[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012246537A - Hard mold suitable for energization heating and material therefor - Google Patents

Hard mold suitable for energization heating and material therefor Download PDF

Info

Publication number
JP2012246537A
JP2012246537A JP2011119663A JP2011119663A JP2012246537A JP 2012246537 A JP2012246537 A JP 2012246537A JP 2011119663 A JP2011119663 A JP 2011119663A JP 2011119663 A JP2011119663 A JP 2011119663A JP 2012246537 A JP2012246537 A JP 2012246537A
Authority
JP
Japan
Prior art keywords
composite
carbon
mold
hard material
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011119663A
Other languages
Japanese (ja)
Other versions
JP5756928B2 (en
Inventor
Hiroyuki Nakayama
博行 中山
Keizo Kobayashi
慶三 小林
Kotaro Kikuchi
光太郎 菊池
Mayuka Nozaki
繭花 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SS ALLOY KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SS ALLOY KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SS ALLOY KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical SS ALLOY KK
Priority to JP2011119663A priority Critical patent/JP5756928B2/en
Publication of JP2012246537A publication Critical patent/JP2012246537A/en
Application granted granted Critical
Publication of JP5756928B2 publication Critical patent/JP5756928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard mold suitable for energization heating and a material therefor.SOLUTION: A mold for energization sintering is structured by a composite hard material. The composite hard material is composed of a sintered body of a hard composite material, wherein the hard composite material is prepared by dispersing spherical carbon in a composite material made of conductive ceramic particles and an intermetallic compound of iron and aluminum. The composite hard material has a composite structure in which carbon particles are dispersed in a metallic binder phase of the intermetallic compound composed of iron and aluminum. The conductive ceramic particles contain tungsten and/or titanium. The dispersed carbon is 10 mass% or less of the composite hard material. The composite hard material is suitable for energization sintering. The dispersed carbon has a particle size of 20 μm or less. The metallic binder phase composed of iron and aluminum is 40 mass% or less of the composite hard material. A new composite hard material and the mold for energization sintering can be provided.

Description

本発明は、通電加熱に適した硬質金型およびその材料に関するものであり、更に詳しくは、通電によって加熱を行うプロセスに適した金型材料に関するものである。本発明は、金型に用いられる硬質材料に耐熱性と耐酸化性を付与し、通電時に発熱する炭素粒子を均質に分散させることで通電焼結などのプロセスへ適用できる新たな複合硬質材料および金型に関する新技術・新製品を提供するものである。   The present invention relates to a hard mold suitable for energization heating and its material, and more particularly to a mold material suitable for a process of heating by energization. The present invention provides a new composite hard material that can be applied to a process such as electric sintering by imparting heat resistance and oxidation resistance to a hard material used in a mold and uniformly dispersing carbon particles that generate heat during energization. It provides new technologies and new products related to molds.

金属やセラミックスの粉末を焼結して、バルク状の焼結体を作製するには、高温での加熱が要求される。なかでも融点が高く、難焼結性といわれる材料粉末に対しては、加圧と加熱を同時に行うホットプレス法などのプロセスが適用されている。近年、このような難焼結性の材料に対して、低エネルギーで焼結する技術として、通電焼結法が注目されている。   In order to produce a bulk sintered body by sintering metal or ceramic powder, heating at a high temperature is required. In particular, a process such as a hot press method in which pressurization and heating are applied simultaneously is applied to a material powder having a high melting point and difficult to sinter. In recent years, an electric current sintering method has attracted attention as a technique for sintering with low energy against such a hardly sinterable material.

通電焼結法では、型と粉末に通電を行うことで、ジュール加熱を利用した短時間・高速加熱が実現される。しかし、その効率を高めるためには、高い電気抵抗を有する型材料を使用する必要があり、一般には、黒鉛などの材料が型として利用されてきた。しかし、黒鉛の強度は、数10MPaと低く、高圧を要する焼結には適用できない。   In the electric current sintering method, a short time and high speed heating using Joule heating is realized by energizing the mold and the powder. However, in order to increase the efficiency, it is necessary to use a mold material having a high electric resistance, and generally, a material such as graphite has been used as a mold. However, the strength of graphite is as low as several tens of MPa and cannot be applied to sintering that requires high pressure.

そこで、高圧下での焼結では、超硬合金が型材料として用いられているが、この合金は、電気の良導体であり、効率的な加熱ができない。また、超硬合金に黒鉛を複合化することで、電気抵抗率の向上を試みても、炭素が超硬合金内に片状に析出し、強度を大幅に低下させることが知られている。   Therefore, cemented carbide is used as a mold material for sintering under high pressure, but this alloy is a good electrical conductor and cannot be efficiently heated. In addition, it is known that even if an attempt is made to improve the electrical resistivity by combining graphite with cemented carbide, carbon precipitates in the cemented carbide in a flake shape and greatly reduces the strength.

加えて、超硬合金は、純金属であるコバルトを用いていることから、耐熱性に劣るという欠点もある。すなわち、通電焼結に用いられている型材料は、発熱効率がよい黒鉛型は、高圧で使用できず、また、金属粉末に対しては、黒鉛との反応を抑制することができなかった。一方、高圧で使用できる超硬型は、耐熱性や発熱効率が悪い。   In addition, since the cemented carbide uses cobalt, which is a pure metal, it also has a drawback of poor heat resistance. That is, as the mold material used for the electric current sintering, the graphite mold having good heat generation efficiency cannot be used at a high pressure, and the reaction with graphite cannot be suppressed for the metal powder. On the other hand, a cemented carbide mold that can be used at high pressure has poor heat resistance and heat generation efficiency.

ただ、500℃以下の低温での通電焼結では、炭化タングステンをコバルトで焼き固めた硬質な複合材料である超硬合金を使用することができ、高精度の焼結体を作製することができている。この省エネ性に優れる通電焼結技術で、様々な材料粉末を高精度に焼結するためには、超硬合金のように硬質で、黒鉛のような耐熱性と電気を熱に変換できる材料の開発が切望されている。   However, in current sintering at a low temperature of 500 ° C. or lower, a cemented carbide, which is a hard composite material obtained by baking tungsten carbide with cobalt, can be used, and a highly accurate sintered body can be produced. ing. In order to sinter various material powders with high precision by this electric current sintering technology that excels in energy savings, it is hard like a cemented carbide, heat resistant like graphite and can convert electricity into heat. Development is anxious.

