[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012201938A - Material for vapor deposition and gas barrier vapor deposition film, and method of manufacturing vapor deposition film - Google Patents

Material for vapor deposition and gas barrier vapor deposition film, and method of manufacturing vapor deposition film Download PDF

Info

Publication number
JP2012201938A
JP2012201938A JP2011068604A JP2011068604A JP2012201938A JP 2012201938 A JP2012201938 A JP 2012201938A JP 2011068604 A JP2011068604 A JP 2011068604A JP 2011068604 A JP2011068604 A JP 2011068604A JP 2012201938 A JP2012201938 A JP 2012201938A
Authority
JP
Japan
Prior art keywords
vapor deposition
bismuth
silicon
film
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011068604A
Other languages
Japanese (ja)
Other versions
JP5729072B2 (en
Inventor
Yusuke Kuwagata
友輔 鍬形
Toshiaki Yoshihara
俊昭 吉原
Junpei Hayashi
純平 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2011068604A priority Critical patent/JP5729072B2/en
Publication of JP2012201938A publication Critical patent/JP2012201938A/en
Application granted granted Critical
Publication of JP5729072B2 publication Critical patent/JP5729072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas barrier vapor deposition film that prevents an occurrence of splash phenomenon and has high gas barrier property.SOLUTION: An inorganic oxide film 2 is formed on a polymer film base material 1 by depositing a vapor deposition material using a heating method, wherein the vapor deposition material includes metallic silicon, silicon dioxide, and metallic bismuth or bismuth oxide powder, the ratio {O/(Si+Bi)} of atomic number of oxygen to atomic number in total of silicon and bismuth is 1.0 to 1.8, and the ratio (Bi/Si) of atomic number of bismuth to that of silicon is 0.02 to 0.10. In the deposited film, the ratio {O/(Si+Bi)} of atomic number of oxygen to atomic number in total of silicon and bismuth is 1.6 to 1.9 and the ratio (Bi/Si) of atomic number of bismuth to that of silicon is 0.02 to 0.10.

Description

本発明は、蒸着用材料及びガスバリア性蒸着フィルム及び該蒸着フィルムの製造方法に関する。   The present invention relates to a vapor deposition material, a gas barrier vapor deposition film, and a method for producing the vapor deposition film.

ガスバリア性蒸着フィルムは、太陽電池のバックシート、食品や医薬品等の包装分野、あるいは非包装分野で酸素および水蒸気を遮断する必要がある部材の分野に広く用いられている。   Gas barrier vapor-deposited films are widely used in the field of components that need to block oxygen and water vapor in the backsheet of solar cells, the packaging field of foods and pharmaceuticals, or the non-packaging field.

ハードディスクや半導体モジュールなどの精密電子部品類、あるいは、食品や医薬品類の包装に用いられる包装材料は、内容物を保護することが必要である。特に、食品包装においては蛋白質や油脂などの酸化や変質を抑制し、味や鮮度を保持することが必要である。   It is necessary to protect the contents of precision electronic parts such as hard disks and semiconductor modules, or packaging materials used for packaging foods and pharmaceuticals. Particularly in food packaging, it is necessary to suppress the oxidation and alteration of proteins, fats and oils, and to maintain the taste and freshness.

また無菌状態での取り扱いが必要とされる医薬品類においては有効成分の変質を抑制し、効能を維持すること、さらに、精密電子部品類においては金属部分の腐食、絶縁不良などを防止するために、包装材料を透過する酸素や水蒸気、その他内容物を変質させる気体を遮断するガスバリア性を備える包装体が求められている。   In order to prevent the active ingredient from being altered and maintain its efficacy in pharmaceuticals that require handling under aseptic conditions, and to prevent corrosion of metal parts and poor insulation in precision electronic parts. There is a need for a package having a gas barrier property that blocks oxygen, water vapor, and other gases that alter the contents of the packaging material.

そのため、従来から温度、湿度などに影響されないアルミニウムなどの金属箔やアルミニウム蒸着フィルムあるいは、ポリビニルアルコール(PVA)、エチレン−ビニルアルコール共重合体(EVOH)、ポリ塩化ビニリデン(PVDC)、ポリアクリロニトリル(PAN)などの樹脂フィルムやこれらの樹脂をラミネートまたはコーティングしたプラスチックフィルムなどが好んで用いられてきた。   Therefore, metal foils such as aluminum and aluminum vapor deposited films that are not affected by temperature, humidity, etc., or polyvinyl alcohol (PVA), ethylene-vinyl alcohol copolymer (EVOH), polyvinylidene chloride (PVDC), polyacrylonitrile (PAN). ) And plastic films laminated or coated with these resins have been used favorably.

ところが、アルミニウムなどの金属箔やアルミニウム蒸着フィルムを用いた包装材料は、ガスバリア性には優れるが、不透明であるため、包装材料を透過して内容物を識別することが難しいだけではなく、使用後の廃棄の際に不燃物として処理しなければならいない点や、金属探知機による異物検査や、電子レンジでの加熱処理が出来ないなどの欠点を有していた。   However, packaging materials using metal foils such as aluminum and aluminum vapor-deposited films are excellent in gas barrier properties, but are opaque, so it is difficult not only to identify the contents through the packaging material, but also after use. However, it has the disadvantages that it must be treated as an incombustible material at the time of disposal, and that foreign matter inspection by a metal detector and heat treatment in a microwave oven cannot be performed.

また、ガスバリア性樹脂フィルムやガスバリア性樹脂をコーティングしたフィルムは、温度依存性が大きく、高いガスバリア性を維持できない。さらに、使用後PVDCやPANなどは廃棄・焼却の際に有害物質が発生する原因となる可能性などの問題があった。   In addition, a gas barrier resin film or a film coated with a gas barrier resin is highly temperature dependent and cannot maintain high gas barrier properties. Furthermore, after use, PVDC, PAN, and the like have problems such as the possibility of causing harmful substances during disposal and incineration.

