[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012255544A - Sensor-equipped wheel bearing - Google Patents

Sensor-equipped wheel bearing Download PDF

Info

Publication number
JP2012255544A
JP2012255544A JP2012104317A JP2012104317A JP2012255544A JP 2012255544 A JP2012255544 A JP 2012255544A JP 2012104317 A JP2012104317 A JP 2012104317A JP 2012104317 A JP2012104317 A JP 2012104317A JP 2012255544 A JP2012255544 A JP 2012255544A
Authority
JP
Japan
Prior art keywords
sensor
wheel bearing
protective cover
fixed side
side member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012104317A
Other languages
Japanese (ja)
Inventor
Takayuki Norimatsu
孝幸 乗松
Kentaro Nishikawa
健太郎 西川
Toru Takahashi
亨 高橋
Ayumi Akiyama
あゆみ 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2012104317A priority Critical patent/JP2012255544A/en
Priority to CN201280022558.9A priority patent/CN103502786B/en
Priority to EP12782455.5A priority patent/EP2708865B1/en
Priority to US14/115,668 priority patent/US9011013B2/en
Priority to PCT/JP2012/061713 priority patent/WO2012153721A1/en
Publication of JP2012255544A publication Critical patent/JP2012255544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor-equipped wheel bearing enabling improvement in quality of a wiring part, and cost reduction, without requiring complicated wiring work.SOLUTION: A wheel bearing has a rolling element 5 interposed between mutually opposing double rows of rolling surfaces of an outer member 1 and an inner member 2. A plurality of load detecting sensor units 20 each composed of a strain-generating member 21 and a sensor 22 installed in the strain-generating member and detecting its strain, is provided. The strain generating member 21 is a single strip-shaped member continuous across the plurality of load detecting sensor units 20, and a contact-fixed part 21a assigned to each of the load detecting sensor units 20, is arranged in a fixed side member out of the outer member 1 and the inner member 2. A load acting on the wheel bearing is estimated by an estimation means from output signals of the two or more of sensors 22 of the load detecting sensor units 20. The load detecting sensor units 20 are covered with a cover together with the fixed side member. A lip part is provided on one end of the cover.

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを備えたセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing provided with a load sensor that detects a load applied to a bearing portion of the wheel.

自動車の各車輪にかかる荷重を検出する技術として、図36に展開図で示す電子部品複合体を、円環状の保護カバーの内側に配置して円環状のセンサ組立品とし、このセンサ組立品をシール部材を介して車輪用軸受の外方部材および内方部材のうちの固定側部材の周面に固定側部材と同心に取付けたセンサ付車輪用軸受が提案されている(例えば特許文献1)。同図の電子部品複合体は、前記固定側部材の周面に接触して固定される歪み発生部材51、およびこの歪み発生部材51に取付けられてこの歪み発生部材51の歪みを検出するセンサ52からなる4つのセンサユニット50と、前記センサ52の出力信号を処理する信号処理用IC55と、処理された前記出力信号を軸受外部へ取り出す信号ケーブル56とを含む。   As a technique for detecting a load applied to each wheel of an automobile, an electronic component composite shown in a development view in FIG. 36 is arranged inside an annular protective cover to form an annular sensor assembly. A sensor-equipped wheel bearing has been proposed that is mounted concentrically with the fixed side member on the peripheral surface of the fixed side member of the outer and inner members of the wheel bearing via a seal member (for example, Patent Document 1). . The electronic component composite shown in FIG. 1 is a strain generating member 51 fixed in contact with the peripheral surface of the fixed side member, and a sensor 52 that is attached to the strain generating member 51 and detects the strain of the strain generating member 51. 4, a signal processing IC 55 for processing the output signal of the sensor 52, and a signal cable 56 for taking out the processed output signal to the outside of the bearing.

また、他の技術として、図37(A),(B)に展開図および断面図で示すように、図36に示した電子部品複合体において、前記センサユニット50、前記信号処理用IC55、および前記信号ケーブル56の間を配線する配線回路を有するフレキシブル基板65を追加した構成のセンサ付車輪用軸受も提案されている(例えば特許文献2)。   As another technique, as shown in development and cross-sectional views in FIGS. 37A and 37B, in the electronic component composite shown in FIG. 36, the sensor unit 50, the signal processing IC 55, and A sensor-equipped wheel bearing having a configuration in which a flexible substrate 65 having a wiring circuit for wiring between the signal cables 56 is added has also been proposed (for example, Patent Document 2).

特開2010−138958号公報JP 2010-138958 A 特開2010−127750号公報JP 2010-127750 A

特許文献1に開示のセンサ付車輪用軸受では、前記電子部品複合体を構成するのに、半田付けなどにより4つの歪み発生部材51を信号ケーブル56を介して配線している。このため、信号ケーブル56の配線作業が煩雑でコスト高の要因となっている。   In the sensor-equipped wheel bearing disclosed in Patent Document 1, four strain generating members 51 are wired via a signal cable 56 by soldering or the like to constitute the electronic component composite. For this reason, the wiring work of the signal cable 56 is a complicated and expensive factor.

一方、特許文献2に開示のセンサ付車輪用軸受でも、前記電子部品複合体を構成するのに、4つの歪み発生部材51とフレキシブル基板65を半田付けなどにより接続する作業が発生してしまう。また、配線部をハンダで固定した場合、車両走行中に振動などによりハンダ部にクラックが発生し、センサ52が正常に検出作動しないことも考えられる。   On the other hand, even with the sensor-equipped wheel bearing disclosed in Patent Document 2, the work of connecting the four strain generating members 51 and the flexible substrate 65 by soldering or the like is required to form the electronic component composite. In addition, when the wiring part is fixed with solder, it is conceivable that a crack is generated in the solder part due to vibration or the like during traveling of the vehicle, and the sensor 52 does not normally detect and operate.

さらに、特許文献2に開示のセンサ付車輪用軸受では、外部環境の泥水などにより、センサ52が腐食するのを防止するために、図38のように円環状の保護カバー57の内側に前記電子部品複合体を配置し、その保護カバー57の外径側溝部にモールド材58を充填している。しかし、この保護カバー57は、図39のように、ヒンジ60を介して半割れ形状とされているため、密封性、組立性、コストの観点から問題があった。また、この保護カバー57は、全体が金属で覆われていないため、車両走行中に跳ねた小石などがぶつかると損傷し、内部のセンサ52が正常に検出動作しなくなる可能性もある。   Furthermore, in the sensor-equipped wheel bearing disclosed in Patent Document 2, in order to prevent the sensor 52 from being corroded by muddy water or the like in the external environment, the electronic device is disposed inside the annular protective cover 57 as shown in FIG. A component composite is arranged, and a molding material 58 is filled in the outer diameter side groove of the protective cover 57. However, as shown in FIG. 39, the protective cover 57 has a half-cracked shape via the hinge 60, and thus has a problem from the viewpoint of sealing performance, assembling performance, and cost. In addition, since the entire protective cover 57 is not covered with metal, it may be damaged if it collides with a pebble or the like that has jumped while the vehicle is running, and the internal sensor 52 may not be normally detected.

この発明の目的は、煩雑な配線作業が要らず、配線部の品質向上およびコスト低減が可能で、また走行中に跳ねた小石等の衝突からセンサを保護することができ、かつ外部からの泥水等のセンサへの浸入が防止できて、長期間安定的にセンシングすることが可能なセンサ付車輪用軸受を提供することである。   The object of the present invention is that no complicated wiring work is required, the quality of the wiring part can be improved and the cost can be reduced, the sensor can be protected from the collision of pebbles and the like jumped during traveling, and muddy water from the outside It is possible to provide a sensor-equipped wheel bearing that can prevent intrusion into a sensor and the like and can stably sense for a long period of time.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に、この固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する2つ以上のセンサからなる荷重検出用センサ部を複数設けてなるセンサ付車輪用軸受であって、前記2つ以上のセンサの出力信号により、車輪用軸受に作用する荷重を推定する推定手段を設け、
前記複数の荷重検出用センサ部の歪み発生部材を、これら複数の荷重検出用センサ部に渡って連続した1つの帯状の歪み発生部材とし、この帯状の歪み発生部材における前記2つ以上の接触固定部を、前記固定側部材の外径面の同一軸方向位置でかつ円周方向に互いに離間した位置となるように配置し、
複数の荷重検出用センサ部を固定側部材の外周を囲む筒状の保護カバーで覆い、この保護カバーの軸方向のいずれか一端で前記固定側部材の外周に嵌合させ、他端の開口縁に弾性体からなる環状のシール部材を設け、このシール部材を前記固定側部材の表面、または上記外方部材および内方部材のうちの回転側部材の表面に接触させたことを特徴とする。
前記固定側部材が外方部材であり、前記回転側部材が前記内方部材であっても良い。前記シール部材は、例えば、リップ部であっても、またOリングであっても良い。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member Further, a strain generating member having two or more contact fixing portions fixed in contact with the fixed side member, and two or more sensors attached to the strain generating member and detecting the strain of the strain generating member A sensor-equipped wheel bearing provided with a plurality of load detection sensor units, wherein an estimation means for estimating a load acting on the wheel bearing is provided based on output signals of the two or more sensors.
The strain generating members of the plurality of load detecting sensor portions are used as one belt-like strain generating member continuous over the plurality of load detecting sensor portions, and the two or more contact fixings in the belt-shaped strain generating members are performed. The parts are arranged so as to be at the same axial position on the outer diameter surface of the fixed side member and at positions separated from each other in the circumferential direction,
A plurality of load detection sensors are covered with a cylindrical protective cover that surrounds the outer periphery of the fixed member, and is fitted to the outer periphery of the fixed member at one end in the axial direction of the protective cover. An annular seal member made of an elastic body is provided on the surface, and the seal member is brought into contact with the surface of the stationary member or the surface of the rotating member of the outer member and the inner member.
The stationary member may be an outer member, and the rotating member may be the inner member. The seal member may be, for example, a lip portion or an O-ring.

車輪用軸受や、車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材(例えば外方部材)にも荷重が負荷されて変形が生じ、その変形から荷重検出用センサ部が荷重を検出する。荷重検出用センサ部の2つ以上のセンサの出力信号は、転動体の通過の影響を受けるが、推定手段はこれらのセンサの出力信号から、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定するものとしているので、2つ以上のセンサの各出力信号に現れる温度の影響やナックル・フランジ面間などの滑りによる影響を相殺ないし緩和することができる。これにより、温度の影響やナックル・フランジ面間などの滑りによる影響を受けることなく、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を精度良く検出できる。   When a load acts between the wheel bearing or the wheel tire and the road surface, the load is also applied to the stationary side member (for example, the outer member) of the wheel bearing to cause deformation. Detect load. The output signals of two or more sensors in the load detection sensor section are affected by the passage of rolling elements, but the estimation means determines the bearings for wheels and the distance between the wheels and the road surface (tire contact surface) from the output signals of these sensors. Force (vertical load Fz, driving force or braking force Fx, axial load Fy) is estimated, so the temperature effect on each output signal of two or more sensors and knuckle The effect of slippage between the flange surfaces can be offset or reduced. As a result, the load (vertical load Fz, driving force and braking force) acting between the wheel bearing and the tire of the wheel and the road surface without being affected by the temperature or the slippage between the knuckle and the flange surface. The load Fx and the axial load Fy) can be detected with high accuracy.

特に、複数の荷重検出用センサ部の歪み発生部材を、これら複数の荷重検出用センサ部に渡って連続した1つの帯状の歪み発生部材としているので、煩雑な配線作業が要らず、配線部の品質向上およびコスト低減が可能となる。
また、複数の荷重検出用センサ部を有するセンサ組立品を保護カバーで覆ったため、例えば、車両走行中に跳ねた小石等の衝突からセンサを保護するなど、複数の荷重検出用センサ部を外部環境から保護することができる。そのため、外部環境による荷重検出用センサ部の故障を防止して、車輪用軸受やタイヤ接地面に作用する荷重を長期にわたり安定的に検出できる。
さらに、この保護カバーにシール部材を設けてシール機能を付加したため、外部からの泥水等がセンサ内部に浸入するのを防止し、より一層、長期間安定的にセンシングすることが可能となる。
In particular, since the strain generating members of the plurality of load detecting sensor portions are one band-like strain generating member continuous across the plurality of load detecting sensor portions, no complicated wiring work is required. Quality improvement and cost reduction are possible.
In addition, since the sensor assembly having a plurality of load detection sensor portions is covered with a protective cover, the plurality of load detection sensor portions are protected from the external environment by, for example, protecting the sensor from a collision of pebbles or the like jumped while the vehicle is running. Can be protected from. For this reason, it is possible to stably detect the load acting on the wheel bearing and the tire ground contact surface for a long period of time by preventing a failure of the load detection sensor unit due to the external environment.
Furthermore, since a sealing member is added to the protective cover to add a sealing function, muddy water from the outside can be prevented from entering the sensor, and sensing can be performed stably for a longer period of time.

この発明において、前記1つの帯状の歪み発生部材を、その長手方向の複数箇所で屈曲させて、前記固定側部材に固定しても良い。
このように、複数の荷重検出用センサ部を有する1つの帯状の歪み発生部材を複数箇所で屈曲させることにより、固定側部材への取付け作業が容易になる。
In the present invention, the one belt-like strain generating member may be bent at a plurality of locations in the longitudinal direction and fixed to the stationary member.
In this way, by bending one belt-like strain generating member having a plurality of load detection sensor portions at a plurality of locations, the attachment work to the fixed member is facilitated.

この発明において、前記固定側部材が車体への取付け用のフランジを外周に有し、前記固定側部材を軸受軸方向の正面側から見た形状が、軸受軸心と直交する線分に対して線対称となる形状、または軸受軸心を中心とする点対称となる形状であっても良い。
車体取付用のフランジの正面形状をこのような形状とした場合、固定側部材の形状が単純化され、固定側部材の形状の複雑さに起因する温度分布や膨張・収縮量のばらつきを低減できる。これにより、固定側部材における温度分布や膨張・収縮量のばらつきによる影響を十分小さくして、荷重による歪み量を荷重検出用センサ部に検出させることができる。
In this invention, the fixed side member has a flange for attachment to the vehicle body on the outer periphery, and the shape of the fixed side member viewed from the front side in the bearing axial direction is relative to a line segment orthogonal to the bearing axis. It may be a line-symmetric shape or a point-symmetric shape with the bearing axis as the center.
When the front shape of the flange for mounting the vehicle body is such a shape, the shape of the fixed side member is simplified, and variations in temperature distribution and expansion / shrinkage due to the complexity of the shape of the fixed side member can be reduced. . Thereby, the influence by the variation in the temperature distribution and the expansion / contraction amount in the fixed member can be sufficiently reduced, and the load detection sensor unit can detect the strain amount due to the load.

この発明において、前記固定側部材の外径面における少なくとも前記複数の荷重検出用センサ部との接触部分に、耐食性または防食性を有する表面処理を施しても良い。表面処理は金属メッキ、または塗装、またはコーティング処理である。
このように、固定側部材の外径面に耐食性または防食性を有する表面処理を施した場合、固定側部材の外径面の錆により荷重検出用センサ部の取付部が盛り上がったり、荷重検出用センサ部にもらい錆が発生するのを防止でき、錆に起因する歪みセンサの誤動作を解消でき、荷重検出を長期にわたり正確に行なうことができる。
In the present invention, a surface treatment having corrosion resistance or corrosion resistance may be applied to at least a contact portion of the outer diameter surface of the stationary member with the plurality of load detection sensor portions. The surface treatment is metal plating, painting, or coating treatment.
As described above, when the outer diameter surface of the fixed side member is subjected to corrosion resistance or anticorrosion surface treatment, the mounting portion of the load detection sensor portion rises due to the rust of the outer diameter surface of the fixed side member, or the load detection It is possible to prevent the sensor unit from generating rust, eliminate the malfunction of the strain sensor due to rust, and accurately detect the load over a long period of time.

この発明において、前記保護カバーのアウトボード側端を固定側部材の外周面に嵌合させ、前記保護カバーのインボード側端の開口縁に沿って前記環状の弾性体からなるリップ部を設け、このリップ部を、前記固定側部材に設けられたフランジのアウトボード側を向く側面、または前記固定側部材の外周面に接触させても良い。
この構成の場合も、センサを保護カバーで被覆できて、外部環境の影響によるセンサの故障を防止して、車輪用軸受やタイヤ接地面に作用する荷重を長期にわたり正確に検出できる。例えば、外部からの飛び石や泥水,塩水等から、荷重検出用センサ部を確実に保護することができる。保護カバーは、アウトボード側端を固定側部材の外周面に嵌合させて取付けるので、保護カバーの取付作業が容易に行える。また、信号ケーブルの配線処理や荷重検出用センサ部の組付けも容易でコスト低減が可能となる。
前記固定側部材が前記外方部材である場合は、前記保護カバーは外方部材の外周面に取付けられるが、その場合、保護カバーを取付け易くて、保護カバーによる荷重検出用センサ部の保護が行い易い。
In this invention, the outboard side end of the protective cover is fitted to the outer peripheral surface of the stationary member, and a lip portion made of the annular elastic body is provided along the opening edge of the inboard side end of the protective cover. You may make this lip part contact the side surface which faces the outboard side of the flange provided in the said fixed side member, or the outer peripheral surface of the said fixed side member.
Even in this configuration, the sensor can be covered with a protective cover, and the sensor failure due to the influence of the external environment can be prevented, and the load acting on the wheel bearing and the tire ground contact surface can be accurately detected over a long period of time. For example, it is possible to reliably protect the load detection sensor unit from stepping stones, muddy water, salt water, and the like from the outside. Since the protective cover is attached by fitting the outboard side end to the outer peripheral surface of the fixed side member, the protective cover can be easily attached. In addition, the signal cable wiring process and the load detection sensor unit can be easily assembled and the cost can be reduced.
When the stationary member is the outer member, the protective cover is attached to the outer peripheral surface of the outer member. In this case, the protective cover is easy to attach, and the load detection sensor unit is protected by the protective cover. Easy to do.

この構成の場合に、前記保護カバーのインボード側端部に、前記信号ケーブルの保護カバーからの引き出し部が引き出される孔部を設け、信号ケーブル引き出し部が前記孔部から引き出される部分にシール材を塗布しても良い。これにより、信号ケーブルの引出し部における防水,防塵が確実に行える。   In the case of this configuration, a hole portion from which the lead portion of the signal cable is pulled out from the protective cover is provided at an inboard side end portion of the protective cover, and a seal material is provided at a portion where the signal cable lead portion is pulled out from the hole portion. May be applied. As a result, waterproofing and dustproofing can be reliably performed at the signal cable lead-out portion.

また、前記保護カバーのアウトボード側端を前記固定側部材よりもアウトボード側に突出させ、そのアウトボード側端と前記回転側部材との間に非接触シール隙間を形成しても良い。
この構成の場合、保護カバーと回転側部材との間に非接触シール隙間で密封するため、トルク増加を伴うことなく、密封性を向上させることができる。
Further, the outboard side end of the protective cover may be protruded to the outboard side from the fixed side member, and a non-contact seal gap may be formed between the outboard side end and the rotating side member.
In the case of this configuration, since the non-contact sealing gap is sealed between the protective cover and the rotation side member, the sealing performance can be improved without increasing torque.

この場合に、前記保護カバーのアウトボード側端を前記回転側部材に沿う形状としても良い。この構成の場合、保護カバーのアウトボード側端と回転側部材との間に形成される非接触シール隙間がより密封性の高いものとなる。   In this case, the outboard side end of the protective cover may be shaped along the rotation side member. In the case of this configuration, the non-contact seal gap formed between the outboard side end of the protective cover and the rotation side member has a higher sealing performance.