しかし、超硬合金は、高温では軟化し、酸化も激しくなることから、型材料としての使用温度には限界があり、通電加熱を行うには、低温でも電気を熱に変換する効率が悪い。更に、超硬合金に黒鉛を添加しても、コバルトと反応し、片状の黒鉛が析出することが知られており、機械的な特性を低下させる。また、黒鉛は、その機械的強度が低いため、大きな加圧力で高精度の焼結体を作製することは困難であり、繰り返し成形で、同じ精度を維持することも不可能である。   However, cemented carbides soften at high temperatures and become severely oxidized, so there is a limit to the use temperature as a mold material, and in order to conduct current heating, the efficiency of converting electricity into heat is low even at low temperatures. Furthermore, it is known that even if graphite is added to the cemented carbide, it reacts with cobalt, and flake graphite is precipitated, which deteriorates mechanical properties. Further, graphite has a low mechanical strength, so it is difficult to produce a highly accurate sintered body with a large pressing force, and it is impossible to maintain the same accuracy by repeated molding.

一方、化学的に安定な鉄とアルミニウムからなる金属間化合物を結合相として用いた超硬合金にWC−FeAlがある[特許文献1、非特許文献1、2]。この合金は、化学的に安定なFe−Alを結合相として用いることで、耐熱性が向上することがわかっている[非特許文献3]。しかしながら、電気抵抗率は、従来の超硬合金程度であり、電気エネルギーを効率的に熱に変換することができないことから、当技術分野においては、通電加熱に適した硬質な金型材料を開発することが重要な課題となっていた。   On the other hand, WC-FeAl is a cemented carbide using a chemically stable intermetallic compound composed of iron and aluminum as a binder phase [Patent Document 1, Non-Patent Documents 1 and 2]. This alloy has been shown to improve heat resistance by using chemically stable Fe-Al as the binder phase [Non-Patent Document 3]. However, the electrical resistivity is comparable to that of conventional cemented carbide, and electrical energy cannot be efficiently converted into heat. Therefore, in this technical field, a hard mold material suitable for current heating is developed. It was an important task.

特許第2611177号公報Japanese Patent No. 2611177

粉体および粉末冶金,Vol.49(2002)284−289Powder and powder metallurgy, Vol. 49 (2002) 284-289 粉体および粉末冶金,Vol.49(2002)1089−1093Powder and powder metallurgy, Vol. 49 (2002) 1089-1093 粉体および粉末冶金 Vol.48(2001)986−989Powder and powder metallurgy Vol. 48 (2001) 986-989

このような状況の中で、本発明者らは、上記従来に鑑みて、耐熱性、高強度、耐酸化性、高い電気抵抗を有する硬質複合材料を開発することを目標として鋭意研究を積み重ねた結果、セラミックス粒子−(Fe−Al)金属間化合物の硬質複合材料に球状の黒鉛粒子を複合化し、硬質複合材料と黒鉛粒子の反応を抑制しながら複合化することで、高い電気抵抗と強度、耐熱性などに優れる金型材料を作製できることを見出し、本発明を完成するに至った。   Under such circumstances, the present inventors have conducted extensive research with the goal of developing a hard composite material having heat resistance, high strength, oxidation resistance, and high electrical resistance in view of the above-described conventional technology. As a result, high electrical resistance and strength are obtained by compounding spherical graphite particles with a hard composite material of ceramic particles- (Fe-Al) intermetallic compound and suppressing the reaction between the hard composite material and the graphite particles, The inventors have found that a mold material having excellent heat resistance can be produced, and have completed the present invention.

本発明は、かかる事情に鑑み、通電加熱に適した硬質な金型材料を提供すべく、耐熱性、高強度、耐酸化性、高い電気抵抗を有する硬質複合材料を提供することを目的とするものである。   In view of such circumstances, an object of the present invention is to provide a hard composite material having heat resistance, high strength, oxidation resistance, and high electrical resistance in order to provide a hard mold material suitable for electric heating. Is.

上記課題を解決する本発明は、以下の技術的手段から構成される。
(1)導電性のセラミックス粒子と鉄およびアルミニウムの金属間化合物からなる硬質複合材料に、球形の炭素粒子を分散させた当該硬質複合材料の焼結体からなる複合硬質材料であって、上記鉄とアルミニウムで構成される金属間化合物の結合金属相に炭素粒子が分散した複合構造を有することを特徴とする複合硬質材料。
(2)導電性のセラミックス粒子が、タングステンおよび/またはチタンを含有する、前記(1)記載の複合硬質材料。
(3)複合材料に対して、分散した炭素が10質量%以下であり、通電焼結に適した、ものである前記(2)記載の複合硬質材料。
(4)分散させた炭素の粒子径が、20μm以下である、前記(3)記載の複合硬質材料。
(5)鉄とアルミニウムで構成される結合金属相が、40質量%以下である、前記(3)記載の複合硬質材料。
(6)前記(1)から(5)のいずれかに記載の複合硬質材料から構成されることを特徴とする通電焼結用の金型。
The present invention for solving the above-described problems comprises the following technical means.
(1) A composite hard material comprising a sintered body of a hard composite material in which spherical carbon particles are dispersed in a hard composite material comprising conductive ceramic particles and an intermetallic compound of iron and aluminum, the iron A composite hard material having a composite structure in which carbon particles are dispersed in a bonded metal phase of an intermetallic compound composed of aluminum and aluminum.
(2) The composite hard material according to (1), wherein the conductive ceramic particles contain tungsten and / or titanium.
(3) The composite hard material according to (2), wherein the dispersed carbon is 10% by mass or less with respect to the composite material and is suitable for current sintering.
(4) The composite hard material according to (3), wherein the dispersed carbon has a particle size of 20 μm or less.
(5) The composite hard material according to (3), wherein the bonded metal phase composed of iron and aluminum is 40% by mass or less.
(6) A die for electric current sintering, characterized by being composed of the composite hard material according to any one of (1) to (5).