そこで、これらの欠点を克服した包装用材料として、最近では酸化マグネシウム、酸化カルシウム、酸化アルミニウム、酸化珪素などの無機酸化物を透明な基材フィルム上に蒸着したガスバリア性フィルムが上市されている。(特許文献1、2参照)
これらのガスバリア性蒸着フィルムは透明性および酸素、水蒸気などのガス遮断性を有していることが知られ、金属箔などでは得ることの出来ない透明性、ガスバリア性の両方を有する包装材料として好適とされており、酸化珪素SiOxを蒸着したフィルムでは食品包装用フィルムとして用いられている。また、酸化珪素SiOxを蒸着用材料とした加熱方式による蒸着は非常に成膜速度が速く、生産性が高い。
Therefore, as a packaging material that overcomes these drawbacks, a gas barrier film in which an inorganic oxide such as magnesium oxide, calcium oxide, aluminum oxide, or silicon oxide is vapor-deposited on a transparent base film has recently been put on the market. (See Patent Documents 1 and 2)
These gas barrier vapor-deposited films are known to have transparency and gas barrier properties such as oxygen and water vapor, and are suitable as packaging materials having both transparency and gas barrier properties that cannot be obtained with metal foil or the like. In the film deposited with silicon oxide SiOx, it is used as a food packaging film. In addition, vapor deposition by a heating method using silicon oxide SiOx as a vapor deposition material has a very high film formation rate and high productivity.

しかし、ここで用いられている蒸着用材料の酸化珪素のSiOx(0<x<2)は、金属珪素と二酸化珪素を原料として真空蒸着により製造されるため、次に示すような欠点を有している。   However, the silicon oxide SiOx (0 <x <2), which is a deposition material used here, is manufactured by vacuum deposition using metal silicon and silicon dioxide as raw materials, and thus has the following drawbacks. ing.

真空蒸着法により製造する蒸着用材料の酸化珪素SiOx(0<x<2)は大量生産に適した製造方法ではないため、材料費が高く、製造コストが高くなるという問題がある。また、この蒸着用材料の酸化珪素SiOx(0<x<2)は真密度に近い密度を有し、非常に緻密な構造になっている。   Since silicon oxide SiOx (0 <x <2), which is a material for vapor deposition produced by vacuum vapor deposition, is not a production method suitable for mass production, there is a problem that the material cost is high and the production cost is high. Further, the silicon oxide SiOx (0 <x <2) of this vapor deposition material has a density close to the true density and has a very dense structure.

そのため、この蒸着用材料を蒸発させてバリアフィルムを製造した場合には、蒸着の際の加熱による熱衝撃や内部から発生するガスの圧力により、気化していない蒸着用材料が高温の粒子として飛散するスプラッシュという現象が発生するという問題がある。   Therefore, when a barrier film is produced by evaporating this deposition material, unvaporized deposition material is scattered as high-temperature particles due to thermal shock caused by heating during vapor deposition or the pressure of gas generated from the inside. There is a problem that a phenomenon called splash occurs.

高温の粒子が高分子フィルム上に到達した際には、ピンホールや異物が生じ、バリア性の低下および外観不良となる。さらに、上記記載の加熱方式、特に電子銃による加熱は、より大きい熱衝撃を蒸着用材料が受けることで上記のスプラッシュと異物の発生がより顕著に現れる。   When high-temperature particles reach the polymer film, pinholes and foreign matters are generated, resulting in a decrease in barrier properties and poor appearance. Further, in the heating method described above, particularly heating by an electron gun, the above-described splash and foreign matter are more noticeably generated when the deposition material receives a larger thermal shock.

これに対して金属珪素と二酸化珪素の混合蒸着用材料は、比較的安価であるが、加熱時に一酸化珪素よりも蒸気圧が高いために蒸発しにくく、さらに溶融型の蒸着用材料であるため、より大きい熱衝撃が必要となり、蒸着用材料が飛散してスプラッシュが発生しやすい。また、二酸化珪素の分解による酸素ガスの発生で成膜室内の圧力が上昇し、蒸着速度の低下、つまり生産性の低下が起こり、また蒸着膜密度の低下による蒸着膜のバリア性の低下を引き起こす問題もある。   On the other hand, the mixed vapor deposition material of metal silicon and silicon dioxide is relatively inexpensive, but it is difficult to evaporate because it has a higher vapor pressure than silicon monoxide during heating, and it is a melt type vapor deposition material. Therefore, a larger thermal shock is required, and the vapor deposition material is scattered and splash is likely to occur. In addition, the generation of oxygen gas due to the decomposition of silicon dioxide increases the pressure in the film formation chamber, resulting in a decrease in deposition rate, that is, a decrease in productivity, and a decrease in barrier properties of the deposited film due to a decrease in deposited film density. There is also a problem.

特開平8−296036号公報JP-A-8-296036 特開平6−016848号公報JP-A-6-016848

本発明は、以上の従来技術の問題を解決しようとするものであり、スプラッシュ現象の発生を抑制し、高いガスバリア性を付与できる蒸着用材料と、それを用いて蒸着したガスバリア性蒸着フィルム及び該蒸着フィルムの製造方法を提供することを目的とする。   The present invention is intended to solve the above-described problems of the prior art, a vapor deposition material capable of suppressing the occurrence of a splash phenomenon and imparting a high gas barrier property, a gas barrier vapor deposition film deposited using the material, and the film It aims at providing the manufacturing method of a vapor deposition film.

本発明は係る課題に鑑みなされたものであり、請求項1の発明は、金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料であって、珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}が1.0〜1.8であり、ビスマスと珪素の原子数の比(Bi/Si)が0.02〜0.10であることを特徴とする蒸着用材料である。   The present invention has been made in view of the above problems, and the invention of claim 1 is a heating type vapor deposition material containing metallic silicon, silicon dioxide, and metallic bismuth or bismuth oxide powder, The ratio of the total number of atoms of bismuth and the number of atoms of oxygen {O / (Si + Bi)} is 1.0 to 1.8, and the ratio of the number of atoms of bismuth and silicon (Bi / Si) is 0.02 to 0.02. It is a material for vapor deposition characterized by being 0.10.

請求項2の発明は、嵩密度が0.9〜1.5g/cmの範囲であることを特徴とする請求項1に記載の蒸着用材料である。 Invention of Claim 2 is a vapor deposition material of Claim 1 whose bulk density is the range of 0.9-1.5 g / cm < 3 >.

