[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012250193A - Granule sorting device - Google Patents

Granule sorting device Download PDF

Info

Publication number
JP2012250193A
JP2012250193A JP2011125568A JP2011125568A JP2012250193A JP 2012250193 A JP2012250193 A JP 2012250193A JP 2011125568 A JP2011125568 A JP 2011125568A JP 2011125568 A JP2011125568 A JP 2011125568A JP 2012250193 A JP2012250193 A JP 2012250193A
Authority
JP
Japan
Prior art keywords
light
granular material
light receiving
reflected light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011125568A
Other languages
Japanese (ja)
Other versions
JP5795498B2 (en
Inventor
Naoto Ikeda
直人 池田
Naruaki Yamahara
成晃 山原
Akio Matsui
昭男 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2011125568A priority Critical patent/JP5795498B2/en
Priority to TW101105853A priority patent/TWI487575B/en
Priority to KR1020120019593A priority patent/KR101393127B1/en
Priority to CN201210057980.XA priority patent/CN102806208B/en
Publication of JP2012250193A publication Critical patent/JP2012250193A/en
Application granted granted Critical
Publication of JP5795498B2 publication Critical patent/JP5795498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • B07C5/3425Sorting according to other particular properties according to optical properties, e.g. colour of granular material, e.g. ore particles, grain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/36Sorting apparatus characterised by the means used for distribution
    • B07C5/363Sorting apparatus characterised by the means used for distribution by means of air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N2021/8592Grain or other flowing solid samples

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sorting Of Articles (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a granule sorting device which can precisely perform granule discriminating process to discriminate whether a granule is an object to be separated, in such a state that the discriminating operation is less troublesome.SOLUTION: This granule sorting device comprises the following components: (1) a reflected light receiving means 5A on one side which is positioned on one side to a measurement target site J, as viewed in the granule conveying direction, and receives the reflected light; (2) a reflected light receiving means 5B on the other side which is positioned on the other side to the measurement target site J and receives the reflected light; (3) a transmitted light receiving means 5C which is positioned on the other side to the measurement target site J, and receives the transmitted light; (4) one side illuminating means 4A for illuminating a reflected light measurement site J1; and (5) the other side illuminating means 4B which is positioned on the other side to the measurement target site J, as viewed in the granule conveying direction and illuminates the reflected light measurement site. The granule discriminating process is performed based on pieces of detection information, each from the reflected light receiving means 5A on the one side, the reflected light receiving means 5B on the other side and the transmitted light receiving means 5C.

Description

本発明は、粒状体群を計測対象箇所を通過させるように移送する移送手段と、前記計測対象箇所における粒状体からの光を受光する受光手段と、前記計測対象箇所を照明する照明手段と、前記受光手段の受光情報に基づいて分離対象となる粒状体であるか否かを判別する粒状体判別処理を実行する評価処理手段とが設けられた粒状体選別装置に関する。   The present invention comprises a transfer means for transferring the granular material group so as to pass through the measurement target location, a light receiving means for receiving light from the granular material at the measurement target location, and an illumination means for illuminating the measurement target location, The present invention relates to a granular material sorting apparatus provided with evaluation processing means for executing granular material discrimination processing for determining whether or not a granular material is a separation target based on light reception information of the light receiving means.

上記粒状体選別装置として、従来では、次のように構成されたものがあった。
すなわち、前記照明手段として、粒状体の移送方向視において計測対象箇所に対して一方側(具体的には、計測対象箇所に対して装置前部側)に位置する一方側照明手段と、粒状体の移送方向視において計測対象箇所に対して、前記一方側の箇所とは180度異なる他方側(具体的には、計測対象箇所に対して装置後部側)に位置する他方側照明手段とが備えられ、前記受光手段として、粒状体の移送方向視において計測対象箇所に対して一方側(装置前部側)に位置して粒状体からの反射光を受光する一方側の受光手段と、粒状体の移送方向視において計測対象箇所に対して前記一方側の箇所とは180度異なる他方側(装置後部側)に位置して反射光を受光する他方側の受光手段とが備えられて、一方側照明手段と他方側照明手段とが共に作動する状態にして、一方側受光装置及び他方側受光装置の夫々において、計測対象箇所に位置する粒状体にて反射した光を受光して、その受光情報に基づいて粒状体判別処理を実行する第1の計測状態と、一方側照明手段と他方側照明手段のうちのいずれかを非作動状態にして、一方側受光装置と他方側受光装置のうちの、いずれか一方の受光装置により粒状体を透過した透過光を受光し、他方の受光装置により粒状体が反射した反射光を受光するようにして、それらの受光情報に基づいて粒状体判別処理を実行する第2の計測状態とに切り換えるようにしたものがあった(例えば、特許文献1参照。)。
Conventionally, the granular material sorting apparatus has been configured as follows.
That is, as the illuminating means, the one-side illuminating means positioned on one side with respect to the measurement target position (specifically, on the front side of the apparatus with respect to the measurement target position) in the moving direction of the granular material, and the granular material The other illumination means located on the other side (specifically, on the rear side of the apparatus with respect to the measurement target location) that is 180 degrees different from the location on the one side with respect to the measurement target location in the transfer direction view The light receiving means is a light receiving means on one side for receiving reflected light from the granular material located on one side (the front side of the apparatus) with respect to the measurement target position in the moving direction of the granular material, and the granular material And a light receiving means on the other side that receives reflected light and is located on the other side (the rear side of the apparatus) that is 180 degrees different from the position on the one side with respect to the position to be measured. The lighting means and the other side lighting means In the operating state, each of the one side light receiving device and the other side light receiving device receives light reflected by the granular material located at the measurement target location, and executes the granular material discrimination processing based on the received light information. The first measurement state and any one of the one side illumination means and the other side illumination means are inactivated, and the granular material is formed by any one of the one side light reception device and the other side light reception device. Is switched to the second measurement state in which the granular material discrimination processing is executed based on the received light information so that the reflected light reflected by the granular material is received by the other light receiving device. There was what was made like this (for example, refer patent document 1).

上記構成は、第1の計測状態では、分離対象となる粒状体として、光反射率が適正範囲を外れている粒状体を検出することができ、第2の計測状態では、分離対象となる粒状体として、光透過率が適正範囲を外れている粒状体を検出することができるようにしたものである。   The above configuration can detect a granular material whose light reflectance is outside the appropriate range as a granular material to be separated in the first measurement state, and a granular material to be separated in the second measurement state. As a body, it is possible to detect a granular body whose light transmittance is out of an appropriate range.

特開2007−330880号公報JP 2007-330880 A

上記従来構成では、上述したような光反射率が適正範囲を外れている粒状体や光透過率が適正範囲を外れている粒状体を検出するためには、上記したような異なる2つの計測状態の夫々に切り換えて、各別に、移送手段により粒状体群を移送させながら粒状体判別処理を実行するという作業を行わなければならず、作業能率の低下を招く不利があった。   In the above conventional configuration, in order to detect a granular material whose light reflectance is outside the proper range and a granular material whose light transmittance is outside the proper range, two different measurement states as described above are used. Therefore, it is necessary to perform the operation of executing the granular material discrimination process while transferring the granular material group by the transfer means, which has a disadvantage in that the work efficiency is lowered.

説明を加えると、例えば、第1の計測状態に切り換えて、一方側受光装置及び他方側受光装置の夫々にて粒状体で反射した光を受光して粒状体判別処理を実行することにより、光反射率が適正範囲を外れている粒状体を検出する。そして、次に、第2の計測状態に切り換えて、第1の計測状態で光反射率が適正範囲を外れていなかった粒状体群を対象として、いずれか一方の受光装置により粒状体を透過した透過光を受光して粒状体判別処理を実行することにより光透過率が適正範囲を外れている粒状体を検出することになる。
このように第1計測状態と第2計測状態とに切り換えて粒状体判別処理を行う必要があり、作業能率の低下を招く不利があった。
For example, by switching to the first measurement state and receiving the light reflected by the granular material in each of the one side light receiving device and the other side light receiving device and executing the granular material discrimination processing, A granular material whose reflectance is outside the proper range is detected. And then, switching to the second measurement state, the granular material whose light reflectance was not outside the appropriate range in the first measurement state was transmitted through the granular material by any one of the light receiving devices. By receiving the transmitted light and executing the granular material discrimination process, the granular material whose light transmittance is outside the appropriate range is detected.
Thus, it is necessary to switch between the first measurement state and the second measurement state to perform the granular material discrimination processing, which has a disadvantage that causes a reduction in work efficiency.

ところで、上記したような構成に代えて、例えば、照明手段として、一方側照明手段と他方側照明手段のうちのいずれか一方だけを備えて、一方側受光装置と他方側受光装置のうちのいずれか一方が計測対象箇所に位置する粒状体にて反射した光を受光し、他方が計測対象箇所に位置する粒状体を透過した光を受光するようにして、一方側受光装置と他方側受光装置夫々の受光情報に基づいて粒状体判別処理を実行する構成が考えられるが、この構成では、一方側受光装置と他方側受光装置のうちのいずれかのものだけが、粒状体からの反射光を計測するものとなるので、粒状体の表面のうち、粒状体の移送方向視において計測対象箇所に対して一方側の表面あるいは他方側の表面のうちのいずれか片側からの反射光の情報が得られないものとなり、分離対象となる粒状体であるか否かを判別する粒状体判別処理を精度よく行えない不利がある。   By the way, instead of the configuration as described above, for example, as the illuminating means, only one of the one side illuminating means and the other side illuminating means is provided, and one of the one side light receiving device and the other side light receiving device is provided. One of the light receiving devices and the other light receiving device are configured such that one of them receives the light reflected by the granular material positioned at the measurement target location, and the other receives the light transmitted through the granular material positioned at the measurement target location. A configuration for executing the granular material determination processing based on the respective light reception information is conceivable, but in this configuration, only one of the one side light receiving device and the other side light receiving device can reflect the reflected light from the granular material. Since it is to be measured, information on the reflected light from either one of the surface on the one side or the surface on the other side of the surface of the granular material with respect to the measurement target position is obtained from the surface of the granular material. What can not be It, there is a disadvantage that not be the granulate determination process for determining whether a granular material to be separated accurately.

本発明の目的は、作業能率の低下を招くことのない状態で、分離対象となる粒状体であるか否かを判別する粒状体判別処理を精度よく行うことが可能となる粒状体選別装置を提供する点にある。   It is an object of the present invention to provide a granular material sorting apparatus capable of accurately performing granular material discrimination processing for determining whether or not a granular material is a separation target in a state where work efficiency is not reduced. The point is to provide.

本発明に係る粒状体選別装置は、粒状体群を計測対象箇所を通過させるように移送する移送手段と、前記計測対象箇所における粒状体からの光を受光する受光手段と、前記計測対象箇所を照明する照明手段と、前記受光手段の受光情報に基づいて分離対象となる粒状体であるか否かを判別する粒状体判別処理を実行する評価処理手段とが設けられたものであって、その第1特徴構成は、
前記計測対象箇所として、粒状体の表面で反射した反射光を計測するための反射光計測箇所と、粒状体を透過した透過光を受光するための透過光計測箇所とが、粒状体の移送方向に位置を異ならせる状態で設定され、
前記受光手段が、粒状体の移送方向視において前記計測対象箇所に対して一方側に位置して前記反射光を受光する一方側の反射光受光手段と、粒状体の移送方向視において前記計測対象箇所に対して前記一方側の箇所とは180度異なる他方側に位置して前記反射光を受光する他方側の反射光受光手段と、前記計測対象箇所の一方側又は他方側のいずれかに位置して前記透過光を受光する透過光受光手段とを備えて構成され、
前記照明手段が、粒状体の移送方向視において前記計測対象箇所に対して前記一方側に位置して前記反射光計測箇所を照明する一方側照明手段と、粒状体の移送方向視において前記計測対象箇所に対して前記他方側に位置して前記反射光計測箇所を照明する他方側照明手段と、前記計測対象箇所の一方側又は他方側のうち前記透過光受光装置とは反対側に位置して透過光計測箇所を照明する透過光照明手段とを備えて構成され、
前記評価処理手段が、前記一方側の反射光受光手段、前記他方側の反射光受光手段、及び、前記透過光受光手段夫々の検出情報に基づいて、前記粒状体判別処理を実行するように構成されている点にある。
The granular material sorting apparatus according to the present invention includes a transfer means for transferring a granular material group so as to pass through a measurement target location, a light receiving means for receiving light from the granular material at the measurement target location, and the measurement target location. Illuminating means for illuminating and evaluation processing means for executing a granular material determination process for determining whether or not the granular material is a separation target based on light reception information of the light receiving means. The first characteristic configuration is
The measurement target location includes a reflected light measurement location for measuring the reflected light reflected from the surface of the granular material and a transmitted light measurement location for receiving the transmitted light that has passed through the granular material, in the direction in which the granular material is transferred. Is set in a different position,
The light receiving means is located on one side with respect to the measurement target position in the granular material transfer direction view and receives the reflected light, and the measurement target in the granular material transfer direction view. The other side reflected light receiving means for receiving the reflected light located on the other side 180 degrees different from the one side location with respect to the location, and located on one side or the other side of the measurement target location And a transmitted light receiving means for receiving the transmitted light,
The illuminating means is located on the one side with respect to the measurement target location in the granular material transfer direction view and illuminates the reflected light measurement location, and the measurement target in the granular material transfer direction view The other side illuminating means for illuminating the reflected light measurement point located on the other side with respect to the point, and one side or the other side of the measurement target point located on the opposite side to the transmitted light receiving device A transmitted light illuminating means for illuminating the transmitted light measurement point,
The evaluation processing means is configured to execute the granular material determination process based on detection information of each of the reflected light receiving means on the one side, the reflected light receiving means on the other side, and the transmitted light receiving means. It is in the point.

すなわち、一方側照明手段及び他方側照明手段のうちの、透過光受光手段が存在する側とは反対側のものが、透過光照明手段として、透過光計測箇所を照明して、透過光計測箇所からの光を透過光受光手段が受光することになり、そして、遮光部材の遮光作用によって、一方側照明手段及び他方側照明手段のうちの、透過光受光手段が存在する側のものが反射光計測箇所を照明することにより、反射光計測箇所の粒状体から反射した光が透過光受光手段に受光されることや、一方側照明手段及び他方側照明手段のうちの、透過光受光手段が存在する側のものの照明光が、透過光計測箇所に到達することが阻止されることになるから、反射光計測箇所と透過光計測箇所とを、粒状体群の移送方向に近づけるようにした状態で、反射光や透過光による粒状体判別処理を行わせることができるものとなる。   That is, of the one side illuminating means and the other side illuminating means, the side opposite to the side where the transmitted light receiving means exists is used as the transmitted light illuminating means to illuminate the transmitted light measurement location and transmit The transmitted light receiving means receives the light from the light, and the light on the side where the transmitted light receiving means is present is reflected by the light shielding action of the light shielding member. By illuminating the measurement location, the light reflected from the granular material at the reflected light measurement location is received by the transmitted light receiving device, or there is a transmitted light receiving device among the one side illumination device and the other side illumination device. Therefore, the reflected light measurement point and the transmitted light measurement point are brought close to the transfer direction of the granular material group. , Reflected light and transmitted light It becomes capable to perform that granulate determination process.

つまり、一方側照明手段の照明光や他方側照明手段の照明光は、粒状体群の移送方向に沿う幅が反射光計測箇所に近づくほど狭くなる光束状に投射されて、反射光計測箇所を効率良く照明することになるが、一方側照明手段の照明光や他方側照明手段の照明光の投射領域内に、反射光計測箇所に加えて透過光計測箇所を位置させるようにして、反射光計測箇所と透過光計測箇所とを、粒状体群の移送方向に近づけるようにした状態で、反射光や透過光による粒状体判別処理を行わせることができるのである。   That is, the illumination light of the one side illumination means and the illumination light of the other side illumination means are projected in a light beam shape that becomes narrower as the width along the transport direction of the granular material group approaches the reflected light measurement place, and the reflected light measurement place is Although it will illuminate efficiently, in addition to the reflected light measurement location, the reflected light measurement location is positioned in the projection area of the illumination light of the one side illumination means and the illumination light of the other side illumination means, and the reflected light In the state where the measurement location and the transmitted light measurement location are close to the transport direction of the granular material group, it is possible to perform the granular material discrimination processing using reflected light or transmitted light.

説明を加えると、反射光や透過光による粒状体判別処理を行わせるにあたり、反射光計測箇所と透過光計測箇所とを、粒状体群の移送方向に沿って十分に大きく離間させるようにすれば、一方側照明手段及び他方側照明手段のうちの、透過光受光手段が存在する側とは反対側のものが、透過光計測箇所を照明することを回避し、また、一方側照明手段及び他方側照明手段のうちの、透過光受光手段が存在する側のものが反射光計測箇所を照明することにより、反射光計測箇所の粒状体から反射した光が透過光受光手段に受光されることや、一方側照明手段及び他方側照明手段のうちの、透過光受光手段が存在する側のものの照明光が、透過光計測箇所に到達することを回避することが可能となる。   In other words, when performing the granular material discrimination process using reflected light or transmitted light, the reflected light measurement location and the transmitted light measurement location are sufficiently separated along the transport direction of the granular material group. Of the one side illumination means and the other side illumination means, the side opposite to the side where the transmitted light receiving means is present avoids illuminating the transmitted light measurement point, and the one side illumination means and the other side Of the side illumination means, the side where the transmitted light receiving means is present illuminates the reflected light measurement location, so that the light reflected from the granular material at the reflected light measurement location is received by the transmitted light receiving means. Of the one side illuminating means and the other side illuminating means, it is possible to avoid the illumination light on the side where the transmitted light receiving means is present from reaching the transmitted light measurement location.

しかしながら、この場合には、装置のコンパクト化を図り難い不都合があるばかりでなく、粒状体群から分離対象となる粒状体を分離する分離手段を設けるにあたり、反射光計測箇所に対応する分離手段と、透過光計測箇所に対応する分離手段とを各別に設置することになる等により、装置構成が複雑になる虞がため、反射光計測箇所と透過光計測箇所とを、粒状体群の移送方向に近づけるようにすることが望まれるものとなるのである。   However, in this case, there is not only inconvenience that it is difficult to reduce the size of the apparatus, but also in the provision of separation means for separating the granular material to be separated from the granular material group, separation means corresponding to the reflected light measurement location and Since the apparatus configuration may be complicated due to the separate installation of the separating means corresponding to the transmitted light measurement location, the reflected light measurement location and the transmitted light measurement location are moved in the direction in which the granular material group is transferred. Therefore, it is desirable to make it closer to.

したがって、第2特徴構成によれば、反射光計測箇所と透過光計測箇所とを、粒状体群の移送方向に近づけるようにした状態で、反射光や透過光による粒状体判別処理を行わせることができるようになった。   Therefore, according to the second characteristic configuration, it is possible to perform the granular material discrimination process using the reflected light or the transmitted light in a state where the reflected light measurement location and the transmitted light measurement location are close to the transfer direction of the granular material group. Can now.