次に、本発明について、更に詳細に説明する。
本発明は、従来技術の問題点を鑑み、発熱特性に優れ、高温でも使用可能な金型材料を提供することを目的としている。通電焼結用の型材料としては、高温・低圧力用の黒鉛型、低温・高圧力用の超硬合金型が存在する。しかしながら、従来の型材料には、これら中間の特性を有する型材料は存在しなかった。また、黒鉛型は、金型に比べ精度が劣り、黒鉛と金属が反応するといった問題点も存在した。そこで、本発明者らは、両者の中間の特性を有し、かつ耐熱性に優れる金型材料の開発を行った。
Next, the present invention will be described in more detail.
An object of the present invention is to provide a mold material that has excellent heat generation characteristics and can be used even at high temperatures in view of the problems of the prior art. As a mold material for electric current sintering, there are a graphite mold for high temperature and low pressure and a cemented carbide mold for low temperature and high pressure. However, there is no mold material having these intermediate characteristics in the conventional mold material. Further, the graphite mold is inferior in accuracy to the mold, and there is a problem that graphite and metal react. Accordingly, the present inventors have developed a mold material having characteristics intermediate between the two and excellent in heat resistance.

開発には、シーズ技術として、(独)産業技術総合研究所が開発したWC−FeAl超硬合金を用いた。この合金に炭素を複合化することで、従来の超硬合金に比べ高い電気抵抗率を有し、黒鉛型よりも強度の高い金型材料を作製することに成功した。   In the development, WC-FeAl cemented carbide developed by National Institute of Advanced Industrial Science and Technology was used as seed technology. By compounding carbon with this alloy, we succeeded in producing a mold material having a higher electrical resistivity than the conventional cemented carbide and stronger than the graphite mold.

従来の超硬合金は、WCをCoで結合した複合材料(WC−Co)であるが、この超硬合金に炭素を複合化させた場合、超硬合金作製時に添加した炭素はフリーカーボンとして片状に析出し、その強度を大幅に低下させることが知られている。   The conventional cemented carbide is a composite material (WC-Co) in which WC is bonded with Co. When carbon is compounded with this cemented carbide, the carbon added at the time of fabricating the cemented carbide is separated as free carbon. It is known that it precipitates in the shape of a metal and greatly reduces its strength.

一方、WC−FeAl合金では、このようはフリーカーボンが生じず、強度の大幅な劣化を防ぐことができる。また、添加する炭素の粒子サイズを小さくすることで、強度低下を更に抑制することができる。更には、炭素の形状を球状とすることで、材料強度の異方性をなくすことが可能となる。また、用いる合金もWC−FeAlのみではなく、導電性を有するセラミックス粒子(TiBやTiN)でWCの一部あるいは全てを置き換えることができる。 On the other hand, in the WC—FeAl alloy, free carbon is not generated in this way, and significant deterioration in strength can be prevented. Moreover, strength reduction can be further suppressed by reducing the particle size of the added carbon. Furthermore, it is possible to eliminate material strength anisotropy by making the carbon shape spherical. In addition, not only WC—FeAl but also a ceramic particle (TiB 2 or TiN) having conductivity can be used to replace a part or all of WC.

本発明者らは、耐酸化性に優れる鉄とアルミニウムからなる金属間化合物を結合金属相として用いたセラミックス粒子−(Fe−Al)金属間化合物の硬質複合材料に球状の黒鉛粒子を複合化し、硬質複合材料と黒鉛粒子の反応を抑制しながら複合化することで、高い電気抵抗と強度、耐熱性などに優れる金型材料を作製できることを見出した。すなわち、本発明は、上記知見に基づき以下の新しい手法を提供するものである。   The inventors compounded spherical graphite particles with ceramic particles- (Fe-Al) intermetallic compound hard composite material using an intermetallic compound composed of iron and aluminum having excellent oxidation resistance as a binder metal phase, It has been found that a mold material excellent in high electric resistance, strength, heat resistance and the like can be produced by compositing while suppressing the reaction between the hard composite material and the graphite particles. That is, the present invention provides the following new method based on the above findings.

超硬合金(WC−Co)に、黒鉛を添加すると、焼結時に反応して、片状の黒鉛が分散してしまう。この片状の黒鉛は、フリーカーボンとして、超硬合金における不良組織として知られており、機械的特性を著しく低下させる。そこで、本発明では、コバルトにかわり、炭素との反応が抑制できる可能性を有する金属間化合物を結合金属相として利用する。金属間化合物としては、これまでに、鉄とアルミニウムからなる金属間化合物が超硬合金の結合相として利用されており、本合金をベースに、炭素粒子を分散する。   When graphite is added to a cemented carbide (WC-Co), it reacts at the time of sintering and flake graphite is dispersed. This flake-like graphite is known as a defective structure in cemented carbide as free carbon, and significantly reduces mechanical properties. Therefore, in the present invention, instead of cobalt, an intermetallic compound having a possibility of suppressing the reaction with carbon is used as the binding metal phase. As an intermetallic compound, an intermetallic compound composed of iron and aluminum has been used as a binder phase of cemented carbide, and carbon particles are dispersed based on this alloy.

炭素粒子は、焼結体の機械的特性を低下させないように、応力集中が生じにくい球状の炭素粒子を用いる。炭素には、アモルファスや黒鉛など様々な形態があるが、本発明では、特に、その形態による制約はない。重要なことは、炭素粒子の形状であり、球形に近いほど好ましい。炭素粒子の大きさは、硬質複合材料に分散しやすく、通電時の発熱効果を考慮すると、孤立粒子として存在することが好ましいため、20ミクロン以下の粒子が好ましい。加えて、強度の面からも、微細であることが好ましい。   As the carbon particles, spherical carbon particles that are unlikely to cause stress concentration are used so as not to deteriorate the mechanical properties of the sintered body. There are various forms of carbon such as amorphous and graphite, but in the present invention, there is no particular restriction due to the form. What is important is the shape of the carbon particles, and the closer to a spherical shape, the better. The size of the carbon particles is easy to disperse in the hard composite material, and considering the heat generation effect during energization, it is preferable that the carbon particles exist as isolated particles. In addition, it is preferable to be fine from the viewpoint of strength.