この発明において、前記保護カバーのインボード側端を前記固定側部材に設けられた車体への取付用のフランジの外径面に嵌合させ、前記保護カバーのアウトボード側端の開口縁に沿って前記環状の弾性体からなるリップ部を設け、このリップ部を前記固定側部材の外周面、または前記外方部材および内方部材のうちの回転側部材の表面に接触させても良い。
このように、保護カバーのインボード側端を固定側部材に設けられた車体への取付用のフランジの外径面に嵌合させて取付けるようにした場合、保護カバーの取付作業が容易に行える。しかも、リップが保護カバーに設けられているため、リップ部等のシール手段を保護カバーと別個に取付ける必要がなく、シール手段の取付作業も軽減できる。
前記固定側部材が外方部材である場合は、前記保護カバーは外方部材の外周に取付けられるが、その場合、保護カバーをより一層取付け易くて、保護カバーによるセンサの保護が行い易い。
In this invention, the inboard side end of the protective cover is fitted to the outer diameter surface of the flange for mounting on the vehicle body provided on the fixed side member, and along the opening edge of the outboard side end of the protective cover. A lip portion made of the annular elastic body may be provided, and this lip portion may be brought into contact with the outer peripheral surface of the stationary member or the surface of the rotating member of the outer member and the inner member.
In this way, when the inboard side end of the protective cover is fitted to the outer diameter surface of the flange for mounting on the vehicle body provided on the stationary member, the protective cover can be easily attached. . Moreover, since the lip is provided on the protective cover, it is not necessary to attach the sealing means such as the lip portion separately from the protective cover, and the attaching work of the sealing means can be reduced.
When the stationary member is an outer member, the protective cover is attached to the outer periphery of the outer member. In this case, the protective cover can be more easily attached and the sensor can be easily protected by the protective cover.

この構成の場合に、前記リップ部は、先端がアウトボード側に向かって次第に縮径して延びる形状であり、このリップ部を前記固定側部材の外周面に接触させても良い。この構成の場合、アウトボード側端から保護カバー内への泥水・塩溝等の浸入をより一層確実に防止できる。   In the case of this configuration, the lip portion may have a shape in which the distal end gradually extends toward the outboard side and extends, and the lip portion may be brought into contact with the outer peripheral surface of the fixed side member. In the case of this configuration, the intrusion of muddy water, salt grooves, and the like from the outboard side end into the protective cover can be more reliably prevented.

また、リップ部の一部を前記保護カバーの外周面の一部にまで延長してカバー外周面被覆部分としても良い。前記カバー外周面被覆部分は、リップ部を、保護カバーの外周面へ取付ける場合は、その取付けに必要な強度を得るために保護カバーの外周面に位置させる範囲よりもさらにインボード側へ延びて設ける。この構成の場合、保護カバーの外周面におけるアウトボード側端において、前記カバー外周面被覆部分からなる壁が外径側に張り出すことになり、この壁によりリップ部が外方部材の外周面に当接している部分へ泥水・塩水等が流れ込むのを阻止できる。そのため、保護カバー内への泥水・塩水等の浸入をより確実に防止することができる。   Moreover, it is good also as a cover outer peripheral surface coating | coated part by extending a part of lip part to a part of outer peripheral surface of the said protective cover. When the lip portion is attached to the outer peripheral surface of the protective cover, the cover outer peripheral surface covering portion extends further to the inboard side than the range positioned on the outer peripheral surface of the protective cover in order to obtain the strength required for the attachment. Provide. In the case of this configuration, at the end on the outboard side of the outer peripheral surface of the protective cover, a wall made of the cover outer peripheral surface covering portion projects to the outer diameter side, and this wall causes the lip portion to become the outer peripheral surface of the outer member. Muddy water, salt water, etc. can be prevented from flowing into the abutting part. Therefore, intrusion of muddy water, salt water, etc. into the protective cover can be prevented more reliably.

この発明において、前記リップ部のカバー外周面被覆部分の外周面を、アウトボード側に向かって拡径する傾斜面としても良い。この構成の場合、リップ部が外方部材の外周面に当接している部分へ泥水・塩水等が流れ込むのを阻止でき、保護カバー内への泥水・塩水等の浸入をより確実に防止できる。   In this invention, it is good also considering the outer peripheral surface of the cover outer peripheral surface coating | coated part of the said lip | rip part as an inclined surface which diameter-expands toward an outboard side. In this configuration, it is possible to prevent the muddy water / salt water or the like from flowing into the portion where the lip portion is in contact with the outer peripheral surface of the outer member, and it is possible to more reliably prevent the muddy water / salt water etc. from entering the protective cover.

この発明において、前記保護カバーのアウトボード側端を前記固定側部材よりもアウトボード側に突出させ、そのアウトボード側端と前記回転側部材との間に非接触シール隙間を形成しても良い。この明細書で言う「非接触シール隙間」とは、固定側部材と回転側部材との相対回転が生じている状態で、水等の浸入が防止される程度に狭い隙間を言う。
この構成の場合、保護カバーと固定側部材との間のシールが、リップ部の固定側部材外周面への当接と、保護カバーのアウトボード側端と回転側部材との間に形成される非接触シールとによる二重の密閉構造でなされるので、アウトボード側でのシールがより確実なものとなり、外部環境の影響によるセンサの故障をさらに確実に防止して、荷重検出を正確に行うことができる。
In this invention, the outboard side end of the protective cover may be projected to the outboard side from the fixed side member, and a non-contact seal gap may be formed between the outboard side end and the rotating side member. . The “non-contact seal gap” in this specification refers to a gap that is narrow enough to prevent water or the like from entering in a state where relative rotation between the stationary member and the rotating member occurs.
In the case of this configuration, a seal between the protective cover and the fixed side member is formed between the contact of the lip portion with the outer peripheral surface of the fixed side member and between the outboard side end of the protective cover and the rotating side member. Since it is made of a double sealed structure with a non-contact seal, the seal on the outboard side is more secure, and sensor failure due to the influence of the external environment is more reliably prevented, and load detection is performed accurately. be able to.

この発明において、前記回転側部材は車輪取付用のハブフランジを有し、このハブフランジのインボード側を向く側面に前記リップ部を接触させても良い。
この構成の場合、回転側部材のハブフランジと保護カバーのアウトボード側端との間がリップ部で密封されるので、アウトボード側端から保護カバー内への泥水・塩水等の浸入を確実に防止できる。
In this invention, the said rotation side member has a hub flange for wheel attachment, and you may make the said lip part contact the side surface which faces the inboard side of this hub flange.
In this configuration, since the gap between the hub flange of the rotating side member and the outboard side end of the protective cover is sealed by the lip part, it is ensured that muddy water, salt water, etc. enter the protective cover from the outboard side end. Can be prevented.

この発明において、前記荷重検出用センサ部と、この荷重検出用センサ部の出力信号を処理する信号処理用ICと、処理された前記出力信号を軸受外部へ取り出す信号ケーブルとを含む電子部品をリング状に接続してなるセンサ組立品を、前記固定側部材の外周面に固定側部材と同心に取付けると共に、このセンサ組立品を前記保護カバーで覆っても良い。この構成の場合、センサ組立品と共に、電子部品を保護カバーで被覆できる。   In the present invention, an electronic component including the load detection sensor unit, a signal processing IC for processing an output signal of the load detection sensor unit, and a signal cable for extracting the processed output signal to the outside of the bearing is ringed. A sensor assembly connected in a shape may be attached to the outer peripheral surface of the fixed side member concentrically with the fixed side member, and the sensor assembly may be covered with the protective cover. In this configuration, the electronic component can be covered with the protective cover together with the sensor assembly.

この発明において、前記保護カバーが、耐食性を有する鋼板をプレス加工した成形品であっても良い。前記保護カバーが、耐食性を有する鋼板をプレス加工し、その表面に金属メッキまたは塗装処理を施したものであってもよい。これらの構成の場合、保護カバーが外部環境により腐食するのを防止できる。   In this invention, the protective cover may be a molded product obtained by pressing a corrosion-resistant steel plate. The protective cover may be formed by pressing a corrosion-resistant steel plate and performing metal plating or coating treatment on the surface thereof. In these configurations, the protective cover can be prevented from being corroded by the external environment.

この発明において、前記リップ部を前記保護カバーに一体形成しても良い。リップ部を一体形成すると、リップ部を別部品として製造して保護カバーに組付ける手間が省ける。前記リップ部を構成する弾性体がゴム材料からなるものであっても良い。リップ部を構成する弾性体がゴム材料であると、保護カバーのインボード側端の密封性を確実なものとできる。   In the present invention, the lip portion may be integrally formed with the protective cover. If the lip portion is formed integrally, the labor of manufacturing the lip portion as a separate part and assembling it to the protective cover can be saved. The elastic body constituting the lip portion may be made of a rubber material. When the elastic body constituting the lip portion is a rubber material, the sealing performance of the inboard side end of the protective cover can be ensured.

この発明において、前記推定手段は、前記2つ以上のセンサの出力信号の差分から、出力信号の振幅または振幅に相当する値を演算するものであっても良い。
出力信号の振幅は、転動体の通過や転動体の位置による影響を受けると共に、温度の影響やナックル・フランジ面間などの滑りの影響を受けて、出力信号が変動する。そこで、その出力信号の差分から出力信号の振幅または振幅に相当する値を演算することにより、少なくとも各出力信号に及ぼす温度の影響やナックル・フランジ面間などの滑りの影響を相殺できて、検出精度を上げることができる。
なお、前記「温度の影響」は、軸受の温度変化によって出力信号がシフトすることである。前記「滑りの影響」は、軸受が受ける荷重の変動によって生じる出力信号のシフトである。
(1) シフト要因の時間的変化が緩やかである場合、具体的には転動体の周波数よりも低い場合、見かけ上の振幅の幅は演算で得られる振幅の幅と同等となる。すなわち、振幅の中心位置が変化したと見える。
(2) シフトの要因の時間的変化が転動体の周波数と同じ場合、見かけ上の振幅の幅は(実際の振幅)+(シフト要因による変動)となってしまう。
(3) シフト要因の時間的変化が転動体の周波数よりも高い場合、見かけ上の振幅の周波数は転動体の通過によるものではなく、シフト要因の変化によるものに見えてしまう。
これらのシフト要因は、隣合う2つの出力信号に同相で入力される。したがって、2つのセンサの差分を取ることで、影響を除去することができ、純粋な振幅を検出することが可能となる。
In this invention, the estimation means may calculate the amplitude of the output signal or a value corresponding to the amplitude from the difference between the output signals of the two or more sensors.
The amplitude of the output signal is influenced by the passage of the rolling element and the position of the rolling element, and the output signal fluctuates due to the influence of temperature and the effect of slippage between the knuckle and flange surfaces. Therefore, by calculating the amplitude of the output signal or the value corresponding to the amplitude from the difference between the output signals, at least the effect of temperature on each output signal and the effect of slippage between the knuckle and flange surfaces can be offset and detected. The accuracy can be increased.
The “temperature influence” means that the output signal shifts due to the temperature change of the bearing. The “slip effect” is a shift of an output signal caused by a change in load applied to the bearing.
(1) When the temporal change of the shift factor is moderate, specifically, when it is lower than the rolling element frequency, the apparent amplitude width is equivalent to the amplitude width obtained by the calculation. That is, it appears that the center position of the amplitude has changed.
(2) When the temporal change of the shift factor is the same as the frequency of the rolling element, the apparent amplitude range is (actual amplitude) + (variation due to the shift factor).
(3) When the temporal change of the shift factor is higher than the frequency of the rolling element, the apparent amplitude frequency appears not to be due to the passage of the rolling element but to the change of the shift factor.
These shift factors are input in phase to two adjacent output signals. Therefore, by taking the difference between the two sensors, the influence can be removed and a pure amplitude can be detected.

前記推定手段は、出力信号の差分から信号の絶対値を生成し、そのピーク値または直流成分を、出力信号の振幅相当値としても良い。
前記推定手段は、出力信号の差分から信号の実効値を演算し、その値を出力信号の振幅相当値としても良い。
前記推定手段は、出力信号の差分から、その振動周期の一周期以上の時間区間内における最大値と最小値を求め、その値を出力信号の振幅相当値としても良い。
前記推定手段を、上記のいずれかの処理を行うものとしても、精度良く、かつ簡単な演算で振幅相当値を求めることができる。
The estimation means may generate an absolute value of the signal from the difference between the output signals, and use the peak value or the direct current component as the amplitude equivalent value of the output signal.
The estimation means may calculate an effective value of the signal from the difference between the output signals and set the value as an amplitude equivalent value of the output signal.
The estimation means may obtain a maximum value and a minimum value within a time interval of one or more periods of the vibration period from the difference between the output signals, and use the values as the amplitude equivalent value of the output signal.
Even if the estimation means performs any of the above processes, the amplitude equivalent value can be obtained with high accuracy and simple calculation.

この発明において、前記2つ以上の接触固定部のうち、前記固定側部材の外径面の円周方向配列の両端に位置する2つの接触固定部の間隔を、転動体の配列ピッチと同一としても良い。
この構成の場合、前記2つの接触固定部の中間位置に例えば2つのセンサが配置されていれば、これら両センサの間での前記円周方向の間隔は、転動体の配列ピッチの略1/2となる。その結果、両センサの出力信号は略180度の位相差を有することになり、その差分は温度の影響やナックル・フランジ面間などの滑りの影響を十分相殺した値となる。これにより、推定手段によって推定される車輪用軸受や車輪と路面間に作用する力は、温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除した正確なものとなる。
In this invention, among the two or more contact fixing parts, the interval between two contact fixing parts located at both ends of the circumferential arrangement of the outer diameter surface of the fixed side member is made the same as the arrangement pitch of the rolling elements. Also good.
In the case of this configuration, if, for example, two sensors are arranged at an intermediate position between the two contact fixing portions, the circumferential interval between the two sensors is approximately 1 / (1) of the arrangement pitch of the rolling elements. 2. As a result, the output signals of both sensors have a phase difference of approximately 180 degrees, and the difference is a value that sufficiently offsets the influence of temperature and the influence of slippage between the knuckle and flange surfaces. Thereby, the force acting between the wheel bearing and the wheel and the road surface estimated by the estimating means becomes accurate with the effect of temperature and the effect of slippage between the knuckle and the flange surface more reliably eliminated.

この発明において、前記2つ以上のセンサにおける隣り合うセンサ間の前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値としても良い。
2つのセンサの間での前記円周方向の間隔が、転動体の配列ピッチの1/2であると、それらセンサの出力信号は180度の位相差を有することになり、その差分は、温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。これにより、推定手段によって推定される車輪用軸受や車輪と路面間に作用する力は、温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除した正確なものとなる。
In this invention, the interval in the circumferential direction of the outer diameter surface of the fixed member between adjacent sensors in the two or more sensors is {1/2 + n (n: integer)} times the arrangement pitch of the rolling elements. Or it is good also as a value approximated to these values.
When the circumferential interval between two sensors is ½ of the arrangement pitch of the rolling elements, the output signals of these sensors have a phase difference of 180 degrees, and the difference is the temperature It is a value that offsets the effects of sliding and the effects of slippage between the knuckle and flange surfaces. Thereby, the force acting between the wheel bearing and the wheel and the road surface estimated by the estimating means becomes accurate with the effect of temperature and the effect of slippage between the knuckle and the flange surface more reliably eliminated.

この発明において、前記荷重検出用センサ部は3つの接触固定部と2つのセンサを有し、隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間に各センサをそれぞれ取付けても良い。
この構成の場合、両端に位置する2つの接触固定部(第1の接触固定部と第3の接触固定部)の間での前記円周方向の間隔を、転動体の配列ピッチと同一とすると、隣り合う2つのセンサ間での前記円周方向の間隔は転動体の配列ピッチの1/2となる。これにより、推定手段によって推定される車輪用軸受や車輪と路面間に作用する力は、温度の影響やナックル・フランジ面間などの滑りの影響を排除した正確なものとなる。
In the present invention, the load detection sensor unit includes three contact fixing units and two sensors, and is adjacent between the first and second contact fixing units adjacent to each other and between the second and third contact fixing units adjacent to each other. Each sensor may be attached between the two.
In the case of this configuration, when the circumferential interval between the two contact fixing portions (the first contact fixing portion and the third contact fixing portion) located at both ends is the same as the arrangement pitch of the rolling elements. The interval in the circumferential direction between two adjacent sensors is ½ of the arrangement pitch of the rolling elements. As a result, the force acting between the wheel bearing and the wheel and the road surface estimated by the estimating means is accurate without the influence of temperature and the effect of slippage between the knuckle and the flange surface.

この構成の場合に、隣り合う接触固定部または隣り合うセンサの前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値としても良い。この構成の場合も、各センサの出力信号の差分により、温度の影響やナックル・フランジ面間などの滑りの影響を排除できる。   In the case of this configuration, the interval in the circumferential direction of the outer diameter surface of the fixed member of the adjacent contact fixing portion or the adjacent sensor is {1/2 + n (n: integer)} times the arrangement pitch of the rolling elements. Or it is good also as a value approximated to these values. Also in this configuration, the influence of temperature and the influence of slippage between the knuckle and the flange surface can be eliminated by the difference between the output signals of the sensors.

この発明において、前記歪み発生部材は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部を有する薄板材からなるものとしても良い。
このように、平面概形が均一幅の帯状である薄板材で歪み発生部材を構成した場合、歪み発生部材をコンパクトで低コストなものとできる。
In the present invention, the strain generating member may be formed of a strip having a uniform planar width, or a thin plate material having a planar planar shape and having a notch in the side portion.
As described above, when the strain generating member is formed of a thin plate material having a planar shape with a uniform width, the strain generating member can be made compact and low cost.

この発明において、前記荷重検出用センサ部を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置しても良い。この構成の場合、複数方向の荷重を推定することができる。すなわち、固定側部材の外径面における上面部と下面部に配置される2つの荷重検出用センサ部の出力信号から垂直方向荷重Fz と軸方向荷重Fy を推定でき、固定側部材の外径面における右面部と左面部に配置される2つの荷重検出用センサ部の出力信号から駆動力や制動力による荷重Fx を推定することができる。   In the present invention, the load detection sensor portions are arranged on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the fixed side member that are in a vertical position and a horizontal position with respect to the tire ground contact surface. Also good. In the case of this configuration, loads in a plurality of directions can be estimated. That is, the vertical direction load Fz and the axial direction load Fy can be estimated from the output signals of the two load detection sensor portions arranged on the upper surface portion and the lower surface portion on the outer diameter surface of the fixed side member. The load Fx caused by the driving force or the braking force can be estimated from the output signals of the two load detecting sensor portions arranged on the right surface portion and the left surface portion.

この発明において、前記推定手段は、さらに前記2つ以上のセンサの出力信号の和も用いて、車輪用軸受に作用する荷重を推定するものとしても良い。
2つ以上のセンサの出力信号の和を取ると、各出力信号に現れる転動体の位置の影響を相殺することができるので、静止時においても荷重を推定できる。差分から温度の影響やナックル・フランジ面間などの滑りの影響を排除できることと相まって、荷重をさらに精度良く検出でき、ローパスフィルタが不要となるため、応答速度も向上する。
In this invention, the estimation means may further estimate the load acting on the wheel bearing using the sum of the output signals of the two or more sensors.
If the sum of the output signals of two or more sensors is taken, the influence of the position of the rolling element appearing in each output signal can be canceled out, so that the load can be estimated even when stationary. Coupled with the fact that the effect of temperature and the effect of slippage between the knuckle and flange surfaces can be eliminated from the difference, the load can be detected with higher accuracy and a low-pass filter is not required, thereby improving the response speed.