本発明の第2特徴構成は、第1特徴構成に加えて、前記一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側のものが前記反射光計測箇所を照明して粒状体から反射した反射光が前記透過光受光手段にて受光されることを阻止し、且つ、前記一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側のものの照明光が前記透過光計測箇所に達するのを阻止すべく、前記反射光及び前記照明光を遮光する遮光部材が設けられ、
前記一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側とは反対側のものが、前記透過光照明手段として、前記透過光計測箇所を照明するように構成されている点にある。
According to a second characteristic configuration of the present invention, in addition to the first characteristic configuration, the one on the side where the transmitted light receiving means is present illuminates the reflected light measurement portion among the one side illumination means and the other side illumination means. The reflected light reflected from the granular material is prevented from being received by the transmitted light receiving means, and the one on the side where the transmitted light receiving means is present among the one side illumination means and the other side illumination means. In order to prevent illumination light from reaching the transmitted light measurement location, a light shielding member that shields the reflected light and the illumination light is provided,
Of the one side illumination means and the other side illumination means, the one opposite to the side where the transmitted light receiving means is present is configured to illuminate the transmitted light measurement location as the transmitted light illumination means. There is in point.

すなわち、一方側照明手段及び他方側照明手段のうち透過光受光手段が存在する側のものが反射光計測箇所を照明して粒状体から反射した反射光が透過光受光手段にて受光されることを阻止し、且つ、一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側のものの照明光が前記透過光計測箇所に達するのを阻止すべく、前記反射光及び前記照明光を遮光する遮光部材を設けるようにしたから、反射光計測箇所と透過光計測箇所とを、一方側照明手段及び他方側照明手段の投射領域内に位置するように、粒状体の移送方向に沿って近づけた状態で設定するようにしても、一方側照明手段及び他方側照明手段のうち透過光受光手段が存在する側のものの照明光が透過光計測箇所に投射されることや、一方側照明手段及び他方側照明手段のうち透過光受光手段が存在する側のものが反射光計測箇所を照明して粒状体から反射した反射光が透過光受光手段にて受光されることを阻止することができる。   That is, the reflected light reflected from the granular material is illuminated by the transmitted light receiving means on the side where the transmitted light receiving means exists among the one side illumination means and the other side illumination means. And the reflected light and the other side illuminating means and the other side illuminating means on the side where the transmitted light receiving means exists are prevented from reaching the transmitted light measurement point. Since the light shielding member that shields the illumination light is provided, the direction in which the granular material is transferred so that the reflected light measurement location and the transmitted light measurement location are located within the projection area of the one side illumination means and the other side illumination means. The illumination light of the side where the transmitted light receiving means is present among the one side illuminating means and the other side illuminating means is projected to the transmitted light measurement location, Side illumination means and It is possible to prevent the square side reflection light reflected from those on the side where the transmitted light receiving unit is present to illuminate the reflected light measurement points granules of the illumination means is received by the transmitted light receiving unit.

説明を加えると、一方側照明手段及び他方側照明手段は、反射光計測箇所だけを投射すべく、投射する光の光束が粒状体の移送方向に沿って広がることがないように極力絞り込むように調整されるが、反射光計測箇所だけを投射するように絞り込むことは難しく、光の投射領域としては粒状体の移送方向に沿って所定の幅を有する状態で広がるものとなるので、反射光計測箇所と透過光計測箇所とが粒状体の移送方向に沿って極力近づけた状態で設定するようにすると、反射光計測箇所と透過光計測箇所とが、一方側照明手段及び他方側照明手段の投射領域内に位置する状態となる。   In other words, the one side illumination means and the other side illumination means are designed to narrow down the luminous flux of the projected light as much as possible so as not to spread along the transfer direction of the granular material so as to project only the reflected light measurement point. Although it is adjusted, it is difficult to narrow down to project only the reflected light measurement location, and the light projection area expands in a state having a predetermined width along the transfer direction of the granular material. If the location and the transmitted light measurement location are set as close as possible along the transfer direction of the granular material, the reflected light measurement location and the transmitted light measurement location are projected by the one side illumination means and the other side illumination means. It will be in a state located within the region.

そして、上述したように反射光計測箇所と透過光計測箇所とが一方側照明手段及び他方側照明手段の投射領域内に位置する状態で設定される場合であっても、遮光部材を設けることにより、一方側照明手段及び他方側照明手段のうち透過光受光手段が存在する側のものが反射光計測箇所を照明して粒状体から反射した反射光が透過光受光手段にて受光されることを阻止することができ、一方側照明手段及び他方側照明手段のうち透過光受光手段が存在する側のものの照明光が透過光計測箇所に達することを阻止することができるのである。   And even if it is a case where the reflected light measurement location and the transmitted light measurement location are set in a state where they are located within the projection area of the one side illumination means and the other side illumination means as described above, by providing the light shielding member Of the one side illumination means and the other side illumination means, the one on the side where the transmitted light receiving means is present illuminates the reflected light measurement portion, and the reflected light reflected from the granular material is received by the transmitted light receiving means. It is possible to prevent the illumination light on the side where the transmitted light receiving means is present among the one side illumination means and the other side illumination means from reaching the transmitted light measurement location.

ちなみに、反射光計測箇所と透過光計測箇所とを粒状体の移送方向に沿って近づける方がよい理由としては、次のような理由がある。
すなわち、計測対象箇所を通過するように移送手段により移送される粒状体群は、計測対象箇所を通過したのちに、例えば、計測対象箇所よりも粒状体の移送方向下手側に位置する分離箇所にて分離対象となる粒状体と他の粒状体とに分離される分離処理が行われることになるが、反射光計測箇所と透過光計測箇所とが粒状体の移送方向に沿って離間していると、粒状体判別処理の判別結果に基づいて行う分離処理を適正に行えないものとなるおそれがあるから、このような分離処理を良好に行えるようにするためには、反射光計測箇所と透過光計測箇所とが粒状体の移送方向に沿ってできるだけ近づけた方がよい。又、粒状体群の移送方向に沿う装置のコンパクト化を図るためにも反射光計測箇所と透過光計測箇所とが粒状体の移送方向に沿ってできるだけ近づける方がよい。
Incidentally, there are the following reasons why it is better to bring the reflected light measurement location and the transmitted light measurement location closer to each other along the transfer direction of the granular material.
That is, the granular material group transferred by the transfer means so as to pass through the measurement target portion is, for example, separated from the measurement target portion on the lower side in the transfer direction of the granular material after passing through the measurement target portion. Separation processing is performed to separate the granular material to be separated from other granular materials, but the reflected light measurement location and the transmitted light measurement location are separated from each other along the transport direction of the granular material. Therefore, the separation process based on the result of the granular material determination process may not be performed properly. In order to perform such a separation process satisfactorily, the reflected light measurement location and the transmission It is better that the optical measurement location is as close as possible along the transfer direction of the granular material. In order to make the apparatus compact along the transport direction of the granular material group, it is preferable that the reflected light measurement location and the transmitted light measurement location are as close as possible along the transport direction of the granular material.

又、一方側照明手段及び他方側照明手段のうち透過光受光手段が存在する側とは反対側のものが透過光計測箇所を照明し、透過光計測箇所に位置する粒状体を透過した透過光が透過光受光手段にて検出される。つまり、一方側照明手段及び他方側照明手段のうちの透過光受光手段が存在する側とは反対側のものを、透過光照明手段として兼用することにより、部材の兼用化により構成の簡素化を図ることが可能となる。   Further, of the one side illuminating means and the other side illuminating means, the side opposite to the side where the transmitted light receiving means exists illuminates the transmitted light measurement point, and the transmitted light transmitted through the granular material located at the transmitted light measurement point Is detected by the transmitted light receiving means. In other words, by using one of the one side illumination means and the other side illumination means opposite to the side where the transmitted light receiving means is present as the transmitted light illumination means, the structure can be simplified by sharing the members. It becomes possible to plan.

従って、第2特徴構成によれば、反射光計測箇所と透過光計測箇所とが一方側照明手段及び他方側照明手段の投射領域内に位置するように、反射光計測箇所と透過光計測箇所とを移送手段による粒状体の移送方向に沿って近づけることが可能となり、しかも、部材の兼用化により構成の簡素化を図ることが可能となる。   Therefore, according to the second characteristic configuration, the reflected light measurement point and the transmitted light measurement point are positioned so that the reflected light measurement point and the transmitted light measurement point are located within the projection areas of the one side illumination unit and the other side illumination unit. It becomes possible to approach along the transfer direction of the granular material by the transfer means, and it is possible to simplify the configuration by using the members in common.

本発明の第3特徴構成は、第1特徴構成又は第2特徴構成に加えて、前記計測対象箇所よりも粒状体の移送方向下手側の分離箇所において分離対象となる粒状体を他の粒状体群とは異なる経路に分離させる分離手段が備えられ、
前記評価処理手段が、前記粒状体判別処理にて、前記一方側の反射光受光手段及び前記他方側の反射光受光手段の検出情報に基づいて分離対象となる粒状体であることを判別すると、前記反射光計測箇所から前記分離箇所に至るのに要する第1遅延時間が経過したのちに前記分離手段を作動させ、且つ、前記透過光受光装置の検出情報に基づいて分離対象となる粒状体であることを判別すると、前記透過光計測箇所から前記分離箇所に至るのに要する第2遅延時間が経過したのちに前記分離手段を作動させるように構成されている点にある。
In addition to the first feature configuration or the second feature configuration, the third feature configuration of the present invention is a method in which a granular material to be separated is separated from the measurement target portion at a separation location on the lower side in the transfer direction of the granular material. Separation means for separating into a different path from the group is provided
When the evaluation processing unit determines in the granular body determination process that the granular material is a separation target based on detection information of the reflected light receiving unit on one side and the reflected light receiving unit on the other side, A granular material that is operated after the first delay time required from the reflected light measurement location to the separation location has elapsed and is to be separated based on detection information of the transmitted light receiving device. If it is determined that there is, the separation means is configured to operate after a second delay time required from the transmitted light measurement point to the separation point elapses.

すなわち、評価処理手段は、一方側の反射光受光手段及び他方側の反射光受光手段の検出情報に基づいて分離対象となる粒状体であることが判別されると、第1遅延時間が経過したのちに分離手段を作動させる。第1遅延時間は、粒状体が反射光計測箇所から分離箇所に至るのに要する時間であるから、光反射率が適正範囲を外れており分離対象として判別された粒状体が、分離箇所に移送されるタイミングで的確に離されることになる。   That is, when it is determined that the evaluation processing unit is a granular material to be separated based on the detection information of the reflected light receiving unit on one side and the reflected light receiving unit on the other side, the first delay time has elapsed. Later, the separating means is activated. Since the first delay time is the time required for the granular material to reach the separation location from the reflected light measurement location, the granular material whose light reflectance is outside the appropriate range and is determined as the separation target is transferred to the separation location. It will be released accurately at the timing.

又、評価処理手段は、透過光受光手段の検出情報に基づいて分離対象となる粒状体であることが判別されると、第2遅延時間が経過したのちに分離手段を作動させる。第2遅延時間は、粒状体が透過光計測箇所から分離箇所に至るのに要する時間であるから、光透過率が適正範囲を外れており分離対象として判別された粒状体が、分離箇所に移送されるタイミングで的確に分離されることになる。   In addition, when the evaluation processing unit determines that the granular material is a separation target based on the detection information of the transmitted light receiving unit, the evaluation processing unit operates the separation unit after the second delay time has elapsed. The second delay time is the time required for the granular material to reach from the transmitted light measurement location to the separation location, so that the granular material whose light transmittance is out of the proper range and is identified as the separation target is transferred to the separation location. It will be accurately separated at the timing.

つまり、光反射率が適正範囲を外れており分離対象として判別された粒状体、及び、光透過率が適正範囲を外れており分離対象として判別された粒状体の夫々を、一つの分離手段により分離させることが可能となる。
ちなみに、反射光計測箇所と透過光計測箇所とが粒状体群の移送方向に近づいた状態で設定される場合には、移送手段にて移送される粒状体群の流速変化が少ないので、一つの分離手段にて分離しながらも適切に分離させることが可能となる。
That is, each of the granular material whose light reflectance is out of the proper range and determined as the separation target and each of the granular material whose light transmittance is out of the proper range and determined as the separation target are obtained by one separation means. It is possible to separate them.
By the way, when the reflected light measurement location and the transmitted light measurement location are set in a state approaching the transfer direction of the granular material group, the flow velocity change of the granular material group transferred by the transfer means is small, so one It is possible to properly separate while separating by the separating means.

従って、第3特徴構成によれば、光反射率が適正範囲を外れている粒状体及び光透過率が適正範囲を外れている粒状体の夫々を的確に分離させることが可能となる。   Therefore, according to the third characteristic configuration, it is possible to accurately separate the granular material whose light reflectance is out of the proper range and the granular material whose light transmittance is out of the proper range.

本発明の第4特徴構成は、第1特徴構成〜第3特徴構成のいずれかに加えて、前記移送手段が、粒状体群を横幅方向に広げた状態でその横幅方向に沿って幅広に形成された前記計測対象箇所を通過するように粒状体群を移送するように構成され、
前記一方側の反射光受光手段、前記他方側の反射光受光手段、及び、前記透過光受光手段の夫々が、前記計測対象箇所からの光を受光する複数個の単位受光部を前記計測対象箇所の横幅方向に沿って並置させるように構成され、
前記評価処理手段が、前記粒状体判別処理として、前記単位受光部が受光する光量値が適正光量範囲を外れているか否かにより分離対象となる粒状体であるか否かを判別するように構成され、且つ、前記粒状体判別処理を前記複数の単位受光部毎に実行するように構成されている点にある。
According to a fourth feature configuration of the present invention, in addition to any one of the first feature configuration to the third feature configuration, the transfer means is formed wide along the lateral width direction in a state where the granular material group is expanded in the lateral width direction. It is configured to transfer the granular material group so as to pass through the measurement target portion,
Each of the reflected light receiving unit on the one side, the reflected light receiving unit on the other side, and the transmitted light receiving unit includes a plurality of unit light receiving units that receive light from the measurement target location. Configured to be juxtaposed along the lateral direction of
The evaluation processing unit is configured to determine whether the light quantity value received by the unit light receiving unit is a granular object to be separated depending on whether the light quantity value received by the unit light receiving unit is out of an appropriate light quantity range as the granular body determination process. In addition, the granular material discrimination process is configured to be executed for each of the plurality of unit light receiving units.

すなわち、粒状体群を横幅方向に広げた状態で移送させて、一方側の反射光受光手段及び他方側の反射光受光手段が計測対象箇所の横幅方向に沿って並置した複数の単位受光部にて反射光を受光し、透過光受光手段が計測対象箇所の横幅方向に沿って並置した複数の単位受光部にて反射光を受光し、評価処理手段が、一方側の反射光受光手段、他方側の反射光受光手段、及び、透過光受光手段夫々の検出情報に基づいて、複数の単位受光部毎に粒状体判別処理を実行する。   That is, the granular material group is transferred in a state of being expanded in the horizontal width direction, and the reflected light receiving means on one side and the reflected light receiving means on the other side are arranged in a plurality of unit light receiving units juxtaposed along the width direction of the measurement target portion. The reflected light is received by the plurality of unit light receiving units juxtaposed along the width direction of the measurement target portion, and the evaluation processing means is the reflected light receiving means on one side, Based on the detection information of each of the reflected light receiving means and the transmitted light receiving means on the side, the granular material discrimination process is executed for each of the plurality of unit light receiving units.

つまり、横幅方向に広げた状態で移送される粒状体群のうち、計測対象箇所の横幅方向に沿って並ぶ複数の粒状体群について、一挙に分離対象となる粒状体であるか否かを判別することができる。   That is, it is determined whether or not a plurality of granular material groups arranged in the horizontal width direction of the measurement target portion are granular materials to be separated at a stroke among the granular material groups transferred in a state of being expanded in the horizontal width direction. can do.

従って、第4特徴構成によれば、粒状体群を横幅方向に広げた状態で一度に多量の粒状体群を移送しながら、一挙に分離対象となる粒状体であるか否かを判別することができ、作業能率の向上を図ることができる。   Therefore, according to the fourth feature configuration, it is determined whether or not the granular material group is a separation target at a time while transferring a large amount of granular material group at a time in a state where the granular material group is expanded in the lateral width direction. It is possible to improve work efficiency.

本発明の第5特徴構成は、第1特徴構成〜第4特徴構成のいずれかに加えて、前記移送手段が、粒状体移送方向に沿って長く延びる状態で粒状体群を流下させながら移送する傾斜姿勢の流下案内板を備えて構成され、
前記透過光受光手段と、前記一方側の反射光受光手段及び前記他方側の反射光受光手段のうちのいずれか一方とが、前記流下案内板の下方側であって且つ平面視で前記流下案内板と重複又は略重複する箇所に、それらが上下に並ぶ状態で配備されている点にある。
According to a fifth feature configuration of the present invention, in addition to any one of the first feature configuration to the fourth feature configuration, the transfer means transfers the granular material group while flowing down in a state of extending long along the granular material transfer direction. It is configured with a downflow guide plate in an inclined position,
The transmitted light receiving means and one of the reflected light receiving means on the one side and the reflected light receiving means on the other side are below the flow guide plate and the flow guide in a plan view. The point is that they are arranged in a state where they overlap with each other in a position overlapping or substantially overlapping with the plate.

すなわち、粒状体群を自重で流下しながら移送させる傾斜姿勢の流下案内板が備えられ、透過光受光手段と、一方側の反射光受光手段及び他方側の反射光受光手段のうちのいずれか一方とが、流下案内板の下方側であって且つ平面視で流下案内板と重複又は略重複する箇所に、それらが上下に並ぶ状態で配備されているから、傾斜姿勢の流下案内板の下方側の空間を利用して、平面視で粒状体移送方向に沿う粉粒体選別装置の外形を大型化させない状態で、透過光受光手段と、一方側の反射光受光手段及び他方側の反射光受光手段のうちのいずれか一方を配備することができる。   That is, a flow guide plate having an inclined posture for moving the granular material group while flowing under its own weight is provided, and either one of the transmitted light receiving means, the reflected light receiving means on one side, and the reflected light receiving means on the other side is provided. Are arranged in a state where they are arranged in the vertical direction at a position that overlaps or substantially overlaps with the flow-down guide plate in a plan view, and is below the flow-down guide plate in an inclined posture. The transmitted light receiving means, the reflected light receiving means on one side, and the reflected light received on the other side without increasing the size of the granular material sorting device along the granular material transfer direction in plan view. Any one of the means can be deployed.

従って、第5特徴構成によれば、粉粒体選別装置の外形を大型化させない状態で、透過光受光手段と、一方側の反射光受光手段及び他方側の反射光受光手段のうちのいずれか一方を配備することができる。   Therefore, according to the fifth feature configuration, any one of the transmitted light receiving means, the reflected light receiving means on one side, and the reflected light receiving means on the other side is provided without increasing the size of the powder and particle sorting apparatus. One can be deployed.