また、金属間化合物を結合相とする硬質材料の混合方法は、特に指定しないが、これまでに公表されているメカニカルミリングや乳鉢混合などの方法が利用できる。この混合粉末に、炭素粉末を添加して、更に混合を行うが、その混合方法についても、同様のプロセスを利用することができる。ただ、炭素粒子は、崩壊しやすいので、混合時のエネルギーを低くし、緩衝材などを一緒に混合することが好ましい。緩衝材には、有機系のものや低融点の軟質な金属などを利用できる。   Moreover, although the mixing method of the hard material which makes an intermetallic compound a binder phase is not specified in particular, methods, such as mechanical milling and mortar mixing published so far, can be utilized. Carbon powder is added to this mixed powder and further mixing is performed, and the same process can be used for the mixing method. However, since carbon particles are easy to disintegrate, it is preferable to reduce energy during mixing and mix a buffer material or the like together. As the buffer material, an organic material or a soft metal having a low melting point can be used.

得られた混合粉末を、プレスなどで予備成形したのち焼結することによって、目的の炭素粒子が分散した金属間化合物を結合相とする硬質複合材料を作製することができる。焼結方法は、特に限定しないが、真空焼結やパルス通電焼結法などの焼結技術を利用することができる。   The obtained mixed powder is preformed by a press or the like and then sintered, whereby a hard composite material having an intermetallic compound in which target carbon particles are dispersed as a binder phase can be produced. The sintering method is not particularly limited, but a sintering technique such as vacuum sintering or pulse current sintering method can be used.

また、予備成形についても、特に限定しないが、一般の粉末冶金の成形方法として知られるプレス成形やCIP(冷間等方加圧成形)などを利用することができる。成形助剤についても、一般の粉末冶金に用いられるパラフィンやステアリン酸を利用可能であるが、炭素の形状を維持するためには、用いない方がよい。   Further, the preliminary molding is not particularly limited, but press molding or CIP (cold isostatic pressing) known as a general powder metallurgy molding method can be used. As the molding aid, paraffin or stearic acid used in general powder metallurgy can be used, but it is better not to use it in order to maintain the shape of carbon.

得られた焼結体は、一般の超硬合金の加工技術で目的の金型形状に仕上げ加工することができる。たとえば、焼結体に、ワイヤーカット法や放電加工、砥石を用いた研削加工などを施すことができ、更に、ダイヤモンド砥粒を用いたラッピングも行える。   The obtained sintered body can be finished into a desired mold shape by a general cemented carbide processing technique. For example, the sintered body can be subjected to wire cutting, electric discharge machining, grinding using a grindstone, or the like, and further lapping using diamond abrasive grains can be performed.

このように得られた金型素材の電気抵抗率を測定すると、炭素の添加量に伴い電気抵抗率は上昇するが、曲げ強度は、反対に低下する。その際の、炭素の粒子サイズが小さいほど、炭素添加による強度低下が抑制でき、その添加量が10質量%以下、特に、0超〜5質量%の場合には、比較的高い電気抵抗率と強度を実現することができる。   When the electrical resistivity of the mold material thus obtained is measured, the electrical resistivity increases with the amount of carbon added, but the bending strength decreases on the contrary. At that time, as the particle size of the carbon is smaller, a decrease in strength due to the addition of carbon can be suppressed, and when the addition amount is 10% by mass or less, particularly more than 0 to 5% by mass, relatively high electrical resistivity and Strength can be realized.

また、その形状が球形の場合には、材料に異方性が生じない。このような材料に、直流電流を流し、発熱特性を評価したところ、炭素量が多いほど、急速に、かつ高温への加熱が可能となることが分かった。また、空気中での加熱による酸化開始温度が、従来の超硬合金に比べて、高いことも明らかとなった。   Further, when the shape is spherical, anisotropy does not occur in the material. When a direct current was passed through such a material and the heat generation characteristics were evaluated, it was found that the larger the amount of carbon, the quicker and higher the heating possible. Moreover, it became clear that the oxidation start temperature by heating in air is higher than that of conventional cemented carbide.

作製したWC−(FeAl)に、炭素を複合化した合金の強度は、Fe−Al合金の量によっても変化する。すなわち、結合金属相の量が多いほど、合金の強度は低下する。結合金属相の量が40質量%を超えると、WC−(Fe−Al)超硬合金の硬度が85HRA以下となり、耐摩耗性や強度が著しく低下する。   The strength of the alloy in which carbon is combined with the produced WC- (FeAl) varies depending on the amount of the Fe-Al alloy. That is, the greater the amount of bonded metal phase, the lower the strength of the alloy. When the amount of the binder metal phase exceeds 40% by mass, the hardness of the WC- (Fe-Al) cemented carbide becomes 85HRA or less, and the wear resistance and strength are remarkably reduced.

製造プロセスにおける低CO化、省エネが叫ばれる中、通電焼結技術は、それを実現できるプロセスの一つである。しかし、これまで、黒鉛型を使用した焼結しか行われていないため、高精度の焼結体を作製することができなかった。また、焼結体と型との反応のため、連続した自動化の焼結プロセスとしては展開することができなかった。本発明を用いることで、高精度の焼結体を作製できるだけでなく、連続した自動化のプロセスに展開することが可能になるものと考えられる。 While low CO 2 and energy saving are sought in the manufacturing process, the electric current sintering technology is one of the processes that can realize it. However, until now, since only sintering using a graphite mold has been performed, a highly accurate sintered body could not be produced. Further, due to the reaction between the sintered body and the mold, it could not be developed as a continuous automated sintering process. By using the present invention, it is considered that not only a highly accurate sintered body can be produced, but also it can be developed into a continuous automated process.