請求項3の発明は、前記二酸化珪素粉末が、結晶構造を少なくとも20%以上含んでいることを特徴とする請求項1に記載の蒸着用材料である。   The invention according to claim 3 is the evaporation material according to claim 1, wherein the silicon dioxide powder contains at least 20% of a crystal structure.

請求項4の発明は、請求項1に記載の蒸着用材料を、加熱方式で蒸発させて蒸着した蒸着膜の珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}が1.6〜1.9であり、ビスマスと珪素の原子数の比(Bi/Si)が0.02〜0.10であることを特徴とするガスバリア性蒸着フィルムである。   According to a fourth aspect of the present invention, there is provided a ratio {O / (Si + Bi) of the total number of atoms of silicon and bismuth and the number of atomic atoms of oxygen in a vapor deposition film deposited by evaporating the vapor deposition material according to the first aspect by a heating method. )} Is 1.6 to 1.9, and the ratio of the number of atoms of bismuth and silicon (Bi / Si) is 0.02 to 0.10.

請求項5の発明は、金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有し、珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}が1.0〜1.8であり、ビスマスと珪素の原子数の比(Bi/Si)が0.02〜0.10である蒸着用材料を、電子ビーム加熱方式により蒸発させ、高分子フィルム基材上に成膜することを特徴とするガスバリア性蒸着フィルムの製造方法である。   The invention of claim 5 contains metal silicon, silicon dioxide, metal bismuth or bismuth oxide powder, and the ratio of the total number of atoms of silicon and bismuth to the number of oxygen atoms {O / (Si + Bi)} A vapor deposition material having a ratio of the number of atoms of Bismuth to silicon (Bi / Si) of 0.02 to 0.10 is evaporated by an electron beam heating method to obtain a polymer film base. A method for producing a gas barrier vapor-deposited film, comprising forming a film on a material.

本発明によれば、生産性向上のために高い出力での電子ビーム加熱蒸着法を利用した場合でもスプラッシュ現象を抑制でき、高いガスバリア性の蒸着フィルムを得ることができる。   According to the present invention, a splash phenomenon can be suppressed even when an electron beam heating vapor deposition method with a high output is used to improve productivity, and a vapor deposition film having a high gas barrier property can be obtained.

本発明の一実施形態によるガスバリア性蒸着フィルムの断面図。Sectional drawing of the gas barrier vapor deposition film by one Embodiment of this invention.

以下に、本発明の実施の形態について説明する。図1は本発明のガスバリア性蒸着フィルムの断面図である。このガスバリア性蒸着フィルムは、高分子フィルム基材1の上に金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマスを蒸着したものからなる無機酸化物膜2を、真空蒸着方式によって成膜したものである。このようにすることがガスバリア性能や均一性の観点から好ましい。   Embodiments of the present invention will be described below. FIG. 1 is a cross-sectional view of a gas barrier vapor deposition film of the present invention. This gas barrier vapor-deposited film is obtained by depositing an inorganic oxide film 2 formed by vapor-depositing metal silicon, silicon dioxide, metal bismuth or bismuth oxide on a polymer film substrate 1 by a vacuum deposition method. It is. This is preferable from the viewpoint of gas barrier performance and uniformity.

無機酸化物膜2の成膜手段としては、真空蒸着方式のうち、電子ビームやレーザービーム等による加熱蒸着法が好ましく用いられ、特に電子ビーム加熱蒸着法が、成膜速度や無機酸化物蒸着用材料への昇温降温が短時間で行える点で有効である。   As a means for forming the inorganic oxide film 2, a heat evaporation method using an electron beam, a laser beam, or the like is preferably used among the vacuum evaporation methods, and in particular, the electron beam heat evaporation method is used for film formation speed or inorganic oxide evaporation. This is effective in that the temperature can be raised and lowered to the material in a short time.

また、前記二酸化珪素は、結晶構造を少なくとも20%以上含んでいる。このために、電子ビームによって二酸化珪素から酸素ガスを発生させ、この酸素ガスを、金属珪素と、金属ビスマスもしくは酸化ビスマスと反応させることができる。また、上記無機酸化物膜2は高分子フィルム基材1の両面に形成しても、多層にしても、表裏で異なる組成の無機酸化物膜2としてもよい。   The silicon dioxide contains at least 20% of a crystal structure. For this purpose, oxygen gas can be generated from silicon dioxide by an electron beam, and this oxygen gas can be reacted with metallic silicon and metallic bismuth or bismuth oxide. Further, the inorganic oxide film 2 may be formed on both surfaces of the polymer film substrate 1, may be multilayered, or may be the inorganic oxide film 2 having different compositions on the front and back sides.

高分子フィルム基材1は、特に制限を受けるものではなく公知のものを使用することが出来る。例えば、ポリオレフィン系(ポリエチレン、ポリプロピレン等)、ポリエステル系(ポリエチレンナフタレート、ポリエチレンテレフタレート等)、ポリアミド系(ナイロン―6、ナイロン―66等)、ポリスチレン、エチレンビニルアルコール、ポリ塩化ビニル、ポリイミド、ポリビニルアルコール、ポリカーボネイト、ポリエーテルスルホン、アクリル、セルロース系(トリアセチルセルロース、ジアセチルセルロース等)などの高分子のフィルム基材が挙げられるが、特に限定されない。   The polymer film substrate 1 is not particularly limited, and a known one can be used. For example, polyolefin (polyethylene, polypropylene, etc.), polyester (polyethylene naphthalate, polyethylene terephthalate, etc.), polyamide (nylon-6, nylon-66, etc.), polystyrene, ethylene vinyl alcohol, polyvinyl chloride, polyimide, polyvinyl alcohol , Polymer film bases such as polycarbonate, polyethersulfone, acrylic, and cellulose (triacetylcellulose, diacetylcellulose, etc.), but not particularly limited.

高分子フィルム基材1として、透明フィルムを用いることは、大量生産に適するため好ましい。また、厚さに関しては、特に制限を受けるものではなく、ガスバリア性蒸着フィルムを形成する蒸着加工などの加工性を考慮すると、実用的には12〜188μmの範囲が好ましい。   It is preferable to use a transparent film as the polymer film substrate 1 because it is suitable for mass production. In addition, the thickness is not particularly limited, and is practically preferably in the range of 12 to 188 μm in consideration of workability such as vapor deposition processing for forming a gas barrier vapor deposition film.