粒状体選別装置の側面図である。It is a side view of a granular material sorter. 粒状体選別装置の正面図である。It is a front view of a granular material sorting device. 粒状体選別装置の縦断側面図である。It is a vertical side view of a granular material sorter. 主枠部の構成を示す斜視図である。It is a perspective view which shows the structure of a main frame part. 要部の配置状態を示す平面図である。It is a top view which shows the arrangement | positioning state of the principal part. 要部の側面図である。It is a side view of the principal part. 収納体配設部の構成を示す斜視図である。It is a perspective view which shows the structure of a storage body arrangement | positioning part. 収納体配設部の構成を示す斜視図である。It is a perspective view which shows the structure of a storage body arrangement | positioning part. 遮光部材配設部の斜視図である。It is a perspective view of a light shielding member arrangement part. (a)は遮光部材配設部の斜視図、(b)は遮光部材配設部の分解斜視図である。(A) is a perspective view of a light shielding member arrangement part, (b) is an exploded perspective view of a light shielding member arrangement part. 収納体内部の各部の構成を示す分解斜視図である。It is a disassembled perspective view which shows the structure of each part inside a storage body. 計測対象箇所の照明状態を示す図である。It is a figure which shows the illumination state of a measurement object location. エアー噴出装置へのエアー供給状態を示す図である。It is a figure which shows the air supply state to an air ejection apparatus. 制御ブロック図である。It is a control block diagram. 受光手段の受光状態を示す図である。It is a figure which shows the light reception state of a light-receiving means. 透過光についての適正光量範囲を示す図である。It is a figure which shows the appropriate light quantity range about transmitted light. 反射光についての適正光量範囲を示す図である。It is a figure which shows the appropriate light quantity range about reflected light. 光量の度数分布を示す図である。It is a figure which shows frequency distribution of light quantity. 制御動作のフローチャートを示す図である。It is a figure which shows the flowchart of control operation. 制御動作のフローチャートを示す図である。It is a figure which shows the flowchart of control operation. 計測対象箇所からの光の受光状態を示す図である。It is a figure which shows the light reception state of the light from a measurement object location.

以下、本発明に係る粒状体選別装置の実施形態を、粒状体群の一例として玄米や精米等の米粒群を流下案内させながら選別を行う粒状体群選別装置に適用する場合について図面に基づいて説明する。   Hereinafter, the case of applying the embodiment of the granular material sorting device according to the present invention to a granular material group sorting device that performs sorting while guiding the flow of rice grain groups such as brown rice and polished rice as an example of the granular material group, based on the drawings. explain.

図1及び図2に示すように、計測対象箇所Jを通過させるように米粒群kを一層で且つ幅広状態で流下する流動状態に載置して計測対象箇所Jに向けて案内する傾斜姿勢のシュータ3C(流下案内体の一例)が備えられ、このシュータ3Cの上部側に設けた貯留ホッパー3Aから振動フィーダ3Bによって搬送されて供給された米粒群kをシュータ3Cの上面を流下させながら、光反射率が適正範囲を外れているものや光透過率が適正範囲を外れているような不良粒と良品の米粒群とを選別して不良粒を分離することができるように構成されている。   As shown in FIG. 1 and FIG. 2, an inclined posture in which the rice grain group k is placed in a flowing state flowing down in a single layer and in a wide state so as to pass through the measurement target portion J and is guided toward the measurement target portion J. A shooter 3C (an example of a flow guide) is provided, and the rice grain group k conveyed and supplied by the vibration feeder 3B from the storage hopper 3A provided on the upper side of the shooter 3C is allowed to flow down the upper surface of the shooter 3C. It is configured so that defective grains can be separated by sorting out defective grains whose reflectance is out of the proper range or light transmittance is out of the proper range and good rice grains.

以下、各部の構成について説明する。
図3に示すように、振動フィーダ3Bは、貯留ホッパー3Aの下部から排出される米粒群を受止める受止め載置部25と、受止め載置部25に振動を与える振動発生器26とを備えて、振動発生器26にて受止め載置部25に振動を与えてその一端部から米粒群kをシュータ3Cに繰出すように構成されている。そして、シュータ3Cは、図7に示すように、直線状の溝mを横幅方向に沿って複数列に並べる状態で形成した溝付き板にて構成され、振動フィーダ3Bによってシュータ3Cの横幅方向に沿って幅広状態に広がる状態で供給された米粒群kが複数列の溝m内を一列で流下案内されるように構成されている。
Hereinafter, the configuration of each unit will be described.
As shown in FIG. 3, the vibration feeder 3 </ b> B includes a receiving placement portion 25 that receives the rice grains discharged from the lower portion of the storage hopper 3 </ b> A, and a vibration generator 26 that vibrates the receiving placement portion 25. In addition, the vibration generator 26 is configured to vibrate the receiving mounting portion 25 and feed the rice grain group k from one end thereof to the shooter 3C. As shown in FIG. 7, the shooter 3C is constituted by a grooved plate formed in a state where the linear grooves m are arranged in a plurality of rows along the width direction, and is arranged in the width direction of the shooter 3C by the vibration feeder 3B. The rice grain group k supplied in a state of spreading in a wide state along the channel is configured to flow down and guide in a plurality of rows of grooves m.

従って、貯留ホッパー3A、振動フィーダ3B、及び、シュータ3C等により、米粒体群kを一層状態で且つ横幅方向に広がる状態で計測対象箇所Jを通過させるように移送する移送手段3が構成されている。   Accordingly, the storage hopper 3A, the vibration feeder 3B, the shooter 3C, and the like constitute the transfer means 3 that transfers the rice grain group k so as to pass through the measurement target portion J in a state where the rice grain group k expands in the horizontal direction. Yes.

又、振動フィーダ3Bは、振動発生器26の振動による米粒群kの搬送速度を変化させることにより、シュータ3Cに繰出される米粒群kの供給量、つまり、シュータ3Cによる米粒群kの移送流量を変更調節することが可能に構成されている。   Further, the vibration feeder 3B changes the conveying speed of the rice grain group k due to the vibration of the vibration generator 26, thereby supplying the supply amount of the rice grain group k fed to the shooter 3C, that is, the transfer flow rate of the rice grain group k by the shooter 3C. It is configured to be able to change and adjust.

図3及び図6に示すように、米粒群kがシュータ3Cの下端部から移動落下する経路中に米粒群kに対する計測対象箇所Jが設定されており、しかも、計測対象箇所Jとして、米粒の表面で反射した反射光を計測するための反射光計測箇所J1と、米粒を透過した透過光を受光するための透過光計測箇所J2とが、米粒群の移送方向に位置を異ならせる状態で設定されている。具体的には、透過光計測箇所J2が反射光計測箇所J1よりも米粒群の移送方向の下手側に位置する状態で設定されている。   As shown in FIG. 3 and FIG. 6, the measurement target location J for the rice grain group k is set in the path in which the rice grain population k moves and drops from the lower end of the shooter 3C. The reflected light measurement point J1 for measuring the reflected light reflected from the surface and the transmitted light measurement point J2 for receiving the transmitted light that has passed through the rice grains are set in a state where the positions are different in the transfer direction of the rice grains. Has been. Specifically, it is set in a state where the transmitted light measurement point J2 is located on the lower side in the transfer direction of the rice grains than the reflected light measurement point J1.

そして、図6に示すように、計測対象箇所Jを照明する照明手段4と、計測対象箇所Jにおける米粒群kからの光を受光する受光手段5と、計測対象箇所Jよりも米粒の移送方向下手側の分離箇所において分離対象粒と他の米粒群とを分離させる分離手段としてのエアー吹き付け装置6とが備えられている。   And as shown in FIG. 6, the illumination means 4 which illuminates the measurement object location J, the light-receiving means 5 which receives the light from the rice grain group k in the measurement object location J, and the transfer direction of rice grains from the measurement object location J An air blowing device 6 is provided as a separating means for separating the separation target grains and other rice grain groups at the lower separation point.

前記照明手段4は、図6に示すように、米粒群の移送方向視において計測対象箇所に対して一方側(具体的には装置前部側)に位置して反射光計測箇所J1を照明する一方側照明手段としての前部側照明手段4Aと、米粒群kの移送方向視において計測対象箇所Jに対して前記一方側の箇所とは180度異なる他方側(具体的には装置後部側)に位置して反射光計測箇所J1を照明する他方側照明手段としての後部側照明手段4Bとを備えて構成されている。   As shown in FIG. 6, the illuminating means 4 is located on one side (specifically, the front side of the apparatus) with respect to the measurement target position in the transfer direction view of the rice grain group and illuminates the reflected light measurement position J1. 4A of front side illumination means as one side illumination means, and the other side which differs 180 degree | times from the said one side location with respect to the measurement object location J in the transfer direction view of the rice grain group k (specifically apparatus rear side) And rear side illumination means 4B as the other side illumination means for illuminating the reflected light measurement point J1.

又、計測対象箇所Jの装置前部側に位置する状態で透過光用の背景光量調整器4Cが備えられ、計測対象箇所Jよりも装置前部側に位置する状態で背景光形成用の前部側反射板4Dが設けられ、計測対象箇所Jよりも装置後部側に位置する状態で背景光形成用の後部側反射板4Eが設けられている。   Further, a background light amount adjuster 4C for transmitted light is provided in a state of being located on the front side of the apparatus with respect to the measurement target location J, and is used for forming background light in a state of being located on the front side of the apparatus with respect to the measurement target location J A part-side reflecting plate 4D is provided, and a back-side reflecting plate 4E for forming background light is provided in a state of being located closer to the apparatus rear side than the measurement target portion J.

図6に示すように、後部側照明手段4Bは、計測対象箇所Jよりも装置後部側において、反射光計測箇所J1を装置横幅方向の全幅にわたって直接照明する2本の円柱状の蛍光灯を並べて構成される光投射体としてのライン状光源30Bと、そのライン状光源30Bが発した光を反射してその反射した光によりライン状光源30Bによる照明方向とは異なる照明方向から反射光計測箇所J1を装置横幅方向の全幅にわたって照明する光投射体としての光反射部材31Bとを備えて、反射光計測箇所J1の米粒に対して移送方向上手側及び移送方向下手側の互いに異なる照明方向から夫々反射光計測箇所J1を照明するように構成されている。   As shown in FIG. 6, the rear side illumination means 4B has two columnar fluorescent lamps that illuminate the reflected light measurement point J1 directly over the entire width in the device lateral width side by side on the device rear side with respect to the measurement target point J. A line-shaped light source 30B as a light projection body configured, and a reflected light measurement point J1 from an illumination direction different from the illumination direction by the line-shaped light source 30B due to the reflected light reflected from the light emitted from the line-shaped light source 30B. And a light reflecting member 31B as a light projecting body that illuminates the entire width of the apparatus in the horizontal direction of the apparatus, and reflects light from different illumination directions on the upper side in the transfer direction and the lower side in the transfer direction with respect to the rice grains at the reflected light measurement point J1. It is comprised so that the optical measurement location J1 may be illuminated.

又、ライン状光源30Bの背部には、内面につや消しの白色塗装を施した略コ字状に屈曲した拡散反射板32が配置され、又、図示はしていないが、ライン状光源30Bの近傍には、光反射部材31Bに光を導き、且つ、反射光計測箇所J2に向かう光束を米粒の移送方向に沿う幅を狭くする状態で導く投射光調整機構が備えられている(図12参照)。   Further, on the back of the line-shaped light source 30B, a diffuse reflector 32 bent in a substantially U-shape with a matte white coating on the inner surface is disposed, and although not shown, in the vicinity of the line-shaped light source 30B Is provided with a projection light adjusting mechanism that guides light to the light reflecting member 31B and guides the light flux directed to the reflected light measurement point J2 in a state in which the width along the transfer direction of the rice grains is narrowed (see FIG. 12). .

そして、光反射部材31Bは、米粒群の移送方向に対して幅狭でありライン状光源30Bの長手方向に沿って長尺の矩形状に構成され、反射面が鏡面にて構成されている。尚、ライン状光源30Bにより照明される光量と光反射部材31Bにて照明される光量とが同じ又はほぼ同じになるように、光反射部材31Bの傾斜角度が適切な角度になるように位置固定状態で取り付けられており、反射光計測箇所J1に向けて光が投射されるように構成されている。   And the light reflection member 31B is narrow with respect to the transfer direction of a rice grain group, is comprised in the elongate rectangular shape along the longitudinal direction of the linear light source 30B, and the reflective surface is comprised by the mirror surface. It should be noted that the position of the light reflecting member 31B is fixed so that the inclination angle of the light reflecting member 31B is an appropriate angle so that the light amount illuminated by the line light source 30B and the light amount illuminated by the light reflecting member 31B are the same or substantially the same. It is attached in a state, and is configured such that light is projected toward the reflected light measurement point J1.

図6及び図11に示すように、前部側照明手段4Aは、後部側照明手段4Bと同様に、反射光計測箇所に位置する米粒群kの移送方向上手側に位置する上手側外面部分を直接照明する2本の円柱状の蛍光灯を並べて構成される光投射体としてのライン状光源30A、ライン状光源30Aの背部に設けられる拡散反射板32、ライン状光源30Aが発した光を反射して、その反射した光により反射光計測箇所J1に位置する米粒群の移送方向下手側に位置する下手側外面部分を照明する光投射体としての光反射部材31Aを備えて、反射光計測箇所J1の米粒に対して移送方向上手側及び移送方向下手側の互いに異なる照明方向から夫々反射光計測箇所J1を照明するように構成されている。
又、図示はしていないが、ライン状光源30Bの近傍には、光反射部材31Bに光を導き、且つ、反射光計測箇所J2に向かう光束を米粒の移送方向に沿う幅を狭くする状態で導く投射光調整機構が備えられている(図12参照)。
As shown in FIGS. 6 and 11, the front side illumination means 4 </ b> A is similar to the rear side illumination means 4 </ b> B in that the upper-side outer surface portion located on the upper side in the transfer direction of the rice grain group k located at the reflected light measurement location. A line-shaped light source 30A as an optical projection body configured by arranging two cylindrical fluorescent lamps that are directly illuminated, a diffuse reflector 32 provided on the back of the line-shaped light source 30A, and light emitted from the line-shaped light source 30A is reflected. The light reflection member 31A is provided as a light projection member that illuminates the lower outer surface portion located on the lower side in the transfer direction of the rice grain group located at the reflected light measurement location J1 by the reflected light, and the reflected light measurement location The reflected light measurement point J1 is illuminated from the different illumination directions on the upper side of the transfer direction and the lower side of the transfer direction with respect to the rice grains of J1.
Although not shown, in the vicinity of the line-shaped light source 30B, the light is guided to the light reflecting member 31B, and the light beam traveling toward the reflected light measuring point J2 is narrowed in the width along the rice grain transfer direction. A guiding light adjustment mechanism is provided (see FIG. 12).

照明手段4による計測対象箇所Jに対する照明の状態について説明する。
図12に示すように、前部側照明手段4Aは、ライン状光源30Aからの光が反射光計測箇所J2に向けて直接投射され、ライン状光源30Aからの光が光反射部材31Aに導かれて、その光反射部材31Aにて反射した光が反射光計測箇所J2に向けて投射されることになる。
そして、ライン状光源30Aから反射光計測箇所J2に向けて直接投射される照明光は、米粒の移送方向に沿う幅を反射光計測箇所J2に近づくほど狭くするように光束状に投射され、反射光計測箇所J1だけを照明するように構成されている。一方、光反射部材31Aにて反射した照明光は、米粒の移送方向に沿う幅を反射光計測箇所J2に近づくほど狭くするように光束状に投射されるが、絞り具合はライン状光源30Aに比べて緩く反射光計測箇所J1だけでなく透過光計測箇所J2も照明するように構成されている。
上述したように、前部側照明手段4Aは、装置前部側から透過光計測箇所J2に位置する粒状体を照明する構成であるから、透過光照明手段を兼用する構成となっている。
A state of illumination with respect to the measurement target portion J by the illumination unit 4 will be described.
As shown in FIG. 12, in the front side illumination means 4A, the light from the line light source 30A is directly projected toward the reflected light measurement point J2, and the light from the line light source 30A is guided to the light reflecting member 31A. Thus, the light reflected by the light reflecting member 31A is projected toward the reflected light measurement point J2.
The illumination light directly projected from the line-shaped light source 30A toward the reflected light measurement point J2 is projected in the form of a light flux so as to narrow the width along the transfer direction of the rice grains as it approaches the reflected light measurement point J2. It is comprised so that only the optical measurement location J1 may be illuminated. On the other hand, the illumination light reflected by the light reflecting member 31A is projected in the form of a light flux so that the width along the transfer direction of the rice grains becomes narrower as it approaches the reflected light measurement location J2, but the degree of diaphragm is projected to the line light source 30A. Compared with the reflected light measurement point J1, the transmitted light measurement point J2 is illuminated more loosely.
As described above, the front side illumination unit 4A is configured to illuminate the granular material located at the transmitted light measurement point J2 from the front side of the apparatus, and thus has a configuration that also serves as the transmitted light illumination unit.

一方、後部側照明手段4Bも、前部側照明手段4Aと同様に、図12に示すように、ライン状光源30Bからの光は反射光計測箇所J2に向けて直接投射され、又、ライン状光源30Bからの光が光反射部材31Bに導かれて、その光反射部材31Aにて反射した光が反射光計測箇所J2に向けて投射する構成となっている。そして、ライン状光源30Aから反射光計測箇所J2に向けて直接投射される照明光は、米粒の移送方向に沿う幅を反射光計測箇所J2に近づくほど狭くするように光束状に投射され、反射光計測箇所J1だけを照明するように構成されている。一方、光反射部材31Aにて反射した光は、米粒の移送方向に沿う幅を反射光計測箇所J2に近づくほど狭くするように光束状に投射されているが、絞り具合はライン状光源30Aに比べて緩く反射光計測箇所J1だけでなく透過光計測箇所J2も投射するように構成されている。   On the other hand, as with the front side illumination unit 4A, the rear side illumination unit 4B also projects the light from the line light source 30B directly toward the reflected light measurement point J2, as shown in FIG. The light from the light source 30B is guided to the light reflecting member 31B, and the light reflected by the light reflecting member 31A is projected toward the reflected light measurement point J2. The illumination light directly projected from the line-shaped light source 30A toward the reflected light measurement point J2 is projected in the form of a light flux so as to narrow the width along the transfer direction of the rice grains as it approaches the reflected light measurement point J2. It is comprised so that only the optical measurement location J1 may be illuminated. On the other hand, the light reflected by the light reflecting member 31A is projected in the form of a light flux so that the width along the transfer direction of the rice grains becomes narrower as it approaches the reflected light measurement location J2, but the degree of diaphragm is projected to the line light source 30A. Compared to the reflected light measurement point J1, the transmitted light measurement point J2 is projected loosely.

尚、図12で例示するものでは、ライン状光源30A,30Bから直接投射される光は反射光計測箇所J1だけを照明するようになっているが、ライン状光源30A,30Bから直接投射される光が、反射光計測箇所J1だけでなく透過光計測箇所J2を照明するように構成するものでもよい。   In the example illustrated in FIG. 12, the light directly projected from the line light sources 30A and 30B illuminates only the reflected light measurement point J1, but is directly projected from the line light sources 30A and 30B. The light may be configured to illuminate not only the reflected light measurement point J1 but also the transmitted light measurement point J2.

しかし、後部側照明手段4Bからの照明光のうち、透過光計測箇所J2に向けて投射される光は、後述する遮光部材38によって、透過光計測箇所J2に到達することがないように遮光される構成となっている。   However, of the illumination light from the rear side illumination means 4B, the light projected toward the transmitted light measurement point J2 is shielded by the light shielding member 38 described later so as not to reach the transmitted light measurement point J2. It is the composition which becomes.

