[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012245469A - Photocatalyst and method for producing hydrogen using the same - Google Patents

Photocatalyst and method for producing hydrogen using the same Download PDF

Info

Publication number
JP2012245469A
JP2012245469A JP2011119396A JP2011119396A JP2012245469A JP 2012245469 A JP2012245469 A JP 2012245469A JP 2011119396 A JP2011119396 A JP 2011119396A JP 2011119396 A JP2011119396 A JP 2011119396A JP 2012245469 A JP2012245469 A JP 2012245469A
Authority
JP
Japan
Prior art keywords
photocatalyst
nanocarbons
component
water molecules
present application
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011119396A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
顕次 柴田
Isao Imaoka
功 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2011119396A priority Critical patent/JP2012245469A/en
Publication of JP2012245469A publication Critical patent/JP2012245469A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst that exhibits high activity in a photocatalytic reaction including water molecules and the like as reactants, and a method for producing hydrogen using the photocatalyst.SOLUTION: The photocatalyst contains tubular nanocarbons which have a six-membered ring structure of carbon in an outer shell thereof and open at least one end thereof, and a photocatalyst component which generates electrons and electron holes by light irradiation. In the method for producing hydrogen, the photocatalyst is made to act on hydrogen-containing compounds, such as alcohols, or their aqueous solution.

Description

本発明は、光触媒およびこれを用いた水素製造方法に関する。   The present invention relates to a photocatalyst and a method for producing hydrogen using the same.

酸化チタン(TiO)に代表される光触媒成分の触媒活性を向上させるために、光触媒成分とともに助触媒成分を用いた光触媒が開発されている。このような光触媒の代表例として、光触媒成分としての酸化チタン(TiO)と、助触媒成分としての白金(Pt)とを含むTiO/Pt触媒が挙げられる。TiO/Pt触媒によれば、高い触媒活性を得ることができるが、貴金属である白金を用いているため、高価であるという課題がある。これに対して、特許文献1では、白金に代えて、助触媒成分としてカーボンナノチューブを用いた光触媒が開示されている。特許文献1の光触媒によれば、アルコール類から水素を生成する反応系において、TiO/Pt触媒と同程度の高い触媒活性を得られることが記載されている。 In order to improve the catalytic activity of a photocatalyst component typified by titanium oxide (TiO 2 ), a photocatalyst using a promoter component together with the photocatalyst component has been developed. A typical example of such a photocatalyst is a TiO 2 / Pt catalyst containing titanium oxide (TiO 2 ) as a photocatalyst component and platinum (Pt) as a promoter component. According to the TiO 2 / Pt catalyst, high catalytic activity can be obtained, but there is a problem that it is expensive because platinum, which is a noble metal, is used. On the other hand, Patent Document 1 discloses a photocatalyst using carbon nanotubes as a promoter component instead of platinum. According to the photocatalyst of Patent Document 1, it is described that a catalytic activity as high as that of a TiO 2 / Pt catalyst can be obtained in a reaction system that generates hydrogen from alcohols.

特開2006−150193号公報JP 2006-150193 A

光触媒成分と助触媒成分とを含む光触媒を用いた水系の光触媒反応においては、光によって励起された電子は、光触媒成分から助触媒成分に受け渡され、さらに、助触媒成分から水分子や水素イオンまたは水素ラジカル(以下、水分子等という)に受け渡される。光触媒の活性を向上させるためには、光触媒成分から助触媒成分への電子の移動速度と、助触媒成分から水分子等への電子の移動速度を向上させる必要がある。前者の電子の移動速度は、光触媒成分と助触媒成分が接触する確率に依存し、後者の電子の移動速度は、助触媒成分と水分子等が接触する確率に依存する。これらの確率を高くすることによって光触媒の活性を向上させる場合には、光触媒成分、助触媒成分、水分子等の量を増やす必要があり、触媒効率の向上に限界があった。   In an aqueous photocatalytic reaction using a photocatalyst containing a photocatalyst component and a cocatalyst component, electrons excited by light are transferred from the photocatalyst component to the cocatalyst component, and water molecules and hydrogen ions are further transferred from the cocatalyst component. Or it is delivered to hydrogen radicals (hereinafter referred to as water molecules). In order to improve the activity of the photocatalyst, it is necessary to improve the transfer rate of electrons from the photocatalyst component to the promoter component and the transfer rate of electrons from the promoter component to water molecules and the like. The former electron moving speed depends on the probability that the photocatalyst component and the promoter component are in contact, and the latter electron moving speed depends on the probability that the promoter component and the water molecule contact. In order to improve the activity of the photocatalyst by increasing these probabilities, it is necessary to increase the amount of the photocatalyst component, the promoter component, the water molecule, etc., and there has been a limit in improving the catalyst efficiency.