また、焼結体では、どうしても気孔が残存し、信頼性が低下していたが、加圧力をあげた焼結を実現することで、欠陥の発生を抑えた高信頼性の焼結体を作製することが可能となる。また、1mm以下の薄い焼結体も、本発明による金型を利用すれば、作製することが可能となる。本発明による材料を用いることで、これまで、焼結が困難であった材料に対する型材料として適用でき、新規特性を有した材料の焼結が可能となる。   Also, in the sintered body, pores inevitably remained and the reliability was lowered, but by realizing sintering with increased pressure, a highly reliable sintered body with reduced generation of defects was produced. It becomes possible to do. Also, a thin sintered body of 1 mm or less can be produced by using the mold according to the present invention. By using the material according to the present invention, it can be applied as a mold material for materials that have been difficult to sinter so far, and it becomes possible to sinter materials having new characteristics.

本発明により、次のような効果が奏される。
(1)導電性のセラミックス粒子と鉄およびアルミニウムの金属間化合物からなる複合材料に、球状の炭素を分散させた複合材料の焼結体からなる金型を提供することができる。
(2)導電性のセラミックス粒子が、タングステンおよび/あるいはチタンを含有する上記の金型を提供することができる。
(3)分散した炭素が10質量%以下であり、通電焼結に適した上記の金型を提供することができる。
(4)分散させた炭素の粒子径が20μm以下であり、通電焼結に適した上記の金型を提供することができる。
(5)鉄とアルミニウムで構成される結合金属相が40質量%以下である、上記の金型を提供することができる。
(6)上記の金型を構成する複合硬質材料を提供することができる。
The present invention has the following effects.
(1) A mold made of a sintered body of a composite material in which spherical carbon is dispersed in a composite material made of conductive ceramic particles and an intermetallic compound of iron and aluminum can be provided.
(2) It is possible to provide the above mold in which the conductive ceramic particles contain tungsten and / or titanium.
(3) Dispersed carbon is 10% by mass or less, and the above-described mold suitable for current sintering can be provided.
(4) The above-mentioned mold having a particle diameter of dispersed carbon of 20 μm or less and suitable for electric current sintering can be provided.
(5) It is possible to provide the above mold in which the bonded metal phase composed of iron and aluminum is 40% by mass or less.
(6) The composite hard material which comprises said metal mold | die can be provided.

98(WC−30mass%(Fe−Al))+2CのXRDを示す。The XRD of 98 (WC-30 mass% (Fe-Al)) + 2C is shown. 98(WC−30mass%(Fe−Al))+2CのSEM像を示す。The SEM image of 98 (WC-30 mass% (Fe-Al)) + 2C is shown. (100−x)(WC−10mass%(Fe−Al))+xCのカーボン添加量に対する電気抵抗率変化を示す。The change in electrical resistivity with respect to the carbon addition amount of (100−x) (WC−10 mass% (Fe—Al)) + xC is shown. (100−x)(WC−10mass%(Fe−Al))+xCのカーボン添加量に対する曲げ強度変化を示す。The bending strength change with respect to the carbon addition amount of (100−x) (WC−10 mass% (Fe—Al)) + xC is shown. (100−x)(WC−30mass%(Fe−Al))+xCの通電による昇温特性の違いを示す。The difference in temperature rise characteristics due to energization of (100−x) (WC−30 mass% (Fe—Al)) + xC is shown. (100−x)(WC−30mass%(Fe−Al))+xCの強度変化を示す。The intensity | strength change of (100-x) (WC-30mass% (Fe-Al)) + xC is shown. 96(WC−10mass%(Fe−Al))+4Cの耐酸化性を示す。The oxidation resistance of 96 (WC-10 mass% (Fe-Al)) + 4C is shown. 96(WC−10mass%(Fe−Al))+2Cの100MPa下での外観写真を示す。The external appearance photograph under 100MPa of 96 (WC-10mass% (Fe-Al)) + 2C is shown.

次に、実施例により本発明を具体的に説明するが、本発明は、これらの例によって何ら限定されるものではない。すなわち、本発明は、その技術思想の範囲で、本実施例以外の態様あるいは変形を全て包含するものである。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by these examples. That is, the present invention encompasses all aspects or modifications other than the present embodiment within the scope of the technical idea.

炭化タングステン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、98(WC−30mass%(Fe−Al))+2C(質量%)の組成になるように秤量し、アルゴン雰囲気下でメカニカルミリングを行ったのち、内径30mm、外径50mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、30MPaの加圧下にて加熱し、1150℃で3分間保持した。   After weighing tungsten carbide powder, iron powder, aluminum powder, and carbon powder to a composition of 98 (WC-30 mass% (Fe-Al)) + 2C (mass%) and performing mechanical milling in an argon atmosphere A graphite mold having an inner diameter of 30 mm, an outer diameter of 50 mm, and a height of 30 mm was filled to prepare a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1150 ° C. for 3 minutes.

得られた焼結体の構成相をX線回折により、組織をSEMにより観察した。その結果を図1および2に示す。図1より、作製した硬質材料からは炭化タングステンとFe−Al金属間化合物のピークが確認できる。また、添加した炭素は、非晶質的結晶構造を有しているため、X線回折には表れていない。図2より、添加した炭素が均一に合金内に分散していることがわかる。   The constituent phase of the obtained sintered body was observed by X-ray diffraction, and the structure was observed by SEM. The results are shown in FIGS. From FIG. 1, the peak of tungsten carbide and the Fe-Al intermetallic compound can be confirmed from the produced hard material. The added carbon does not appear in X-ray diffraction because it has an amorphous crystal structure. FIG. 2 shows that the added carbon is uniformly dispersed in the alloy.