図6に示すように、背景光量調整器4Cは、後述する透過光受光装置5Cから透過光計測箇所J2を見たときに背景に相当する箇所に備えられ、透過光計測箇所J2の装置横幅方向に沿って密状態で並べて設置される複数のLED発光素子33と、それらの複数のLED発光素子33が設置される領域の光投射側に配置されて複数のLED発光素子33が発光した光を拡散させる拡散板34とを備えて構成されている。
そして、図14に示すように、複数のLED発光素子33の発光出力を変更調整自在な調光装置35が備えられ、透過光受光装置5Cにて受光される背景の光量が後述する適正光量範囲内の光量値になるように調整されるように構成されている。
As shown in FIG. 6, the background light amount adjuster 4C is provided at a location corresponding to the background when the transmitted light measurement location J2 is viewed from the transmitted light receiving device 5C described later, and the device lateral width direction of the transmitted light measurement location J2 A plurality of LED light emitting elements 33 arranged side by side in a dense state, and light emitted by the plurality of LED light emitting elements 33 arranged on the light projection side of the area where the plurality of LED light emitting elements 33 are installed And a diffusing plate 34 to be diffused.
And as shown in FIG. 14, the light control apparatus 35 which can change and adjust the light emission output of several LED light emitting element 33 is provided, and the light quantity of the background light-received in the transmitted light light-receiving device 5C is the appropriate light quantity range which is mentioned later It is configured to be adjusted so that the light quantity value is within the range.

図6に示すように、背景光形成用の前部側反射板4Dは、後述する後部側反射光受光装置5Bから反射光計測箇所J1を見たときに背景に相当する箇所に備えられ、所定の光反射率を備えた表面が白色の板体にて構成され、ライン状光源30Aからの光を反射して、後部側反射光受光装置5Bにて受光される背景の光量が後述する適正光量範囲内の光量値になるように構成されている。   As shown in FIG. 6, the front-side reflecting plate 4D for forming the background light is provided at a location corresponding to the background when the reflected light measurement location J1 is viewed from the rear-side reflected light receiving device 5B described later. The surface provided with the light reflectance is configured by a white plate, reflects the light from the line light source 30A, and receives the amount of background light received by the rear side reflected light receiving device 5B. The light quantity value is within the range.

図6に示すように、背景光形成用の後部側反射板4Eは、後述する前部側反射光受光装置5Aから反射光計測箇所J1を見たときに背景に相当する箇所に備えられ、所定の光反射率を備えた表面が白色の板体にて構成され、ライン状光源30Bからの光を反射して、前部側反射光受光装置5Aにて受光される背景の光量が後述する適正光量範囲内の光量値になるように構成されている。   As shown in FIG. 6, the rear-side reflecting plate 4E for forming the background light is provided at a location corresponding to the background when the reflected light measurement location J1 is viewed from the front-side reflected light receiving device 5A described later. The surface having a light reflectance of 1 is formed of a white plate, reflects the light from the line light source 30B, and the amount of background light received by the front side reflected light receiving device 5A is appropriate as described later. The light quantity value is within the light quantity range.

次に、受光手段5について説明する。
図6に示すように、受光手段5は、米粒群の移送方向視において計測対象箇所Jに対して一方側としての装置前部側に位置して、反射光を受光する前部側反射光受光装置5Aと、米粒群の移送方向視において計測対象箇所Jに対して一方側の箇所とは180度異なる他方側としての装置後部側に位置して、反射光を受光する他方側の反射光受光手段としての後部側反射光受光装置5Bと、米粒群の移送方向視において計測対象箇所Jに対して装置後部側に位置して、透過光を受光する透過光受光手段としての透過光受光装置5Cとを備えて構成されている。
Next, the light receiving means 5 will be described.
As shown in FIG. 6, the light receiving means 5 is located on the front side of the apparatus as one side with respect to the measurement target location J in the transfer direction view of the rice grain group, and receives the reflected light on the front side. Reflected light reception on the other side of the apparatus 5A and on the rear side of the apparatus as the other side, which is 180 degrees different from the position on one side with respect to the measurement target position J in the transfer direction of the rice grain group Rear side reflected light receiving device 5B as means, and transmitted light receiving device 5C as transmitted light receiving means for receiving transmitted light, located on the device rear side with respect to measurement target position J in the transfer direction view of rice grains. And is configured.

さらに、説明を加えると、前部側反射光受光装置5Aは、反射光計測箇所J1において前部側照明手段4Aにて照明されて米粒の表面で反射した光を受光するように構成され、後部側反射光受光装置5Bは、反射光計測箇所J1において後部側照明手段4Bにて照明されて米粒の表面で反射した光を受光するように構成されている。又、透過光受光装置5Cは、透過光計測位置J2において前部側照明手段4Aにて照明されて米粒を透過した光を受光するように構成されている。   Furthermore, to add a description, the front side reflected light receiving device 5A is configured to receive the light reflected by the front side illumination means 4A and reflected by the surface of the rice grain at the reflected light measurement point J1, and the rear part. The side reflected light receiving device 5B is configured to receive light that is illuminated by the rear side illumination means 4B at the reflected light measurement point J1 and reflected by the surface of the rice grain. Further, the transmitted light receiving device 5C is configured to receive light that has been illuminated by the front side illumination means 4A and transmitted through the rice grains at the transmitted light measurement position J2.

図6に示すように、前記各受光装置5A,5B,5Cは、反射光計測箇所J1や透過光計測箇所J2からの光を受光する複数個の単位受光部5aを装置横幅方向に沿って並置させる状態で備えて、米粒の大きさよりも小さい範囲を単位受光対象範囲とする分解能状態で反射光計測箇所J1や透過光計測箇所J2からの検出光を受光するように構成されている。   As shown in FIG. 6, each of the light receiving devices 5A, 5B, and 5C includes a plurality of unit light receiving portions 5a that receive light from the reflected light measurement point J1 and the transmitted light measurement point J2 along the width direction of the device. The detection light from the reflected light measurement point J1 and the transmitted light measurement point J2 is received in a resolution state where the range smaller than the size of the rice grain is the unit light receiving target range.

つまり、前記各受光装置5A,5B,5Cは、夫々、米粒群の各米粒の大きさよりも小さい範囲p(例えば米粒の大きさの10分の1よりも小さい範囲)を夫々の受光対象範囲として、それら複数の受光対象範囲に対応する受光対象範囲である複数個の単位受光部5aを幅広の計測対象箇所Jに対応させてライン状に並ぶ状態で並置されたモノクロタイプのCCDセンサ部36と、装置横幅方向に視野角を有する状態で受光した光を複数の単位受光部5aに導く集光レンズ37とを備えて構成されている。   That is, each of the light receiving devices 5A, 5B, and 5C has a range p smaller than the size of each rice grain in the rice grain group (for example, a range smaller than 1/10 of the size of the rice grain) as each light receiving target range. A monochrome type CCD sensor unit 36 in which a plurality of unit light-receiving units 5a corresponding to the plurality of light-receiving target ranges are juxtaposed in line with each other corresponding to a wide measurement target portion J; And a condensing lens 37 that guides light received in a state having a viewing angle in the lateral direction of the apparatus to a plurality of unit light receiving portions 5a.

又、各受光装置5A,5B,5Cは、計測対象箇所Jの装置横幅方向の全幅を対象として計測対象箇所Jに位置する米粒群kの像をCCDセンサ部36の各単位受光部5a上に結像させる状態で設けられ、例えば図15において計測対象箇所Jの右端側から左端側に向けて各単位受光部5aから各受光情報が順次取り出されるように構成される。   Further, each of the light receiving devices 5A, 5B, and 5C applies an image of the rice grain group k positioned at the measurement target location J to the entire width of the measurement target location J in the device width direction on each unit light receiving portion 5a of the CCD sensor unit 36. For example, the light receiving information is sequentially extracted from each unit light receiving unit 5a from the right end side to the left end side of the measurement target portion J in FIG.

そして、図6に示すように、後部側照明手段4Bが反射光計測箇所J1を照明して米粒から反射した反射光が透過光受光装置5Cにて受光されることを阻止し、且つ、後部側照明手段4Bの照明光が透過光計測箇所J2に達するのを阻止すべく、前記反射光及び前記照明光を遮光する遮光部材38が設けられている。   Then, as shown in FIG. 6, the rear side illumination means 4B illuminates the reflected light measurement portion J1 to prevent the reflected light reflected from the rice grains from being received by the transmitted light receiving device 5C, and the rear side. In order to prevent the illumination light from the illumination unit 4B from reaching the transmitted light measurement point J2, a light shielding member 38 for shielding the reflected light and the illumination light is provided.

図9、図10、図12、及び、図13に示すように、遮光部材38は、長手方向が装置横幅方向に沿って延びる状態で設けられた略帯板状の部材からなる遮光作用部38Aと、長手方向の両側部が装置前後方向視で略コ字形に屈曲した取り付け部38Bとを備えて構成されている。遮光作用部38Aは、上面部38aと折曲がり部38bとを備える状態で帯板を略くの字状に屈曲させた形状となっており、上部面38aは、透過光計測箇所J2に近い側が高い位置にあり、透過光計測箇所J2から遠ざかる装置後部側に位置するほど下方に位置するように斜め姿勢に設けられ、米粒群kがその上部面38aに載置されることがなく下方に流動するように構成されている。この遮光部材38は、透過光計測箇所J2に極力近づけた状態で配備されている。尚、遮光部材38の取り付け構造については後述する。   As shown in FIG. 9, FIG. 10, FIG. 12, and FIG. 13, the light shielding member 38 is a light shielding action portion 38A made of a substantially band plate-like member provided with its longitudinal direction extending along the apparatus lateral width direction. In addition, both side portions in the longitudinal direction are provided with attachment portions 38B that are bent in a substantially U shape when viewed in the longitudinal direction of the apparatus. The light shielding action part 38A has a shape in which a strip is bent in a substantially U shape with the upper face part 38a and the bent part 38b, and the upper face 38a has a side closer to the transmitted light measurement point J2. It is provided in an oblique position so that it is located at a higher position and is located downward as it is located on the rear side of the device farther from the transmitted light measurement point J2, and the rice grain group k flows downward without being placed on the upper surface 38a. Is configured to do. The light shielding member 38 is disposed in a state as close as possible to the transmitted light measurement point J2. The mounting structure of the light shielding member 38 will be described later.

上述した如く、図12に示すように、後部側照明手段4Bにおいて、ライン状光源30Bから反射光計測箇所J2に向けて直接投射される光は、光束を米粒の移送方向に沿う幅を狭くするように絞られるが、光反射部材31Bにて反射した光は、反射光計測箇所J1だけでなく透過光計測箇所J2に向けても投射されるようになっている。そして、上記したような遮光部材38を設けることにより、後部側照明手段4Bから投射される光のうち、透過光計測箇所J2に向けて投射される光が遮光されることになる。   As described above, as shown in FIG. 12, in the rear side illumination means 4B, the light directly projected from the line-shaped light source 30B toward the reflected light measurement point J2 narrows the width of the light beam along the transfer direction of the rice grains. The light reflected by the light reflecting member 31B is projected not only to the reflected light measurement point J1 but also to the transmitted light measurement point J2. By providing the light shielding member 38 as described above, the light projected toward the transmitted light measurement point J2 out of the light projected from the rear side illumination unit 4B is shielded.

又、遮光部材38は、上面部38aが米粒の移送方向に対して交差する方向に幅広に設けられており、後部側照明手段4Bからの光が反射光計測箇所J1に位置する米粒群kにて反射した光が、透過光受光装置5Cに導かれることを阻止することができるように構成されている。   The light shielding member 38 has a wide upper surface 38a in a direction intersecting the rice grain transfer direction, and the light from the rear illumination means 4B is applied to the rice grain group k located at the reflected light measurement point J1. The reflected light can be prevented from being guided to the transmitted light receiving device 5C.

反射光計測箇所J1から前部側反射光受光装置5Aに対して光軸が折り曲がる状態で光を導く折り曲げ光路形成手段39Aが備えられている。
この折り曲げ光路形成手段39Aは、図6に示すように、反射光計測箇所J1から米粒群の移送方向に対して略直交する方向に沿って装置前部側に向かう光を斜め下方前方に反射する第1の反射体40Aと、その第1の反射体40Aにて反射した光を米粒群の移送方向と略平行に上方に反射して前部側反射光受光装置5Aに導く第2の反射体41Aとを備えて構成されている。第1の反射体40A及び第2の反射体41Aの夫々がその反射面が鏡面にて構成されて略長方形の板状に形成されている。
A bent optical path forming means 39A for guiding light in a state where the optical axis is bent from the reflected light measuring portion J1 to the front side reflected light receiving device 5A is provided.
As shown in FIG. 6, the bent optical path forming means 39A reflects light directed toward the front of the apparatus along the direction substantially orthogonal to the transfer direction of the rice grain group from the reflected light measurement point J1 obliquely downward and forward. 40A of 1st reflectors, and the 2nd reflector which reflects the light reflected by the 1st reflector 40A to the front side reflected light light-receiving device 5A by reflecting upwards substantially parallel to the transfer direction of the rice grain group 41A. Each of the first reflector 40A and the second reflector 41A is formed in a substantially rectangular plate shape with its reflection surface being a mirror surface.

前部側反射光受光装置5Aは、上述したように集光レンズ37を備えて計測対象箇所Jからの光を集光して受光するものであるから、例えば、図21に示すように、装置横幅方向に視野角を有するので装置横幅方向に沿う幅を計測対象箇所Jの幅(シュータ3Cの幅)よりも幅狭に構成することができる。この点は、他の受光装置5B,5Cも同様である。   Since the front side reflected light receiving device 5A includes the condenser lens 37 as described above and collects and receives the light from the measurement target portion J, for example, as shown in FIG. Since it has a viewing angle in the width direction, the width along the apparatus width direction can be configured to be narrower than the width of the measurement target location J (the width of the shooter 3C). The same applies to the other light receiving devices 5B and 5C.

後部側反射光受光装置5Bに対する折り曲げ光路形成手段39Bは、前部側反射光受光装置5Aに対する折り曲げ光路形成手段39Aと同様に、第1の反射体40Bと第2の反射体41Bとを備えており、配置構成が前後で対称となるだけでそれ以外は同じ構成であるから説明は省略する。   Similar to the bent optical path forming means 39A for the front side reflected light receiving device 5A, the bent optical path forming means 39B for the rear side reflected light receiving device 5B includes a first reflector 40B and a second reflector 41B. Since the arrangement configuration is only symmetric in the front and rear and the other configuration is the same, the description is omitted.

図6に示すように、前部側反射光受光装置5Aが受光する反射光の光軸CL1と、後部側反射光受光装置5Bが受光する反射光の光軸CL2とは、少しだけ上下方向に傾斜した状態となっているが、米粒群の移送方向に対して略直交する方向に沿う状態となるように設定されている。   As shown in FIG. 6, the optical axis CL1 of the reflected light received by the front side reflected light receiving device 5A and the optical axis CL2 of the reflected light received by the rear side reflected light receiving device 5B are slightly up and down. Although it is in an inclined state, it is set to be in a state along a direction substantially perpendicular to the direction of transfer of the rice grain group.

透過光受光装置5Cに対する折り曲げ光路形成手段39Cは、前部側照明手段4Aから投射されて透過光計測箇所J2を通った光を米粒群の移送方向と略平行な方向に沿って上方に向かうように反射する第1の反射体40Cと、その第1の反射体40Cにて反射した光を米粒群の移送方向に対して略直交する方向に反射して透過光受光装置5Cに導く第2の反射板41Cとを備えて構成されている。第1の反射体40C及び第2の反射体41Cの夫々がその反射面が鏡面にて構成されて略長方形の板状に形成されている。   The bent optical path forming means 39C for the transmitted light receiving device 5C is directed upward along the direction substantially parallel to the transfer direction of the rice grains by the light projected from the front side illumination means 4A and passing through the transmitted light measurement point J2. The first reflector 40C that reflects the light and the light reflected by the first reflector 40C is reflected in a direction substantially perpendicular to the transfer direction of the rice grain group and guided to the transmitted light receiving device 5C. The reflector 41C is provided. Each of the first reflector 40C and the second reflector 41C is formed in a substantially rectangular plate shape with its reflection surface being a mirror surface.

透過光計測箇所J2よりも米粒群の移送方向の下手側に位置する状態で分離箇所が設定され、エアー吹き付け装置6が分離すべきものとして判定された分離対象物に対してエアーを吹き付けるように構成されている。
このエアー吹き付け装置6は、エアー噴出部としての噴出ノズル6aの複数個を、計測対象箇所Jの装置横幅方向の全幅を複数個の区画に分割形成した各区画に対応する状態で並置させ、分離対象物が存在する区画の噴出ノズル6aが作動されるように構成されている。
The separation part is set in a state located on the lower side in the transfer direction of the rice grains than the transmitted light measurement part J2, and the air blowing device 6 is configured to blow air on the separation object determined to be separated. Has been.
In this air blowing device 6, a plurality of ejection nozzles 6a serving as air ejection portions are juxtaposed in a state corresponding to each section formed by dividing the entire width in the apparatus lateral width direction of the measurement target location J into a plurality of sections, and separated. The ejection nozzle 6a in the section where the object is present is configured to be operated.

図14に示すように、エアー吹き付け装置6は、複数の噴出ノズル6aにエアーを分岐供給するエアーマニホールド42が備えられ、エアーマニホールド42に対して、装置外部に備えられたエアー供給源としてのエアーコンプレッサ44から塵埃除去用のフィルター47を介して圧力供給路43によりエアーが供給される。又、エアーマニホールド42から複数の噴出ノズル6a夫々へのエアーの供給を各別に断続して、エアーを噴出させない非作用状態とエアーを噴出させる作用状態とに切り換え自在な制御弁としての電磁弁45が設けられ、その各電磁弁45から、各噴出ノズル6aへの流路を形成する配管を介してエアーマニホールド42から各噴出ノズル6aにエアーが分岐供給されている。又、図14に示すように、圧力供給路43のエアーの圧力を検出する圧力検出手段としての圧力センサ48が設けられている。   As shown in FIG. 14, the air blowing device 6 includes an air manifold 42 that divides and supplies air to a plurality of ejection nozzles 6 a, and air as an air supply source provided outside the device with respect to the air manifold 42. Air is supplied from the compressor 44 through the pressure removal passage 43 through a filter 47 for removing dust. Further, the supply of air from the air manifold 42 to each of the plurality of ejection nozzles 6a is interrupted separately, and an electromagnetic valve 45 as a control valve that can be switched between a non-acting state in which air is not ejected and an operating state in which air is ejected. Is provided, and air is branched and supplied from the air manifold 42 to each of the ejection nozzles 6a from the respective electromagnetic valves 45 via piping that forms a flow path to each of the ejection nozzles 6a. Further, as shown in FIG. 14, a pressure sensor 48 is provided as pressure detecting means for detecting the air pressure in the pressure supply passage 43.

前記各噴出ノズル6aは、アルミ等の金属製のブロック体6cに形成されており、各噴出ノズル6aへエアーを供給する内部配管6bもそのブロック体6cの内部に形成されている。尚、図10に示すように、内部配管6bと接続される状態でブロック体6cの上面に形成された溝部分と上方側から装着された板部材6dとにより各噴出ノズル6aが形成されている。   Each jet nozzle 6a is formed in a block body 6c made of metal such as aluminum, and an internal pipe 6b for supplying air to each jet nozzle 6a is also formed in the block body 6c. In addition, as shown in FIG. 10, each nozzle 6a is formed by the groove part formed in the upper surface of the block body 6c in the state connected with the internal piping 6b, and the board member 6d with which it mounted | worn from the upper side. .