蒸発した金属珪素と二酸化珪素からなる混合蒸着用材料によって高分子フィルム基材1の表面上に形成される無機酸化物膜2の厚さは、一般的には5〜300nmの範囲内が望ましく、その値は適宜選択する。   In general, the thickness of the inorganic oxide film 2 formed on the surface of the polymer film substrate 1 by the mixed vapor deposition material composed of evaporated metal silicon and silicon dioxide is desirably in the range of 5 to 300 nm. The value is appropriately selected.

ただし、無機酸化物膜2の厚さが5nm未満であると均一な膜質が得られないことや、膜厚が十分ではないことがあり、十分なバリア性能を発揮できない場合がある。また、膜厚が300nmを超える場合は、膜にフレキシビリティを保持させることができず、成膜後に折り曲げ、引張りなどの外的要因により、膜に亀裂が生じる恐れがある。   However, if the thickness of the inorganic oxide film 2 is less than 5 nm, uniform film quality may not be obtained, or the film thickness may not be sufficient, and sufficient barrier performance may not be exhibited. In addition, when the film thickness exceeds 300 nm, the film cannot retain flexibility, and there is a possibility that the film may crack due to external factors such as bending and tension after the film formation.

本発明では、蒸着用材料として使用される金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料は、珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}、ビスマスと珪素の原子数の比(Bi/Si)、また好適には嵩密度を管理することにより、電子ビームによる熱衝撃に対して破壊されにくい無機酸化物膜2を成膜することができる。そのため、無機酸化物膜2の耐熱衝撃性が向上し、スプラッシュ現象が抑制される。   In the present invention, the heating type vapor deposition material containing metal silicon, silicon dioxide, and metal bismuth or bismuth oxide powder used as the vapor deposition material is composed of the total number of atoms of silicon and bismuth and oxygen atoms. The ratio of the number {O / (Si + Bi)}, the ratio of the number of atoms of bismuth and silicon (Bi / Si), and preferably the inorganic oxidation that is less susceptible to thermal shock by electron beams by controlling the bulk density The physical film 2 can be formed. Therefore, the thermal shock resistance of the inorganic oxide film 2 is improved, and the splash phenomenon is suppressed.

すなわち、電子ビーム加熱による蒸着の際には、好適には嵩密度を管理することで、緻密構造にならないようにして熱伝導性を低くすることと、低い熱伝導性を持つ二酸化珪素を混合したことにより、電子ビーム加熱による急激な温度上昇による突沸の発生を抑制し、スプラッシュ現象を低減することができる。   In other words, during vapor deposition by electron beam heating, preferably by controlling the bulk density, the thermal conductivity is lowered so as not to become a dense structure, and silicon dioxide having a low thermal conductivity is mixed. As a result, it is possible to suppress the occurrence of bumping due to a rapid temperature rise due to electron beam heating, and to reduce the splash phenomenon.

また、二酸化珪素が加熱されると酸素ガスが脱離し、加熱された金属珪素も二酸化珪素から発生した酸素ガスが近傍にあるため、突沸することなく反応しSiOx蒸気となる。金属ビスマスは二酸化珪素から脱離した酸素ガスと反応し、BiOy蒸気となり、酸化ビスマスも蒸発してBiOy蒸気となることで、高分子基材フィルム上にSiOx・BiOy膜を形成できる。そして、蒸着材料の表層には溶融した二酸化珪素が残るため、スプラッシュが抑制され、高いバリア性を持つ蒸着フィルムを形成できると考えられる。   Also, when silicon dioxide is heated, oxygen gas is desorbed, and the heated metal silicon reacts without bumping because it is in the vicinity of oxygen gas generated from silicon dioxide, and becomes SiOx vapor. Bismuth metal reacts with oxygen gas desorbed from silicon dioxide to form BiOy vapor, and bismuth oxide also evaporates into BiOy vapor, thereby forming a SiOx / BiOy film on the polymer substrate film. And since melted silicon dioxide remains in the surface layer of vapor deposition material, it is thought that a vapor deposition film with a high barrier property can be formed because splash is suppressed.

本発明の金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料に関して、その珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}は1.0〜1.8が望ましい。すなわち、O/(Si+Bi)が1.0未満では、材料に含まれる二酸化珪素が少ないため、材料表層の溶融部分が少なく、スプラッシュが発生し易くなる。一方、O/(Si+Bi)が1.8を超えると、酸素ガスの発生が多くなるため、成膜室内の圧力が上昇し、蒸着速度の低下、つまり生産性の低下が起こり、また蒸着膜密度の低下により蒸着膜のバリア性が低下する。   Regarding the heating type vapor deposition material containing metal silicon, silicon dioxide, and metal bismuth or bismuth oxide powder of the present invention, the ratio of the total number of atoms of silicon and bismuth and the number of oxygen atoms {O / ( Si + Bi)} is preferably 1.0 to 1.8. That is, when O / (Si + Bi) is less than 1.0, the amount of silicon dioxide contained in the material is small, so that the melted portion of the material surface layer is small and splash is likely to occur. On the other hand, when O / (Si + Bi) exceeds 1.8, the generation of oxygen gas increases, so the pressure in the film forming chamber increases, the deposition rate decreases, that is, the productivity decreases, and the deposited film density also decreases. The barrier property of the deposited film is lowered due to the decrease in.

また、金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料に関しては、ビスマスと珪素の原子数の比(Bi/Si)は0.02〜0.10が望ましい。すなわち、Bi/Siが0.02未満では、ビスマス成分を添加することによるバリア性向上効果が得られない。一方、Bi/Siが0.10を超えると、蒸着したフィルムに含まれるビスマスの量が多くなるため、フィルムの耐水性が低下する。   In addition, for a heating vapor deposition material containing metal silicon, silicon dioxide, and metal bismuth or bismuth oxide powder, the ratio of the number of atoms of bismuth and silicon (Bi / Si) is 0.02 to 0.10. Is desirable. That is, when Bi / Si is less than 0.02, the effect of improving the barrier property by adding the bismuth component cannot be obtained. On the other hand, when Bi / Si exceeds 0.10, the amount of bismuth contained in the deposited film increases, so that the water resistance of the film decreases.