この発明において、前記荷重検出用センサ部における前記歪み発生部材の接触固定部が3つであり、前記帯状の歪み発生部材における前記3つの接触固定部を、前記固定側部材の外径面の同一軸方向位置でかつ円周方向に互いに離間した位置となるように配置し、隣り合う前記接触固定部の間隔または隣り合う前記センサの前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値とし、前記推定手段は、前記前記2つのセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定するものとしても良い。
纏め直して言うと、このセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に、この固定側部材に接触して固定される3つの接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する2つのセンサからなる荷重検出用センサ部を複数設けてなるセンサ付車輪用軸受であって、前記複数の荷重検出用センサ部の歪み発生部材を、これら複数の荷重検出用センサ部に渡って連続した1つの帯状の歪み発生部材とし、この帯状の歪み発生部材における前記3つの接触固定部を、前記固定側部材の外径面の同一軸方向位置でかつ円周方向に互いに離間した位置となるように配置し、隣り合う前記接触固定部の間隔または隣り合う前記センサの前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値とし、前記2つのセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定する推定手段を設けたものであってもよい。
In this invention, there are three contact fixing parts of the strain generating member in the load detecting sensor part, and the three contact fixing parts in the belt-like strain generating member are the same on the outer diameter surface of the fixed side member. An axial position and a position spaced apart from each other in the circumferential direction, and an interval between adjacent contact fixing portions or an interval in the circumferential direction of the outer diameter surface of the fixed side member of the adjacent sensor. , {1/2 + n (n: integer)} times the arrangement pitch of the rolling elements or a value approximating these values, and the estimating means acts on the wheel bearing according to the difference between the output signals of the two sensors. It is good also as what estimates the load to do.
To summarize, this sensor-equipped wheel bearing has an outer member in which a double row rolling surface is formed on the inner periphery, and an inner member in which the rolling surface opposite to the rolling surface is formed on the outer periphery. A wheel bearing including a member and a double row rolling element interposed between the rolling surfaces of the two members opposed to each other, wherein the wheel is rotatably supported with respect to the vehicle body, of the outer member and the inner member. A strain generating member having three contact fixing portions fixed to the fixed side member in contact with the fixed side member, and two sensors attached to the strain generating member and detecting the strain of the strain generating member. A sensor-equipped wheel bearing provided with a plurality of load detection sensor sections, wherein the plurality of load detection sensor section strain generating members are continuously formed over the plurality of load detection sensor sections. This band-shaped distortion generating part The three contact fixing portions are arranged at the same axial position on the outer diameter surface of the fixed side member and at positions spaced apart from each other in the circumferential direction, and the adjacent contact fixing portions are spaced or adjacent to each other. The interval in the circumferential direction of the outer diameter surface of the fixed side member of the sensor is set to {1/2 + n (n: integer)} times the arrangement pitch of the rolling elements or a value approximating these two values. An estimation means for estimating a load acting on the wheel bearing may be provided based on the difference between the output signals of the sensors.

この構成によると、2つのセンサの出力信号の差分により、温度の影響やナックル・フランジ面間などの滑りの影響が相殺されるので、これらの影響を受けることなく、車輪用軸受や、車輪のタイヤと路面間に作用する荷重を精度良く検出できる。
特に、複数の荷重検出用センサ部の歪み発生部材を、これら複数の荷重検出用センサ部に渡って連続した1つの帯状の歪み発生部材としているので、煩雑な配線作業が要らず、配線部の品質向上およびコスト低減が可能となる。
According to this configuration, the difference between the output signals of the two sensors cancels out the influence of temperature and the effect of slippage between the knuckle and the flange surface. The load acting between the tire and the road surface can be detected with high accuracy.
In particular, since the strain generating members of the plurality of load detecting sensor portions are one band-like strain generating member continuous across the plurality of load detecting sensor portions, no complicated wiring work is required. Quality improvement and cost reduction are possible.

この発明のセンサ付車輪用軸受の組立方法であって、前記固定側部材の単体の状態、または固定側部材に前記転動体を組み付けた状態で、前記固定側部材の外周面に、複数の荷重検出用センサ部を構成した前記帯状の歪み発生部材を取付け、前記保護カバーを固定側部材の外周面に圧入した後、軸受を組み立てることを特徴とする。
この組立方法によると、固定側部材に取付けた荷重検出用センサ部を保護カバーで覆ったセンサ付車輪用軸受を、容易に組み立てることができる。
In the method for assembling a sensor-equipped wheel bearing according to the present invention, a plurality of loads are applied to the outer peripheral surface of the fixed-side member in a single state of the fixed-side member or in a state where the rolling element is assembled to the fixed-side member. The belt-shaped strain generating member constituting the detection sensor portion is attached, the protective cover is press-fitted into the outer peripheral surface of the stationary member, and then the bearing is assembled.
According to this assembling method, the sensor-equipped wheel bearing in which the load detection sensor portion attached to the fixed member is covered with the protective cover can be easily assembled.

この発明のインホイール型モータ内蔵車輪用軸受装置は、この発明の上記いずれかの構成のセンサ付車輪用軸受を備えたものである。
この構成によると、インホイール型モータ内蔵車輪用軸受装置の、この発明のセンサ付車輪用軸受を適用した場合、この発明の各効果がより効果的に発揮される。
An in-wheel motor-equipped wheel bearing device according to the present invention includes the sensor-equipped wheel bearing according to any one of the above-described configurations of the present invention.
According to this configuration, when the wheel bearing with sensor of the present invention is applied to the in-wheel motor built-in wheel bearing apparatus, each effect of the present invention is more effectively exhibited.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、上記外方部材および内方部材のうちの固定側部材に、この固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する2つ以上のセンサからなる荷重検出用センサ部を複数設けてなるセンサ付車輪用軸受であって、前記2つ以上のセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定する推定手段を設け、前記複数の荷重検出用センサ部の歪み発生部材を、これら複数の荷重検出用センサ部に渡って連続した1つの帯状の歪み発生部材とし、この帯状の歪み発生部材における前記2つ以上の接触固定部を、前記固定側部材の外径面の同一軸方向位置でかつ円周方向に互いに離間した位置となるように配置し、複数の荷重検出用センサ部を固定側部材の外周を囲む筒状の保護カバーで覆い、この保護カバーの軸方向のいずれか一端で前記固定側部材の外周に嵌合させ、他端の開口縁に弾性体からなる環状のシール部材を設け、このシール部材を前記固定側部材の表面、または上記外方部材および内方部材のうちの回転側部材の表面に接触させたため、煩雑な配線作業が要らず、配線部の品質向上およびコスト低減が可能で、また走行中に跳ねた小石等の衝突からセンサを保護することができ、かつ外部からの泥水等のセンサへの浸入が防止できて、長期間安定的にセンシングすることが可能となる。   The sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, an inner member having a rolling surface opposed to the rolling surface formed on the outer periphery, A wheel bearing comprising a double row rolling element interposed between opposing rolling surfaces of the member and rotatably supporting the wheel with respect to the vehicle body, wherein the fixed side member of the outer member and the inner member Further, a strain generating member having two or more contact fixing portions fixed in contact with the fixed side member, and two or more sensors attached to the strain generating member and detecting the strain of the strain generating member A sensor-equipped wheel bearing provided with a plurality of load detection sensor units, wherein an estimation means for estimating a load acting on the wheel bearing is provided based on a difference between output signals of the two or more sensors. These strain generating members of the load detection sensor One band-like strain generating member continuous over a number of load detecting sensor portions, and the two or more contact fixing portions in the band-like strain generating member are arranged in the same axial direction of the outer diameter surface of the fixed side member It is arranged so that it is at a position and spaced apart from each other in the circumferential direction, and a plurality of load detection sensor parts are covered with a cylindrical protective cover surrounding the outer periphery of the fixed side member, and one of the axial directions of this protective cover One end is fitted to the outer periphery of the fixed side member, and an annular seal member made of an elastic body is provided at the opening edge of the other end. The seal member is provided on the surface of the fixed side member, or the outer member and the inner member. Because it is in contact with the surface of the rotating side member, it is possible to improve the quality and reduce the cost of the wiring part, and to protect the sensor from collisions such as pebbles jumping during traveling. Yes, from outside Can be prevented from entering the sensor such as muddy water is, long-term becomes possible to stably sensing.

この発明のインホイール型モータ内蔵車輪用軸受装置は、この発明の上記いずれかの構成のセンサ付車輪用軸受を備えたものであるため、この発明のセンサ付車輪用軸受の各効果が効果的に発揮されて、センサについての煩雑な配線作業が要らず、配線部の品質向上およびコスト低減が可能で、また走行中に跳ねた小石等の衝突からセンサを保護することができ、かつ外部からの泥水等のセンサへの浸入が防止できて、長期間安定的にセンシングすることが可能となる。   Since the in-wheel type motor-equipped wheel bearing device of the present invention includes the sensor-equipped wheel bearing having any one of the above-described configurations of the present invention, each effect of the sensor-equipped wheel bearing of the present invention is effective. As a result, no complicated wiring work is required for the sensor, the quality of the wiring part can be improved and the cost can be reduced, and the sensor can be protected from collisions such as pebbles that bounce while driving, and from the outside. Intrusion of muddy water into the sensor can be prevented, and stable sensing can be performed for a long period of time.

この発明の第1の実施形態にかかるセンサ付車輪用軸受の断面図とその検出系の概念構成のブロック図とを組み合わせて示す図である。It is a figure showing combining the sectional view of the bearing for wheels with a sensor concerning a 1st embodiment of this invention, and the block diagram of the conceptual composition of the detection system. 同センサ付車輪用軸受の外方部材をアウトボード側から見た、センサ組立品の説明図である。It is explanatory drawing of the sensor assembly which looked at the outward member of the wheel bearing with a sensor from the outboard side. 図2のIII-III 矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2. 図2のIV-IV 矢視断面図である。FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 2. 図1のV−V矢視断面図である。It is a VV arrow sectional view of Drawing 1. 同センサ付車輪用軸受におけるセンサ組立品の展開平面図である。It is an expanded top view of the sensor assembly in the wheel bearing with a sensor. 同センサ組立品における荷重検出用センサ部の拡大平面図である。It is an enlarged plan view of the sensor part for load detection in the sensor assembly. 図7におけるVIII-VIII 矢視断面図である。It is VIII-VIII arrow sectional drawing in FIG. 荷重検出用センサ部の他の設置例を示す断面図である。It is sectional drawing which shows the other example of installation of the sensor part for load detection. 荷重検出用センサ部の出力信号に対する転動体位置の影響の説明図である。It is explanatory drawing of the influence of a rolling-element position with respect to the output signal of the sensor part for load detection. 荷重検出用センサ部の出力信号に対する転動体位置の影響の他の説明図である。It is another explanatory drawing of the influence of the rolling element position with respect to the output signal of the sensor part for load detection. 荷重検出用センサ部の出力信号に対する転動体位置の影響のさらに他の説明図である。It is another explanatory drawing of the influence of the rolling element position with respect to the output signal of the sensor part for load detection. 荷重検出用センサ部の出力信号に対する転動体位置の影響のさらに他の説明図である。It is another explanatory drawing of the influence of the rolling element position with respect to the output signal of the sensor part for load detection. この発明の他の実施形態にかかるセンサ付車輪用軸受の一部省略断面図である。FIG. 6 is a partially omitted sectional view of a sensor-equipped wheel bearing according to another embodiment of the present invention. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図15の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図17の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図19の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図21の部分拡大断面図である。It is the elements on larger scale of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図23の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図25の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図27の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図29の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図31の部分拡大断面図である。It is a partial expanded sectional view of FIG. この発明のさらに他の実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning further another embodiment of this invention. 図33の部分拡大断面図である。It is a partial expanded sectional view of FIG. 図1のセンサ付車輪用軸受を用いたインホイール型モータ内蔵車輪用軸受装置の概要を示す断面図である。It is sectional drawing which shows the outline | summary of the in-wheel type motor built-in wheel bearing apparatus using the bearing for wheel with a sensor of FIG. 従来例におけるセンサ組立品の構成を示す展開平面図である。It is an expansion | deployment top view which shows the structure of the sensor assembly in a prior art example. 他の従来例におけるセンサ組立品の構成を示す展開平面図である。It is an expansion | deployment top view which shows the structure of the sensor assembly in another prior art example. 同従来例における保護カバーの取付構造を示す断面図である。It is sectional drawing which shows the attachment structure of the protective cover in the prior art example. 同保護カバーの説明図である。It is explanatory drawing of the protection cover.

この発明の第1の実施形態を図1ないし図13と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボ−ド側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。   A first embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.

このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を外周に形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、ボール接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。   As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 has a surface 4 formed on the outer periphery, and the outer member 1 and the double row rolling elements 5 interposed between the rolling surfaces 3 and 4 of the inner member 2. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have an arc shape in cross section, and are formed so that the ball contact angle is aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置におけるナックル(図示せず)に取付ける車体取付用フランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには周方向複数箇所にナックル取付用のボルト孔14が設けられ、インボード側よりナックルのボルト挿通孔(図示せず)に挿通したナックルボルト(図示せず)を前記ボルト孔14に螺合することにより、車体取付用フランジ1aがナックルに取付けられる。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト15の圧入孔16が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed side member, and has a vehicle body mounting flange 1a attached to a knuckle (not shown) in the suspension device of the vehicle body on the outer periphery, and the whole is an integral part. The flange 1a is provided with bolt holes 14 for attaching knuckles at a plurality of locations in the circumferential direction. Knuckle bolts (not shown) inserted into the bolt insertion holes (not shown) of the knuckle from the inboard side are formed in the bolt holes 14. By screwing, the body mounting flange 1a is attached to the knuckle.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fit holes 16 for hub bolts 15 at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

外方部材1の外周に、荷重検出用のセンサ組立品31が設けられ、このセンサ組立品31は、外方部材1の外周を囲む筒状の保護カバー29で覆われている。   A sensor assembly 31 for load detection is provided on the outer periphery of the outer member 1, and this sensor assembly 31 is covered with a cylindrical protective cover 29 surrounding the outer periphery of the outer member 1.

図5は、図1のV−V矢視断面図を示す。なお、図1は、図5におけるI−I矢視断面図を示す。前記車体取付用フランジ1aは、その正面形状が、図5のように軸受軸心Oに直交する線分(例えば図5における縦線分LVあるいは横線分LHに対して線対称となる形状、または軸受軸心Oに対して点対称となる形状とされている。具体的には、この例ではその正面形状が円形とされている。   FIG. 5 shows a cross-sectional view taken along the arrow VV in FIG. FIG. 1 shows a cross-sectional view taken along the line II in FIG. As shown in FIG. 5, the vehicle body mounting flange 1a has a front shape that is a line segment perpendicular to the bearing axis O (for example, a shape that is line symmetric with respect to the vertical line segment LV or the horizontal line segment LH in FIG. The shape is point-symmetric with respect to the bearing axis O. Specifically, in this example, the front shape is circular.

固定側部材である外方部材1の外径面には、4つの荷重検出用センサ部20が設けられている。ここでは、これらの荷重検出用センサ部20が、タイヤ接地面に対して上下位置および前後位置となる外方部材1の外径面における上面部、下面部、右面部、および左面部に設けられている。   Four load detection sensor portions 20 are provided on the outer diameter surface of the outer member 1 which is a fixed member. Here, these load detection sensor units 20 are provided on the upper surface portion, the lower surface portion, the right surface portion, and the left surface portion of the outer diameter surface of the outer member 1 that are in the vertical position and the front-rear position with respect to the tire ground contact surface. ing.

これらの各荷重検出用センサ部20は、図7および図8に拡大平面図および拡大断面図で示すように、歪み発生部材21と、この歪み発生部材21に取付けられて歪み発生部材21の歪みを検出する2つ以上(ここでは2つ)の歪みセンサ22(22A,22B)とでなる。なお、図では歪みセンサにつき符号「22A,22B」を付しているが、2つの歪みセンサの区別の必要がない場合は、「歪みセンサ22」と称する場合がある。これらの荷重検出用センサ部20の歪み発生部材21は、図6に展開平面図で示すように、これら複数の荷重検出用センサ部20にわたって連続した1つの帯状の部材とされる。この歪み発生部材21は、鋼材等の弾性変形可能な金属製で2mm以下の薄板材からなり、平面概形が全長にわたり均一幅の帯状で、各荷重検出用センサ部20の位置ごとに両側辺部に、幅方向に延びるスリット状の切欠き部21bを、2本ずつ平行に有する。ここでは、歪み発生部材21の一側辺部の切欠き部21bは、その側辺部から幅方向に直接切り込んで形成されているが、他側辺部の切欠き部21bは、歪み発生部材21にその長手方向に延びて形成されているスリット21cの途中部分から幅方向に切り込んで形成されている。切欠き部21bの隅部は断面円弧状とされている。また、歪み発生部材21は、各荷重検出用センサ部20の位置ごとに、外方部材1の外径面に接触固定される2つ以上(ここでは3つ)の接触固定部21aを有する。3つの接触固定部21aは、歪み発生部材21の長手方向に向け1列に並べて配置される。   Each of these load detection sensor units 20 includes a strain generating member 21 and a strain of the strain generating member 21 attached to the strain generating member 21, as shown in an enlarged plan view and an enlarged sectional view in FIGS. Are two or more (two here) strain sensors 22 (22A, 22B). In the figure, the reference numerals “22A, 22B” are assigned to the strain sensors. However, when there is no need to distinguish between the two strain sensors, they may be referred to as “strain sensors 22”. The strain generating member 21 of the load detection sensor unit 20 is a single band-shaped member that is continuous over the plurality of load detection sensor units 20 as shown in a development plan view in FIG. 6. This strain generating member 21 is made of an elastically deformable metal such as a steel material and is made of a thin plate material of 2 mm or less, and the plane outline is a strip having a uniform width over the entire length. Two slit-shaped cutout portions 21b extending in the width direction are provided in parallel in the portion. Here, the notch portion 21b on one side portion of the strain generating member 21 is formed by cutting directly in the width direction from the side portion, but the notch portion 21b on the other side portion is formed by the strain generating member. 21 is formed by cutting in the width direction from a middle portion of a slit 21c formed to extend in the longitudinal direction. The corner of the notch 21b has an arcuate cross section. In addition, the strain generating member 21 has two or more (three in this case) contact fixing portions 21 a that are fixed to the outer diameter surface of the outer member 1 in contact with each position of the load detecting sensor portion 20. The three contact fixing portions 21 a are arranged in a line in the longitudinal direction of the strain generating member 21.

2つの歪みセンサ22は、歪み発生部21における各方向の荷重に対して歪みが大きくなる箇所に貼り付けられる。具体的には、歪み発生部材21の外面側で隣り合う接触固定部21aの間に配置される。つまり、図8において、左端の接触固定部21aと中央の接触固定部21aとの間に1つの歪みセンサ22Aが配置され、中央の接触固定部21aと右端の接触固定部21aとの間に他の1つの歪みセンサ22Bが配置される。切欠き部21bは、図7のように、歪み発生部材21の両側辺部における前記歪みセンサ22A,22Bの配置部に対応する2箇所の位置にそれぞれ形成されている。これにより、歪みセンサ22は歪み発生部材21の切欠き部21bの周辺における長手方向の歪みを検出する。なお、歪み発生部材21は、固定側部材である外方部材1に作用する外力、またはタイヤと路面間に作用する作用力として、想定される最大の力が負荷された状態においても、塑性変形しないものとするのが望ましい。塑性変形が生じると、外方部材1の変形が荷重検出用センサ部20に伝わらず、歪みの測定に影響を及ぼすからである。   The two strain sensors 22 are affixed to locations where the strain increases with respect to the load in each direction in the strain generator 21. Specifically, it arrange | positions between the contact fixing | fixed parts 21a adjacent on the outer surface side of the distortion generation member 21. FIG. That is, in FIG. 8, one strain sensor 22A is arranged between the contact fixing portion 21a at the left end and the contact fixing portion 21a at the center, and the other between the contact fixing portion 21a at the center and the contact fixing portion 21a at the right end. One strain sensor 22B is arranged. As shown in FIG. 7, the notch portions 21 b are formed at two positions corresponding to the placement portions of the strain sensors 22 </ b> A and 22 </ b> B on both side portions of the strain generating member 21. Thereby, the strain sensor 22 detects the strain in the longitudinal direction around the notch 21 b of the strain generating member 21. Note that the strain generating member 21 is plastically deformed even in a state in which an assumed maximum force is applied as an external force acting on the outer member 1 that is a fixed member or an acting force acting between the tire and the road surface. It is desirable not to do so. This is because, when plastic deformation occurs, the deformation of the outer member 1 is not transmitted to the load detection sensor unit 20 and affects the measurement of strain.