そして、図6に示すように、シュータ3Cの下端部から流下案内される米粒群kのうちで、噴出ノズル6aからのエアーの吹き付けを受けずにそのまま進行してくる正常な米粒kを回収する正常粒回収用の受口部49と、エアーの吹き付けを受けて正常な米粒kの流れから横方向に分離した分離対象物(例えば、着色米や胴割れ米等の不良米や石やガラス片等の異物等)を回収する分離物回収用の受口部50とが設けられ、正常粒回収用の受口部49が装置横幅方向に細長い筒状に形成され、その正常粒回収用の受口部49の周囲を囲むように、分離物回収用の受口部50が形成されている。   Then, as shown in FIG. 6, normal rice grains k that are traveling as they are without being blown with air from the ejection nozzle 6 a are recovered from the rice grain groups k that flow down from the lower end of the shooter 3 </ b> C. Receiving part 49 for collecting normal grains, and separation objects separated from the flow of normal rice grains k by blowing air (for example, defective rice such as colored rice and cracked rice, stones and glass pieces) And a collection port 50 for collecting the separated product, and a normal particle collection port 49 is formed in an elongated cylindrical shape in the lateral direction of the apparatus. A receiving part 50 for collecting separated matter is formed so as to surround the periphery of the mouth part 49.

分離物回収用の受口部50は、噴出ノズル6aからのエアーの吹き付け方向の下手側には、そのエアーにより吹き飛ばされた米粒を受止めて下方に向けて案内する受止め板50aと、吹き飛ばされた米粒を流下案内しながら回収する下窄まり状の案内板50bとからなり、分離物回収用の受口部50にて回収された分離対象物は分離物出口52から外部に排出される。
又、正常粒回収用の受口部49にて回収された米粒kは正常粒案内体53により排出用揚送搬送装置8の下部の搬送始端部に供給され、排出用揚送搬送装置8により揚送搬送され、排出口7より装置外部に排出される。
The separation-collecting receiving port 50 has a receiving plate 50a for receiving the rice grains blown by the air and guiding them downward, on the lower side in the blowing direction of the air from the jet nozzle 6a, The separation target collected in the receiving part 50 for collecting separated matter is discharged from the separated outlet 52 to the outside. .
Further, the rice grains k collected at the receiving port 49 for collecting normal grains are supplied to the conveyance start end portion at the lower part of the discharging and conveying apparatus 8 by the normal grain guide 53, and are supplied by the discharging and conveying apparatus 8 for discharging. It is transported and discharged from the discharge port 7 to the outside of the apparatus.

図3及び図6に示すように、計測対象箇所Jの装置後部側、言い換えると、平面視において、米粒群の移送方向上手側に位置して、計測対象箇所Jを臨む光透過窓59を備える状態でかつ装置横幅方向に延びる状態に形成された後部側照明部収納ケース54B内に、後部側照明手段4B及び背景光形成用の後部側反射板4Eが収納されている。   As shown in FIGS. 3 and 6, the apparatus includes a light transmission window 59 that faces the measurement target portion J and is located on the rear side of the measurement target portion J, in other words, on the upper side in the transfer direction of the rice grain group in plan view. The rear side illumination means 4B and the rear side reflection plate 4E for forming background light are accommodated in a rear side illumination part accommodation case 54B formed in a state extending in the horizontal direction of the apparatus.

又、計測対象箇所Jの装置前部側、言い換えると、平面視において、米粒群の移送方向下手側に位置して、計測対象箇所Jを臨む光透過窓59を備える状態でかつ装置横幅方向に延びる状態に形成された前部側照明部収納ケース54A内に、前部側照明手段4A、背景光量調整器4C、背景光形成用の前部側反射板4Dが収納されている。   Further, in the apparatus front side of the measurement target portion J, in other words, in a plan view, the light grain window 59 is located on the lower side in the transfer direction of the rice grain group and has a light transmission window 59 facing the measurement target portion J, and in the lateral direction of the device. A front side illumination unit 4A, a background light amount adjuster 4C, and a front side reflection plate 4D for forming background light are accommodated in a front side illumination part storage case 54A formed in an extended state.

そして、図7に示すように、後部側照明部収納ケース54Bと前部側照明部収納ケース54Aとが、装置横幅方向両側部に位置する側面部54cにより一体的に連結されて一つの収納体54として一体状に形成されている。
上述したように後部側照明部収納ケース54Bと前部側照明部収納ケース54Aとは、夫々、装置横幅方向に延びる状態に形成されており、後部側照明手段4B及び背景光形成用の後部側反射板4Eは、照明部収納ケース54Bにおける両側の側面部54cに図示しないブラケットにて位置固定状態で取り付けられる状態で収納されている。又、前部側照明手段4A、背景光量調整器4C、背景光形成用の前部側反射板4Dの夫々は、前部側照明部収納ケース54Aの両側の側面部54cに図示しないブラケットにて位置固定状態で取り付けられる状態で収納されている。
As shown in FIG. 7, the rear side illumination unit storage case 54 </ b> B and the front side illumination unit storage case 54 </ b> A are integrally connected by side portions 54 c located on both sides in the apparatus lateral width direction to form one storage body. 54 is formed integrally.
As described above, the rear side illumination unit storage case 54B and the front side illumination unit storage case 54A are formed so as to extend in the lateral direction of the apparatus, respectively, and the rear side illumination means 4B and the rear side for forming the background light The reflecting plate 4E is stored in a state of being fixedly attached to the side surface portions 54c on both sides of the lighting unit storage case 54B by a bracket (not shown). Each of the front side illumination means 4A, the background light amount adjuster 4C, and the front side reflection plate 4D for forming the background light is formed by brackets (not shown) on the side portions 54c on both sides of the front side illumination unit storage case 54A. It is stored in a fixed state.

従って、後部側照明部収納ケース54B内に、後部側照明手段4B及び背景光形成用の後部側反射板4Eを備えることにより、計測対象箇所Jに向けて光を投射する上手側照明部M1が構成されている。そして、この上手側照明部M1は、米粒群の移送方向における上手側箇所に位置する状態で設置されている。又、前部側照明部収納ケース54A内に前部側照明手段4A、背景光量調整器4C、背景光形成用の前部側反射板4Dを備えることにより、計測対象箇所Jに向けて光を投射する下手側照明部M2が構成されている。そして、この下手側照明部M2は、米粒群の移送方向における下手側箇所に位置する状態で設置されている。   Therefore, by providing the rear side illumination unit 4B and the rear side reflection plate 4E for forming the background light in the rear side illumination unit storage case 54B, the upper side illumination unit M1 that projects light toward the measurement target portion J is provided. It is configured. And this upper side illumination part M1 is installed in the state located in the upper side location in the transfer direction of a rice grain group. Further, by providing the front side illumination means 4A, the background light amount adjuster 4C, and the front side reflection plate 4D for forming the background light in the front side illumination unit storage case 54A, light is directed toward the measurement target portion J. A lower illumination unit M2 for projecting is configured. And this lower side illumination part M2 is installed in the state located in the lower side location in the transfer direction of a rice grain group.

図6に示すように、前部側照明部収納ケース54Aの装置前部側に位置する前側面に、前部側反射光受光装置5Aを内装する前部側カメラケース部55Aと、折り曲げ光路形成手段39Aを内部に収納する前部光路形成用ケース部55Bとが一体的に形成された前部側受光部ケース55が連結支持されている。そして、上述したように前部側反射光受光装置5Aは、装置横幅方向において、計測対象箇所Jの幅よりも幅狭に設けられるものであるから、図7に示すように、前部側受光部ケース55は、装置横幅方向において収納体54よりも幅狭に形成されるものとなる。
又、図6に示すように、前部側照明部収納ケース54Aの前側面には、反射光計測箇所J1からの光が通過するための装置横幅方向に沿って細長く延びるスリット孔73が形成されている。
As shown in FIG. 6, the front side camera case portion 55 </ b> A in which the front side reflected light receiving device 5 </ b> A is housed on the front side surface of the front side lighting unit storage case 54 </ b> A located on the front side of the device, and a bent optical path are formed. A front side light receiving part case 55 integrally formed with a front optical path forming case part 55B for accommodating the means 39A is connected and supported. As described above, the front-side reflected light receiving device 5A is provided narrower than the width of the measurement target location J in the lateral direction of the device, and as shown in FIG. The part case 55 is formed to be narrower than the storage body 54 in the lateral direction of the apparatus.
Further, as shown in FIG. 6, a slit hole 73 that is elongated along the lateral direction of the apparatus for allowing light from the reflected light measurement point J1 to pass through is formed on the front side surface of the front side illumination unit storage case 54A. ing.

従って、下手側照明部M2よりも、平面視において、米粒群の移送方向における下手側箇所に設置される下手側受光部としての前部側反射光受光装置5Aが、装置横幅方向において収納体54に収納される下手側照明部M2よりも幅狭状に形成されて、下手側照明部収納ケース54に連結支持された前部側受光用ケース55内に収納されている。   Therefore, the front-side reflected light receiving device 5A as the lower-side light receiving unit installed in the lower-side portion in the transfer direction of the rice grains in the plan view is lower than the lower-side illumination unit M2 in the horizontal direction of the device. The lower illuminating unit M2 is housed in a front side light receiving case 55 which is formed narrower than the lower illuminating unit M2 and is connected to and supported by the lower illuminating unit accommodating case 54.

又、図6に示すように、後部側照明部収納ケース54Bの装置後部側の後側面には、後部側反射光受光装置5Bを内装する第1の後部側カメラケース部56Aと、透過光受光装置5Cを内装する第2の後部側カメラケース部56Bと、折り曲げ光路形成手段39Bを内部に収納する後部光路形成用ケース部56Cとが一体的に形成された後部側受光部ケース56が連結支持されている。そして、上述したように後部側反射光受光装置5B及び透過光受光装置5Cは、装置横幅方向において、計測対象箇所Jの幅よりも幅狭に設けられるものであるから、図7に示すように、後部側受光部ケース56は、装置横幅方向において収納体54よりも幅狭に形成されるものとなる。
又、図6に示すように、後部側照明部収納ケース54Bの後側面には、反射光計測箇所J1からの光が通過するための装置横幅方向に沿って細長く延びるスリット孔74、及び、透過光計測箇所J2からの光が通過するための装置横幅方向に沿って細長く延びるスリット孔75が夫々形成されている。
Further, as shown in FIG. 6, on the rear side of the rear side illumination unit storage case 54B on the rear side of the device, there is a first rear side camera case unit 56A that houses the rear side reflected light receiving device 5B, and transmitted light reception. The rear side light receiving part case 56 in which the second rear side camera case part 56B that houses the apparatus 5C and the rear optical path forming case part 56C that accommodates the bent optical path forming means 39B are integrally formed is connected and supported. Has been. And as above-mentioned, since the rear side reflected light light-receiving device 5B and the transmitted light light-receiving device 5C are provided narrower than the width of the measurement target location J in the device lateral width direction, as shown in FIG. The rear side light receiving unit case 56 is formed to be narrower than the storage body 54 in the apparatus lateral width direction.
Further, as shown in FIG. 6, on the rear side surface of the rear-side illumination unit storage case 54B, a slit hole 74 that is elongated along the lateral direction of the device for allowing light from the reflected light measurement point J1 to pass through, and a transmission Slit holes 75 that are elongated along the lateral direction of the apparatus for allowing light from the optical measurement point J2 to pass therethrough are respectively formed.

従って、上手側照明部M1よりも、平面視において、米粒群の移送方向における上手側箇所に設置される受光部としての後部側反射光受光装置5B及び透過光受光装置5Cが、装置横幅方向において収納体54に収納される上手側照明部M2よりも幅狭状に形成されて、下手側照明部収納ケース54に連結支持された前部側受光部ケース54内に収納されている。   Therefore, the rear side reflected light receiving device 5B and the transmitted light receiving device 5C as the light receiving unit installed at the upper side position in the transfer direction of the rice grain group in the horizontal direction of the device are more in the horizontal direction than the upper side illumination unit M1. It is formed narrower than the upper-side illumination unit M <b> 2 stored in the storage body 54, and is stored in the front-side light receiving unit case 54 that is connected and supported by the lower-side illumination unit storage case 54.

図6及び図8に示すように、後部側照明部収納ケース54Bと前部側照明部収納ケース54Aとの間に形成された米粒群が通過する空間にシュータ3が入り込む状態で設けられ、計測対象箇所よりも米粒群の移送方向下手側に位置する状態で、エアー吹き付け装置6が収納体54における両側の側面部54cにわたって架設支持される状態で取り付けられている。   As shown in FIGS. 6 and 8, the shooter 3 is provided in a state where the shooter 3 enters the space through which the rice grain group formed between the rear side lighting unit storage case 54B and the front side lighting unit storage case 54A passes. The air blowing device 6 is attached in a state where it is installed and supported across the side surface portions 54c on both sides of the storage body 54 in a state of being located on the lower side in the transfer direction of the rice grains than the target portion.

説明を加えると、図6及び図8に示すように、収納体54における両側の側面部54cにわたって架設される状態で支持ブラケット65が連結されている。この支持ブラケット65は、装置横幅方向両側部に位置するフランジ部65aが両側の側面部54cに形成されている横向きの鍔部54c1にネジ固定される状態で取り付けられている。   If it demonstrates, as shown in FIG.6 and FIG.8, the support bracket 65 is connected in the state constructed over the side part 54c of the both sides in the storage body 54. FIG. The support bracket 65 is attached in such a manner that the flange portions 65a positioned on both sides in the lateral direction of the apparatus are screwed to laterally extending flange portions 54c1 formed on the side surface portions 54c on both sides.

そして、支持ブラケット65における前部側の枠状取付部65aにエアー吹き付け装置6を構成するブロック体6cがネジ止め固定される状態で取り付けられている。ブロック体6cのさらに前部側には、図10に示すように、正常粒回収用の受口部49を形成するための筒状の受入れ口形成部材49Aが取り付けられている。この受入れ口形成部材49Aの横側部49A1は幅広に設けられ、米粒が装置横幅方向に飛散するのを防止するようにしている。   And the block body 6c which comprises the air spraying apparatus 6 is attached to the frame-shaped attachment part 65a of the front part side in the support bracket 65 in the state fixed with a screw. As shown in FIG. 10, a cylindrical receiving port forming member 49A for forming a receiving port 49 for collecting normal grains is attached to the front side of the block body 6c. The lateral side portion 49A1 of the receiving port forming member 49A is provided wide so as to prevent rice grains from scattering in the lateral direction of the apparatus.

図6に示すように、ブロック体6cの裏面側に位置する支持ブラケット65における底面部65b上に、エアーマニホールド42、複数の電磁弁45及び複数の配管等が備えられ、それらの各装置が備えられる空間を米粒群が通過する領域と区画させる状態で覆うカバー体66が設けられている。枠状取付部65aに形成されている開口65a1を通してブロック体6aに接続することができるようになっている。   As shown in FIG. 6, an air manifold 42, a plurality of solenoid valves 45, a plurality of pipes, and the like are provided on the bottom surface portion 65 b of the support bracket 65 located on the back surface side of the block body 6 c, and each of these devices is provided. A cover body 66 is provided to cover the space to be separated from the region through which the rice grains pass. It can be connected to the block body 6a through an opening 65a1 formed in the frame-shaped mounting portion 65a.

カバー体66は支持ブラケット65に溶接あるいはネジ固定等により取り付けられており、カバー体66の上部面66aが、計測対象箇所Jに近い側が高い位置にあり、計測対象箇所Jから装置後部側に位置するほど下方に位置するように斜め姿勢に設けられ、米粒群kがその上部面66aに載置されることがなく下方に流動するように構成されている。   The cover body 66 is attached to the support bracket 65 by welding, screw fixing, or the like, and the upper surface 66a of the cover body 66 is at a high position on the side close to the measurement target location J, and is positioned on the rear side of the apparatus from the measurement target location J. The rice grain group k is configured to flow downward without being placed on the upper surface 66a.

そして、図8、図9及び図10に示すように、前記遮光部材38が、その装置横幅方向両側部に設けられた取り付け部38Bを溶接あるいはネジ止めにより固定される状態でカバー体66に取り付けられている。遮光部材38における遮光作用部38Aとカバー体66の上部面66aとの間には、透過光が通過するために隙間Zが形成されている。   Then, as shown in FIGS. 8, 9 and 10, the light shielding member 38 is attached to the cover body 66 in a state where the attachment portions 38B provided on both sides in the lateral direction of the device are fixed by welding or screwing. It has been. A gap Z is formed between the light shielding member 38A of the light shielding member 38 and the upper surface 66a of the cover body 66 so that transmitted light passes therethrough.

この粒状体群選別装置では、投入ホッパー1に投入された米粒群kを揚送搬送して貯留ホッパー3Aに供給する供給用揚送搬送装置2と、正常粒回収用の受口部49から回収された正常粒を揚送搬送して上部に設けられた排出部7から排出させるための排出用揚送搬送装置8とが、シュータ3Cにおける上手側照明部M1よりも米粒群の移送方向において上手側となる部分の横脇に、シュータ3Cの横幅方向において、上手側照明部M1の両側端部位置よりもシュータ3Cに近づくように位置された状態で装備されている。   In this granular material group sorting device, the rice grain group k fed to the feeding hopper 1 is lifted and transported and supplied to the storage hopper 3A and recovered from the receiving port 49 for normal grain recovery. The discharging and conveying device 8 for discharging and conveying the normal grains discharged from the discharging unit 7 provided on the upper side is better in the transfer direction of the rice grains than the upper side illumination unit M1 in the shooter 3C. It is equipped on the side of the side portion that is located closer to the shooter 3C than the positions of both end portions of the upper illumination unit M1 in the lateral width direction of the shooter 3C.

図1に示すように、供給用揚送搬送装置2は、平面視で矩形状の筒状枠体2Aの内部に下端側に位置する駆動輪体2aと上端側に位置する従動輪体2bとに亘って巻回された無端回動体2cに適宜間隔をあけて複数のバケット2dを備えたバケット式揚送コンベアにて構成され、図1及び図5に示すように、装置後部側の下部に備えられた投入ホッパー1に投入された米粒群kをバケット2dにより上揚搬送して貯留ホッパー3Aに供給するように構成されている。尚、貯留ホッパー3Aには、透視窓70が形成されており、米粒群kの供給状態を目視で確認できるように構成されている。   As shown in FIG. 1, the feeding / conveying device 2 for supply includes a driving wheel body 2 a located on the lower end side and a driven wheel body 2 b located on the upper end side inside a rectangular cylindrical frame 2 </ b> A in plan view. The endless rotating body 2c wound over the belt is constituted by a bucket-type transporting conveyor provided with a plurality of buckets 2d at appropriate intervals, as shown in FIG. 1 and FIG. The rice grain group k input to the input hopper 1 provided is lifted and conveyed by the bucket 2d and supplied to the storage hopper 3A. The storage hopper 3A is formed with a see-through window 70 so that the supply state of the rice grain group k can be visually confirmed.