蒸着用材料の嵩密度は0.9〜1.5g/cmが好ましい。蒸着用材料の嵩密度が0.9g/cm未満では、蒸着用材料の割れや飛散が発生し易く、嵩密度が1.5g/cmを超えると、材料の蒸発に必要なエネルギーがより必要となるため、蒸発レートが低くなり、蒸着速度の低下、つまり生産性が低下する。 The bulk density of the vapor deposition material is preferably 0.9 to 1.5 g / cm 3 . When the bulk density of the vapor deposition material is less than 0.9 g / cm 3 , the vapor deposition material is likely to be cracked or scattered, and when the bulk density exceeds 1.5 g / cm 3 , more energy is required for evaporation of the material. Since this is necessary, the evaporation rate is lowered, and the deposition rate is lowered, that is, the productivity is lowered.

さらに、蒸着用材料はそれぞれ同程度の粒径を用いると混ざりやすく、1μm〜100μmの粉末を用いることで蒸着用材料の昇温プロセスが簡易になる。これは、金属珪素が蒸着用材料に均一に混合されることで、材料が温まり易く電子ビームのデフォーカスが起こりにくいためと考えられる。   Further, the vapor deposition materials are easily mixed when using the same particle size, and the temperature raising process of the vapor deposition material is simplified by using a powder of 1 μm to 100 μm. This is presumably because the metal silicon is uniformly mixed with the vapor deposition material, so that the material is easily heated and the electron beam is not easily defocused.

ここで用いる珪素酸化物は、少なくとも20%はX線的に結晶構造を有している二酸化珪素を使用することが望ましい。これは、結晶化度が20%未満、つまり結晶構造が20%未満の二酸化珪素を使用すると、蒸着用材料の蒸発レートおよび蒸着膜のバリア性が低下するためである。二酸化珪素の結晶部分と非結晶部分の測定には、X線回折装置(XRD)を用いて、それぞれのピークを分離し、積分強度の比から結晶化度を求めた。   As the silicon oxide used here, it is desirable to use silicon dioxide having at least 20% X-ray crystal structure. This is because the use of silicon dioxide having a crystallinity of less than 20%, that is, a crystal structure of less than 20% lowers the evaporation rate of the evaporation material and the barrier property of the evaporated film. For the measurement of the crystalline portion and the non-crystalline portion of silicon dioxide, each peak was separated using an X-ray diffractometer (XRD), and the degree of crystallinity was determined from the ratio of integrated intensity.

また、本発明の金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料を、加熱方式で蒸発させて蒸着した蒸着膜に関して、その珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}は1.6〜1.9が望ましい。すなわち、O/(Si+Bi)が1.6未満では、蒸着膜に含まれる二酸化珪素が少ないため、フィルムの透明性が低下する。一方、O/(Si+Bi)が1.9を超えると、蒸着膜に含まれる二酸化珪素が多くなるため、蒸着膜密度の低下により蒸着膜のバリア性が低下する。   Further, regarding a deposited film obtained by evaporating a deposition material of a heating method containing metal silicon, silicon dioxide, and metal bismuth or bismuth oxide powder of the present invention by evaporation by a heating method, the total of the silicon and bismuth The ratio of the number of atoms to the number of oxygen atoms {O / (Si + Bi)} is preferably 1.6 to 1.9. That is, when O / (Si + Bi) is less than 1.6, the transparency of the film is lowered because the silicon dioxide contained in the deposited film is small. On the other hand, when O / (Si + Bi) exceeds 1.9, silicon dioxide contained in the deposited film increases, and thus the barrier property of the deposited film is lowered due to the lowered deposited film density.

また、金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料を、加熱方式で蒸発させて蒸着した蒸着膜に関して、そのビスマスと珪素の原子数の比(Bi/Si)は0.02〜0.10が望ましい。Bi/Siが0.02未満では、ビスマス成分の含有によるバリア性向上効果が得られず、Bi/Siが0.10を超えると、蒸着したフィルムに含まれるビスマスの量が多くなるため、フィルムの耐水性が低下する。   In addition, regarding a deposited film obtained by evaporating a deposition material of a heating method containing metal silicon, silicon dioxide, and metal bismuth or bismuth oxide powder by a heating method, the ratio of the number of atoms of bismuth and silicon ( Bi / Si) is preferably 0.02 to 0.10. When Bi / Si is less than 0.02, the effect of improving the barrier property due to the inclusion of the bismuth component cannot be obtained. When Bi / Si exceeds 0.10, the amount of bismuth contained in the deposited film increases. The water resistance of is reduced.

以上のように、本発明の蒸着用材料は、珪素とビスマスの合計の原子数と酸素の原子数の比{O/(Si+Bi)}、ビスマスと珪素の原子数の比(Bi/Si)、また好適にはな嵩密度を管理すること、さらには二酸化珪素の結晶化度を管理することで、従来の蒸着用材料に比べスプラッシュ現象を生じさせることなく、高いバリア性を持つガスバリア性蒸着フィルムを得ることができる。   As described above, the vapor deposition material of the present invention has the ratio of the total number of atoms of silicon and bismuth to the number of atoms of oxygen {O / (Si + Bi)}, the ratio of the number of atoms of bismuth and silicon (Bi / Si), In addition, it is preferable to control the bulk density, and further to control the crystallinity of silicon dioxide, so that a gas barrier vapor-deposited film having a high barrier property is produced without causing a splash phenomenon as compared with conventional vapor deposition materials. Can be obtained.