前記各荷重検出用センサ部20は、その歪み発生部材21の3つの接触固定部21aが、外方部材1の軸方向に同寸法の位置で、かつ各接触固定部21aが互いに円周方向に離れた位置に来るように配置され、これら接触固定部21aが、それぞれ固定具であるボルト24により外方部材1の外径面に固定される。外方部材1の外径面へ荷重検出用センサ20を安定良く固定する上で、外方部材1の外径面における前記各接触固定部21aが接触固定される箇所には平坦部1bが形成される。前記各ボルト24は、それぞれ接触固定部21aに設けられた径方向に貫通するボルト挿通孔25から外方部材1の外周部に設けられた雌ねじのボルト孔27に螺合させる。外方部材1の外径面における前記歪み発生部材21の3つの接触固定部21aが固定される3箇所の各中間部には溝1cが設けられる。このように、外方部材1の外径面に接触固定部21aを固定することにより、薄板状である歪み発生部材21における切欠き部21bを有する各部位が外方部材1の外径面から離れた状態となり、切欠き部21bの周辺の歪み変形が容易となる。接触固定部21aが配置される軸方向位置として、ここでは外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置が選ばれる。ここでいうアウトボード側列の転走面3の周辺とは、インボード側列およびアウトボード側列の転走面3の中間位置からアウトボード側列の転走面3の形成部までの範囲である。   Each load detecting sensor unit 20 has three contact fixing parts 21a of the strain generating member 21 at positions having the same dimension in the axial direction of the outer member 1, and the contact fixing parts 21a are arranged in the circumferential direction. It arrange | positions so that it may come to a distant position, and these contact fixing | fixed parts 21a are each fixed to the outer-diameter surface of the outer member 1 with the volt | bolt 24 which is a fixing tool. In order to stably fix the load detection sensor 20 to the outer diameter surface of the outer member 1, a flat portion 1 b is formed at a place where the contact fixing portions 21 a on the outer diameter surface of the outer member 1 are contact-fixed. Is done. Each of the bolts 24 is screwed into a bolt hole 27 of a female screw provided on the outer peripheral portion of the outer member 1 from a bolt insertion hole 25 provided in the contact fixing portion 21a in a radial direction. A groove 1c is provided in each of the three intermediate portions to which the three contact fixing portions 21a of the strain generating member 21 are fixed on the outer diameter surface of the outer member 1. Thus, by fixing the contact fixing portion 21 a to the outer diameter surface of the outer member 1, each portion having the notch portion 21 b in the thin plate-like strain generating member 21 is separated from the outer diameter surface of the outer member 1. It becomes a separated state, and distortion deformation around the notch 21b becomes easy. As the axial position where the contact fixing portion 21a is disposed, an axial position that is the periphery of the rolling surface 3 of the outboard side row of the outer member 1 is selected here. Here, the periphery of the rolling surface 3 of the outboard side row is a range from the intermediate position of the rolling surface 3 of the inboard side row and the outboard side row to the formation portion of the rolling surface 3 of the outboard side row. It is.

このほか、図9に断面図で示すように、歪み発生部材21の3つの接触固定部21aをそれぞれスペーサ23を介してボルト24により外方部材1の外径面に固定することで、外方部材1の外径面への溝1cの形成を省略し、歪み発生部材21における切欠き部21bが位置する各部位を外方部材1の外径面から離すようにしても良い。   In addition, as shown in a cross-sectional view in FIG. 9, the three contact fixing portions 21 a of the strain generating member 21 are fixed to the outer diameter surface of the outer member 1 by bolts 24 via spacers 23, respectively. The formation of the groove 1c on the outer diameter surface of the member 1 may be omitted, and the portions where the notches 21b of the strain generating member 21 are located may be separated from the outer diameter surface of the outer member 1.

歪みセンサ22としては、種々のものを使用することができる。例えば、歪みセンサ22を金属箔ストレインゲージで構成することができる。その場合、通常、歪み発生部材21に対しては接着による固定が行なわれる。また、歪みセンサ22を歪み発生部材21上に厚膜抵抗体にて形成することもできる。   Various strain sensors 22 can be used. For example, the strain sensor 22 can be composed of a metal foil strain gauge. In that case, the distortion generating member 21 is usually fixed by adhesion. The strain sensor 22 can also be formed on the strain generating member 21 with a thick film resistor.

4つの荷重検出用センサ部20にわたって連続した1つの帯状部材とされる歪み発生部材21は、図5に示すように、隣り合う荷重検出用センサ部20の各中間位置となる複数箇所(ここでは6箇所)が一方向に屈曲された屈曲部21dとされ、同図のように外方部材1の外周を取り巻くように外方部材1に取付けられる。また、歪み発生部材21には、各荷重検出用センサ部20の歪みセンサ22からの出力信号を処理する信号処理用IC28と、処理された信号を外部に取り出す信号ケーブル33と、信号処理用IC28と信号ケーブル33を接続するコネクタ34が設けられる。4つの荷重検出用センサ部20における各歪みセンサ22は、歪み発生部材21上に設けられた配線用の回路パターン(図示せず)により前記信号処理用IC28に接続される。このように、4つの荷重検出用センサ部20と、これらの荷重検出用センサ部20にわたって連続した歪み発生部材21と、この歪み発生部材21に別に設けられる信号処理用IC28と、信号ケーブル33と、コネクタ34とが複合して、一体となった1つの電子部品複合体であるセンサ組立品31が構成され、このセンサ組立品31を前記外方部材1の外径面に取付けることにより、センサ付車輪用軸受が構成される。   As shown in FIG. 5, the strain generating member 21, which is one continuous belt-like member across the four load detection sensor units 20, has a plurality of locations (here, the intermediate positions of the adjacent load detection sensor units 20). 6 places) is a bent portion 21d bent in one direction, and is attached to the outer member 1 so as to surround the outer periphery of the outer member 1 as shown in FIG. The strain generating member 21 includes a signal processing IC 28 for processing an output signal from the strain sensor 22 of each load detection sensor unit 20, a signal cable 33 for taking out the processed signal to the outside, and a signal processing IC 28. And a connector 34 for connecting the signal cable 33 is provided. Each strain sensor 22 in the four load detection sensor units 20 is connected to the signal processing IC 28 by a circuit pattern (not shown) for wiring provided on the strain generating member 21. As described above, the four load detection sensor units 20, the strain generation member 21 continuous over the load detection sensor units 20, the signal processing IC 28 provided separately in the strain generation member 21, and the signal cable 33, , The connector 34 is combined to form a sensor assembly 31 which is an integrated electronic component, and the sensor assembly 31 is attached to the outer diameter surface of the outer member 1 to thereby form a sensor. A wheel bearing is constructed.

次に、図1ないし図4と共に、前記保護カバー29につき説明する。保護カバー29は、外方部材1の外周を囲む筒状の部材であり、そのアウトボード側端が、他の部分に対して小径となった嵌合筒部29oで外方部材1の外周面に嵌合させられる。保護カバー29のインボード側端には、シール部材として、その開口縁に沿って環状の弾性体からなるリップ部35が設けられ、このリップ部35が外方部材1の車体取付用フランジ1aのアウトボード側を向く側面に当接させられる。これにより、保護カバー29のアウトボード側端およびインボード側端と外方部材1の外周面との間が密封される。リップ部35は、前記フランジ1aの外周面に当接させても良い。   Next, the protective cover 29 will be described with reference to FIGS. The protective cover 29 is a cylindrical member that surrounds the outer periphery of the outer member 1, and the outer end surface of the outer member 1 is a fitting cylindrical portion 29 o whose outboard side end has a smaller diameter than other portions. Can be fitted. The inboard side end of the protective cover 29 is provided with a lip portion 35 made of an annular elastic body along the opening edge as a sealing member, and this lip portion 35 is provided on the flange 1a for mounting the vehicle body of the outer member 1. It can be brought into contact with the side facing the outboard side. Thereby, the space between the outboard side end and the inboard side end of the protective cover 29 and the outer peripheral surface of the outer member 1 is sealed. The lip portion 35 may be brought into contact with the outer peripheral surface of the flange 1a.

前記リップ部35を構成する弾性体としてはゴム材料が望ましい。これにより、リップ部35による保護カバー29のインボード側端の密封性を確実なものとすることができる。このほか、リップ部35を保護カバー29に一体形成しても良い。ここでは、図3に拡大断面図で示すように、リップ部35を、インボード側に向かって拡径する形状としている。これにより、インボード側端から保護カバー29内への泥水・塩水等の浸入をより確実に防止できる。   As the elastic body constituting the lip portion 35, a rubber material is desirable. Thereby, the sealing performance of the inboard side end of the protective cover 29 by the lip portion 35 can be ensured. In addition, the lip portion 35 may be integrally formed with the protective cover 29. Here, as shown in an enlarged sectional view in FIG. 3, the lip portion 35 has a shape that increases in diameter toward the inboard side. Thereby, infiltration of muddy water, salt water, etc. into the protective cover 29 from the inboard side end can be prevented more reliably.

保護カバー29は、例えば耐食性を有する鋼板をプレス加工して成形される。これにより、保護カバー29が外部環境により腐食するのを防止できる。このほか、鋼板をプレス加工して保護カバー29を成形し、その表面に金属メッキまたは塗装処理を施しても良い。この場合も、保護カバー29が外部環境により腐食するのを防止できる。保護カバー29の材質は、このほかプラスチックやゴムであっても良い。   The protective cover 29 is formed by, for example, pressing a steel plate having corrosion resistance. Thereby, it can prevent that the protective cover 29 corrodes by an external environment. In addition, the protective cover 29 may be formed by pressing a steel plate, and the surface thereof may be subjected to metal plating or painting. Also in this case, the protective cover 29 can be prevented from being corroded by the external environment. In addition, the material of the protective cover 29 may be plastic or rubber.

図2のIV−IV矢視断面図を示す図4のように、保護カバー29のインボード側端部には、前記センサ組立品31における信号ケーブル33の引き出し部33Bを外側に引き出す孔部36が設けられ、この孔部36から信号ケーブル引き出し部33Bが引き出される部分にシール材37が塗布される。シール材37により孔部36は封止される。これにより、保護カバー29から信号ケーブル引き出し部33Bが引き出される部分の密封性を確実なものとすることができる。   As shown in FIG. 4 showing a cross-sectional view taken along the line IV-IV in FIG. And a sealing material 37 is applied to a portion where the signal cable lead portion 33B is drawn from the hole portion 36. The hole 36 is sealed by the sealing material 37. Thereby, the sealing performance of the part where the signal cable lead-out portion 33B is drawn out from the protective cover 29 can be ensured.

このセンサ付車輪用軸受の組立は、以下の手順で行われる。先ず、外方部材1の単体の状態、または外方部材1に転動体5を組み付けた状態で、外方部材1の外周面に荷重検出用センサ部20を含む電子部品からなるセンサ組立品31を取付ける。つぎに、筒状の保護カバー29を、外方部材1のアウトボード側からその外周面に圧入してそのアウトボード側端を外方部材1の外周面に嵌合させると共に、保護カバー29のインボード側端のリップ部35を外方部材1の車体取付用フランジ1aのアウトボード側を向く側面または外周面に当接させることで、荷重検出用センサ部20を含む電子部品からなるセンサ組立品31を保護カバー29で覆う。この後で軸受の全体を組み立てる。この手順で組み立てることにより、外方部材1に取付けた荷重検出用センサ部20、もしくは荷重検出用センサ部20を含むセンサ組立品31を保護カバー29で覆ってなるセンサ付車輪用軸受を、容易に組み立てることができる。   The assembly of the sensor-equipped wheel bearing is performed according to the following procedure. First, in a state where the outer member 1 is a single body or a state where the rolling member 5 is assembled to the outer member 1, a sensor assembly 31 including an electronic component including the load detection sensor unit 20 on the outer peripheral surface of the outer member 1. Install. Next, the cylindrical protective cover 29 is press-fitted into the outer peripheral surface from the outboard side of the outer member 1 to fit the outer end of the outer board 1 to the outer peripheral surface of the outer member 1. By assembling the lip portion 35 at the inboard side end to the side surface or the outer peripheral surface of the outer member 1 facing the outboard side of the vehicle body mounting flange 1a, a sensor assembly comprising an electronic component including the load detection sensor portion 20 is provided. The product 31 is covered with a protective cover 29. After this, the entire bearing is assembled. By assembling in this procedure, the sensor-equipped wheel bearing with the protective cover 29 covering the load detecting sensor unit 20 attached to the outer member 1 or the sensor assembly 31 including the load detecting sensor unit 20 can be easily obtained. Can be assembled into.

前記荷重検出用センサ部20の作用および具体的構成を説明すする。各荷重検出用センサ部20の2つの歪みセンサ22(22A,22B)の出力信号は、前記信号処理用IC28、信号ケーブル33を経て車両側の推定手段32(図1)に入力される。推定手段32は、荷重検出用センサ部20の2つの歪みセンサ22A,22Bの出力信号から、車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する手段である。前記推定手段32は、この実施形態では、前記2つの歪みセンサ22A,22Bの出力信号の差分(具体的には出力信号の振幅)から前記各作用力Fx ,Fy,Fzを推定する。この推定手段32は、前記垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy と、2つの歪みセンサ22A,22Bの出力信号の差分との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、2つの歪みセンサ22A,22Bの出力信号の差分から前記関係設定手段を用いて作用力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定する。前記関係設定手段の設定内容は、予め試験やシミュレーションで求めておいて設定する。
なお、前記推定手段32は、前記出力信号の差分に限らず、例えば、前記2つの歪みセンサ22A,22Bの出力信号の和や、平均値、振幅値、振幅中心値などの情報から、これらを適宜用いて、例えば線形結合的に用いて、各作用力Fx Fy,Fzを推定するようにしても良い。その場合も、前記和や平均値などの情報と前記各作用力Fx Fy,Fzとの関係を、演算式またはテーブル等により設定した関係設定手段を用いても良い。
The operation and specific configuration of the load detection sensor unit 20 will be described. The output signals of the two strain sensors 22 (22A, 22B) of each load detection sensor unit 20 are input to the vehicle-side estimation means 32 (FIG. 1) via the signal processing IC 28 and the signal cable 33. The estimation means 32 determines the force (vertical load Fz, driving force, etc.) acting on the wheel bearings and between the wheel and the road surface (tire contact surface) from the output signals of the two strain sensors 22A, 22B of the load detection sensor unit 20. This is a means for estimating the load Fx and the axial load Fy) as braking force. In this embodiment, the estimation means 32 estimates the acting forces Fx, Fy, and Fz from the difference between the output signals of the two strain sensors 22A and 22B (specifically, the amplitude of the output signal). The estimation means 32 uses a calculation formula or a table or the like to determine the relationship between the vertical load Fz, the load Fx as a driving force or braking force, the axial load Fy, and the difference between the output signals of the two strain sensors 22A and 22B. It has a set relationship setting means (not shown), and using the relationship setting means based on the difference between the output signals of the two strain sensors 22A and 22B, the acting force (vertical load Fz, load that becomes driving force or braking force) Fx and axial load Fy) are estimated. The setting contents of the relationship setting means are obtained by a test or simulation in advance.
The estimation means 32 is not limited to the difference between the output signals, and for example, based on information such as the sum of the output signals of the two strain sensors 22A and 22B, the average value, the amplitude value, and the amplitude center value. For example, the acting forces Fx Fy and Fz may be estimated using a linear combination, for example. Also in this case, a relationship setting means in which the relationship between the information such as the sum and the average value and the respective acting forces Fx Fy, Fz is set by an arithmetic expression or a table may be used.

荷重検出用センサ部20は、外方部材1のアウトボード側列の転走面3の周辺となる軸方向位置に設けられるので、歪みセンサ22A,22Bの出力信号は、図10のように荷重検出用センサ部20の設置部の近傍を通過する転動体5の影響を受ける。また、軸受の停止時においても、歪みセンサ22A,22Bの出力信号A,Bは、転動体5の位置の影響を受ける。すなわち、転動体5が荷重検出用センサ部20における歪みセンサ22A,22Bに最も近い位置を通過するとき(または、その位置に転動体5があるとき)、歪みセンサ22A,22Bの出力信号A,Bは最大値となり、図10(B),(C)のように転動体5がその位置から遠ざかるにつれて(または、その位置から離れた位置に転動体5があるとき)低下する。軸受回転時には、転動体5は所定の配列ピッチPで前記荷重検出用センサ部20の設置部の近傍を順次通過するので、歪みセンサ22A,22Bの出力信号A,Bは、転動体5の配列ピッチPを周期として図10(C)に実線で示すように周期的に変化する正弦波に近い波形となる。また、歪みセンサ22A,22Bの出力信号A,Bは、温度の影響やナックルと車体取付用フランジ1a(図1)の面間などの滑りによるヒステリシスの影響を受ける。   Since the load detection sensor unit 20 is provided at an axial position around the rolling surface 3 of the outboard side row of the outer member 1, the output signals of the strain sensors 22A and 22B are as shown in FIG. It is influenced by the rolling element 5 that passes through the vicinity of the installation portion of the detection sensor unit 20. Even when the bearing is stopped, the output signals A and B of the strain sensors 22A and 22B are affected by the position of the rolling element 5. That is, when the rolling element 5 passes through the position closest to the strain sensors 22A and 22B in the load detection sensor unit 20 (or when the rolling element 5 is at that position), the output signals A and S of the strain sensors 22A and 22B, B becomes the maximum value, and decreases as the rolling element 5 moves away from the position as shown in FIGS. 10B and 10C (or when the rolling element 5 is located away from the position). When the bearing rotates, the rolling elements 5 sequentially pass through the vicinity of the installation portion of the load detection sensor unit 20 at a predetermined arrangement pitch P. Therefore, the output signals A and B of the strain sensors 22A and 22B are output from the arrangement of the rolling elements 5. As shown by a solid line in FIG. 10C, the pitch P is a period, and the waveform is close to a sine wave that changes periodically. Further, the output signals A and B of the strain sensors 22A and 22B are affected by temperature and hysteresis due to slippage between the surfaces of the knuckle and the vehicle body mounting flange 1a (FIG. 1).

この実施形態では、前記2つの歪みセンサ22A,22Bの出力信号A,Bの差分を演算処理することで、推定手段32が車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定するものとしているので、2つの歪みセンサ22A,22Bの各出力信号A,Bに現れる温度の影響やナックル・フランジ面間などの滑りの影響を相殺することができ、これにより車輪用軸受やタイヤ接地面に作用する荷重を正確に検出することができる。   In this embodiment, by calculating the difference between the output signals A and B of the two strain sensors 22A and 22B, the force that the estimating means 32 acts on the wheel bearings or between the wheel and the road surface (tire contact surface) ( Since the vertical load Fz, the driving force and the braking force Fx, and the axial load Fy) are estimated, the influence of the temperature appearing in the output signals A and B of the two strain sensors 22A and 22B, the knuckle The effect of slippage between the flange surfaces can be offset, and thereby the load acting on the wheel bearing and the tire ground contact surface can be accurately detected.

差分の演算処理について説明する。
前記2つの歪みセンサ22A,22Bの出力信号A,Bの差分から、演算処理によって差分信号の振幅、または振幅に相当する値を求める方法としては、絶対値|A−B|からそのピーク値を検出するものでも良い。絶対値|A−B|は、演算回路によって生成しても良いが、デジタル演算処理によって計算しても良い。回転状態では半波整流波形が得られるため、そのピーク値をホールドするか、ローパスフィルタ;Low Pass Filter ,略称LPF によって直流成分を求めて差分信号の振幅相当値とすることができる。また、差分信号(A−B)の実効値(二乗平均値)を振幅相当値として荷重の推定演算に用いても良い。デジタル演算処理においては、差分信号の振動周期の一周期以上を演算対象区間に設定し、その区間内の最大値と最小値を検出することで、振幅相当値を算出するものでも良い。
The difference calculation process will be described.
As a method of obtaining the amplitude of the difference signal or a value corresponding to the amplitude from the difference between the output signals A and B of the two strain sensors 22A and 22B by calculation processing, the peak value is obtained from the absolute value | A−B |. It may be detected. The absolute value | A−B | may be generated by an arithmetic circuit or may be calculated by digital arithmetic processing. Since a half-wave rectified waveform is obtained in the rotating state, the peak value can be held, or a DC component can be obtained by a low-pass filter; Further, the effective value (root mean square value) of the difference signal (A−B) may be used as an amplitude equivalent value in the load estimation calculation. In the digital calculation processing, one or more vibration periods of the difference signal may be set as a calculation target section, and the amplitude equivalent value may be calculated by detecting the maximum value and the minimum value in the section.