又、図3に示すように、排出用揚送搬送装置8は、供給用揚送搬送装置2と同様に、平面視で矩形状の筒状枠体8Aの内部に下端側に位置する駆動輪体8aと上端側に位置する従動輪体8bとに亘って巻回された無端回動体8cに適宜間隔をあけて複数のバケット8dを備えたバケット式揚送コンベアにて構成され、正常粒回収用の受口部49から回収されて案内板53により流下案内される正常な米粒群kをバケットにより上揚搬送して排出部7に供給するように構成されている。   Further, as shown in FIG. 3, similarly to the supply lifting / conveying device 2, the discharge lifting / conveying device 8 is a driving wheel located on the lower end side inside a rectangular cylindrical frame 8 </ b> A in plan view. Consists of a bucket-type transporting conveyor having a plurality of buckets 8d at appropriate intervals with an endless rotating body 8c wound around a body 8a and a driven wheel 8b positioned on the upper end side, and recovering normal grains The normal rice grain group k recovered from the receiving port 49 for use and guided down by the guide plate 53 is lifted and conveyed by the bucket and supplied to the discharge unit 7.

供給用揚送搬送装置2及び排出用揚送搬送装置8は夫々、下端側に位置する駆動輪体2a,8aの各駆動軸2e,8eを同一方向に回転することにより搬送作動を行うように構成されている。   The feeding and conveying device 2 for supply and the lifting and conveying device 8 for discharging are respectively configured to perform a conveying operation by rotating the drive shafts 2e and 8e of the driving wheel bodies 2a and 8a located on the lower end side in the same direction. It is configured.

供給用揚送搬送装置2及び排出用揚送搬送装置8の夫々の筒状枠体2A,8Aは、この粒状体選別装置の主枠部Fの一部を構成するようになっている。すなわち、図4に示すように、一対の揚送搬送装置2,8夫々の筒状枠体2A,8Aの下端部に、装置前部側すなわち、平面視において米粒群の移送方向における下手側に延びる基枠12が接続され、かつ、左右一対の側板13,14が、筒状枠体2A,8Aと基枠12とに接続される状態で設けられて、一対の筒状枠体2A,8A、基枠12、及び、左右一対の側板13,14から主枠部Fが構成されている。尚、図4では、主枠部Fの構成を理解しやすくするために他の部材は省略している。   The cylindrical frames 2A and 8A of the feeding and conveying device 2 for supply and the lifting and conveying device 8 for discharging constitute a part of the main frame portion F of this granular material sorting device. That is, as shown in FIG. 4, on the lower ends of the cylindrical frames 2A and 8A of the pair of conveying and conveying devices 2 and 8, on the front side of the device, that is, on the lower side in the transfer direction of the rice grains in a plan view. The extending base frame 12 is connected, and a pair of left and right side plates 13 and 14 are provided in a state of being connected to the cylindrical frame bodies 2A and 8A and the base frame 12, and the pair of cylindrical frame bodies 2A and 8A. The main frame portion F is composed of the base frame 12 and the pair of left and right side plates 13 and 14. In FIG. 4, other members are omitted for easy understanding of the configuration of the main frame portion F.

図4に示すように、基枠12は、左右方向の両側に位置する側部12a、それら左右の側壁部12a同士を連結する前部12bとを備えて平面視で略コ字形に構成され、又、図1に示すように、それらにより形成された内部の空間に位置する状態で且つ受け台12cにて支持される状態で電動モータ15が備えられている。
図2に示すように、この電動モータ15は出力軸15aが両側外方に向けて突出する状態で設けられ、その出力軸15aと各駆動軸2e,8eの夫々とにわたってチェーンや伝動ベルト等の無端回動体16が巻回されて、電動モータ15により各駆動軸2e,8eが同一方向に一体的に回転駆動される状態で連動連結されている。
As shown in FIG. 4, the base frame 12 includes a side portion 12a located on both sides in the left-right direction and a front portion 12b that connects the left and right side wall portions 12a, and is configured in a substantially U shape in plan view. Moreover, as shown in FIG. 1, the electric motor 15 is provided in the state located in the internal space formed by them, and the state supported by the receiving stand 12c.
As shown in FIG. 2, the electric motor 15 is provided with an output shaft 15a projecting outward on both sides. A chain, a transmission belt, or the like extends over the output shaft 15a and each of the drive shafts 2e and 8e. The endless rotating body 16 is wound, and the drive shafts 2e and 8e are interlocked and connected by the electric motor 15 so as to be integrally rotated in the same direction.

図4に示すように、収納体54は、装置横幅方向の両側部が左右の側板13,14に夫々連結支持される構成となっている。説明を加えると、収納体54における装置横幅方向の両側部が左右の側板13,14の夫々に形成された矩形状の挿通孔60を挿通する状態で架設支持され、収納体54における両側の側面部54cの周部に形成された鍔部が、側板13,14の挿通孔60の周囲に形成された鍔部にネジ連結される構成となっている。   As shown in FIG. 4, the storage body 54 has a structure in which both side portions in the apparatus width direction are connected and supported by the left and right side plates 13 and 14, respectively. In other words, both sides of the storage body 54 in the lateral direction of the apparatus are installed and supported in a state of being inserted through the rectangular insertion holes 60 formed in the left and right side plates 13 and 14, respectively. The collar part formed in the peripheral part of the part 54c becomes a structure connected to the collar part formed in the circumference | surroundings of the penetration hole 60 of the side plates 13 and 14 with a screw.

図2及び図4に示すように、左右の側板13,14の夫々の装置横幅方向における両側外方箇所には、外方側を覆う側部カバー63,64が備えられている。そして、収納体54の側面部54cに透明ガラスを備えた透過窓67が形成され、装置前部から見て右側に位置する一方の側部カバー63には、前記透過窓67及び側板13に形成された挿通孔60を通して装置外部から計測対象箇所Jを目視にて監視することができるように透視窓68が形成されている。   As shown in FIGS. 2 and 4, side covers 63 and 64 that cover the outer side are provided at the outer side portions of the left and right side plates 13 and 14 in the lateral direction of the device. A transmissive window 67 having transparent glass is formed on the side surface 54c of the housing 54, and the transmissive window 67 and the side plate 13 are formed on one side cover 63 positioned on the right side when viewed from the front of the apparatus. A see-through window 68 is formed so that the measurement target portion J can be visually monitored from the outside of the apparatus through the inserted through hole 60.

図4及び図5に示すように、左右両側の側板13,14には、夫々、その周縁部を略コ字形に屈曲形成した鍔部が形成されており、この鍔部により側部カバー63,64の取り付け部を形成するとともに、側板13と側部カバー63との間、及び、側板14と側部カバー64との間に夫々、空間Q1,Q2が形成されている。   As shown in FIGS. 4 and 5, the side plates 13, 14 on both the left and right sides are each formed with a flange portion whose peripheral edge portion is bent into a substantially U shape, and the side cover 63, 64 are formed, and spaces Q1 and Q2 are formed between the side plate 13 and the side cover 63 and between the side plate 14 and the side cover 64, respectively.

そして、図4に示すように、右側の側板13と右側の側部カバー63との間の隙間により形成された空間Q1には、制御装置9及び図示しない電源装置等が配備され、それらは右側の側板13に位置固定状態で取り付けられる構成となっている。又、左側の側板14と左側の側部カバー64との間の隙間により形成された空間Q2には、電磁弁駆動回路29が配備され、左側の側板14に位置固定状態で取り付けられる構成となっている。   As shown in FIG. 4, a control device 9 and a power supply device (not shown) are provided in a space Q1 formed by a gap between the right side plate 13 and the right side cover 63. It is configured to be attached to the side plate 13 in a fixed position. A solenoid valve drive circuit 29 is provided in the space Q2 formed by the gap between the left side plate 14 and the left side cover 64, and is attached to the left side plate 14 in a fixed position. ing.

図4に示すように、この振動フィーダ3Bを支持する支持台27が各側板13,14に亘って架設する状態で連結固定されている。この支持台27の下面側には、右側の空間Q1と左側の空間Q2とを連通する角筒状の筒状部28が一体的に連結される状態で設けられ、電磁弁駆動回路29と制御装置9とを接続する電気配線hがこの筒状部28の内部を挿通する状態で配備することができるように構成されている。   As shown in FIG. 4, a support base 27 that supports the vibration feeder 3 </ b> B is connected and fixed in a state of being laid over the side plates 13 and 14. On the lower surface side of the support base 27, a rectangular tube-shaped cylindrical portion 28 that connects the right space Q1 and the left space Q2 is integrally connected, and the electromagnetic valve drive circuit 29 and the control unit 27 are controlled. The electrical wiring h that connects the device 9 is configured so as to be provided in a state of being inserted through the inside of the cylindrical portion 28.

又、ライン状光源41A,41B及び各受光装置5A,5B,5Cに接続される電気配線(図示しない)は、収納体54の内部を通して配備されて制御装置9に接続される構成となっている。このようにして、米粒が通過する計測用通過領域には、電気配線hが露出しないようにしている。米粒が通過する箇所には、例えばネズミ等の小動物が入り込むおそれがあるが、電気配線hが計測用通過領域に露出しないようにしたので、電気配線が小動物による損傷を受ける等の不利を回避できる。   In addition, electrical wiring (not shown) connected to the line-shaped light sources 41A, 41B and the light receiving devices 5A, 5B, 5C is arranged through the inside of the storage body 54 and connected to the control device 9. . In this way, the electrical wiring h is prevented from being exposed in the measurement passing region through which the rice grains pass. There is a possibility that small animals such as mice may enter the place where the rice grains pass, but since the electrical wiring h is not exposed to the measurement passing area, disadvantages such as the electrical wiring being damaged by the small animals can be avoided. .

次に、制御構成について説明する。
図14に示すように、マイクロコンピュータ利用の制御装置9が設けられ、この制御装置9に、各受光装置5A,5B,5Cからの各画像信号と、操作パネル11からの操作情報とが入力されている。図2に示すように、操作パネル11は、前カバー10に外方に臨む状態で備えられ、各種の設定を行うことができるようになっている。一方、制御装置9からは、ライン状光源30A,30Bを点灯させる駆動信号と、エアーマニホールド42から各噴出ノズル6aへの各エアの供給を断続する各電磁弁45を駆動する電磁弁駆動回路29に対する駆動信号と、振動フィーダ3B用の振動発生器26に対する駆動信号と、調光装置35への制御指令用の信号とが出力されている。
Next, the control configuration will be described.
As shown in FIG. 14, a control device 9 using a microcomputer is provided, and image signals from the light receiving devices 5A, 5B, and 5C and operation information from the operation panel 11 are input to the control device 9. ing. As shown in FIG. 2, the operation panel 11 is provided on the front cover 10 so as to face outward, so that various settings can be performed. On the other hand, from the control device 9, a drive signal for turning on the line light sources 30A and 30B and a solenoid valve drive circuit 29 for driving each solenoid valve 45 for intermittently supplying each air from the air manifold 42 to each jet nozzle 6a. , A drive signal for the vibration generator 26 for the vibration feeder 3B, and a signal for a control command to the light control device 35 are output.

そして、制御装置9を利用して、受光手段5の受光情報に基づいて分離対象となる粒状体(不良の米粒及び小石やガラス片等の異物を含む)(以下、分離対象物という)であるか否かを判別する粒状体判別処理を実行する評価処理手段100と、圧力センサ48の検出情報に基づいて、米粒群kの移送流量を変更すべく振動フィーダ3Bの作動を制御する供給量制御手段101とが構成されている。
制御装置9は、粒状体判別処理の判別結果に基づいて、分離対象となる粒状体であることを判別すると該当する噴出ノズル6aが作動させるべく電磁弁駆動回路29に対する駆動信号を出力するように構成されている。
And it is a granular material (including a defective rice grain and foreign matter such as pebbles and glass pieces) (hereinafter referred to as a separation object) based on the light receiving information of the light receiving means 5 using the control device 9. Supply unit control for controlling the operation of the vibration feeder 3B to change the transfer flow rate of the rice grain group k on the basis of the detection information of the pressure sensor 48 and the evaluation processing means 100 for executing the granular material discrimination processing for discriminating whether or not Means 101 is configured.
The control device 9 outputs a drive signal to the electromagnetic valve drive circuit 29 so as to operate the corresponding ejection nozzle 6a when it is determined based on the determination result of the granular material determination processing that it is a granular material to be separated. It is configured.

次に、評価処理手段100について説明する。
評価処理手段100は、前部側反射光受光装置5A及び後部側反射光受光装置5B夫々について、各単位受光部5aにて受光して得られた光量値が各単位受光部5a毎に予め設定されている適正光量範囲ΔEhを外れているか否かの判別を各単位受光部5a毎に行うとともに、透過光受光装置5Cの各単位受光部5aにて受光して得られた光量値が各単位受光部5a毎に設定された適正光量範囲ΔEtを外れているか否かの判別を各単位受光部5a毎に行い、これらの判別においていずれかの単位受光部5aの受光量が適正光量範囲ΔEh,ΔEtを外れている場合に分離対象物であると判別する。
Next, the evaluation processing unit 100 will be described.
The evaluation processing means 100 sets in advance the light quantity value obtained by receiving light at each unit light receiving unit 5a for each of the front side reflected light receiving device 5A and the rear side reflected light receiving device 5B for each unit light receiving unit 5a. It is determined for each unit light receiving unit 5a whether or not it is outside the appropriate light amount range ΔEh, and the light quantity value obtained by receiving each unit light receiving unit 5a of the transmitted light receiving device 5C is determined for each unit. It is determined for each unit light receiving unit 5a whether or not the appropriate light amount range ΔEt set for each light receiving unit 5a is outside. In these determinations, the received light amount of any unit light receiving unit 5a is the appropriate light amount range ΔEh, When it is outside ΔEt, it is determined that it is a separation object.

又、評価処理手段100は、各受光装置5A,5B,5Cの各単位受光部5a毎に、サンプリングにより得られた設定個数の受光量データについて、暗側から明側に亘る間を複数段階に区分けした各光量値に対する度数分布(ヒストグラムともいう)を求めて、その度数分布に基づいて適正光量範囲ΔEh,ΔEtを設定するように構成されている。   In addition, the evaluation processing means 100 performs a plurality of steps from the dark side to the bright side with respect to the set amount of received light amount data obtained by sampling for each unit light receiving unit 5a of each light receiving device 5A, 5B, 5C. A frequency distribution (also referred to as a histogram) is obtained for each divided light quantity value, and appropriate light quantity ranges ΔEh and ΔEt are set based on the frequency distribution.

具体的には、ライン状光源30A,30Bの照明光量が十分に安定した状態で、米粒群kを流しながら、各受光装置5A,5B,5Cの各単位受光部5aについて設定個数の受光量データをサンプリングする。尚、この場合において、前記エアー吹き付け装置6は作動させない。そして、図18に示すように、評価処理手段100は、度数分布hgにおいて暗側から明側に亘って各光量値に対する度数値が連続して存在する連続領域(図において斜線で示す)の上端部の近傍位置に対応させて上側光量値TH1を設定するとともに、その上側光量値TH1から明側に設定光量K1離れた位置に適正光量範囲の上限値T1を設定し、且つ、連続領域の下端部の近傍位置に対応させて下側光量値TH2を設定するとともに、その下側光量値TH2から暗側に設定光量K2離れた位置に前記適正光量範囲の下限値T2を設定するように構成されている。上記各設定光量K1,K2は制御定数として予め設定されている。
尚、詳述はしないが、選別作業に伴って設定時間ごとに得られる設定個数の受光量データに基づいて上側光量値TH1や下側光量値TH2を補正するようにしている。
Specifically, a set number of received light amount data for each unit light receiving unit 5a of each of the light receiving devices 5A, 5B, and 5C while flowing the rice grain group k in a state in which the illumination light amount of the line light sources 30A and 30B is sufficiently stable. Is sampled. In this case, the air blowing device 6 is not operated. Then, as shown in FIG. 18, the evaluation processing means 100 has an upper end of a continuous area (indicated by hatching in the figure) in which the power value for each light quantity value continuously exists from the dark side to the bright side in the frequency distribution hg. The upper light amount value TH1 is set in correspondence with the vicinity position of the portion, the upper limit value T1 of the appropriate light amount range is set at a position away from the upper light amount value TH1 on the bright side, and the lower end of the continuous region The lower light amount value TH2 is set in correspondence with the vicinity position of the portion, and the lower limit value T2 of the appropriate light amount range is set at a position away from the lower light amount value TH2 to the dark side on the set light amount K2. ing. The set light amounts K1 and K2 are set in advance as control constants.
Although not described in detail, the upper light amount value TH1 and the lower light amount value TH2 are corrected based on the set number of received light amount data obtained at the set time with the sorting operation.

検出光が透過光である場合の適正光量範囲ΔEtについて説明する。
透過光の場合は、図16の透過光受光装置5Cの出力波形に示すように、各単位受光部5aの受光量に対応する出力電圧が米粒群kに対する適正光量範囲ΔEt内にある場合に正常な米粒(分離対象ではない粒状体)の存在を判別し、設定適正範囲ΔEtを外れた場合に不良米粒又は異物(分離対象物)の存在を判別する。ここで、透過光用の適正光量範囲ΔEtは、正常米粒からの標準的な透過光に対する出力電圧レベルe0を挟んで上下所定幅の範囲に設定される。
The appropriate light amount range ΔEt when the detection light is transmitted light will be described.
In the case of transmitted light, as shown in the output waveform of the transmitted light receiving device 5C in FIG. 16, it is normal when the output voltage corresponding to the received light amount of each unit light receiving unit 5a is within the appropriate light amount range ΔEt for the rice grain group k. The presence of defective rice grains (grains that are not separation targets) is determined, and the presence of defective rice grains or foreign substances (separation target objects) is determined when they are outside the set appropriate range ΔEt. Here, the appropriate light amount range ΔEt for transmitted light is set within a predetermined vertical range across the output voltage level e0 for standard transmitted light from normal rice grains.

そして、適正光量範囲ΔEtよりも小さい場合に、正常な米粒よりも透過率が小さい不良の米粒や異物等(例えば、黒色の石粒)の存在を判別し、適正光量範囲ΔEtよりも大きい場合に、正常な米粒kよりも透過率が大きい明側の不良の米粒k又は異物の存在を判別する。この明側の不良の米粒k又は異物の例としては、薄い色付の透明なガラス片等が正常な米粒kよりも透過率が大きい異物になり、又、正常な米粒kを「もち米」としたときの「うるち米」が正常な米粒kよりも透過率が大きい不良の米粒kになる。   When the light amount is smaller than the appropriate light amount range ΔEt, the presence of defective rice grains or foreign matters (for example, black stone particles) whose transmittance is smaller than that of normal rice grains is determined, and when the light amount range is larger than the appropriate light amount range ΔEt. Then, the presence of the defective rice grains k or foreign matters on the bright side having a larger transmittance than the normal rice grains k is determined. As an example of the defective rice grain k or foreign matter on the bright side, a light colored transparent glass piece or the like becomes a foreign matter having a larger transmittance than the normal rice grain k, and the normal rice grain k is changed to “glutinous rice”. “Uruchi rice” becomes a defective rice grain k having a larger transmittance than the normal rice grain k.