以下に、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

<実施例1>
金属珪素には50μm以下の径を有する粉末が95%以上のものを使用し、二酸化珪素には結晶構造を95%含み、50μm以下の径を有する粉末が95%以上のものを使用し、金属ビスマスには50μm以下の径を有する粉末が95%以上のものを使用した。珪素とビスマスの合計の原子数と酸素の原子数の比{O/(Si+Bi)}が1.4となるようにし、ビスマスと珪素の原子数の比(Bi/Si)が0.05となるように混合した金属珪素と二酸化珪素と金属ビスマスからなる蒸着用材料を作製し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Example 1>
Metallic silicon uses a powder having a diameter of 50 μm or less of 95% or more, and silicon dioxide contains a crystal structure of 95% and a powder having a diameter of 50 μm or less is 95% or more. As the bismuth, 95% or more of powder having a diameter of 50 μm or less was used. The ratio of the total number of atoms of silicon and bismuth and the number of atoms of oxygen {O / (Si + Bi)} is 1.4, and the ratio of the number of atoms of bismuth and silicon (Bi / Si) is 0.05. A vapor deposition material composed of metallic silicon, silicon dioxide, and metallic bismuth mixed as described above was produced and press-molded so that the bulk density was 1.0 g / cm 3 .

次に、電子ビーム加熱方式の真空蒸着装置により、電子銃から放出する電子ビームを混合蒸着用材料に照射し蒸発させ、高分子フィルム基材上に成膜した。   Next, an electron beam emitted from an electron gun was irradiated onto the mixed vapor deposition material by an electron beam heating type vacuum vapor deposition apparatus to evaporate it, and a film was formed on the polymer film substrate.

<実施例2>
金属珪素には50μm以下の径を有する粉末が95%以上のものを使用し、二酸化珪素には結晶構造を95%含み、50μm以下の径を有する粉末が95%以上のものを使用し、酸化ビスマスには50μm以下の径を有する粉末が95%以上のものを使用した。珪素とビスマスの合計の原子数と酸素の原子数の比{O/(Si+Bi)}が1.5となるようにし、ビスマスと珪素の原子数の比(Bi/Si)が0.03となるように混合した金属珪素と二酸化珪素と酸化ビスマスからなる蒸着用材料を作製し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Example 2>
For metal silicon, a powder having a diameter of 50 μm or less is 95% or more, and for silicon dioxide, a crystal structure containing 95% is used, and a powder having a diameter of 50 μm or less is 95% or more. As the bismuth, 95% or more of powder having a diameter of 50 μm or less was used. The ratio of the total number of atoms of silicon and bismuth to the number of atoms of oxygen {O / (Si + Bi)} is 1.5, and the ratio of the number of atoms of bismuth and silicon (Bi / Si) is 0.03. A vapor deposition material composed of metallic silicon, silicon dioxide, and bismuth oxide mixed in this manner was prepared, and press-molded so that the bulk density was 1.0 g / cm 3 .

以下に本発明の比較例について説明する。   Hereinafter, comparative examples of the present invention will be described.

<比較例1>
金属珪素には50μm以下の径を有する粉末が95%以上のものを使用し、二酸化珪素には結晶構造を95%含み、50μm以下の径を有する粉末が95%以上のものを使用した。珪素の原子数と酸素の原子数の比(O/Si)が1.5となるように混合した金属珪素と二酸化珪素からなる混合蒸着用材料を作製し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Comparative Example 1>
The metal silicon used was a powder having a diameter of 50 μm or less of 95% or more, and the silicon dioxide containing a crystal structure containing 95% and a powder having a diameter of 50 μm or less was 95% or more. A material for mixed vapor deposition composed of silicon metal and silicon dioxide mixed so that the ratio of the number of silicon atoms to the number of oxygen atoms (O / Si) is 1.5 is prepared, and the bulk density is 1.0 g / cm 3. It was press-molded so that

<比較例2>
比較例1で作製した蒸着用材料と同様に、嵩密度が1.5g/cmとなるようにプレス成型した。
<Comparative example 2>
Similarly to the vapor deposition material produced in Comparative Example 1, press molding was performed so that the bulk density was 1.5 g / cm 3 .

<比較例3>
実施例1で作製した蒸着用材料と同様に、珪素とビスマスの合計の原子数と酸素の原子数の比{O/(Si+Bi)}が1.3となるようにし、ビスマスと珪素の原子数の比(Bi/Si)が0.12となるように混合した金属珪素と二酸化珪素と金属ビスマスからなる蒸着用材料を作製し、嵩密度が1.0g/cmとなるようにプレス成型した。
<Comparative Example 3>
Similar to the vapor deposition material prepared in Example 1, the ratio of the total number of atoms of silicon and bismuth to the number of atoms of oxygen {O / (Si + Bi)} is 1.3, and the number of atoms of bismuth and silicon. A vapor deposition material made of metal silicon, silicon dioxide, and metal bismuth mixed so that the ratio (Bi / Si) of the metal was 0.12, was press-molded so that the bulk density was 1.0 g / cm 3 . .

上記実施例1〜2及び比較例1〜3のガスバリア性蒸着フィルムについて、以下の方法で、スプラッシュの発生をチェックし、また、水蒸気透過率を測定した。また、蒸発させて蒸着した蒸着膜のO/(Si+Bi)及びBi/Siを測定した。   About the gas-barrier vapor deposition film of the said Examples 1-2 and Comparative Examples 1-3, generation | occurrence | production of the splash was checked with the following method, and the water-vapor-permeation rate was measured. Further, O / (Si + Bi) and Bi / Si of the deposited film evaporated and evaporated were measured.

<スプラッシュについて>
実施例1〜2及び比較例1〜3のガスバリア性蒸着フィルムを幅500mm×長さ100mの面積にカットし、これらのガスバリア性蒸着フィルムについて、目視により、スプラッシュによるピンホールや異物が無いかを調べた。なお、スプラッシュの有無の評価では、スプラッシュによるピンホールや異物が無い場合を○とし、スプラッシュによるピンホールや異物が1から10個までを△とし、スプラッシュによるピンホールや異物が11個以上あるものを×とした。
<About splash>
The gas barrier vapor deposition films of Examples 1 and 2 and Comparative Examples 1 to 3 were cut into an area of width 500 mm × length 100 m, and about these gas barrier vapor deposition films, whether or not there are pinholes and foreign matters due to splash by visual inspection. Examined. In addition, in the evaluation of the presence or absence of splash, the case where there is no pinhole or foreign matter due to splash is rated as ◯, the number of pinholes or foreign matter due to splash is 1 to 10, and there are 11 or more pinholes or foreign matters due to splash Was marked with x.