荷重検出用センサ部20として、図8の構成例のものを示す図10においては、固定側部材である外方部材1の外径面の円周方向に並ぶ3つの接触固定部21aのうち、その配列の両端に位置する2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。この場合、隣り合う接触固定部21aの中間位置にそれぞれ配置される2つの歪みセンサ22A,22Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪みセンサ22A,22Bの出力信号A,Bは略180度の位相差を有することになり、その差分は温度の影響やナックル・フランジ面間などの滑りの影響を十分相殺した値となる。これにより、2つの歪みセンサ22A,22Bの出力信号A,Bの差分から、推定手段32によって推定される車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )は、温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除した正確なものとなる。   In FIG. 10 showing the configuration example of FIG. 8 as the load detection sensor unit 20, among the three contact fixing units 21a arranged in the circumferential direction of the outer diameter surface of the outer member 1 which is a fixed side member, The interval between the two contact fixing portions 21 a located at both ends of the array is set to be the same as the array pitch P of the rolling elements 5. In this case, the circumferential interval between the two strain sensors 22A and 22B respectively disposed at the intermediate positions of the adjacent contact fixing portions 21a is approximately ½ of the arrangement pitch P of the rolling elements 5. . As a result, the output signals A and B of the two strain sensors 22A and 22B have a phase difference of about 180 degrees, and the difference sufficiently offsets the influence of temperature and the effect of slippage between the knuckle and flange surfaces. Value. As a result, the force acting on the wheel bearings and the distance between the wheel and the road surface (tire contact surface) (vertical load Fz, The load Fx and the axial load Fy) serving as the driving force and braking force are accurate with the effect of temperature and the effect of slippage between the knuckle and flange surfaces more reliably eliminated.

図11には、図8の構成例の荷重検出用センサ部20において、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定した例を示している。この例では、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔が、転動体5の配列ピッチPの1/2とされるので、2つの歪みセンサ22A,22Bの出力信号A,Bは180度の位相差を有することになり、その差分は、温度の影響やナックル・フランジ面間などの滑りの影響を完全に相殺した値となる。これにより、推定手段32によって推定される車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )から、温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除することができる。
なお、この場合に、2つの歪みセンサ22A,22Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、両歪みセンサ22A,22Bの出力信号A,Bの差分は、温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。
In FIG. 11, in the load detection sensor unit 20 of the configuration example of FIG. 8, the circumferential interval between the two strain sensors 22 </ b> A and 22 </ b> B is ½ of the arrangement pitch P of the rolling elements 5. An example of setting is shown. In this example, since the circumferential interval between the two strain sensors 22A and 22B is ½ of the arrangement pitch P of the rolling elements 5, the output signal A of the two strain sensors 22A and 22B. , B have a phase difference of 180 degrees, and the difference is a value that completely cancels the influence of temperature and the effect of slippage between the knuckle and flange surfaces. Thus, from the wheel bearings estimated by the estimating means 32 and the forces acting on the wheel and the road surface (tire contact surface) (vertical load Fz, driving force and braking force Fx, axial load Fy), It is possible to more reliably eliminate the effects of temperature and sliding effects such as between the knuckle and flange surfaces.
In this case, the circumferential distance between the two strain sensors 22A and 22B is {1/2 + n (n: integer)} times the arrangement pitch P of the rolling elements 5, or a value approximated to these values. It is also good. Also in this case, the difference between the output signals A and B of the two strain sensors 22A and 22B is a value that offsets the influence of temperature and the influence of slippage between the knuckle and flange surfaces.

図12には、荷重検出用センサ部20として、図8の構成例のものにおいて、中間位置の接触固定部21aを省略して、接触固定部21aを2つとした構成例(図12(A))の場合を示している。この場合、図10の例の場合と同様に、2つの接触固定部21aの間隔を、転動体5の配列ピッチPと同一に設定している。これにより、2つの接触固定部21aの間に配置される2つの歪みセンサ22A,22Bの間での前記円周方向の間隔は、転動体5の配列ピッチPの略1/2となる。その結果、2つの歪みセンサ22A,22Bの出力信号A,Bは略180度の位相差を有することになり、その差分は温度の影響やナックル・フランジ面間などの滑りの影響を十分相殺した値となる。これにより、2つの歪みセンサ22A,22Bの出力信号A,Bの差分から、推定手段32によって推定される車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )は、温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除した正確なものとなる。
図13には、図12(A)の構成例の荷重検出用センサ部20において、2つの歪みセンサ22A,22Bの間での前記円周方向の間隔を、転動体5の配列ピッチPの1/2に設定した例を示している。この例でも、図11の例の場合と同様に、2つの歪みセンサ22A,22Bの出力信号A,Bは180度の位相差を有することになり、その差分は、温度の影響やナックル・フランジ面間などの滑りの影響を完全に相殺した値となる。これにより、推定手段32によって推定される車輪用軸受や車輪と路面間(タイヤ接地面)に作用する力(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )から、温度の影響やナックル・フランジ面間などの滑りの影響をより確実に排除することができる。
FIG. 12 shows a configuration example in which the contact fixing portion 21a at the intermediate position is omitted and two contact fixing portions 21a are provided in the configuration example of FIG. 8 as the load detecting sensor unit 20 (FIG. 12A). ). In this case, similarly to the example of FIG. 10, the interval between the two contact fixing portions 21 a is set to be the same as the arrangement pitch P of the rolling elements 5. Accordingly, the circumferential interval between the two strain sensors 22A and 22B disposed between the two contact fixing portions 21a is approximately ½ of the arrangement pitch P of the rolling elements 5. As a result, the output signals A and B of the two strain sensors 22A and 22B have a phase difference of about 180 degrees, and the difference sufficiently offsets the influence of temperature and the effect of slippage between the knuckle and flange surfaces. Value. As a result, the force acting on the wheel bearings and the distance between the wheels and the road surface (tire contact surface) (vertical load Fz, F), which is estimated by the estimating means 32 from the difference between the output signals A and B of the two strain sensors 22A and 22B. The load Fx and the axial load Fy) serving as the driving force and braking force are accurate with the effect of temperature and the effect of slippage between the knuckle and flange surfaces more reliably eliminated.
In FIG. 13, in the load detection sensor unit 20 of the configuration example of FIG. 12A, the circumferential interval between the two strain sensors 22 </ b> A and 22 </ b> B is 1 of the arrangement pitch P of the rolling elements 5. An example of setting to / 2 is shown. In this example as well, as in the example of FIG. 11, the output signals A and B of the two strain sensors 22A and 22B have a phase difference of 180 degrees, and the difference is influenced by the temperature and knuckle flange. It is a value that completely cancels out the effects of slippage between surfaces. Thus, from the wheel bearings estimated by the estimating means 32 and the forces acting on the wheel and the road surface (tire contact surface) (vertical load Fz, driving force and braking force Fx, axial load Fy), It is possible to more reliably eliminate the effects of temperature and sliding effects such as between the knuckle and flange surfaces.

この場合、2つの歪みセンサ22A,22Bの前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、両歪みセンサ22A,22Bの出力信号A,Bの差分は、温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。   In this case, the circumferential interval between the two strain sensors 22A and 22B may be {1/2 + n (n: integer)} times the arrangement pitch P of the rolling elements 5, or a value approximate to these values. . Also in this case, the difference between the output signals A and B of the two strain sensors 22A and 22B is a value that offsets the influence of temperature and the influence of slippage between the knuckle and flange surfaces.

このほか、図10および図11において、隣り合う2つの接触固定部21aの間での前記円周方向の間隔を、転動体5の配列ピッチPの{1/2+n(n:整数)}倍、またはこれらの値に近似した値としても良い。この場合にも、隣り合う2つの歪みセンサ22A,22Bの出力信号A,Bの差分は、温度の影響やナックル・フランジ面間などの滑りの影響を相殺した値となる。   In addition, in FIGS. 10 and 11, the circumferential interval between two adjacent contact fixing portions 21a is {1/2 + n (n: integer)} times the arrangement pitch P of the rolling elements 5, Or it is good also as a value approximated to these values. Also in this case, the difference between the output signals A and B of the two adjacent strain sensors 22A and 22B is a value that cancels out the influence of temperature and the influence of slippage between the knuckle and flange surfaces.

上記構成のセンサ付車輪用軸受によると、車輪用軸受や、車輪のタイヤと路面間に荷重が作用すると、車輪用軸受の固定側部材である外方部材1にも荷重が印加されて変形が生じる。荷重検出用センサ部20における切欠き部21bを有する歪み発生部材21の3つの接触固定部21aが外方部材1に接触固定されているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され、その歪みが歪みセンサ22A,22Bで感度良く検出され、その出力信号から荷重を推定できる。ここでは、外方部材1の外径面における上面部と下面部に配置される2つの荷重検出用センサ部20の出力信号から垂直方向荷重Fz と軸方向荷重Fy を推定でき、外方部材1の外径面における右面部と左面部に配置される2つの荷重検出用センサ部20の出力信号から駆動力や制動力による荷重Fx を推定できる。   According to the wheel bearing with sensor having the above-described configuration, when a load acts between the wheel bearing or the wheel tire and the road surface, the load is also applied to the outer member 1 that is a stationary member of the wheel bearing and the deformation is caused. Arise. Since the three contact fixing portions 21 a of the strain generating member 21 having the notch portion 21 b in the load detecting sensor portion 20 are fixed in contact with the outer member 1, the strain of the outer member 1 expands to the strain generating member 21. The strain is detected by the strain sensors 22A and 22B with high sensitivity, and the load can be estimated from the output signal. Here, the vertical load Fz and the axial load Fy can be estimated from the output signals of the two load detection sensor units 20 arranged on the upper surface portion and the lower surface portion of the outer diameter surface of the outer member 1, and the outer member 1. The load Fx caused by the driving force or the braking force can be estimated from the output signals of the two load detection sensor units 20 arranged on the right surface portion and the left surface portion of the outer diameter surface.

この場合、各荷重検出用センサ部20における歪みセンサ22A,22Bの出力信号A,Bは、上記したようにそのままでは温度の影響やナックル・フランジ面間などの滑りの影響を受けるが、推定手段32ではその2つの出力信号の差分から、車輪用軸受や、車輪のタイヤと路面間に作用する荷重(垂直方向荷重Fz ,駆動力や制動力となる荷重Fx ,軸方向荷重Fy )を推定するので、温度の影響やナックル・フランジ面間などの滑りの影響が解消され、荷重を精度良く推定できる。   In this case, the output signals A and B of the strain sensors 22A and 22B in each load detection sensor unit 20 are influenced by temperature and slippage between the knuckle and the flange surface as described above. 32, from the difference between the two output signals, the load acting between the wheel bearing and the tire of the wheel and the road surface (vertical load Fz, load Fx serving as driving force or braking force, axial load Fy) is estimated. Therefore, the influence of temperature and the influence of slippage between the knuckle and flange surfaces are eliminated, and the load can be estimated with high accuracy.

特に、このセンサ付車輪用軸受では、複数の荷重検出用センサ部20の歪み発生部材21を、これら複数の荷重検出用センサ部20にわたって連続した1つの帯状の部材で構成しているので、煩雑な配線作業が要らず、配線部の品質向上およびコスト低減が可能となる。   In particular, in this wheel bearing with sensor, the strain generating member 21 of the plurality of load detection sensor units 20 is formed of a single belt-like member that is continuous over the plurality of load detection sensor units 20. Therefore, it is possible to improve the quality of the wiring section and reduce the cost.

また、この実施形態では、前記歪み発生部材21を、その長手方向の複数箇所で屈曲させて、固定側部材である外方部材1に固定するようにしているので、外方部材1への取付け作業も容易になる。   Further, in this embodiment, the strain generating member 21 is bent at a plurality of positions in the longitudinal direction and fixed to the outer member 1 which is a fixed side member. Work becomes easy.

固定側部材である外方部材1の外径面に固定される荷重径用センサ部20の各接触固定部21aの軸方向寸法が異なると、外方部材1の外径面から接触固定部21aを介して歪み発生部材21に伝達される歪みも異なる。この実施形態では、荷重検出用センサ部20の各接触固定部21aを、外方部材1の外径面に対して軸方向に同寸法となるように設けているので、歪み発生部材21に歪みが集中しやすくなり、それだけ検出感度が向上する。   If the axial dimension of each contact fixing portion 21a of the load diameter sensor portion 20 fixed to the outer diameter surface of the outer member 1 which is a fixed side member is different, the contact fixing portion 21a from the outer diameter surface of the outer member 1 is different. The strain transmitted to the strain generating member 21 via the difference is also different. In this embodiment, since each contact fixing portion 21a of the load detection sensor portion 20 is provided so as to have the same dimension in the axial direction with respect to the outer diameter surface of the outer member 1, the strain generating member 21 is distorted. Becomes easier to concentrate, and the detection sensitivity is improved accordingly.

また、この実施形態では、荷重検出用センサ部20の歪み発生部材21は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部21bを有する薄板材からなるものとしているので、外方部材1の歪みが歪み発生部材21に拡大して伝達され易く、その歪みが歪みセンサ22A,22Bで感度良く検出され、その出力信号A,Bに生じるヒステリシスも小さくなり、荷重を精度良く推定できる。また、歪み発生部材21の形状も簡単なものとなり、コンパクトで低コストなものとできる。   Further, in this embodiment, the strain generating member 21 of the load detecting sensor unit 20 is made of a strip having a uniform planar width, or a thin plate material having a planar planar shape and a notch 21b on the side. Therefore, the distortion of the outer member 1 is easily transmitted to the distortion generating member 21, and the distortion is detected with high sensitivity by the distortion sensors 22A and 22B, and the hysteresis generated in the output signals A and B is also reduced. The load can be estimated with high accuracy. Further, the shape of the strain generating member 21 is also simple, and it can be made compact and low cost.

また、歪み発生部材21の切欠き部21bの隅部は断面円弧状とされているので、切欠き部21bの隅部に歪みが集中せず、塑性変形する可能性が低くなる。切欠き部21bの隅部に歪みが集中しなくなることで、歪み発生部材21における検出部つまり歪みセンサ22A,22Bの取付け部での歪み分布のばらつきが小さくなり、歪みセンサ22A,22Bの取付け位置が歪みセンサ22A,22Bの出力信号A,Bに及ぼす影響も小さくなる。これにより、荷重をさらに精度良く推定できる。   In addition, since the corner of the notch 21b of the strain generating member 21 has an arcuate cross section, strain does not concentrate on the corner of the notch 21b, and the possibility of plastic deformation is reduced. Distortion does not concentrate at the corners of the notch portion 21b, so that variation in strain distribution at the detection portion of the strain generating member 21, that is, the attachment portion of the strain sensors 22A and 22B is reduced, and the attachment positions of the strain sensors 22A and 22B are reduced. Affects the output signals A and B of the strain sensors 22A and 22B. Thereby, the load can be estimated with higher accuracy.

特に、このセンサ付車輪用軸受によると、複数の荷重検出用センサ部20を、固定側部材である外方部材1の外周を囲む筒状の保護カバー29で覆い、この保護カバー29のアウトボード側端を外方部材1の外周面に嵌合させ、保護カバー29のインボード側端の開口縁に沿って設けた環状の弾性体からなるリップ部35を外方部材1の車体取付用フランジ1aのアウトボード側を向く側面もしくは外周面に当接させている。このため、外部環境により荷重検出用センサ部20が故障する(飛び石による損傷や、泥水・塩水などによる腐食)のを防止でき、長期にわたって荷重を正確に検出することができ、信号ケーブル33の配線処理や荷重検出用センサ部20の組付けも容易でコスト低減が可能となる。   In particular, according to the wheel bearing with sensor, a plurality of load detecting sensor portions 20 are covered with a cylindrical protective cover 29 surrounding the outer periphery of the outer member 1 that is a fixed member, and the outboard of the protective cover 29 is covered. The side end is fitted to the outer peripheral surface of the outer member 1, and the lip portion 35 made of an annular elastic body provided along the opening edge of the inboard side end of the protective cover 29 is attached to the vehicle body mounting flange of the outer member 1. It is made to contact | abut to the side surface or outer peripheral surface which faces the outboard side of la. For this reason, it is possible to prevent the load detection sensor unit 20 from being damaged due to the external environment (damage due to stepping stones, corrosion due to muddy water, salt water, etc.), the load can be detected accurately over a long period of time, and the signal cable 33 is wired Assembling of the processing and the load detecting sensor unit 20 is easy and the cost can be reduced.

また、この実施形態では、荷重検出用センサ部20と、この荷重検出用センサ部20の出力信号を処理する信号処理用IC28と、処理された前記出力信号を軸受外部へ取り出す信号ケーブル33とを含む電子部品をリング状に接続してセンサ組立品31とし、このセンサ組立品31を、固定側部材である外方部材1の外周面に外方部材1と同心に取付けている。このセンサ組立品31を前記保護カバー29で覆っている。このため、荷重検出用センサ部20だけでなく、センサ組立品31を構成する信号処理用IC28、信号ケーブル33などの他の電子部品をも、外部環境による故障から保護することができる。   In this embodiment, the load detection sensor unit 20, the signal processing IC 28 that processes the output signal of the load detection sensor unit 20, and the signal cable 33 that extracts the processed output signal to the outside of the bearing are provided. The included electronic components are connected in a ring shape to form a sensor assembly 31, and the sensor assembly 31 is attached concentrically to the outer member 1 on the outer peripheral surface of the outer member 1 that is a stationary member. The sensor assembly 31 is covered with the protective cover 29. For this reason, not only the load detection sensor unit 20 but also other electronic components such as the signal processing IC 28 and the signal cable 33 constituting the sensor assembly 31 can be protected from failure due to the external environment.

なお、上記説明では車輪のタイヤと路面間の作用力を検出する場合を示したが、車輪のタイヤと路面間の作用力だけでなく、車輪用軸受に作用する力(例えば予圧量)を検出するものとしてでも良い。
このセンサ付車輪用軸受から得られた検出荷重を自動車の車両制御に使用することにより、自動車の安定走行に寄与できる。また、このセンサ付車輪用軸受を用いると、車両にコンパクトに荷重センサを設置でき、量産性に優れたものとでき、コスト低減を図ることができる。
In the above description, the case where the acting force between the wheel tire and the road surface is detected is shown, but not only the acting force between the wheel tire and the road surface but also the force acting on the wheel bearing (for example, the preload amount) is detected. It can be as well.
By using the detected load obtained from the sensor-equipped wheel bearing for vehicle control of the automobile, it is possible to contribute to stable running of the automobile. In addition, when this sensor-equipped wheel bearing is used, a load sensor can be installed in a compact vehicle, the mass productivity can be improved, and the cost can be reduced.

また、この実施形態では、固定側部材である外方部材1の車体取付用フランジ1aの正面形状を、図5のように軸受軸心Oに直交する線分(例えば図5における縦線分LVあるいは横線分LH)に対して線対称となる形状、または軸受軸心Oに対して点対称となる形状(具体的には円形)としているので、外方部材1のフランジ1aが単純化され、外方部材1の形状の複雑さに起因する温度分布や膨張・収縮量のばらつきを低減できる。これにより、固定側部材である外方部材1における温度分布や膨張・収縮量のばらつきによる影響を十分小さくして、荷重による歪み量を荷重検出用センサ部に検出させることができる。   Further, in this embodiment, the front shape of the vehicle body mounting flange 1a of the outer member 1 which is a fixed side member is a line segment orthogonal to the bearing axis O as shown in FIG. 5 (for example, the vertical line segment LV in FIG. 5). Alternatively, since the shape is axisymmetric with respect to the horizontal line segment LH) or a shape that is point-symmetric with respect to the bearing axis O (specifically, a circle), the flange 1a of the outer member 1 is simplified, Variations in temperature distribution and expansion / shrinkage due to the complexity of the shape of the outer member 1 can be reduced. Thereby, the influence by the variation in the temperature distribution and the expansion / contraction amount in the outer member 1 that is the fixed side member can be sufficiently reduced, and the load detection sensor unit can detect the strain amount due to the load.