図16には、単位受光部5aの出力電圧(受光量)が、米粒kに一部着色部分が存在する位置や黒色の石等の位置(e1で示す)、及び、胴割れ部分が存在する位置(e2で示す)では、上記適正光量範囲ΔEtよりも下側に位置し、又、正常な米粒よりも透過率が大きい異物等が存在する場合には、位置e4に示すように適正光量範囲ΔEtよりも上側に位置している状態を例示している。   In FIG. 16, the output voltage (the amount of received light) of the unit light-receiving unit 5a includes a position where a partially colored portion exists in the rice grain k, a position of black stone or the like (indicated by e1), and a shell crack portion. At a position (indicated by e2), if there is a foreign substance or the like that is located below the appropriate light amount range ΔEt and has a larger transmittance than normal rice grains, the appropriate light amount range as shown at position e4. The state in which it is located above ΔEt is illustrated.

次に、検出光が反射光である場合の適正光量範囲ΔEhについて説明する。
反射光の場合には、図17の前部側反射光受光装置5A(又は、後部側反射光受光装置5B)の出力波形に示すように、各単位受光部5aの受光量に対応する出力電圧が適正光量範囲ΔEh内にある場合に正常な米粒の存在を判別し、適正光量範囲ΔEhを外れた場合に米粒の不良又は異物の存在を判別する。ここで、反射光用の適正光量範囲ΔEhは、正常米粒からの標準的な反射光に対する出力電圧レベルe0’を挟んで上下所定幅の範囲に設定される。
Next, the appropriate light amount range ΔEh when the detection light is reflected light will be described.
In the case of reflected light, as shown in the output waveform of the front side reflected light receiving device 5A (or rear side reflected light receiving device 5B) in FIG. 17, the output voltage corresponding to the received light amount of each unit light receiving unit 5a. Is within the proper light amount range ΔEh, the presence of normal rice grains is determined, and when the light amount is outside the proper light amount range ΔEh, the presence of defective rice grains or the presence of foreign matter is determined. Here, the appropriate light amount range ΔEh for reflected light is set to a range of a predetermined vertical width across the output voltage level e0 ′ for standard reflected light from normal rice grains.

図17には、米粒kに一部着色部分が存在する位置(e1’で示す)や胴割れ部分が存在する位置(e2’で示す)では、上記適正光量範囲ΔEhから下側に外れている状態を例示し、又、ガラス片等の異物が存在する場合には、異物からの強い直接反射光によって位置e3’に示すように適正光量範囲ΔEhから上側に外れている状態を例示している。又、図示しないが、黒色の石等では、反射率が非常に小さいので、波形において適正光量範囲ΔEhから下側に大きく外れることになる。   In FIG. 17, at the position where the partially colored portion is present in the rice grain k (indicated by e1 ′) and the position where the shell crack portion is present (indicated by e2 ′), it is deviated from the appropriate light amount range ΔEh. The state is illustrated, and when a foreign object such as a glass piece is present, the state of being out of the appropriate light amount range ΔEh as illustrated at position e3 ′ by strong direct reflected light from the foreign object is illustrated. . Although not shown, black stones and the like have a very low reflectance, so that they greatly deviate from the appropriate light amount range ΔEh in the waveform.

上記のように各受光装置5A,5B,5Cの各単位受光部5a毎に、設定及び補正される適正光量範囲ΔEt,ΔEh(透過光と反射光のいずれか対応するもの)の上限値T1及び下限値T2の値は、制御装置24内のメモリLUT(前面反射光用、後面反射光用、及び、透過光用のLUT)に、不良検出処理用のルックアップテーブルとして記憶される。   As described above, the upper limit value T1 of the appropriate light amount range ΔEt, ΔEh (corresponding to transmitted light or reflected light) to be set and corrected for each unit light receiving unit 5a of each light receiving device 5A, 5B, 5C, and The value of the lower limit value T2 is stored as a lookup table for defect detection processing in a memory LUT (for front reflected light, rear reflected light, and transmitted light LUT) in the control device 24.

そして、判別対象となる米粒群kを移送手段3にて移送しながら分離対象物であるか否かを判別する処理は、次のようにして行われる。
すなわち、図19に示すように、米粒群kを移送させながら各受光装置5A,5B,5Cの単位受光部5aの光量値jが位置データi(i=0〜〔単位受光部の数−1〕)に対応付けて入力される(ステップ1)。次に、各受光装置5A,5B,5Cの単位受光部5aの光量値jの判定処理を実行する(ステップ2)。具体的には、前部側反射光受光装置5A及び後部側反射光受光装置5B夫々の光量値jに基づいて、位置データi(i=0〜〔単位受光部の数−1〕)で表した各単位受光部5a毎に、光量値jが適正光量範囲ΔEh内にあれば正常な米粒であると判別し、光量値jが適正光量範囲ΔEhを外れていれば分離対象物であると判別する。又、透過光受光装置5Cについても同様に、位置データi(i=0〜〔単位受光部の数−1〕)で表した各単位受光部5a毎に、光量値jが適正光量範囲ΔEt内であるか否かが判別される。
And the process which discriminate | determines whether it is a separation target object, conveying the rice grain group k used as discrimination | determination object by the transfer means 3 is performed as follows.
That is, as shown in FIG. 19, the light quantity value j of the unit light receiving unit 5a of each of the light receiving devices 5A, 5B, and 5C is transferred to the position data i (i = 0 to [number of unit light receiving units −1] while transferring the rice grain group k. ]) In association with (step 1). Next, determination processing of the light quantity value j of the unit light receiving unit 5a of each light receiving device 5A, 5B, 5C is executed (step 2). Specifically, based on the light amount value j of each of the front side reflected light receiving device 5A and the rear side reflected light receiving device 5B, it is represented by position data i (i = 0 to [number of unit light receiving units-1]). For each unit light receiving unit 5a, if the light amount value j is within the appropriate light amount range ΔEh, it is determined that the rice is normal, and if the light amount value j is outside the appropriate light amount range ΔEh, it is determined that the object is a separation object. To do. Similarly, in the transmitted light receiving device 5C, the light amount value j is within the appropriate light amount range ΔEt for each unit light receiving portion 5a represented by the position data i (i = 0 to [number of unit light receiving portions −1]). It is determined whether or not.

前部側反射光受光装置5A及び後部側反射光受光装置5Bのいずれかの単位受光部5aの光量値jが適正光量範囲ΔEhを外れており分離対象物であると判別されると、反射光計測箇所J1から分離箇所に至るのに要する第1遅延時間t1が経過したのちに、エアー吹き付け装置6における該当する噴出ノズル6aからエアーを噴出させる(ステップ3,4,7)。   When the light amount value j of the unit light receiving unit 5a of either the front side reflected light receiving device 5A or the rear side reflected light receiving device 5B is outside the appropriate light amount range ΔEh and is determined to be a separation target, the reflected light After the first delay time t1 required to reach the separation location from the measurement location J1, the air is ejected from the corresponding ejection nozzle 6a in the air blowing device 6 (steps 3, 4, and 7).

又、透過光受光装置5Cのいずれかの単位受光部5aの光量値jが適正光量範囲ΔEtを外れており分離対象物であると判別されると、透過光計測箇所J2から分離箇所に至るのに要する第2遅延時間t2が経過したのちに、エアー吹き付け装置6における該当する噴出ノズル6aからエアーを噴出させるように電磁弁駆動回路29に対する駆動信号を出力する(ステップ5,6,7)。電磁弁駆動回路29は該当する噴出ノズル6aに対応する電磁弁45を作動させて噴出ノズル6aからエアーを噴出させる。   Further, when the light amount value j of any unit light receiving unit 5a of the transmitted light receiving device 5C is out of the appropriate light amount range ΔEt and is determined to be a separation target, the transmitted light measurement point J2 reaches the separation point. After the second delay time t2 required for the elapse of time, a drive signal is output to the electromagnetic valve drive circuit 29 so that air is ejected from the corresponding ejection nozzle 6a in the air blowing device 6 (steps 5, 6, and 7). The electromagnetic valve drive circuit 29 operates the electromagnetic valve 45 corresponding to the corresponding ejection nozzle 6a to eject air from the ejection nozzle 6a.

このように分離対象物に対してその位置に対応する区画の各噴出ノズル6aからエアーを吹き付けて正常な米粒と分離させて分離物回収用の受口部50に回収する。一方、分離対象物と判別されなかった正常な米粒は正常粒回収用の受口部49に回収する。   In this way, air is blown from the respective ejection nozzles 6a in the section corresponding to the position of the separation object to separate it from normal rice grains, and the separated object is collected in the receiving port 50 for collecting the separated object. On the other hand, normal rice grains that have not been identified as separation objects are collected in the receiving part 49 for collecting normal grains.

分離物回収用の受口部50にて回収された分離対象物は分離物出口52から外部に排出され、正常粒回収用の受口部49にて回収された正常な米粒群kは案内板53により流下案内されて排出用揚送搬送装置8の下部の搬送始端部に供給されて、排出用揚送搬送装置8により揚送搬送され、排出口7より装置外部に排出される。   The separation object collected at the separation collection outlet 50 is discharged to the outside from the separation outlet 52, and the normal rice grain group k collected at the normal grain collection receptacle 49 is a guide plate. It is guided down by 53 and supplied to the transport start end portion of the lower part of the discharge transporting device 8, and is transported by the discharge transporting device 8, and is discharged from the discharge port 7 to the outside of the device.

次に、供給量制御手段101について説明する。
前記供給量制御手段101は、圧力センサ48にて検出されるエアーの圧力が、予め設定されている下限値よりも高いときに、検出圧力が低いときは検出圧力が高いときよりも移送手段3による移送流量を少なくするように、検出圧力に基づいて移送流量を変更すべく移送手段3の作動を制御し、検出圧力が下限値よりも低いときには、移送手段による米粒群kの移送を停止させるべく、移送手段3の作動を制御するように構成されている。
Next, the supply amount control unit 101 will be described.
When the pressure of air detected by the pressure sensor 48 is higher than a preset lower limit value, the supply amount control means 101 has a transfer means 3 when the detected pressure is low and when the detected pressure is high. The operation of the transfer means 3 is controlled so as to change the transfer flow rate based on the detected pressure so as to reduce the transfer flow rate by, and when the detected pressure is lower than the lower limit value, the transfer of the rice grain group k by the transfer means is stopped. Accordingly, the operation of the transfer means 3 is controlled.

具体的には、供給量制御手段101は、圧力センサ48の検出圧力Pxが予め設定された切換用判定値Ps2よりも高ければ、米粒群kの移送流量を第1設定値に調整し、且つ、検出圧力Pxが切換用判定値Ps2以下であれば粒状体群の移送流量を第1設定値よりも設定量だけ少ない第2設定値に調整する形態で、検出圧力Pxに基づいて移送流量を変更すべく移送手段3の作動を制御するように構成されている。   Specifically, the supply amount control unit 101 adjusts the transfer flow rate of the rice grain group k to the first set value if the detected pressure Px of the pressure sensor 48 is higher than the preset switching determination value Ps2, and If the detected pressure Px is equal to or less than the switching determination value Ps2, the transfer flow rate of the granular material group is adjusted to a second set value that is smaller than the first set value by a set amount, and the transfer flow rate is adjusted based on the detected pressure Px. The operation of the transfer means 3 is controlled to be changed.

さらに説明を加えると、選別対象となる粒状体群を対象として、実際に移送手段にて移送しながら、評価処理手段100にて粒状体判別処理を実行して、評価処理手段100にて分離対象となる粒状体であると判別された粒状体をエアー噴出装置6にて分離させる処理を、試験的に行って、その分離処理を適正な状態で行うことが可能な移送流量値を求め、その移送流量値を第1設定値として設定することになる。
具体的には、試験的に米粒体群kを移送しながら運転するときに、振動フィーダ3Bの移送流量を操作パネル11を操作することにより手動で変化させて、分離処理を適正な状態で行うことが可能な移送流量値を求めることになる。
More specifically, the granular material discrimination process is executed by the evaluation processing unit 100 while the granular material group to be selected is actually transferred by the transfer unit, and the evaluation target is separated by the evaluation processing unit 100. The process of separating the granular material determined to be a granular material with the air ejection device 6 is performed on a trial basis, and a transfer flow rate value capable of performing the separation processing in an appropriate state is obtained. The transfer flow value is set as the first set value.
Specifically, when operating while transferring the rice grain group k on a trial basis, the transfer flow rate of the vibration feeder 3B is manually changed by operating the operation panel 11, and the separation process is performed in an appropriate state. The transfer flow value that can be obtained is obtained.

次に、選別対象となる米粒群kについての選別処理を開始すると、供給量制御手段101は、圧力検出に基づく移送手段3の流量調節処理を実行する。以下、図20のフローチャートに基づいて具体的に説明する。
流量調節処理が開始されると、圧力センサ48にて検出される検出圧力Pxが入力され(ステップ10)、その検出圧力Pxが予め設定されている下限値Ps1以下であるか否かが判断される(ステップ11)。検出圧力Pxが予め設定されている下限値Ps1以下でなく下限値Ps1より高い場合には、次に、検出圧力Pxが予め前記下限値Ps1よりも高い圧力として設定された切換用判定値Ps2以下であるか否かが判断される(ステップ12)。そして、ステップ12において、検出圧力Pxが切換用判定値Ps2以下でなく切換用判定値Ps2よりも高いことが判別されると、移送流量としては、そのままの流量すなわち、初期設定されている第1設定値に維持され、検出圧力Pxが切換用判定値Ps2以下になった場合には、図示しない報知手段(例えば、音声式報知手段やメッセージ表示式の報知手段等)によりエアー圧力が不足していることを使用者に報知して、米粒群の移送流量を第1設定値よりも設定量だけ少ない第2設定値に調整すべく移送手段3の作動を制御する(ステップ13,14)。具体的には、振動フィーダ3Bの搬送速度を変化させることにより、米粒群の移送流量を第2設定値に調整する。そして、移送流量を第2設定値に調整した後は、移送流量はその第2設定値に維持される。
Next, when the sorting process for the rice grain group k to be sorted is started, the supply amount control unit 101 executes the flow rate adjusting process of the transfer unit 3 based on the pressure detection. Hereinafter, a specific description will be given based on the flowchart of FIG.
When the flow rate adjustment process is started, the detected pressure Px detected by the pressure sensor 48 is input (step 10), and it is determined whether or not the detected pressure Px is equal to or lower than a preset lower limit value Ps1. (Step 11). If the detected pressure Px is not lower than the lower limit value Ps1 set in advance but higher than the lower limit value Ps1, then the detected pressure Px is lower than the switching determination value Ps2 set as a pressure higher than the lower limit value Ps1. Is determined (step 12). When it is determined in step 12 that the detected pressure Px is not lower than the switching determination value Ps2 but higher than the switching determination value Ps2, the transfer flow rate is unchanged, that is, the first set as the initial value. When the set pressure is maintained and the detected pressure Px is equal to or lower than the switching determination value Ps2, the air pressure is insufficient by a not-shown notification means (for example, a voice-type notification means or a message display-type notification means). And the operation of the transfer means 3 is controlled so as to adjust the transfer flow rate of the rice grain group to a second set value which is smaller than the first set value by a set amount (steps 13 and 14). Specifically, the transfer flow rate of the rice grain group is adjusted to the second set value by changing the conveyance speed of the vibration feeder 3B. Then, after adjusting the transfer flow rate to the second set value, the transfer flow rate is maintained at the second set value.

ステップ11において、検出圧力Pxが下限値Ps1以下にまで低下したことが判別されると、エアーにより分離対象物を良好に吹き飛ばして分離させることが難しいので、そのときは、図示しない報知手段(例えば、音声式報知手段やメッセージ表示式の報知手段等)により異常状態であることを報知して、振動フィーダ3Bの作動を停止する(ステップ15,16)。   If it is determined in step 11 that the detected pressure Px has decreased to the lower limit value Ps1 or less, it is difficult to blow off the separation object with air and separate it. Then, it is informed that the state is abnormal by a voice notification unit, a message display type notification unit, or the like, and the operation of the vibration feeder 3B is stopped (steps 15 and 16).

上記ステップ12において、検出圧力Pxが切換用判定値Ps2よりも高いことが判別されると、移送流量として、そのままの流量すなわち、初期設定されている第1設定値に維持される処理が、米粒群kの移送流量を第1設定値に調整する処理に対応する。   When it is determined in step 12 that the detected pressure Px is higher than the switching determination value Ps2, the process of maintaining the initial flow rate as the transfer flow rate, that is, the initially set first set value, is the rice grain. This corresponds to the process of adjusting the transfer flow rate of the group k to the first set value.

〔別実施形態〕
次に、粉粒体検査装置の別実施形態について説明する。
[Another embodiment]
Next, another embodiment of the particulate inspection apparatus will be described.

(1)上記実施形態では、移送手段3として、直線状の溝mを経路横幅方向に沿って複数列に並べる状態で形成した溝付きのシュータ3Cを備える構成としたが、これに代えて、経路横幅方向の全幅にわたって平坦な案内面に形成された平面シュータを備えて構成されるものでもよい。 (1) In the above embodiment, the transfer means 3 includes the grooved shooter 3C formed in a state where the linear grooves m are arranged in a plurality of rows along the path width direction. A flat shooter formed on a flat guide surface over the entire width in the lateral direction of the path may be provided.

又、粒状体群を複数列の横並び状態で移送させるものに代えて、粒状体群を1列で縦列状に並ぶ状態で移送させる構成としてもよい。この場合、粒状体の移送方向視において計測対象箇所Jに対して一方側に位置する箇所及び一方側の箇所とは180度異なる他方側の箇所として、装置前部側の箇所と装置後部側の箇所に代えて、粒状体の移送方向視において装置横幅方向における一端側箇所と他端側箇所とを設定する等、種々の配置状態で反射光受光手段や透過光受光手段を配置させることが可能となる。   Moreover, it is good also as a structure which transfers a granular material group in the state arranged in a line in one row instead of what moves a granular material group in the state where several rows are arranged side by side. In this case, the location on the one side relative to the measurement target location J and the location on the other side 180 degrees different from the location on the one side with respect to the measurement target location J in the view of the granular material in the transfer direction, It is possible to arrange reflected light receiving means and transmitted light receiving means in various arrangement states, such as setting the one end side place and the other end side place in the apparatus width direction when viewing the granular material in the transfer direction instead of the place It becomes.

(2)上記実施形態では、反射光計測箇所J1と透過光計測箇所J2とが米粒の移送方向に沿って近接する状態で設定されて遮光部材38が設けられる構成としたが、反射光計測箇所J1と透過光計測箇所J2とが米粒の移送方向に沿って離間した位置に設定するようにして、遮光部材38を設けなくても、後部側照明手段4Bが反射光計測箇所J1を照明して米粒から反射した反射光が透過光受光装置5Cにて受光されることがなく、且つ、後部側照明手段4Bの照明光が透過光計測箇所J2に達することがないような構成としてもよい。
又、この構成では、前部側照明手段4Aが透過光照明手段として透過光計測箇所J2を照明する構成に代えて、透過光計測箇所J2を照明する専用の透過光照明手段を備える構成としてもよい。
(2) In the above embodiment, the reflected light measurement point J1 and the transmitted light measurement point J2 are set in a state of being close to each other along the transfer direction of the rice grains, and the light shielding member 38 is provided. The rear side illumination means 4B illuminates the reflected light measurement point J1 without setting the light shielding member 38 so that J1 and the transmitted light measurement point J2 are set at positions separated along the transfer direction of the rice grains. The reflected light reflected from the rice grains may not be received by the transmitted light receiving device 5C, and the illumination light of the rear side illumination means 4B may not reach the transmitted light measurement point J2.
Further, in this configuration, the front side illumination unit 4A may include a dedicated transmitted light illumination unit that illuminates the transmitted light measurement point J2 instead of the configuration that illuminates the transmitted light measurement point J2 as the transmitted light illumination unit. Good.