炭化タングステン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、(100−x)(WC−10mass%(Fe−Al))+xC(質量%)の組成になるように秤量し、アルゴン雰囲気下でメカニカルミリングを行ったのち、内径30mm、外径50mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、30MPaの加圧下にて加熱し、1150℃で3分間保持した。   Tungsten carbide powder, iron powder, aluminum powder, carbon powder are weighed to a composition of (100−x) (WC−10 mass% (Fe—Al)) + xC (mass%), and mechanical milling is performed under an argon atmosphere. After that, a graphite mold having an inner diameter of 30 mm, an outer diameter of 50 mm, and a height of 30 mm was filled to prepare a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1150 ° C. for 3 minutes.

この時の炭素の添加量(x)は、0〜8とした。得られた焼結体の電気抵抗率を四探針法により、強度を三点曲げにより評価した。図3および4に作製した焼結体の電気抵抗率および曲げ強度を示す。これらの図より、電気抵抗率および曲げ強度は、炭素添加量の増加に従い、それぞれ、上昇、低下することがわかる。   The addition amount (x) of carbon at this time was set to 0-8. The electric resistivity of the obtained sintered body was evaluated by a four-point probe method and the strength was evaluated by three-point bending. 3 and 4 show the electrical resistivity and bending strength of the sintered body produced. From these figures, it can be seen that the electrical resistivity and bending strength increase and decrease as the amount of carbon added increases, respectively.

炭化タングステン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、(100−x)(WC−30mass%(Fe−Al))+xC(質量%)の組成になるように秤量し、アルゴン雰囲気下でメカニカルミリングを行ったのち、内径30mm、外径50mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、30MPaの加圧下にて加熱し、1100℃で3分間保持した。   Tungsten carbide powder, iron powder, aluminum powder, and carbon powder are weighed so as to have a composition of (100-x) (WC-30 mass% (Fe-Al)) + xC (mass%) and mechanically milled in an argon atmosphere. After that, a graphite mold having an inner diameter of 30 mm, an outer diameter of 50 mm, and a height of 30 mm was filled to prepare a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1100 ° C. for 3 minutes.

この時の炭素の添加量(x)は、0〜4とした。作製した焼結体を3×3×20mmの大きさに切りだしたのち、上下間電極で挟み込み、50Aの直流電流を60秒間通電し、温度変化を調べた。その結果を図5に示す。炭素量が多くなるほど、高温まで高速で昇温できることがわかる。   The addition amount (x) of carbon at this time was set to 0-4. The produced sintered body was cut out to a size of 3 × 3 × 20 mm, sandwiched between upper and lower electrodes, and a 50 A direct current was applied for 60 seconds, and the temperature change was examined. The result is shown in FIG. It can be seen that the higher the carbon content, the higher the temperature can be increased to a higher temperature.

炭化タングステン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、(100−x)(WC−30mass%(Fe−Al))+xC(質量%)の組成になるように秤量し、アルゴン雰囲気下でメカニカルミリングを行ったのち、内径30mm、外径50mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、30MPaの加圧下にて加熱し、1100℃で3分間保持した。この時の炭素の粒子径を変化させ、その際の曲げ強度を評価した。図6に、その結果を示す。添加した炭素粒子が微細であるほど、複合化による強度低下が抑えられることがわかる。   Tungsten carbide powder, iron powder, aluminum powder, and carbon powder are weighed so as to have a composition of (100-x) (WC-30 mass% (Fe-Al)) + xC (mass%) and mechanically milled in an argon atmosphere. After that, a graphite mold having an inner diameter of 30 mm, an outer diameter of 50 mm, and a height of 30 mm was filled to prepare a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1100 ° C. for 3 minutes. The carbon particle diameter at this time was changed, and the bending strength at that time was evaluated. FIG. 6 shows the result. It can be seen that the finer the added carbon particles are, the more the strength reduction due to the composite can be suppressed.

炭化タングステン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、96(WC−10mass%(Fe−Al))+4C(質量%)の組成になるように秤量し、アルゴン雰囲気下でメカニカルミリングを行ったのち、内径30mm、外径50mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、30MPaの加圧下にて加熱し、1100℃で3分間保持した。   After weighing tungsten carbide powder, iron powder, aluminum powder, and carbon powder to a composition of 96 (WC-10 mass% (Fe-Al)) + 4C (mass%), mechanical milling was performed in an argon atmosphere. A graphite mold having an inner diameter of 30 mm, an outer diameter of 50 mm, and a height of 30 mm was filled to prepare a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1100 ° C. for 3 minutes.

作製した焼結体の空気中での酸化増量を調べた結果を図7に示す。また、比較のため、結合相量の割合が等しいWC−Co合金の酸化増量も併せて示す。この図より、Fe−Al合金を結合相として用いた場合、酸化による重量増加が、WC−Co合金に比べ、高温側にシフトし、耐酸化性が向上していることがわかる。   The result of investigating the increase in oxidation of the produced sintered body in air is shown in FIG. For comparison, the increase in oxidation of the WC-Co alloy having the same proportion of the binder phase is also shown. From this figure, it can be seen that, when an Fe—Al alloy is used as the binder phase, the weight increase due to oxidation is shifted to a higher temperature than the WC—Co alloy, and the oxidation resistance is improved.

炭化タングステン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、98(WC−10mass%(Fe−Al))+2C(質量%)の組成になるように秤量し、アルゴン雰囲気下でメカニカルミリングを行ったのち、内径10mm、外径20mm、高さ50mmの黒鉛型に充填して、φ10mm×15mmの焼結体を作製した。焼結は、真空中で行い、30MPaの加圧下にて加熱し、1200℃で3分間保持した。作製した焼結体の上下を100 MPaで加圧した。この状態で800℃まで昇温させた結果を図8に示す。この図より、800℃の高温においても、変形は生じず、高温、高圧力下での使用が可能であることがわかる。   After weighing tungsten carbide powder, iron powder, aluminum powder, and carbon powder to a composition of 98 (WC-10 mass% (Fe-Al)) + 2C (mass%) and performing mechanical milling in an argon atmosphere. Then, it was filled in a graphite mold having an inner diameter of 10 mm, an outer diameter of 20 mm, and a height of 50 mm to prepare a sintered body of φ10 mm × 15 mm. Sintering was performed in a vacuum, heated under a pressure of 30 MPa, and held at 1200 ° C. for 3 minutes. The upper and lower sides of the produced sintered body were pressurized at 100 MPa. FIG. 8 shows the result of raising the temperature to 800 ° C. in this state. From this figure, it can be seen that deformation does not occur even at a high temperature of 800 ° C., and that it can be used under high temperature and high pressure.