<水蒸気バリア性について>
実施例1〜2及び比較例1〜3のガスバリア性蒸着フィルムの水蒸気バリア性を、モダンコントロール社製の水蒸気透過度測定装置(商品名;MOCON PERMATRAN 3/21)を用いて40℃90%RHの雰囲気で測定した。
<About water vapor barrier properties>
The water vapor barrier properties of the gas barrier vapor deposited films of Examples 1 and 2 and Comparative Examples 1 to 3 were measured at 40 ° C. and 90% RH using a water vapor permeability measuring device (trade name; MOCON PERMATRAN 3/21) manufactured by Modern Control. Measured in the atmosphere.

<蒸着膜のO/(Si+Bi)及びBi/Siについて>
実施例1〜2及び比較例1〜3のガスバリア性蒸着フィルムにおける蒸着膜のO/(Si+Bi)及びBi/Siを以下の方法で測定した。
<O / (Si + Bi) and Bi / Si of the deposited film>
The O / (Si + Bi) and Bi / Si of the vapor deposition films in the gas barrier vapor deposition films of Examples 1-2 and Comparative Examples 1-3 were measured by the following methods.

(測定方法)
無機酸化物膜2が形成された高分子フィルム基材1を10mm×10mm角に切り取り、X線光電子分光装置(ESCA)により、膜の組成分析を行った。Arイオンで蒸着膜の深さ方向に組成分析を3回以上繰り返し、その平均を求め、O/(Si+Bi)及びBi/Siを算出した。
(Measuring method)
The polymer film substrate 1 on which the inorganic oxide film 2 was formed was cut into a 10 mm × 10 mm square, and the composition of the film was analyzed using an X-ray photoelectron spectrometer (ESCA). The composition analysis was repeated three times or more in the depth direction of the deposited film with Ar ions, the average was obtained, and O / (Si + Bi) and Bi / Si were calculated.

次の表1は上記測定結果を示している。

Figure 2012201938
The following Table 1 shows the measurement results.
Figure 2012201938

<評価>
表1のように、比較例2のガスバリア性蒸着フィルムはスプラッシュの発生が確認されたのに対し、実施例1及び実施例2のガスバリア性蒸着フィルムはスプラッシュの発生はなかった。これは、蒸着用材料の高い嵩密度によってスプラッシュが発生することを意味する。
<Evaluation>
As shown in Table 1, the gas barrier vapor-deposited film of Comparative Example 2 was confirmed to generate splash, whereas the gas barrier vapor-deposited films of Example 1 and Example 2 did not generate splash. This means that splash occurs due to the high bulk density of the vapor deposition material.

さらに、実施例1及び実施例2のガスバリア性蒸着フィルムは、金属ビスマスもしくは酸化ビスマスを蒸着用材料に加えているため、顕著な水蒸気バリア性の向上がみられる。すなわち、比較例1〜3のガスバリア性蒸着フィルムは、金属珪素と二酸化珪素の蒸着用材料からなる蒸着膜の水蒸気バリア性が1g/m・dayより悪いのに対し、実施例1及び実施例2のガスバリア性蒸着フィルムは、金属ビスマスもしくは酸化ビスマスを加えた蒸着用材料からなる蒸着膜がSiOxとBiOyの複合膜となることで、1g/m・dayより良い水蒸気バリア性が得られており、水蒸気バリア性が向上したと考えられる。 Furthermore, since the gas barrier vapor deposition films of Example 1 and Example 2 are obtained by adding metal bismuth or bismuth oxide to the vapor deposition material, a remarkable improvement in water vapor barrier properties is observed. That is, in the gas barrier vapor deposition films of Comparative Examples 1 to 3, the vapor barrier properties of the vapor deposition films made of the vapor deposition materials of metal silicon and silicon dioxide were worse than 1 g / m 2 · day, whereas Examples 1 and Examples The gas barrier vapor deposition film 2 has a vapor barrier property better than 1 g / m 2 · day by forming a vapor deposition film made of a vapor deposition material to which metal bismuth or bismuth oxide is added into a composite film of SiOx and BiOy. It is considered that the water vapor barrier property was improved.

本発明は、生産性も高く、安価に高いガスバリア性能を持つ透明ガスバリア性フィルムを提供できるため、食品、日用品、医療品の包装分野あるいは比包装分野での酸素および水蒸気を遮断が必要な部材分野に幅広く適応できる。   Since the present invention can provide a transparent gas barrier film having high productivity and low gas barrier performance at a low cost, it is necessary to cut off oxygen and water vapor in the packaging field of food, daily necessities, and medical products, or in the relative packaging field. Can be widely applied to.

1…高分子フィルム基材
2…無機酸化物膜
DESCRIPTION OF SYMBOLS 1 ... Polymer film base material 2 ... Inorganic oxide film

Claims (5)

金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有した加熱方式の蒸着用材料であって、珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}が1.0〜1.8であり、ビスマスと珪素の原子数の比(Bi/Si)が0.02〜0.10であることを特徴とする蒸着用材料。   A heating-type deposition material containing metallic silicon, silicon dioxide, and metallic bismuth or bismuth oxide powder, wherein the ratio of the total number of atoms of silicon and bismuth to the number of oxygen atoms {O / (Si + Bi) } Is 1.0 to 1.8, and the ratio of the number of atoms of bismuth and silicon (Bi / Si) is 0.02 to 0.10. 嵩密度が0.9〜1.5g/cmの範囲であることを特徴とする請求項1に記載の蒸着用材料。 The material for vapor deposition according to claim 1, wherein the bulk density is in the range of 0.9 to 1.5 g / cm 3 . 前記二酸化珪素粉末が、結晶構造を少なくとも20%以上含んでいることを特徴とする請求項1に記載の蒸着用材料。   The deposition material according to claim 1, wherein the silicon dioxide powder contains at least 20% of a crystal structure. 請求項1に記載の蒸着用材料を、加熱方式で蒸発させて蒸着した蒸着膜の珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}が1.6〜1.9であり、ビスマスと珪素の原子数の比(Bi/Si)が0.02〜0.10であることを特徴とするガスバリア性蒸着フィルム。   The ratio {O / (Si + Bi)} of the total number of atoms of silicon and bismuth and the number of atoms of oxygen in the vapor deposition film deposited by evaporating the vapor deposition material according to claim 1 by a heating method is 1.6 to A gas barrier vapor-deposited film having a ratio of 1.9 bismuth to silicon (Bi / Si) of 0.02 to 0.10. 金属珪素と、二酸化珪素と、金属ビスマスもしくは酸化ビスマス粉末とを含有し、珪素とビスマスの合計の原子数と、酸素の原子数の比{O/(Si+Bi)}が1.0〜1.8であり、ビスマスと珪素の原子数の比(Bi/Si)が0.02〜0.10である蒸着用材料を、電子ビーム加熱方式により蒸発させ、高分子フィルム基材上に成膜することを特徴とするガスバリア性蒸着フィルムの製造方法。   It contains metallic silicon, silicon dioxide, and metallic bismuth or bismuth oxide powder, and the ratio of the total number of atoms of silicon and bismuth to the number of oxygen atoms {O / (Si + Bi)} is 1.0 to 1.8. A deposition material having a bismuth / silicon atom ratio (Bi / Si) of 0.02 to 0.10 is evaporated by an electron beam heating method to form a film on a polymer film substrate. A process for producing a gas barrier vapor-deposited film characterized by the above.
JP2011068604A 2011-03-25 2011-03-25 Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film Active JP5729072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011068604A JP5729072B2 (en) 2011-03-25 2011-03-25 Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011068604A JP5729072B2 (en) 2011-03-25 2011-03-25 Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film