(3)上記実施形態では、照明手段としてライン状光源である蛍光灯を用いるようにしたが、このような構成に限らず、例えば、多数の発光ダイオード(LED)を横幅方向に並列配備したLEDアレイを用いる等、各種の形態で実施することが可能である。 (3) In the above embodiment, a fluorescent lamp that is a linear light source is used as the illumination means. However, the present invention is not limited to such a configuration. For example, an LED in which a large number of light emitting diodes (LEDs) are arranged in parallel in the horizontal width direction. It can be implemented in various forms such as using an array.

(4)上記実施形態では、前記受光手段5として、前記計測対象箇所Jからの光を光軸方向に折り返して受光装置に導く光反射式の折り曲げ光路形成手段39A,39B,39Cを備える構成を例示したが、このような構成に代えて、前記計測対象箇所Jからの光をそのまま受光装置が受光する構成のものにも本発明は適用できる。 (4) In the above embodiment, the light receiving means 5 includes a light reflection type bent optical path forming means 39A, 39B, 39C that folds the light from the measurement target portion J in the optical axis direction and guides it to the light receiving device. Although illustrated, instead of such a configuration, the present invention can also be applied to a configuration in which a light receiving device receives light from the measurement target portion J as it is.

(5)上記実施形態では、受光手段5として、モノクロタイプのCCDセンサ以外に、撮像管式のテレビカメラでもよい。又、モノクロタイプではなく、カラータイプのCCDセンサにて構成して、例えば、色情報R,G,B毎の受光量から不良米や異物の存否をさらに精度良く判別してもよい。 (5) In the above embodiment, the light receiving means 5 may be a camera tube type television camera in addition to the monochrome type CCD sensor. Further, instead of a monochrome type, a color type CCD sensor may be used, and for example, the presence or absence of defective rice or foreign matter may be determined with higher accuracy from the amount of received light for each of the color information R, G, and B.

(6)上記実施形態では、分離手段6が、分離対象物に対してエアーを吹き付けて、他の粒状体群と異なる経路に分離させるようにしたが、これに限るものではなく、例えば分離対象物をエアーで吸引して分離させるようにしたり、機械的な接当作用により分離させるようにしてもよい。 (6) In the above embodiment, the separation means 6 blows air to the separation object and separates the separation object 6 in a different path from the other granular material group. However, the present invention is not limited to this. The object may be separated by sucking with air, or may be separated by a mechanical contact action.

(7)上記実施形態では、粒状体群が米粒群である場合について例示したが、これに限るものではなく、例えば、樹脂ペレット等を対象にする場合にも適用できる。 (7) In the above embodiment, the case where the granular material group is the rice grain group is illustrated, but the present invention is not limited to this, and the present invention can be applied to, for example, resin pellets.

本発明は、米粒等の粒状体群を計測対象箇所を通過するように移送しながら、計測対象箇所からの光を受光する受光手段の受光情報に基づいて分離対象となる粒状体であるか否かを判別する評価処理手段が設けられた粒状体選別装置に適用できる。   Whether or not the present invention is a granular material to be separated based on light reception information of a light receiving means that receives light from the measurement target location while transferring a granular material group such as rice grains so as to pass through the measurement target location. It can be applied to a granular material sorting apparatus provided with an evaluation processing means for determining whether or not.

3 移送手段
3C 流下案内板
4 照明手段
4A 一方側照明手段
4B 他方側照明手段
5 受光手段
5A 一方側の反射光受光手段
5B 他方側の反射光受光手段
5C 透過光受光手段
5a 単位受光部
6 分離手段
100 評価処理手段
J 計測対象箇所
J1 反射光計測箇所
J2 透過光計測箇所
ΔEt,ΔEh 適正光量範囲
t1 第1遅延時間
t2 第2遅延時間
3 Transfer means 3C Downflow guide plate 4 Illumination means 4A One side illumination means 4B Other side illumination means 5 Light receiving means 5A One side reflected light light receiving means 5B Other side reflected light light receiving means 5C Transmitted light light receiving means 5a Unit light receiving portion 6 Separation Means 100 Evaluation processing means J Measurement target location J1 Reflected light measurement location J2 Transmitted light measurement location ΔEt, ΔEh Appropriate light amount range t1 First delay time t2 Second delay time

Claims (5)

粒状体群を計測対象箇所を通過させるように移送する移送手段と、前記計測対象箇所における粒状体からの光を受光する受光手段と、前記計測対象箇所を照明する照明手段と、前記受光手段の受光情報に基づいて分離対象となる粒状体であるか否かを判別する粒状体判別処理を実行する評価処理手段とが設けられた粒状体選別装置であって、
前記計測対象箇所として、粒状体の表面で反射した反射光を計測するための反射光計測箇所と、粒状体を透過した透過光を受光するための透過光計測箇所とが、粒状体の移送方向に位置を異ならせる状態で設定され、
前記受光手段が、粒状体の移送方向視において前記計測対象箇所に対して一方側に位置して前記反射光を受光する一方側の反射光受光手段と、粒状体の移送方向視において前記計測対象箇所に対して前記一方側の箇所とは180度異なる他方側に位置して前記反射光を受光する他方側の反射光受光手段と、前記計測対象箇所の一方側又は他方側のいずれかに位置して前記透過光を受光する透過光受光手段とを備えて構成され、
前記照明手段が、粒状体の移送方向視において前記計測対象箇所に対して前記一方側に位置して前記反射光計測箇所を照明する一方側照明手段と、粒状体の移送方向視において前記計測対象箇所に対して前記他方側に位置して前記反射光計測箇所を照明する他方側照明手段と、前記計測対象箇所の一方側又は他方側のうち前記透過光受光装置とは反対側に位置して透過光計測箇所を照明する透過光照明手段とを備えて構成され、
前記評価処理手段が、前記一方側の反射光受光手段、前記他方側の反射光受光手段、及び、前記透過光受光手段夫々の検出情報に基づいて、前記粒状体判別処理を実行するように構成されている粒状体選別装置。
A transfer means for transferring the granular material group so as to pass through the measurement target location; a light receiving means for receiving light from the granular material at the measurement target location; an illumination means for illuminating the measurement target location; A granular material sorting apparatus provided with an evaluation processing means for executing a granular material determination process for determining whether or not a granular material is a separation target based on light reception information,
The measurement target location includes a reflected light measurement location for measuring the reflected light reflected from the surface of the granular material and a transmitted light measurement location for receiving the transmitted light that has passed through the granular material, in the direction in which the granular material is transferred. Is set in a different position,
The light receiving means is located on one side with respect to the measurement target position in the granular material transfer direction view and receives the reflected light, and the measurement target in the granular material transfer direction view. The other side reflected light receiving means for receiving the reflected light located on the other side 180 degrees different from the one side location with respect to the location, and located on one side or the other side of the measurement target location And a transmitted light receiving means for receiving the transmitted light,
The illuminating means is located on the one side with respect to the measurement target location in the granular material transfer direction view and illuminates the reflected light measurement location, and the measurement target in the granular material transfer direction view The other side illuminating means for illuminating the reflected light measurement point located on the other side with respect to the point, and one side or the other side of the measurement target point located on the opposite side to the transmitted light receiving device A transmitted light illuminating means for illuminating the transmitted light measurement point,
The evaluation processing means is configured to execute the granular material determination process based on detection information of each of the reflected light receiving means on the one side, the reflected light receiving means on the other side, and the transmitted light receiving means. Granule sorting device.
前記一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側のものが前記反射光計測箇所を照明して粒状体から反射した反射光が前記透過光受光手段にて受光されることを阻止し、且つ、前記一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側のものの照明光が前記透過光計測箇所に達するのを阻止すべく、前記反射光及び前記照明光を遮光する遮光部材が設けられ、
前記一方側照明手段及び前記他方側照明手段のうち前記透過光受光手段が存在する側とは反対側のものが、前記透過光照明手段として、前記透過光計測箇所を照明するように構成されている請求項1記載の粒状体選別装置。
Of the one side illuminating means and the other side illuminating means, the one on the side where the transmitted light receiving means is present illuminates the reflected light measurement portion and the reflected light reflected from the granular material is received by the transmitted light receiving means. In order to prevent the illumination light of the one side illumination means and the other side illumination means on the side where the transmitted light receiving means is present from reaching the transmitted light measurement location, A light shielding member for shielding the reflected light and the illumination light is provided;
Of the one side illumination means and the other side illumination means, the one opposite to the side where the transmitted light receiving means is present is configured to illuminate the transmitted light measurement location as the transmitted light illumination means. The granular material sorting apparatus according to claim 1.
前記計測対象箇所よりも粒状体の移送方向下手側の分離箇所において分離対象となる粒状体を他の粒状体群とは異なる経路に分離させる分離手段が備えられ、
前記評価処理手段が、前記粒状体判別処理にて、前記一方側の反射光受光手段及び前記他方側の反射光受光手段の検出情報に基づいて分離対象となる粒状体であることを判別すると、前記反射光計測箇所から前記分離箇所に至るのに要する第1遅延時間が経過したのちに前記分離手段を作動させ、且つ、前記透過光受光装置の検出情報に基づいて分離対象となる粒状体であることを判別すると、前記透過光計測箇所から前記分離箇所に至るのに要する第2遅延時間が経過したのちに前記分離手段を作動させるように構成されている請求項1又は2記載の粒状体選別装置。
Separation means for separating the granular material to be separated in the separation location on the lower side of the granular material in the transfer direction from the measurement target location in a path different from other granular material groups,
When the evaluation processing unit determines in the granular body determination process that the granular material is a separation target based on detection information of the reflected light receiving unit on one side and the reflected light receiving unit on the other side, A granular material that is operated after the first delay time required from the reflected light measurement location to the separation location has elapsed and is to be separated based on detection information of the transmitted light receiving device. 3. The granular material according to claim 1, wherein, when it is determined that there is a particle, the separation unit is operated after a second delay time required from the transmitted light measurement point to the separation point elapses. Sorting device.
前記移送手段が、粒状体群を横幅方向に広げた状態でその横幅方向に沿って幅広に形成された前記計測対象箇所を通過するように粒状体群を移送するように構成され、
前記一方側の反射光受光手段、前記他方側の反射光受光手段、及び、前記透過光受光手段の夫々が、前記計測対象箇所からの光を受光する複数個の単位受光部を前記計測対象箇所の横幅方向に沿って並置させるように構成され、
前記評価処理手段が、前記粒状体判別処理として、前記単位受光部が受光する光量値が適正光量範囲を外れているか否かにより分離対象となる粒状体であるか否かを判別するように構成され、且つ、前記粒状体判別処理を前記複数の単位受光部毎に実行するように構成されている請求項1〜3のいずれか1項に記載の粒状体選別装置。
The transfer means is configured to transfer the granular material group so as to pass through the measurement target portion formed wide along the horizontal width direction in a state where the granular material group is expanded in the horizontal width direction,
Each of the reflected light receiving unit on the one side, the reflected light receiving unit on the other side, and the transmitted light receiving unit includes a plurality of unit light receiving units that receive light from the measurement target location. Configured to be juxtaposed along the lateral direction of
The evaluation processing unit is configured to determine whether the light quantity value received by the unit light receiving unit is a granular object to be separated depending on whether the light quantity value received by the unit light receiving unit is out of an appropriate light quantity range as the granular body determination process. The granular material sorting apparatus according to any one of claims 1 to 3, wherein the granular material discrimination processing is configured to be executed for each of the plurality of unit light receiving units.
前記移送手段が、粒状体移送方向に沿って長く延びる状態で粒状体群を流下させながら移送する傾斜姿勢の流下案内板を備えて構成され、
前記透過光受光手段と、前記一方側の反射光受光手段及び前記他方側の反射光受光手段のうちのいずれか一方とが、前記流下案内板の下方側であって且つ平面視で前記流下案内板と重複又は略重複する箇所に、それらが上下に並ぶ状態で配備されている請求項1〜4のいずれか1項に記載の粒状体選別装置。
The transfer means is configured to include an inflowing guide plate in an inclined posture for transferring while allowing the granular material group to flow down in a state of extending long along the granular material transfer direction,
The transmitted light receiving means and one of the reflected light receiving means on the one side and the reflected light receiving means on the other side are below the flow guide plate and the flow guide in a plan view. The granular material sorting apparatus according to any one of claims 1 to 4, wherein the granular material sorting apparatus is arranged in a state in which the plates overlap or substantially overlap with each other in a vertically aligned state.
JP2011125568A 2011-06-03 2011-06-03 Granule sorter Active JP5795498B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011125568A JP5795498B2 (en) 2011-06-03 2011-06-03 Granule sorter
TW101105853A TWI487575B (en) 2011-06-03 2012-02-22 Granular material sorting apparatus
KR1020120019593A KR101393127B1 (en) 2011-06-03 2012-02-27 Granular material sorting apparatus
CN201210057980.XA CN102806208B (en) 2011-06-03 2012-03-07 Granulous object sorting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011125568A JP5795498B2 (en) 2011-06-03 2011-06-03 Granule sorter

Publications (2)

Publication Number Publication Date
JP2012250193A true JP2012250193A (en) 2012-12-20
JP5795498B2 JP5795498B2 (en) 2015-10-14

Family

ID=47230180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125568A Active JP5795498B2 (en) 2011-06-03 2011-06-03 Granule sorter

Country Status (4)

Country Link
JP (1) JP5795498B2 (en)
KR (1) KR101393127B1 (en)
CN (1) CN102806208B (en)
TW (1) TWI487575B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095323A (en) 2016-12-15 2019-08-14 가부시끼가이샤 사따께 Optical unit for optical sorter
WO2022137827A1 (en) * 2020-12-24 2022-06-30 株式会社クボタ Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment
CN117480375A (en) * 2023-05-24 2024-01-30 株式会社罗比特 Shooting unit and inspection system
JP7433257B2 (en) 2021-01-12 2024-02-19 株式会社クボタ Granule inspection device
JP7433258B2 (en) 2021-01-12 2024-02-19 株式会社クボタ Granule inspection device
JP7482799B2 (en) 2021-01-12 2024-05-14 株式会社クボタ Granular material inspection equipment
JP7482798B2 (en) 2021-01-12 2024-05-14 株式会社クボタ Granular material inspection equipment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973521B2 (en) * 2014-10-15 2016-08-23 株式会社クボタ Optical grain evaluation system
TWI759108B (en) * 2021-02-17 2022-03-21 明志科技大學 Speed-adjustable powder optical inspection system
CN113102281A (en) * 2021-03-24 2021-07-13 北京霍里思特科技有限公司 Mineral product sorting machine
CN114130705A (en) * 2021-11-11 2022-03-04 安徽巢湖旺农业科技有限公司 Multifunctional glutinous rice purity detection vessel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796253A (en) * 1993-06-30 1995-04-11 Satake Eng Co Ltd Bean color classifier
JP2007330880A (en) * 2006-06-14 2007-12-27 Kubota Corp Granule sorting device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127634A (en) * 1989-10-12 1991-05-30 Seirei Ind Co Ltd Rice husking/sorting device
JP3275280B2 (en) * 1994-10-07 2002-04-15 株式会社サタケ Raw material supply device for granular material color sorter
JP3505027B2 (en) 1996-02-28 2004-03-08 株式会社クボタ Defective device
JP3506312B2 (en) * 1998-05-28 2004-03-15 株式会社サタケ Grain color sorting method and apparatus
JP3685672B2 (en) * 1999-12-28 2005-08-24 株式会社クボタ Powder inspection equipment
KR100480319B1 (en) * 2002-05-14 2005-04-06 한잠기계(주) Rice-selecting device by color light intensity
CN1323768C (en) * 2002-05-28 2007-07-04 佐竹美国公司 Illumination source for sorting machine
JP4076414B2 (en) 2002-09-19 2008-04-16 株式会社クボタ Defective object detection device and separation device using the same
TWI229620B (en) * 2004-01-02 2005-03-21 Darfon Electronics Corp Component testing and screening machine
JP5007933B2 (en) * 2006-06-15 2012-08-22 株式会社サタケ Optical body split sorter
TW201018905A (en) * 2008-11-11 2010-05-16 Chi Mei Optoelectronics Corp Optically-induced microparticle sorting device and method
CN102059221B (en) * 2010-10-15 2013-05-01 合肥泰禾光电科技股份有限公司 Color material separation device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796253A (en) * 1993-06-30 1995-04-11 Satake Eng Co Ltd Bean color classifier
JP2007330880A (en) * 2006-06-14 2007-12-27 Kubota Corp Granule sorting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190095323A (en) 2016-12-15 2019-08-14 가부시끼가이샤 사따께 Optical unit for optical sorter
US11130157B2 (en) 2016-12-15 2021-09-28 Satake Corporation Optical unit for optical sorter
WO2022137827A1 (en) * 2020-12-24 2022-06-30 株式会社クボタ Granule inspection device, raising/lowering equipment for conveying granules, and scraper for raising/lowering equipment
JP7433257B2 (en) 2021-01-12 2024-02-19 株式会社クボタ Granule inspection device
JP7433258B2 (en) 2021-01-12 2024-02-19 株式会社クボタ Granule inspection device
JP7482799B2 (en) 2021-01-12 2024-05-14 株式会社クボタ Granular material inspection equipment
JP7482798B2 (en) 2021-01-12 2024-05-14 株式会社クボタ Granular material inspection equipment
CN117480375A (en) * 2023-05-24 2024-01-30 株式会社罗比特 Shooting unit and inspection system
US12038386B1 (en) 2023-05-24 2024-07-16 ROBIT Inc. Image capturing unit and inspection system

Also Published As

Publication number Publication date
JP5795498B2 (en) 2015-10-14
KR101393127B1 (en) 2014-05-08
CN102806208A (en) 2012-12-05
TWI487575B (en) 2015-06-11
TW201302326A (en) 2013-01-16
KR20120135020A (en) 2012-12-12
CN102806208B (en) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5795498B2 (en) Granule sorter
JP5676369B2 (en) Granule sorter
JP5792519B2 (en) Granule sorter
WO2013069736A1 (en) Granule inspection device
JP4076414B2 (en) Defective object detection device and separation device using the same
JP4851856B2 (en) Granule sorter
JP4675120B2 (en) Granule sorter
JP2001264256A (en) Powder and grain inspecting device
JPH1190345A (en) Inspection apparatus of granular bodies
JP6128730B2 (en) Granule inspection device
JP2014089120A (en) Granular material inspection device
JP6153311B2 (en) Granule inspection device
JP5232214B2 (en) Granule sorter
JP4733409B2 (en) Granule sorter
JP2004105877A (en) Defective detection apparatus and separation apparatus using it
JP2011045886A5 (en)
JP7018848B2 (en) Granular inspection device and granular inspection method
JPH1190346A (en) Defect detector and defective article remover
JP7433258B2 (en) Granule inspection device
JP2004160401A (en) Granule testing apparatus
JPH1099794A (en) Defect detector and defective removing device
JP2001212523A (en) Granular material inspection device
KR20220114651A (en) Optical sorting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150813

R150 Certificate of patent or registration of utility model

Ref document number: 5795498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150