815076B (en) steam room
JP6019706B2 (en) Power module
JP6146466B2 (en) Semiconductor device
JP2012222120A (en) Thermoelectric conversion module
JP2018032685A (en) Thermoelectric converter
JP2012119450A (en) Thermoelectric conversion module
JP2008270618A (en) Thermoelectric power generation module
JP2006237146A (en) Cascade module for thermoelectric conversion
JP2018041775A (en) Thermoelectric conversion module
JP2013069959A (en) Cooling structure of power module
JP7326859B2 (en) Semiconductor module parts
JP2004047800A (en) Connecting member and connecting structure
JPH02198179A (en) Thermoelectric element and manufacture thereof
JPH07226538A (en) Thermoelectric transducer
JP6909062B2 (en) Thermoelectric module
JP2015153869A (en) Cooler with insulating layer, manufacturing method of the same, and power module with cooler
JP2012212839A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603