硼化チタン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、98(TiB−10mass%(Fe−Al))+2C(質量%)の組成になるように秤量し、乳鉢を用いて混合した。この粉末を、内径30mm、外径45mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、60MPaの加圧下にて加熱し、1200℃で4分間保持した。この焼結体の電気伝導率を測定したところ、3.5×10−5Ωcmであった。 Titanium boride powder, iron powder, aluminum powder, and carbon powder were weighed to a composition of 98 (TiB 2 -10 mass% (Fe—Al)) + 2C (mass%) and mixed using a mortar. This powder was filled into a graphite mold having an inner diameter of 30 mm, an outer diameter of 45 mm, and a height of 30 mm to produce a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 60 MPa, and held at 1200 ° C. for 4 minutes. The electrical conductivity of the sintered body was measured and found to be 3.5 × 10 −5 Ωcm.

窒化チタン粉末、鉄粉末、アルミニウム粉末、炭素粉末を、98(TiN−10mass%(Fe−Al))+2C(質量%)の組成になるように秤量し、乳鉢を用いて混合した。この粉末を、内径30mm、外径45mm、高さ30mmの黒鉛型に充填して、φ30mm×4mmの焼結体を作製した。焼結は、真空中で行い、60MPaの加圧下にて加熱し、1250℃で5分間保持した。この焼結体の電気伝導率を測定したところ、14.8×10−5Ωcmであった。 Titanium nitride powder, iron powder, aluminum powder, and carbon powder were weighed to a composition of 98 (TiN-10 mass% (Fe-Al)) + 2C (mass%) and mixed using a mortar. This powder was filled into a graphite mold having an inner diameter of 30 mm, an outer diameter of 45 mm, and a height of 30 mm to produce a sintered body of φ30 mm × 4 mm. Sintering was performed in a vacuum, heated under a pressure of 60 MPa, and held at 1250 ° C. for 5 minutes. The electrical conductivity of the sintered body was measured and found to be 14.8 × 10 −5 Ωcm.

以上詳述した通り、本発明は、通電加熱に適した硬質金型およびその材料に係るものであり、本発明を用いることで、高精度の焼結体を作製できるだけでなく、連続した自動化のプロセスに展開することを可能にすることができる。通電焼結技術は、製造プロセスにおける低CO化、省エネが叫ばれる中、それを実現できるプロセスの一つであるが、これまで、黒鉛型を使用した焼結しか行われていないため、高精度の焼結体を作製することができなかった。また、焼結体と型との反応のため、連続した自動化の焼結プロセスとしては展開することができなかった。また、焼結体では、どうしても気孔が残存し、信頼性が低下していた。しかし、本発明により、加圧力をあげた焼結を実現することで、欠陥の発生を抑えた高信頼性の焼結体を作製でき、また、1mm以下の薄い焼結体も本発明による金型を利用すれば作製することが可能となる。本発明による材料を用いることで、これまで焼結が困難であった材料に対する型材料として適用でき、新規特性を有した材料の焼結が可能となる。 As described above in detail, the present invention relates to a hard mold suitable for energization heating and its material, and by using the present invention, not only can a highly accurate sintered body be produced, but also continuous automation. Can be deployed in the process. The electric current sintering technology is one of the processes that can achieve this while lowering CO 2 and saving energy in the manufacturing process. However, since only sintering using a graphite mold has been performed so far, An accurate sintered body could not be produced. Further, due to the reaction between the sintered body and the mold, it could not be developed as a continuous automated sintering process. Moreover, in the sintered body, pores inevitably remained, and reliability was lowered. However, according to the present invention, it is possible to produce a highly reliable sintered body that suppresses the generation of defects by realizing sintering with increased pressure, and a thin sintered body of 1 mm or less is also made of gold according to the present invention. If a mold is used, it can be manufactured. By using the material according to the present invention, it can be applied as a mold material for materials that have been difficult to sinter so far, and it becomes possible to sinter materials having new characteristics.

Claims (6)

導電性のセラミックス粒子と鉄およびアルミニウムの金属間化合物からなる硬質複合材料に、球形の炭素粒子を分散させた当該硬質複合材料の焼結体からなる複合硬質材料であって、上記鉄とアルミニウムで構成される金属間化合物の結合金属相に炭素粒子が分散した複合構造を有することを特徴とする複合硬質材料。   A composite hard material comprising a sintered body of a hard composite material in which spherical carbon particles are dispersed in a hard composite material comprising conductive ceramic particles and an intermetallic compound of iron and aluminum, the iron and aluminum A composite hard material having a composite structure in which carbon particles are dispersed in a bonded metal phase of an intermetallic compound. 導電性のセラミックス粒子が、タングステンおよび/またはチタンを含有する、請求項1記載の複合硬質材料。   The composite hard material according to claim 1, wherein the conductive ceramic particles contain tungsten and / or titanium. 複合材料に対して、分散した炭素が10質量%以下であり、通電焼結に適した、ものである請求項2記載の複合硬質材料。   The composite hard material according to claim 2, wherein the dispersed carbon is 10% by mass or less with respect to the composite material, and is suitable for electric current sintering. 分散させた炭素の粒子径が、20μm以下である、請求項3記載の複合硬質材料。   The composite hard material according to claim 3, wherein the dispersed carbon has a particle diameter of 20 μm or less. 鉄とアルミニウムで構成される結合金属相が、40質量%以下である、請求項3記載の複合硬質材料。   The composite hard material according to claim 3, wherein the bonded metal phase composed of iron and aluminum is 40% by mass or less. 請求項1から5のいずれかに記載の複合硬質材料から構成されることを特徴とする通電焼結用の金型。   A die for electric current sintering, comprising the composite hard material according to any one of claims 1 to 5.
JP2011119663A 2011-05-27 2011-05-27 Hard mold suitable for electric heating and its material Active JP5756928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119663A JP5756928B2 (en) 2011-05-27 2011-05-27 Hard mold suitable for electric heating and its material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119663A JP5756928B2 (en) 2011-05-27 2011-05-27 Hard mold suitable for electric heating and its material