また、この実施形態では、荷重検出用センサ部20を、外方部材1における複列の転走面3のうちのアウトボード側の転走面3の周辺となる軸方向位置、つまり比較的設置スペースが広く、タイヤ作用力が転動体5を介して外方部材1に伝達されて比較的変形量の大きい部位に配置しているので、検出感度が向上し、荷重をより精度良く推定できる。   Further, in this embodiment, the load detection sensor unit 20 is positioned in the axial direction around the rolling surface 3 on the outboard side of the double row rolling surfaces 3 in the outer member 1, that is, relatively installed. Since the space is wide and the tire acting force is transmitted to the outer member 1 via the rolling elements 5 and is disposed at a portion having a relatively large deformation amount, the detection sensitivity is improved, and the load can be estimated with higher accuracy.

また、この実施形態では、固定側部材である外方部材1の外径面の上面部と下面部、および右面部と左面部に荷重検出用センサ部20を設けているので、どのような荷重条件においても、荷重を精度良く推定することができる。すなわち、ある方向への荷重が大きくなると、転動体5と転走面3が接触している部分と接触していない部分が180度位相差で現れるため、その方向に合わせて荷重検出用センサ部20を180度位相差で設置すれば、どちらかの荷重検出用センサ部20には必ず転動体5を介して外方部材1に負荷される荷重が伝達され、その荷重を歪みセンサ22A,22Bにより検出可能となる。   In this embodiment, since the load detection sensor unit 20 is provided on the upper surface portion and the lower surface portion of the outer diameter surface and the right surface portion and the left surface portion of the outer member 1 that is a fixed side member, Even under conditions, the load can be estimated with high accuracy. That is, when the load in a certain direction increases, a portion where the rolling element 5 and the rolling contact surface 3 are in contact with each other and a portion which is not in contact appear with a phase difference of 180 degrees. If 20 is installed with a phase difference of 180 degrees, the load applied to the outer member 1 is always transmitted to one of the load detection sensor portions 20 via the rolling elements 5, and the load is applied to the strain sensors 22A and 22B. Can be detected.

なお、上記実施形態では、推定手段32が、2つ以上の歪みセンサ22A,22Bの出力信号A,Bの差分から、車輪用軸受に作用する荷重を推定するものとしたが、推定手段32は、さらに前記2つ以上の歪みセンサ22A,22Bの出力信号A,Bの和も用いて、車輪用軸受に作用する荷重を推定するものとしても良い。このように、2つ以上の歪みセンサ22A,22Bの出力信号A,Bの和を取ると、各出力信号A,Bに現れる転動体5の位置の影響を相殺することができるので、差分から温度の影響やナックル・フランジ面間などの滑りの影響を排除できることと相まって、荷重をさらに精度良く検出できる。   In the above embodiment, the estimating means 32 estimates the load acting on the wheel bearing from the difference between the output signals A and B of the two or more strain sensors 22A and 22B. Further, the load acting on the wheel bearing may be estimated using the sum of the output signals A and B of the two or more strain sensors 22A and 22B. As described above, when the sum of the output signals A and B of the two or more strain sensors 22A and 22B is taken, the influence of the position of the rolling element 5 appearing in each of the output signals A and B can be offset. Coupled with the ability to eliminate the effects of temperature and the effects of sliding between the knuckle and flange surfaces, the load can be detected with higher accuracy.

図14は、この発明の他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図13に示した実施形態において、前記荷重検出用センサ部20が取付けられる外方部材1の外周面における少なくとも荷重検出用センサ部20との接触部分に、耐食性または防食性を有する表面処理層38が形成されている。ここでは、外方部材1の外周面の全域にわたって表面処理層38を形成した場合を示したが、車体取付用フランジ1aよりもアウトボード側の外周面に限定して表面処理層38を形成しても良い。なお、図14では、図1の保護カバー29については、図示を省略している。また、表面処理層38は、以下に示す各実施形態においても、上記と同様に設けても良い。   FIG. 14 shows another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment shown in FIGS. 1 to 13, at least the contact portion with the load detection sensor portion 20 on the outer peripheral surface of the outer member 1 to which the load detection sensor portion 20 is attached. A surface treatment layer 38 having corrosion resistance or corrosion resistance is formed. Although the case where the surface treatment layer 38 is formed over the entire outer peripheral surface of the outer member 1 is shown here, the surface treatment layer 38 is formed only on the outer peripheral surface on the outboard side of the vehicle body mounting flange 1a. May be. In addition, in FIG. 14, illustration is abbreviate | omitted about the protective cover 29 of FIG. Further, the surface treatment layer 38 may be provided in the same manner as described above also in each embodiment described below.

耐食性または防食性を有する表面処理層38としては、例えば金属メッキ処理によるメッキ層や、塗装処理による塗装膜、コーティング処理によるコーティング層等が挙げられる。金属メッキ処理としては、亜鉛メッキ、ユニクロメッキ、クロメートメッキ、ニッケルメッキ、クロムメッキ、無電解ニッケルメッキ、カニゼンメッキ、四三酸化鉄皮膜(黒染め)、レイデントなどの処理が適用可能である。塗装処理としては、カチオン電着塗装、アニオン電着塗装、フッ素系電着塗装等の電着塗装が適用できる。コーティング処理としては、窒化珪素等のセラミックコーティングなどが適用可能である。   Examples of the surface treatment layer 38 having corrosion resistance or corrosion resistance include a plating layer by metal plating, a coating film by painting, a coating layer by coating, and the like. As the metal plating treatment, treatments such as zinc plating, unichrome plating, chromate plating, nickel plating, chrome plating, electroless nickel plating, Kanigen plating, iron trioxide film (black dyeing), and radient can be applied. As the coating treatment, electrodeposition coating such as cationic electrodeposition coating, anion electrodeposition coating, and fluorine-based electrodeposition coating can be applied. As the coating treatment, ceramic coating such as silicon nitride can be applied.

このように、固定側部材である外方部材1の外周面の少なくとも荷重検出用センサ部20との接触部分に耐食性または防食性を有する表面処理層38を形成することにより、外方部材1の外周面の錆により荷重検出用センサ部20の取付部が盛り上がったり、荷重検出用センサ部20にもらい錆が発生するのを防止でき、錆に起因する歪みセンサ22A,22Bの誤動作を解消でき、荷重検出をさらに長期にわたり正確に行うことができる。また、荷重検出用センサ部20を含む前記センサ組立品33が取付けられる外方部材1の外周面に前記表面処理層38を形成した場合、センサ組立品33の取付部が錆で盛り上がったりするのを防止でき、錆に起因する歪みセンサ22A,22Bの誤動作をさらに解消できる。   Thus, by forming the surface treatment layer 38 having corrosion resistance or corrosion resistance on at least the contact portion of the outer peripheral surface of the outer member 1 that is a fixed side member with the load detection sensor unit 20, The mounting portion of the load detection sensor unit 20 can be prevented from rising due to rust on the outer peripheral surface, or the load detection sensor unit 20 can be prevented from generating rust, and the malfunction of the strain sensors 22A and 22B due to rust can be eliminated. Load detection can be performed accurately over a longer period. Further, when the surface treatment layer 38 is formed on the outer peripheral surface of the outer member 1 to which the sensor assembly 33 including the load detection sensor portion 20 is attached, the attachment portion of the sensor assembly 33 may be swelled with rust. And the malfunction of the strain sensors 22A and 22B due to rust can be further eliminated.

また、外方部材1の外周面の車体取付用フランジ1aよりもアウトボード側だけに限定して表面処理層38を形成した場合には、外方部材1の転走面3を研削加工する際に、外方部材1の外周面のインボード側端の表面未処理部を保持することができ、高精度に転走面3を研削加工することができる。   Further, when the surface treatment layer 38 is formed only on the outboard side of the outer peripheral surface of the outer member 1 relative to the body mounting flange 1a, the rolling surface 3 of the outer member 1 is ground. In addition, the untreated surface of the inboard side end of the outer peripheral surface of the outer member 1 can be held, and the rolling surface 3 can be ground with high accuracy.

図15および図16は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図1〜図13に示す実施形態において、保護カバー29のアウトボード側端を外方部材1よりもアウトボード側に突出させ、そのアウトボード側端と、回転側部材である内方部材2との間に非接触シール隙間39、すなわちラビリンスシールを形成している。ここでは、図16に拡大断面図で示すように、保護カバー29のアウトボード側端に、外方部材1のアウトボード側端に沿って内径側に折り曲げられる内側折り曲げ部29aを形成し、つぎにその内側折り曲げ部29aの先端から外径側に折り返されて内側折り曲げ部29aと重なる外側折り曲げ部29bを形成し、さらに外側折り曲げ部29bの先端から内方部材2のハブフランジ9aの基部の曲面部分9aaに向けて延びる筒部29cを形成している。これにより、前記外側折り曲げ部29bから筒部29cにわたる部分とハブフランジ9aの基部曲面部分9aaとの間に狭幅の非接触シール隙間39が形成される。その他の構成は図1〜図13の実施形態の場合と同様である。   15 and 16 show still another embodiment of the present invention. In the wheel bearing with sensor, in the embodiment shown in FIGS. 1 to 13, the outboard side end of the protective cover 29 protrudes to the outboard side from the outer member 1, and the outboard side end and the rotation side A non-contact seal gap 39, that is, a labyrinth seal is formed between the inner member 2 and the member. Here, as shown in an enlarged cross-sectional view in FIG. 16, an inner bent portion 29 a that is bent toward the inner diameter side along the outboard side end of the outer member 1 is formed on the outboard side end of the protective cover 29. The outer bent portion 29b is folded back from the tip of the inner bent portion 29a to the outer diameter side and overlaps the inner bent portion 29a, and further, the curved surface of the base portion of the hub flange 9a of the inner member 2 from the tip of the outer bent portion 29b. A cylindrical portion 29c extending toward the portion 9aa is formed. As a result, a narrow non-contact seal gap 39 is formed between the portion extending from the outer bent portion 29b to the tubular portion 29c and the base curved surface portion 9aa of the hub flange 9a. Other configurations are the same as those in the embodiment of FIGS.

このように、保護カバー29のアウトボード側端と内方部材2との間に非接触シール隙間39を形成することにより、保護カバー29のアウトボード側端でのシール性が向上し、外部環境の影響によるセンサの故障をさらに確実に防止して、荷重検出を正確に行うことができる。   Thus, by forming the non-contact seal gap 39 between the outboard side end of the protective cover 29 and the inner member 2, the sealing performance at the outboard side end of the protective cover 29 is improved, and the external environment It is possible to more reliably prevent a sensor failure due to the influence of the load and to accurately detect the load.

図17および図18は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図15および図16に示す実施形態において、保護カバー29のアウトボード側端の外側折り曲げ部29bの先端の筒部29cを、図18に拡大断面図で示すようにハブフランジ9aの側面に沿う断面L字状に形成している。その他の構成は図15,図16に示す実施形態の場合と同様である。   17 and 18 show still another embodiment of the present invention. In this sensor wheel bearing, in the embodiment shown in FIGS. 15 and 16, the cylindrical portion 29c at the tip of the outer bent portion 29b at the outboard side end of the protective cover 29 is shown in an enlarged sectional view in FIG. It is formed in an L-shaped cross section along the side surface of the hub flange 9a. Other configurations are the same as those of the embodiment shown in FIGS.

このように、保護カバー29のアウトボード側端の外側折り曲げ部29bの先端の筒部29cをハブフランジ9aの側面に沿う断面L字状に形成することにより、前記外側折り曲げ部29bから筒部29cにわたる部分とハブフランジ9aの基部曲面部分9aaとの間に形成される非接触シール隙間39が、ハブフランジ9aの側面に沿った形状となる。これにより、保護カバー29のアウトボード側において、浸入してくる泥水などがハブフランジ9aの側面に沿った前記非接触シール隙間39から外側に向けて流れ易くなり、保護カバー29のアウトボード側端でのシール性がさらに向上する。   In this manner, the cylindrical portion 29c at the tip of the outer bent portion 29b at the end of the outboard side of the protective cover 29 is formed in an L-shaped section along the side surface of the hub flange 9a, so that the cylindrical portion 29c is changed from the outer bent portion 29b. A non-contact seal gap 39 formed between the extending portion and the base curved surface portion 9aa of the hub flange 9a has a shape along the side surface of the hub flange 9a. As a result, on the outboard side of the protective cover 29, intruding muddy water and the like can easily flow outward from the non-contact seal gap 39 along the side surface of the hub flange 9a. The sealing performance at is further improved.

図19および図20は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図15および図16に示す実施形態において、保護カバー29のアウトボード側端の外側折り曲げ部29bを、図20に拡大断面図で示すように内側折り曲げ部29aの外径側基端よりもさらに外径側まで延ばしている。その他の構成は図15および図16に示す実施形態の場合と同様である。   19 and 20 show still another embodiment of the present invention. In this embodiment of the wheel bearing with sensor, in the embodiment shown in FIGS. 15 and 16, the outer bent portion 29b at the end of the outboard side of the protective cover 29 is arranged outside the inner bent portion 29a as shown in an enlarged sectional view in FIG. It extends further to the outer diameter side than the radial base end. Other configurations are the same as those of the embodiment shown in FIGS. 15 and 16.

このように、保護カバー29のアウトボード側端の外側折り曲げ部29bを内側折り曲げ部29aの外径側基端よりもさらに外径側まで延ばすことにより、前記外側折り曲げ部29bから筒部29cにわたる部分とハブフランジ9aの基部曲面部分9aaとの間に形成される非接触シール隙間39の径方向距離がより長くなる。これにより、保護カバー29のアウトボード側端でのシール性がさらに向上する。   In this way, by extending the outer bent portion 29b at the outboard side end of the protective cover 29 further to the outer diameter side than the outer diameter side base end of the inner bent portion 29a, a portion extending from the outer bent portion 29b to the cylindrical portion 29c. And the radial distance of the non-contact seal gap 39 formed between the base curved surface portion 9aa of the hub flange 9a. Thereby, the sealing performance at the outboard side end of the protective cover 29 is further improved.

図21および図22は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図22に拡大断面図で示すように、保護カバー29のアウトボード側端を外方部材1よりもアウトボード側に突出させ、そのアウトボード側端から外径側に折り曲げられる外側折り曲げ部29dを形成し、つぎにその外側折り曲げ部29dの先端から内径側に折り返されて外側折り曲げ部29dと重なる内側折り曲げ部29eを形成し、さらに内側折り曲げ部29eの先端から内方部材2のハブフランジ9aの基部の曲面部分9aaに向けて延びる筒部29fを形成している。これにより、前記内側折り曲げ部29eから筒部29fにわたる部分とハブフランジ9aの基部曲面部分9aaとの間に狭幅で径方向に長い非接触シール隙間39が形成される。その他の構成は図1〜図13の実施形態の場合と同様である。   21 and 22 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, as shown in an enlarged cross-sectional view in FIG. 22, the outboard side end of the protective cover 29 protrudes to the outboard side from the outer member 1, and the outer diameter side extends from the outboard side end. An outer bent portion 29d that is bent to the inner bent portion 29d is formed, and then an inner bent portion 29e that is folded back from the tip of the outer bent portion 29d to the inner diameter side and overlaps with the outer bent portion 29d is formed. A cylindrical portion 29f extending toward the curved surface portion 9aa of the base portion of the hub flange 9a of the side member 2 is formed. Thereby, a non-contact seal gap 39 that is narrow and long in the radial direction is formed between the portion extending from the inner bent portion 29e to the tubular portion 29f and the base curved surface portion 9aa of the hub flange 9a. Other configurations are the same as those in the embodiment of FIGS.

この場合も、保護カバー29のアウトボード側端において、その内側折り曲げ部29eから筒部29fにわたる部分とハブフランジ9aの基部曲面部分9aaとの間に狭幅で径方向に長い非接触シール隙間39が形成されるので、保護カバー29のアウトボード側端でのシール性が向上し、外部環境の影響によるセンサの故障をさらに確実に防止して、荷重検出を正確に行うことができる。   Also in this case, at the end of the protective cover 29 on the outboard side, the non-contact seal gap 39 that is narrow and long in the radial direction is narrow between the inner bent portion 29e to the tube portion 29f and the base curved surface portion 9aa of the hub flange 9a. As a result, the sealing performance at the outboard side end of the protective cover 29 is improved, the sensor failure due to the influence of the external environment can be more reliably prevented, and the load detection can be accurately performed.

図23および図24は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図1ないし図13に示す第1の実施形態において、外方部材1の外周面に設けた保護カバー29Aを次のように構成したものである。この例では、保護カバー29Aは、第1の実施形態と同じくセンサ組立部品31および外方部材1の外周を覆う筒状の部材であるが、その外径がアウトボード側からインボード側に向けて段階的に拡径する形状とされ、インボード側端が外方部材1のフランジ1aの外径面に嵌合させられる。保護カバー29Aのアウトボード側端には、その開口縁に沿って環状の弾性体からなるリップ部35Aが設けられ、このリップ部35Aが外方部材1の外周面に当接させられる。これにより、保護カバー29Aのアウトボード側端と外方部材1の外周面との間、および保護カバー29Aのインボード側端と外方部材1のフランジ1aの外径面との間が密封され、アウトボード側端から保護カバー29A内への泥水・塩水等の浸入を確実に防止できる。その結果、外部環境の影響によるセンサの故障を確実に防止して、荷重検出を正確に行うことができる。   23 and 24 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the first embodiment shown in FIGS. 1 to 13, the protective cover 29A provided on the outer peripheral surface of the outer member 1 is configured as follows. In this example, the protective cover 29A is a cylindrical member that covers the outer periphery of the sensor assembly part 31 and the outer member 1 as in the first embodiment, but the outer diameter is directed from the outboard side to the inboard side. The inboard side end is fitted to the outer diameter surface of the flange 1 a of the outer member 1. A lip portion 35A made of an annular elastic body is provided along the opening edge of the protective cover 29A on the outboard side end, and the lip portion 35A is brought into contact with the outer peripheral surface of the outer member 1. Thereby, the space between the outboard side end of the protective cover 29A and the outer peripheral surface of the outer member 1 and the space between the inboard side end of the protective cover 29A and the outer diameter surface of the flange 1a of the outer member 1 are sealed. Intrusion of muddy water, salt water, and the like from the outboard side end into the protective cover 29A can be reliably prevented. As a result, sensor failure due to the influence of the external environment can be reliably prevented, and load detection can be performed accurately.