Publications (2)

Publication Number Publication Date
JP2012201938A true JP2012201938A (en) 2012-10-22
JP5729072B2 JP5729072B2 (en) 2015-06-03

Family

ID=47183248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011068604A Active JP5729072B2 (en) 2011-03-25 2011-03-25 Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film

Country Status (1)

Country Link
JP (1) JP5729072B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122412A (en) * 2012-11-21 2014-07-03 Toppan Printing Co Ltd Material for vapor deposition, gas barrier vapor deposition film, and production method of gas barrier vapor deposition film
KR101561182B1 (en) 2013-03-27 2015-10-19 대주전자재료 주식회사 Silicon oxide-based sintered body used in the preparation of silicon oxide and method for preparing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151332A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synthetic resin body having permeability resistance
JPH01252768A (en) * 1987-12-17 1989-10-09 Toyo Ink Mfg Co Ltd Production of continuous vapor deposited film and equipment
JPH04341560A (en) * 1991-03-12 1992-11-27 Toppan Printing Co Ltd Production of transparent vapor-deposited film
JPH04353532A (en) * 1991-05-30 1992-12-08 Toyobo Co Ltd Material for coating plastics and coated plastic film
JPH09143689A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JPH09143690A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JP2002309022A (en) * 2001-04-13 2002-10-23 Mitsubishi Chemicals Corp Method for producing gas barrier film
JP2006338983A (en) * 2005-06-01 2006-12-14 Univ Of Electro-Communications Transparent conductive molding, and method of manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151332A (en) * 1984-08-20 1986-03-13 積水化学工業株式会社 Transparent synthetic resin body having permeability resistance
JPH01252768A (en) * 1987-12-17 1989-10-09 Toyo Ink Mfg Co Ltd Production of continuous vapor deposited film and equipment
JPH04341560A (en) * 1991-03-12 1992-11-27 Toppan Printing Co Ltd Production of transparent vapor-deposited film
JPH04353532A (en) * 1991-05-30 1992-12-08 Toyobo Co Ltd Material for coating plastics and coated plastic film
JPH09143689A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JPH09143690A (en) * 1995-11-27 1997-06-03 Toppan Printing Co Ltd Porous vapor depositing material and its production
JP2002309022A (en) * 2001-04-13 2002-10-23 Mitsubishi Chemicals Corp Method for producing gas barrier film
JP2006338983A (en) * 2005-06-01 2006-12-14 Univ Of Electro-Communications Transparent conductive molding, and method of manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014122412A (en) * 2012-11-21 2014-07-03 Toppan Printing Co Ltd Material for vapor deposition, gas barrier vapor deposition film, and production method of gas barrier vapor deposition film
KR101561182B1 (en) 2013-03-27 2015-10-19 대주전자재료 주식회사 Silicon oxide-based sintered body used in the preparation of silicon oxide and method for preparing same

Also Published As

Publication number Publication date
JP5729072B2 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5521360B2 (en) Method for producing gas barrier film
JP5729072B2 (en) Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
JP5549483B2 (en) Vapor deposition material, gas barrier vapor deposition film manufacturing method, and gas barrier vapor deposition film
JP5879789B2 (en) Vapor deposition material, gas barrier vapor deposition film, and gas barrier vapor deposition film manufacturing method
JP5866900B2 (en) Vapor deposition material, gas barrier vapor deposition film, and method for producing the vapor deposition film
JP6163776B2 (en) Gas barrier vapor deposition film and method for producing the vapor deposition film
JP6123351B2 (en) Vapor deposition material, gas barrier vapor deposition film, and gas barrier vapor deposition film manufacturing method
JP5594051B2 (en) Vapor deposition material
JP2012136734A (en) Vapor deposition material, and gas-barrier vapor deposition film
JP6102375B2 (en) Gas barrier vapor deposition film and method for producing gas barrier vapor deposition film
JP6047997B2 (en) Gas barrier film
EP1918319A2 (en) Gas barrier plastic body and gas barrier plastic film
JP6171419B2 (en) Method for producing gas barrier film
JP2014058727A (en) Material for vapor deposition, and transparent gas barrier vapor deposition film
WO2013168739A1 (en) Gas barrier film and method for producing same
JP2010222640A (en) Method of producing gas barrier film
JP2007261134A (en) Antistatic barrier film
JP5320980B2 (en) Gas barrier material
JP2012057237A (en) Method for producing gas barrier film
JP2008168498A (en) Gas barrier laminated body and its manufacturing method
JP6852304B2 (en) Transparent gas barrier film
JP6365528B2 (en) Gas barrier film
JP2015063024A (en) Gas barrier film
JP2009228015A (en) Method and apparatus for manufacturing laminate and gas barrier-film
JP2011074415A (en) Electron absorber, and electron beam heating type vapor deposition apparatus using the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130926

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20131008

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5729072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150