Publications (2)

Publication Number Publication Date
JP2012246537A true JP2012246537A (en) 2012-12-13
JP5756928B2 JP5756928B2 (en) 2015-07-29

Family

ID=47467269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119663A Active JP5756928B2 (en) 2011-05-27 2011-05-27 Hard mold suitable for electric heating and its material

Country Status (1)

Country Link
JP (1) JP5756928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246538A (en) * 2011-05-27 2012-12-13 National Institute Of Advanced Industrial Science & Technology Hard material in which heating element is buried, and method for preparing the same
JP7583248B2 (en) 2020-10-05 2024-11-14 株式会社Moldino Method for manufacturing composite particles, composite powder, and composite member using the composite powder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297302A (en) * 1999-02-12 2000-10-24 Kubota Corp Electric sintering method, electric sintering device and die for electric sintering
JP2007039752A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same
JP2008138258A (en) * 2006-12-01 2008-06-19 National Institute Of Advanced Industrial & Technology Method for producing hard material using aluminum liquid, and molded body thereof
JP2012001755A (en) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial Science & Technology High thermal conductivity hard material light in weight and excellent in oxidation resistance, and its manufacturing method
JP2012077352A (en) * 2010-10-01 2012-04-19 National Institute Of Advanced Industrial Science & Technology Cemented carbide alloy, and cemented carbide tool
JP2012246538A (en) * 2011-05-27 2012-12-13 National Institute Of Advanced Industrial Science & Technology Hard material in which heating element is buried, and method for preparing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297302A (en) * 1999-02-12 2000-10-24 Kubota Corp Electric sintering method, electric sintering device and die for electric sintering
JP2007039752A (en) * 2005-08-04 2007-02-15 National Institute Of Advanced Industrial & Technology Tool or die material having hard film deposited on hard alloy for forming high hardness film, and manufacturing method of the same
JP2008138258A (en) * 2006-12-01 2008-06-19 National Institute Of Advanced Industrial & Technology Method for producing hard material using aluminum liquid, and molded body thereof
JP2012001755A (en) * 2010-06-15 2012-01-05 National Institute Of Advanced Industrial Science & Technology High thermal conductivity hard material light in weight and excellent in oxidation resistance, and its manufacturing method
JP2012077352A (en) * 2010-10-01 2012-04-19 National Institute Of Advanced Industrial Science & Technology Cemented carbide alloy, and cemented carbide tool
JP2012246538A (en) * 2011-05-27 2012-12-13 National Institute Of Advanced Industrial Science & Technology Hard material in which heating element is buried, and method for preparing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012246538A (en) * 2011-05-27 2012-12-13 National Institute Of Advanced Industrial Science & Technology Hard material in which heating element is buried, and method for preparing the same
JP7583248B2 (en) 2020-10-05 2024-11-14 株式会社Moldino Method for manufacturing composite particles, composite powder, and composite member using the composite powder

Also Published As

Publication number Publication date
JP5756928B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US11752593B2 (en) Binder compositions of tungsten tetraboride and abrasive methods thereof
JP2843900B2 (en) Method for producing oxide-particle-dispersed metal-based composite material
CN110257684B (en) Preparation process of FeCrCoMnNi high-entropy alloy-based composite material
JP2022517021A (en) Method of preparing metal material or metal composite material
CN108950299B (en) High-entropy alloy-diamond combined superhard composite material and preparation method thereof
CN102140603B (en) Preparation method of hard alloy using nickel-aluminum intermetallic compound Ni3Al as bonding phase
CN102154582B (en) Preparation method of hard alloy taking nickel-aluminium intermetallic compound Ni3Al as binding phase
CN103627942A (en) Preparation method for high-performance WC-Co nanocrystal cemented carbide
JP2019006662A (en) Diamond-based composite material using boron-based binder, production method therefor, and tool constituent using the same
CN103058662A (en) Titanium diboride-based composite self-lubricating ceramic tool material and preparation method thereof
CN111485129B (en) TiC/Ti5Si3 reinforced copper-based composite material and preparation method thereof
CN113502426B (en) Multi-grain-size hard alloy and preparation method thereof
CN102134663B (en) Hard alloy with iron-aluminum intermetallic compound as main binding phase and preparation method of hard alloy
JP4403286B2 (en) Cemented carbide tool material and manufacturing method thereof
CN111778436B (en) Method for preparing WC-Y2O3 binderless hard alloy by cold pressing-hot pressing sintering
CN106636835A (en) Preparation method for hard alloy containing intermetallic compound bonding phase
JP5756928B2 (en) Hard mold suitable for electric heating and its material
KR20190134242A (en) COMPOSITE MATERIAL FOR WC-Co BASED CARBIDE TOOL AND PREPARATION METHOD THEREOF
CN105543535A (en) Al4SiC4 and Cr cooperative reinforcement net-shaped/globular copper material and preparation method
CN102162058B (en) Hard alloy taking nickel-aluminum intermetallic compound Ni3Al as binding phase and preparation method thereof
JP2004190084A (en) Sintered alloy and manufacturing method therefor
JP5569965B2 (en) Lightweight and highly heat-resistant hard material with excellent oxidation resistance and method for producing the same
JP5760197B2 (en) Hard material with embedded heating element and its manufacturing method
CN113526959B (en) Method and device for rapidly sintering tungsten carbide powder without adhesive
JP2012087042A (en) Titanium diboride-based sintered compact, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R150 Certificate of patent or registration of utility model

Ref document number: 5756928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250