前記リップ部35Aを構成する弾性体としてはゴム材料が望ましい。これにより、リップ部35Aによる保護カバー29Aのアウトボード側端での密封性を確実なものとすることができる。このほか、リップ部35Aを保護カバー29Aに一体形成しても良い。ここでは、図24に拡大断面図で示すように、リップ部35Aを、先端がアウトボード側に向かって次第に縮径して延びる形状としている。これにより、アウトボード側端から保護カバー29A内への泥水・塩水等の浸入をより確実に防止できる。また、リップ部35Aには、その一部を保護カバー29Aの外周面の一部まで延長してカバー外周面被覆部分35Aaが形成されている。これにより、保護カバー29Aの外周面におけるアウトボード側端において、カバー外周面被覆部分35Aaからなる壁が外径側に張り出すことになり、この壁によりリップ部35Aが外方部材1の外周面に当接している部分へ泥水・塩水等が流れ込むのを阻止でき、保護カバー29A内への泥水・塩水等の浸入をより確実に防止できる。カバー外周面被覆部分35Aaは、リップ部35Aを、保護カバー29Aの外周面へ取付ける場合は、その取付けに必要な強度を得るために保護カバー29Aの外周面に位置させる範囲よりもさらにインボード側へ延びて設ける。   As the elastic body constituting the lip portion 35A, a rubber material is desirable. Thereby, the sealing performance at the outboard side end of the protective cover 29A by the lip portion 35A can be ensured. In addition, the lip portion 35A may be integrally formed with the protective cover 29A. Here, as shown in an enlarged cross-sectional view in FIG. 24, the lip portion 35A has a shape that extends with the tip gradually reducing in diameter toward the outboard side. Thereby, infiltration of muddy water, salt water, etc. into the protective cover 29A from the outboard side end can be prevented more reliably. Further, a part of the lip portion 35A is extended to a part of the outer peripheral surface of the protective cover 29A to form a cover outer peripheral surface covering portion 35Aa. As a result, at the end of the outer surface of the protective cover 29A on the outboard side end, a wall formed of the cover outer peripheral surface covering portion 35Aa projects outward, and the lip portion 35A is formed on the outer peripheral surface of the outer member 1 by this wall. It is possible to prevent the muddy water / salt water or the like from flowing into the portion in contact with the water, and to more reliably prevent the muddy water / salt water or the like from entering the protective cover 29A. When attaching the lip portion 35A to the outer peripheral surface of the protective cover 29A, the cover outer peripheral surface covering portion 35Aa is further on the inboard side than the range positioned on the outer peripheral surface of the protective cover 29A in order to obtain the strength necessary for the attachment. It extends to

保護カバー29Aは、例えば耐食性を有する鋼板をプレス加工して成形される。これにより、保護カバー29Aが外部環境により腐食するのを防止できる。このほか、鋼板をプレス加工して保護カバー29Aを成形し、その表面に金属メッキまたは塗装処理を施しても良い。この場合も、保護カバー29Aが外部環境により腐食するのを防止できる。保護カバー29Aの材質は、このほかプラスチックやゴムであっても良い。   The protective cover 29A is formed by, for example, pressing a steel plate having corrosion resistance. Thereby, it can prevent that the protective cover 29A corrodes by an external environment. In addition, the steel cover may be pressed to form the protective cover 29A, and the surface thereof may be subjected to metal plating or painting. Also in this case, the protective cover 29A can be prevented from being corroded by the external environment. In addition, the material of the protective cover 29A may be plastic or rubber.

この実施形態におけるその他の構成、効果は、図1〜図13と共に説明した第1の実施形態と同様である。なお、この実施形態、および以下の各実施形態においても、図14と共に前述した表面処理層38を設けても良い。   Other configurations and effects in this embodiment are the same as those in the first embodiment described with reference to FIGS. In this embodiment and each of the following embodiments, the surface treatment layer 38 described with reference to FIG. 14 may be provided.

図25および図26は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図23,図24に示す実施形態において、保護カバー29Aのアウトボード側端に設けたリップ部35Aのカバー外周面被覆部分35Aaの外周面を、図26に拡大断面図で示すようにアウトボード側に向かって拡径する傾斜面としている。その他の構成は図23,図24の実施形態の場合と同様である。   25 and 26 show still another embodiment of the present invention. In this sensor-equipped wheel bearing, in the embodiment shown in FIGS. 23 and 24, the outer peripheral surface of the cover outer peripheral surface covering portion 35Aa of the lip portion 35A provided at the outboard side end of the protective cover 29A is shown in FIG. As shown in the figure, the inclined surface is enlarged in diameter toward the outboard side. Other configurations are the same as those in the embodiment of FIGS.

このように、リップ部35Aのカバー外周面被覆部分35Aaの外周面を、アウトボード側に向かって拡径する傾斜面とすることにより、リップ部35Aが外方部材1の外周面に当接している部分へ泥水・塩水等が流れ込むのを阻止でき、保護カバー29A内への泥水・塩水等の浸入をより確実に防止できる。   In this way, by forming the outer peripheral surface of the cover outer peripheral surface covering portion 35Aa of the lip portion 35A as an inclined surface whose diameter increases toward the outboard side, the lip portion 35A abuts on the outer peripheral surface of the outer member 1. It is possible to prevent the muddy water / salt water or the like from flowing into the portion, and to more reliably prevent the muddy water / salt water etc. from entering the protective cover 29A.

図27および図28は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図23,図24に示す実施形態において、保護カバー29Aのアウトボード側端を外方部材1よりもアウトボード側に突出させ、そのアウトボード側端と、回転側部材である内方部材2との間に非接触シール隙間39A、すなわちラビリンスシールを形成している。非接触シール隙間39Aは、前述のように内方部材2と外方部材1との相対回転が生じている状態で、水等の浸入が防止される程度の狭い隙間である。ここでは、図28に拡大断面図で示すように、保護カバー29Aのアウトボード側端を内方部材2のハブフランジ9aのインボード側を向く側面近傍まで突出させ、その先端から内径側に折り曲げられインボード側へ向かう折り曲げ部29Aaを形成し、さらにその折り曲げ部29Aaの先端から内径側に向けて折り曲げられた内側折り曲げ部29Abを形成し、この内側折り曲げ部29Abにリップ部35Aを一体に設けている。その他の構成は図23,図24の実施形態の場合と同様である。   27 and 28 show still another embodiment of the present invention. In the sensor-equipped wheel bearing, in the embodiment shown in FIGS. 23 and 24, the outboard side end of the protective cover 29A protrudes more toward the outboard side than the outer member 1, and the outboard side end and the rotation side A non-contact seal gap 39A, that is, a labyrinth seal is formed between the inner member 2 and the member. The non-contact seal gap 39A is a narrow gap to the extent that water or the like is prevented from entering when the inner member 2 and the outer member 1 are relatively rotated as described above. Here, as shown in an enlarged cross-sectional view in FIG. 28, the end on the outboard side of the protective cover 29A protrudes to the vicinity of the side facing the inboard side of the hub flange 9a of the inner member 2, and is bent from the tip to the inner diameter side. A bent portion 29Aa directed toward the inboard side is formed, and an inner bent portion 29Ab bent toward the inner diameter side from the tip of the bent portion 29Aa is formed, and a lip portion 35A is provided integrally with the inner bent portion 29Ab. ing. Other configurations are the same as those in the embodiment of FIGS.

このように、保護カバー29Aのアウトボード側端と内方部材2との間に非接触シール隙間39Aを形成することにより、保護カバー29Aのアウトボード側端における外方部材1との間のシールが、リップ部35Aの外方部材1の外周面への当接と、保護カバー29Aのアウトボード側端と内方部材2のハブフランジ9aとの間に形成される非接触シール39Aとによる二重の密閉構造でなされるので、アウトボード側でのシールがより確実なものとなり、外部環境の影響によるセンサの故障をさらに確実に防止して、荷重検出を正確に行うことができる。   In this way, by forming the non-contact seal gap 39A between the outboard side end of the protective cover 29A and the inner member 2, the seal between the outer member 1 at the outboard side end of the protective cover 29A is formed. However, the contact between the lip portion 35A and the outer peripheral surface of the outer member 1 and the non-contact seal 39A formed between the outboard side end of the protective cover 29A and the hub flange 9a of the inner member 2 are two. Since it is made of a heavy sealed structure, sealing on the outboard side is more reliable, sensor failure due to the influence of the external environment can be more reliably prevented, and load detection can be performed accurately.

図29および図30は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図23および図24に示す実施形態において、保護カバー29Aのアウトボード側端の折り曲げ部29Aaを、図30に拡大断面図で示すようにインボード側に向けて縮径傾斜する形状としている。その他の構成は図23および図24に示す実施形態の場合と同様である。   29 and 30 show still another embodiment of the present invention. In the wheel bearing with sensor, in the embodiment shown in FIGS. 23 and 24, the bent portion 29Aa at the end of the outboard side of the protective cover 29A is contracted toward the inboard side as shown in the enlarged sectional view of FIG. The shape is inclined in diameter. Other configurations are the same as those of the embodiment shown in FIGS.

このように、保護カバー29Aのアウトボード側端の折り曲げ部29Aaをインボード側に向けて縮径傾斜する形状とすることにより、非接触シール隙間39Aから外方部材1のアウトボード側端に浸入してきた泥水・塩水等が前記折り曲げ部29Aaの傾斜面に沿って非接触シール隙間39Aから外側に向けて排出し易くなり、保護カバー29Aのアウトボード側端でのシール性がさらに向上する。   In this way, the bent portion 29Aa at the end of the outboard side of the protective cover 29A is formed so as to incline toward the inboard side, thereby entering the outboard side end of the outer member 1 from the non-contact seal gap 39A. The muddy water, salt water, and the like that has been discharged can be easily discharged outward from the non-contact seal gap 39A along the inclined surface of the bent portion 29Aa, and the sealing performance at the end of the protective cover 29A on the outboard side is further improved.

図31および図32は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図23および図24に示す実施形態において、保護カバー29Aのアウトボード側端の小径筒部29sと外方部材1の外周との間に、シール部材としてOリング35Bを介在させている。Oリング35Bは、図32に拡大断面図で示すように、外方部材1の外周面に設けられた環状のシール取付溝内に嵌め込んで取り付けてある。その他の構成は図23および図24に示す実施形態の場合と同様である。
このようにシール部材としてOリング35Bを設けた場合も、保護カバー29Aのアウトボード側端から保護カバー29A内への泥水・塩水等の浸入を確実に防止できて、外部環境の影響によるセンサの故障を確実に防止して、荷重検出を正確に行うことができる。
31 and 32 show still another embodiment of the present invention. In this embodiment of the wheel bearing with sensor, in the embodiment shown in FIGS. 23 and 24, an O-ring 35 </ b> B as a seal member is provided between the small-diameter cylindrical portion 29 s on the outboard side end of the protective cover 29 </ b> A and the outer periphery of the outer member 1. Is interposed. As shown in an enlarged cross-sectional view in FIG. 32, the O-ring 35B is fitted and attached in an annular seal mounting groove provided on the outer peripheral surface of the outer member 1. Other configurations are the same as those of the embodiment shown in FIGS.
As described above, even when the O-ring 35B is provided as a seal member, it is possible to reliably prevent the intrusion of muddy water, salt water, etc. into the protective cover 29A from the outboard side end of the protective cover 29A. Failure can be reliably prevented and load detection can be performed accurately.

図33および図34は、この発明のさらに他の実施形態を示す。このセンサ付車輪用軸受では、図23,図24に示す実施形態において、保護カバー29Aのアウトボード側端に設けたリップ部35Aを、回転側部材である内方部材2の表面に当接させている。具体的には、図34に拡大断面図で示すように保護カバー29Aのアウトボード側端を外方部材1よりもアウトボード側に突出させ、内方部材2の構成部品であるハブ輪9のハブフランジ9aのインボード側を向く側面に前記リップ部35Aを当接させている。その他の構成は図23、図24に示す実施形態の場合と同様である。   33 and 34 show still another embodiment of the present invention. In the sensor-equipped wheel bearing, in the embodiment shown in FIGS. 23 and 24, the lip portion 35A provided at the outboard side end of the protective cover 29A is brought into contact with the surface of the inner member 2 that is the rotation side member. ing. Specifically, as shown in an enlarged cross-sectional view in FIG. 34, the end of the protective cover 29A on the outboard side protrudes from the outer member 1 to the outboard side, and the hub wheel 9 that is a component of the inner member 2 is formed. The lip portion 35A is brought into contact with the side surface of the hub flange 9a facing the inboard side. Other configurations are the same as those of the embodiment shown in FIGS.

このように、保護カバー29Aのアウトボード側端に設けたリップ部35Aを内方部材2のハブフランジ9aに当接させた場合にも、保護カバー29Aのアウトボード側端から保護カバー29A内への泥水・塩水等の浸入を確実に防止できるので、外部環境の影響によるセンサの故障を確実に防止して、荷重検出を正確に行うことができる。また、この場合には、外方部材1と内方部材2の間に形成される軸受空間のアウトボード側端も密封されることになるので、アウトボード側のシール7を省略することも可能である。   As described above, even when the lip portion 35A provided on the outboard side end of the protective cover 29A is brought into contact with the hub flange 9a of the inner member 2, the outboard side end of the protective cover 29A enters the protective cover 29A. Intrusion of muddy water, salt water, and the like can be reliably prevented, so that sensor failure due to the influence of the external environment can be reliably prevented, and load detection can be accurately performed. In this case, since the outboard side end of the bearing space formed between the outer member 1 and the inner member 2 is also sealed, the outboard side seal 7 can be omitted. It is.

図35は、図1〜図13に示した第1の実施形態のセンサ付車輪用軸受Aを搭載したインホイール型モータ内蔵車輪用軸受装置の概要を示す断面図である。このインホイール型モータ内蔵車輪用軸受装置は、駆動輪40のハブを回転自在に支持する前記センサ付車輪用軸受Aと、回転駆動源としての電気モータBと、この電気モータBの回転を減速してハブに伝達する減速機Cと、ハブに制動力を与えるブレーキDとを、駆動輪40の中心軸上に配置したものである。電気モータBは、筒状のケーシング41に固定したステータ42と出力軸43に取付けたロータ44との間にラジアルギャップを設けたラジアルギャップ型のものである。減速機Cはサイクロイド減速機として構成されている。
なお、図35では、図1〜図13に示した実施形態のセンサ付車輪用軸受Aを搭載した例を示したが、これに限らずこの発明の他の実施形態のセンサ付車輪用軸受を用いた場合にも、同様の効果を上げることができる。
FIG. 35 is a cross-sectional view showing an outline of an in-wheel motor-equipped wheel bearing device equipped with the sensor-equipped wheel bearing A according to the first embodiment shown in FIGS. 1 to 13. This in-wheel type motor-integrated wheel bearing device includes a sensor-equipped wheel bearing A that rotatably supports a hub of the drive wheel 40, an electric motor B as a rotational drive source, and a speed reduction of the rotation of the electric motor B. Thus, the speed reducer C that transmits to the hub and the brake D that applies braking force to the hub are arranged on the central axis of the drive wheels 40. The electric motor B is a radial gap type in which a radial gap is provided between a stator 42 fixed to a cylindrical casing 41 and a rotor 44 attached to an output shaft 43. The reduction gear C is configured as a cycloid reduction gear.
In addition, in FIG. 35, although the example which mounts the wheel bearing A with a sensor of embodiment shown in FIGS. 1-13 was shown, not only this but the wheel bearing with sensor of other embodiment of this invention is shown. Similar effects can be achieved when used.

このように、この発明の前記いずれかの構成のセンサ付車輪用軸受Aをインホイール型モータ内蔵車輪用軸受装置の車輪用軸受として用いた場合には、外部環境の影響によるセンサの故障を防止して、車輪用軸受やタイヤ接地面に作用する荷重を長期にわたり正確に検出できるインホイール型モータ内蔵車輪用軸受装置とすることができる。   Thus, when the sensor-equipped wheel bearing A according to any one of the configurations of the present invention is used as a wheel bearing of a wheel bearing device with a built-in in-wheel motor, sensor failure due to the influence of the external environment is prevented. Thus, an in-wheel motor-equipped wheel bearing device that can accurately detect the load acting on the wheel bearing and the tire ground contact surface over a long period of time can be obtained.

上記各実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。また、外方部材が回転側部材となる車輪用軸受にも適用することができる。その場合、内方部材の外周にセンサユニットを設ける。   In each of the above embodiments, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention relates to a first or second generation type wheel bearing in which the bearing portion and the hub are independent parts. Further, the present invention can be applied to a fourth generation type wheel bearing in which a part of the inner member is constituted by an outer ring of a constant velocity joint, and can also be applied to a tapered roller type wheel bearing of each generation type. Further, the present invention can also be applied to a wheel bearing in which the outer member is a rotation side member. In that case, a sensor unit is provided on the outer periphery of the inner member.

1…外方部材
1a…車体取付用フランジ
2…内方部材
3,4…転走面
5…転動体
20…荷重検出用センサ部
21…歪み発生部材
21a…接触固定部21b…切欠き部
21d…屈曲部
22,22A,22B…歪みセンサ
29,29A…保護カバー
31…センサ組立品
32…推定手段
35,35A…リップ部〈シール部材〉
35B…Oリング(シール部材〉
38…表面処理層
39,39A…非接触シール隙間
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Body mounting flange 2 ... Inner members 3, 4 ... Rolling surface 5 ... Rolling element 20 ... Load detecting sensor part 21 ... Strain generating member 21a ... Contact fixing part 21b ... Notch part 21d ... Bent part 22, 22A, 22B ... Strain sensor 29, 29A ... Protective cover 31 ... Sensor assembly 32 ... Estimating means 35, 35A ... Lip part <seal member>
35B ... O-ring (seal member)
38 ... Surface treatment layers 39, 39A ... Non-contact seal gap

Claims (37)

複列の転走面が内周に形成された外方部材と、前記転走面と対向する転走面が外周に形成された内方部材と、両部材の対向する転走面間に介在した複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受において、
上記外方部材および内方部材のうちの固定側部材に、この固定側部材に接触して固定される2つ以上の接触固定部を有する歪み発生部材、およびこの歪み発生部材に取付けられてこの歪み発生部材の歪みを検出する2つ以上のセンサからなる荷重検出用センサ部を複数設けてなるセンサ組立品を備えたセンサ付車輪用軸受であって、
前記2つ以上のセンサの出力信号により、車輪用軸受に作用する荷重を推定する推定手段を設け、
前記複数の荷重検出用センサ部の歪み発生部材を、これら複数の荷重検出用センサ部に渡って連続した1つの帯状の歪み発生部材とし、この帯状の歪み発生部材における前記2つ以上の接触固定部を、前記固定側部材の外径面の同一軸方向位置でかつ円周方向に互いに離間した位置となるように配置し、
複数の荷重検出用センサ部を固定側部材の外周を囲む筒状の保護カバーで覆い、この保護カバーの軸方向のいずれか一端で前記固定側部材の外周に嵌合させ、他端の開口縁に弾性体からなる環状のシール部材を設け、このシール部材を前記固定側部材の表面、または上記外方部材および内方部材のうちの回転側部材の表面に接触させた、
ことを特徴とするセンサ付車輪用軸受。
An outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface formed on the outer periphery, and interposed between the opposing rolling surfaces of both members A double row rolling element, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A strain generating member having two or more contact fixing portions fixed to the fixed side member of the outer member and the inner member in contact with the fixed side member, and attached to the strain generating member. A sensor-equipped wheel bearing provided with a sensor assembly in which a plurality of load detection sensor portions including two or more sensors for detecting strain of a strain generating member are provided,
Estimating means for estimating a load acting on the wheel bearing is provided based on output signals of the two or more sensors,
The strain generating members of the plurality of load detecting sensor portions are used as one belt-like strain generating member continuous over the plurality of load detecting sensor portions, and the two or more contact fixings in the belt-shaped strain generating members are performed. The parts are arranged so as to be at the same axial position on the outer diameter surface of the fixed side member and at positions separated from each other in the circumferential direction,
A plurality of load detection sensors are covered with a cylindrical protective cover that surrounds the outer periphery of the fixed member, and is fitted to the outer periphery of the fixed member at one end in the axial direction of the protective cover. Provided with an annular sealing member made of an elastic body, and this sealing member was brought into contact with the surface of the stationary member, or the surface of the rotating member of the outer member and the inner member,
The wheel bearing with a sensor characterized by the above-mentioned.
請求項1において、前記1つの帯状の歪み発生部材を、その長手方向の複数箇所における、隣合う荷重検出用センサ部の間で屈曲させて、前記固定側部材に固定具で固定したセンサ付車輪用軸受。   2. The sensor-equipped wheel according to claim 1, wherein the one belt-like strain generating member is bent between adjacent load detection sensor portions at a plurality of locations in the longitudinal direction and fixed to the stationary member with a fixture. Bearings. 請求項1または請求項2において、前記固定側部材が車体への取付け用のフランジを外周に有し、前記固定側部材を軸受軸方向の正面側から見た形状が、軸受軸心と直交する線分に対して線対称となる形状、または軸受軸心を中心とする点対称となる形状であるセンサ付車輪用軸受。   3. The fixed side member according to claim 1, wherein the fixed side member has a flange for attachment to a vehicle body on an outer periphery, and the shape of the fixed side member viewed from the front side in the bearing axial direction is orthogonal to the bearing axis. A sensor-equipped wheel bearing having a shape that is line-symmetric with respect to a line segment or a shape that is point-symmetric about a bearing axis. 請求項1ないし請求項3のいずれか1項において、前記固定側部材の外径面における少なくとも前記複数の荷重検出用センサ部との接触部分に、耐食性または防食性を有する表面処理を施したセンサ付車輪用軸受。   4. The sensor according to claim 1, wherein a surface treatment having corrosion resistance or corrosion resistance is applied to at least a contact portion of the outer diameter surface of the fixed side member with the plurality of load detection sensor portions. Wheel bearing. 請求項4において、前記表面処理が金属メッキ、または塗装、またはコーティング処理であるセンサ付車輪用軸受。   The wheel bearing with sensor according to claim 4, wherein the surface treatment is metal plating, painting, or coating. 請求項1ないし請求項5のいずれか1項において、前記固定側部材が外方部材であり、前記回転側部材が前記内方部材であるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to any one of claims 1 to 5, wherein the stationary member is an outer member, and the rotating member is the inner member. 請求項1ないし請求項6のいずれか1項において、前記保護カバーのアウトボード側端を固定側部材の外周面に嵌合させ、前記保護カバーのインボード側端の開口縁に沿って前記環状の弾性体からなるリップ部を設け、このリップ部を、前記固定側部材に設けられたフランジのアウトボード側を向く側面、または前記固定側部材の外周面に接触させたセンサ付車輪用軸受。   7. The method according to claim 1, wherein an outboard side end of the protective cover is fitted to an outer peripheral surface of a fixed side member, and the annular shape is formed along an opening edge of the inboard side end of the protective cover. A sensor-equipped wheel bearing in which a lip portion made of an elastic body is provided, and the lip portion is brought into contact with a side surface facing the outboard side of a flange provided on the fixed side member or an outer peripheral surface of the fixed side member. 請求項7において、前記保護カバーのインボード側端部に、前記信号ケーブルの保護カバーからの引き出し部が引き出される孔部を設け、信号ケーブル引き出し部が前記孔部から引き出される部分にシール材を塗布したセンサ付車輪用軸受。   8. The inboard side end portion of the protective cover according to claim 7, wherein a hole portion from which the lead portion of the signal cable is drawn out from the protective cover is provided, and a sealing material is provided in a portion where the signal cable lead portion is drawn out from the hole portion. Coated wheel bearing with sensor. 請求項7または請求項8において、前記保護カバーのアウトボード側端を前記固定側部材よりもアウトボード側に突出させ、そのアウトボード側端と前記回転側部材との間に非接触シール隙間を形成したセンサ付車輪用軸受。   In Claim 7 or Claim 8, the outboard side end of the protective cover is projected to the outboard side from the fixed side member, and a non-contact seal gap is formed between the outboard side end and the rotating side member. Formed wheel bearing with sensor. 請求項9において、前記保護カバーのアウトボード側端を前記回転側部材に沿う形状としたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 9, wherein an outboard side end of the protective cover has a shape along the rotation side member. 請求項1ないし請求項6のいずれか1項において、前記保護カバーのインボード側端を前記固定側部材に設けられた車体への取付用のフランジの外径面に嵌合させ、前記保護カバーのアウトボード側端の開口縁に沿って前記環状の弾性体からなるリップ部を設け、このリップ部を前記固定側部材の外周面、または前記外方部材および内方部材のうちの回転側部材の表面に接触させたセンサ付車輪用軸受。   7. The protective cover according to claim 1, wherein an inboard side end of the protective cover is fitted to an outer diameter surface of a flange for mounting on a vehicle body provided on the fixed side member. A lip portion made of the annular elastic body is provided along an opening edge of the outboard side end of the outer board, and the lip portion is an outer peripheral surface of the fixed side member or a rotation side member of the outer member and the inner member. Wheel bearing with sensor in contact with the surface. 請求項11において、前記リップ部は、先端がアウトボード側に向かって次第に縮径して延びる形状であり、このリップ部を前記固定側部材の外周面に接触させたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 11, wherein the lip portion has a shape in which a tip is gradually reduced in diameter toward the outboard side, and the lip portion is brought into contact with an outer peripheral surface of the fixed side member. 請求項11または請求項12において、前記リップ部の一部を前記保護カバーの外周面の一部にまで延長してカバー外周面被覆部分としたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 11 or 12, wherein a part of the lip portion is extended to a part of the outer peripheral surface of the protective cover to form a cover outer peripheral surface covering portion. 請求項13において、前記リップ部のカバー外周面被覆部分の外周面を、アウトボード側に向かって拡径する傾斜面としたセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 13, wherein the outer peripheral surface of the cover outer peripheral surface covering portion of the lip portion is an inclined surface whose diameter increases toward the outboard side. 請求項11ないし請求項14のいずれか1項において、前記保護カバーのアウトボード側端を前記固定側部材よりもアウトボード側に突出させ、そのアウトボード側端と前記回転側部材との間に非接触シール隙間を形成したセンサ付車輪用軸受。   15. The outboard side end of the protective cover is protruded more to the outboard side than the fixed side member according to claim 11, and between the outboard side end and the rotating side member. Bearing for sensor wheel with non-contact seal gap. 請求項11において、前記回転側部材は車輪取付用のハブフランジを有し、このハブフランジのインボード側を向く側面に前記リップ部を接触させたセンサ付車輪用軸受。   12. The sensor-equipped wheel bearing according to claim 11, wherein the rotation side member has a hub flange for wheel attachment, and the lip portion is brought into contact with a side surface of the hub flange facing the inboard side. 請求項7ないし請求項16のいずれか1項において、前記荷重検出用センサ部と、この荷重検出用センサ部の出力信号を処理する信号処理用ICと、処理された前記出力信号を軸受外部へ取り出す信号ケーブルとを含む電子部品をリング状に接続してなるセンサ組立品を、前記固定側部材の外周面に固定側部材と同心に取付けると共に、このセンサ組立品を前記保護カバーで覆ったセンサ付車輪用軸受。   17. The load detection sensor unit, a signal processing IC that processes an output signal of the load detection sensor unit, and the processed output signal to the outside of the bearing according to claim 7. A sensor assembly formed by connecting electronic components including a signal cable to be taken out in a ring shape is attached to the outer peripheral surface of the fixed side member concentrically with the fixed side member, and the sensor assembly is covered with the protective cover. Wheel bearing. 請求項7ないし請求項18のいずれか1項において、前記保護カバーが、耐食性を有する鋼板をプレス加工した成形品であるセンサ付車輪用軸受。   The wheel bearing with sensor according to any one of claims 7 to 18, wherein the protective cover is a molded product obtained by pressing a steel plate having corrosion resistance. 請求項7ないし請求項18のいずれか1項において、前記保護カバーが、耐食性を有する鋼板をプレス加工し、その表面に金属メッキまたは塗装処理を施したものであるセンサ付車輪用軸受。   19. The sensor-equipped wheel bearing according to any one of claims 7 to 18, wherein the protective cover is obtained by pressing a steel plate having corrosion resistance and performing metal plating or coating treatment on a surface thereof. 請求項6ないし請求項19のいずれか1項において、前記リップ部を前記保護カバーに一体形成したセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to any one of claims 6 to 19, wherein the lip portion is integrally formed with the protective cover. 請求項20において、前記前記リップ部を構成する弾性体がゴム材料からなるセンサ付車輪用軸受。   The sensor-equipped wheel bearing according to claim 20, wherein the elastic body constituting the lip portion is made of a rubber material. 請求項1ないし請求項21のいずれか1項において、前記推定手段は、前記2つ以上のセンサの出力信号の差分から、出力信号の振幅または振幅に相当する値を演算するものであるセンサ付車輪用軸受。   22. The sensor-equipped device according to claim 1, wherein the estimation unit calculates an amplitude of an output signal or a value corresponding to the amplitude from a difference between output signals of the two or more sensors. Wheel bearing. 請求項22において、前記推定手段は、出力信号の差分から信号の絶対値を生成し、そのピーク値または直流成分を、出力信号の振幅相当値とするものであるセンサ付車輪用軸受。   23. The sensor-equipped wheel bearing according to claim 22, wherein the estimating means generates an absolute value of the signal from the difference between the output signals, and uses the peak value or the direct current component as a value corresponding to the amplitude of the output signal. 請求項22において、前記推定手段は、出力信号の差分から信号の実効値を演算し、その値を出力信号の振幅相当値とするものであるセンサ付車輪用軸受。   23. The wheel bearing with sensor according to claim 22, wherein the estimating means calculates an effective value of the signal from the difference between the output signals and sets the value as a value corresponding to the amplitude of the output signal. 請求項22において、前記推定手段は、出力信号の差分から、その振動周期の一周期以上の時間区間内における最大値と最小値を求め、その値を出力信号の振幅相当値とするものであるセンサ付車輪用軸受。   In Claim 22, the said estimation means calculates | requires the maximum value and minimum value in the time interval more than one period of the vibration period from the difference of an output signal, and makes the value the amplitude equivalent value of an output signal. Wheel bearing with sensor. 請求項1ないし請求項25のいずれか1項において、前記2つ以上の接触固定部のうち、前記固定側部材の外径面の円周方向配列の両端に位置する2つの接触固定部の間隔を、転動体の配列ピッチと同一としたセンサ付車輪用軸受。   26. The distance between two contact fixing portions located at both ends of a circumferential arrangement of outer diameter surfaces of the fixed side member among the two or more contact fixing portions according to any one of claims 1 to 25. Is a sensor-equipped wheel bearing with the same arrangement pitch as the rolling elements. 請求項1ないし請求項12のいずれか1項において、前記2つ以上のセンサにおける隣り合うセンサ間の前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値としたセンサ付車輪用軸受。   The distance between the adjacent sensors in the two or more sensors in the circumferential direction of the outer diameter surface of the fixed side member in the circumferential direction of the rolling element according to any one of claims 1 to 12 is { Sensor-equipped wheel bearing with 1/2 + n (n: integer)} times or a value approximated to these values. 請求項1ないし請求項27のいずれか1項において、前記荷重検出用センサ部は3つの接触固定部と2つのセンサを有し、隣り合う第1および第2の接触固定部の間、および隣り合う第2および第3の接触固定部の間に各センサをそれぞれ取付けたセンサ付車輪用軸受。   28. The load detection sensor unit according to claim 1, wherein the load detection sensor unit includes three contact fixing units and two sensors, and between and adjacent to the adjacent first and second contact fixing units. A sensor-equipped wheel bearing in which each sensor is mounted between the matching second and third contact fixing portions. 請求項28において、隣り合う接触固定部もしくは隣り合うセンサの前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値としたセンサ付車輪用軸受。   In Claim 28, the space | interval about the circumferential direction of the outer diameter surface of the said fixed side member of an adjacent contact fixing | fixed part or an adjacent sensor is {1/2 + n (n: integer)} times the arrangement pitch of rolling elements, or Sensor-equipped wheel bearing with values approximate to these values. 請求項1ないし請求項29のいずれか1項において、前記歪み発生部材は、平面概形が均一幅の帯状、または平面概形が帯状で側辺部に切欠き部を有する薄板材からなるセンサ付車輪用軸受。   30. The sensor according to any one of claims 1 to 29, wherein the strain generating member is formed of a thin plate having a strip shape with a uniform planar plane shape or a strip shape with a planar plan shape having a notch portion on a side side. Wheel bearing. 請求項1ないし請求項31のいずれか1項において、前記荷重検出用センサ部を、タイヤ接地面に対して上下位置および左右位置となる前記固定側部材の外径面の上面部、下面部、右面部、および左面部に配置したセンサ付車輪用軸受。   The upper surface portion, the lower surface portion, and the lower surface portion of the outer diameter surface of the fixed side member, wherein the load detection sensor portion is in a vertical position and a horizontal position with respect to a tire ground contact surface. Sensor-equipped wheel bearings arranged on the right and left surfaces. 請求項1ないし請求項17のいずれか1項において、前記推定手段は、さらに前記2つ以上のセンサの出力信号の和も用いて、車輪用軸受に作用する荷重を推定するセンサ付車輪用軸受。   18. The sensor-equipped wheel bearing according to claim 1, wherein the estimation means further estimates a load acting on the wheel bearing using a sum of output signals of the two or more sensors. . 請求項1ないし請求項28のいずれか1項において、前記荷重検出用センサ部における前記歪み発生部材の接触固定部が3つであり、
前記帯状の歪み発生部材における前記3つの接触固定部を、前記固定側部材の外径面の同一軸方向位置でかつ円周方向に互いに離間した位置となるように配置し、隣り合う前記接触固定部の間隔または隣り合う前記センサの前記固定側部材の外径面の円周方向についての間隔を、転動体の配列ピッチの{1/2+n(n:整数)}倍またはこれらの値に近似した値とし、前記推定手段は、前記2つのセンサの出力信号の差分により、車輪用軸受に作用する荷重を推定するセンサ付車輪用軸受。
In any one of Claims 1 thru | or 28, the contact fixing | fixed part of the said distortion generation member in the said sensor part for load detection is three,
The three contact fixing portions of the belt-shaped strain generating member are arranged so as to be in the same axial direction position on the outer diameter surface of the fixed side member and spaced apart from each other in the circumferential direction, and the adjacent contact fixing portions. The interval in the circumferential direction of the outer diameter surface of the fixed side member of the sensor adjacent to each other or the adjacent sensor is {1/2 + n (n: integer)} times the arrangement pitch of the rolling elements or approximate to these values The sensor-equipped wheel bearing is configured to estimate a load acting on the wheel bearing based on a difference between output signals of the two sensors.
請求項1ないし請求項33のいずれか1項において、前記保護カバーのいずれか一端で前記固定側部材の外周に嵌合させた前記シール部材が、リップ部であるセンサ付車輪用軸受。   34. The sensor-equipped wheel bearing according to claim 1, wherein the seal member fitted to the outer periphery of the stationary member at one end of the protective cover is a lip portion. 請求項1ないし請求項33のいずれか1項において、前記保護カバーのいずれか一端で前記固定側部材の外周に嵌合させた前記シール部材が、Oリングであるセンサ付車輪用軸受。   34. The sensor-equipped wheel bearing according to any one of claims 1 to 33, wherein the seal member fitted to the outer periphery of the stationary member at one end of the protective cover is an O-ring. 請求項1ないし請求項35のいずれか1項に記載のセンサ付車輪用軸受の組立方法であって、前記固定側部材の単体の状態、または固定側部材に前記転動体を組み付けた状態で、前記固定側部材の外周面に、複数の荷重検出用センサ部を構成した前記帯状の歪み発生部材を取付け、前記保護カバーを固定側部材の外周面に圧入した後、軸受を組み立てることを特徴とするセンサ付車輪用軸受の組立方法。   36. A method of assembling a sensor-equipped wheel bearing according to any one of claims 1 to 35, wherein the stationary member is a single member or the rolling member is assembled to the stationary member. The belt-shaped strain generating member constituting a plurality of load detection sensor portions is attached to the outer peripheral surface of the fixed side member, the bearing is assembled after the protective cover is press-fitted into the outer peripheral surface of the fixed side member. Assembly method for wheel bearing with sensor. 請求項1ないし請求項35のいずれか1項に記載のセンサ付車輪用軸受を備えたインホイール型モータ内蔵車輪用軸受装置。   36. An in-wheel type motor-integrated wheel bearing device comprising the sensor-equipped wheel bearing according to any one of claims 1 to 35.
JP2012104317A 2011-05-09 2012-05-01 Sensor-equipped wheel bearing Pending JP2012255544A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012104317A JP2012255544A (en) 2011-05-16 2012-05-01 Sensor-equipped wheel bearing
CN201280022558.9A CN103502786B (en) 2011-05-09 2012-05-08 Sensor-equipped wheel bearing
EP12782455.5A EP2708865B1 (en) 2011-05-09 2012-05-08 Sensor-equipped wheel bearing
US14/115,668 US9011013B2 (en) 2011-05-09 2012-05-08 Sensor-equipped wheel bearing
PCT/JP2012/061713 WO2012153721A1 (en) 2011-05-09 2012-05-08 Sensor-equipped wheel bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011108949 2011-05-16
JP2011108949 2011-05-16
JP2012104317A JP2012255544A (en) 2011-05-16 2012-05-01 Sensor-equipped wheel bearing

Publications (1)

Publication Number Publication Date
JP2012255544A true JP2012255544A (en) 2012-12-27

Family

ID=47527275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104317A Pending JP2012255544A (en) 2011-05-09 2012-05-01 Sensor-equipped wheel bearing

Country Status (1)

Country Link
JP (1) JP2012255544A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145953A (en) * 2016-02-19 2017-08-24 Ntn株式会社 Wheel bearing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632735U (en) * 1992-09-30 1994-04-28 エヌティエヌ株式会社 Rolling bearing with sensor
JP2007032705A (en) * 2005-07-27 2007-02-08 Jtekt Corp Roller bearing device with sensor, and strain sensor
WO2009125583A1 (en) * 2008-04-10 2009-10-15 Ntn株式会社 Wheel bearing with sensor
JP2010127744A (en) * 2008-11-27 2010-06-10 Jtekt Corp Displacement sensor apparatus and roller bearing apparatus
JP2010139303A (en) * 2008-12-10 2010-06-24 Ntn Corp Sensor-equipped bearing for wheel
JP2010180895A (en) * 2009-02-03 2010-08-19 Ntn Corp Sensor-equipped bearing for wheel
WO2011046095A1 (en) * 2009-10-14 2011-04-21 Ntn株式会社 Wheel bearing with sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632735U (en) * 1992-09-30 1994-04-28 エヌティエヌ株式会社 Rolling bearing with sensor
JP2007032705A (en) * 2005-07-27 2007-02-08 Jtekt Corp Roller bearing device with sensor, and strain sensor
WO2009125583A1 (en) * 2008-04-10 2009-10-15 Ntn株式会社 Wheel bearing with sensor
JP2010127744A (en) * 2008-11-27 2010-06-10 Jtekt Corp Displacement sensor apparatus and roller bearing apparatus
JP2010139303A (en) * 2008-12-10 2010-06-24 Ntn Corp Sensor-equipped bearing for wheel
JP2010180895A (en) * 2009-02-03 2010-08-19 Ntn Corp Sensor-equipped bearing for wheel
WO2011046095A1 (en) * 2009-10-14 2011-04-21 Ntn株式会社 Wheel bearing with sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017145953A (en) * 2016-02-19 2017-08-24 Ntn株式会社 Wheel bearing device

Similar Documents

Publication Publication Date Title
WO2012153721A1 (en) Sensor-equipped wheel bearing
WO2011148846A1 (en) Sensor-equipped wheel bearing
WO2011046095A1 (en) Wheel bearing with sensor
US7882752B2 (en) Sensor-equipped bearing for wheel
US8596146B2 (en) Sensor-equipped bearing for wheel
JP5274343B2 (en) Wheel bearing with sensor
US8439568B2 (en) Wheel support bearing assembly equipped with sensor
WO2010044228A1 (en) Sensor-equipped bearing for wheel
EP1939598A1 (en) Sensor-equipped bearing for wheel
JP5171589B2 (en) Wheel bearing with sensor
JP5153373B2 (en) Wheel bearing with sensor
JP5409336B2 (en) Wheel bearing with sensor
JP5615033B2 (en) In-wheel motor drive device
JP2012255544A (en) Sensor-equipped wheel bearing
JP5511304B2 (en) Wheel bearing with sensor
JP5571460B2 (en) Wheel bearing with sensor
JP6067241B2 (en) Wheel bearing with sensor
JP5484204B2 (en) Wheel bearing with sensor
JP5571455B2 (en) Wheel bearing with sensor
JP2012242273A (en) Wheel bearing with sensors
JP2010242921A (en) Wheel bearing with sensor
JP2010180895A (en) Sensor-equipped bearing for wheel
JP2010138958A (en) Bearing for wheel with sensor
JP2011252791A (en) Wheel bearing with sensor
JP2014001822A (en) Wheel bearing device with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160719