本発明者らは、ナノカーボン類の内部では、通常よりも低いエネルギーで物理的化学的現象が起こり得ることに着目し、ナノカーボン類の内部に水分子等を引き込むことによって、助触媒成分から水分子等への電子の移動速度を向上させることができることを見出した。   The present inventors pay attention to the fact that physical and chemical phenomena can occur at a lower energy than usual inside nanocarbons, and by drawing water molecules and the like into nanocarbons, It has been found that the movement speed of electrons to water molecules and the like can be improved.

本発明は、炭素の6員環構造を外殻に有しており、少なくとも一端が開放されている管状のナノカーボン類と、光を照射されることによって電子および正孔を生成する光触媒成分とを含む光触媒を提供する。   The present invention includes a tubular nanocarbon having a carbon 6-membered ring structure in the outer shell and having at least one end opened, and a photocatalytic component that generates electrons and holes when irradiated with light. A photocatalyst is provided.

本発明によれば、炭素の6員環構造を外殻に有している管状のナノカーボン類の少なくとも一端が開放されているため、水分子等がその外殻の内側(ナノカーボン類の内部)に引き込まれる。ナノカーボン類の内部で、助触媒成分であるナノカーボン類から水分子等への電子の移動が成されるため、助触媒成分から水分子等への電子の移動速度が向上する。さらに、ナノカーボン類の内部では、その外部よりも低いエネルギーでナノカーボン類から水分子等へ電子が移動するため、助触媒成分から水分子等への電子の移動速度は、より一層向上する。   According to the present invention, since at least one end of tubular nanocarbons having a carbon six-membered ring structure in the outer shell is open, water molecules and the like are inside the outer shell (inside the nanocarbons). ). Electrons are transferred from nanocarbons, which are promoter components, to water molecules and the like inside the nanocarbons, so that the transfer rate of electrons from the promoter components to water molecules and the like is improved. Furthermore, inside the nanocarbons, electrons move from the nanocarbons to water molecules and the like with lower energy than the outside, so that the transfer rate of electrons from the promoter component to the water molecules and the like is further improved.

前記ナノカーボン類は、開放された端部は2つ以上であることが好ましい。   The nanocarbons preferably have two or more open ends.

本発明は、アルコール類等の水素含有有機化合物またはその水溶液に、上記の光触媒を作用させる、水素製造方法を提供することもできる。この場合、光触媒の温度を45℃以上とすることが好ましい。   The present invention can also provide a hydrogen production method in which the above-mentioned photocatalyst is allowed to act on a hydrogen-containing organic compound such as alcohols or an aqueous solution thereof. In this case, the temperature of the photocatalyst is preferably 45 ° C. or higher.

本発明によれば、水分子等を反応物質または反応中間体として含む光触媒反応において高い活性を示す光触媒を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the photocatalyst which shows high activity in the photocatalytic reaction containing a water molecule etc. as a reactive substance or a reaction intermediate body can be provided.

本願に係る光触媒は、炭素の6員環構造を外殻に有しており、少なくとも一端が開放されている管状のナノカーボン類と、光を照射されることによって電子および正孔を生成する光触媒成分とを含む。本願に係る光触媒は、水分子等を反応物質として含む光触媒反応において高い活性を示す。水分子等(水分子や水素イオンまたは水素ラジカル)を反応物質または反応中間体として含む光触媒反応としては、例えば、アルコール類等の水素含有有機化合物またはその水溶液に光触媒を作用させて、水素を製造する反応が挙げられる。   The photocatalyst according to the present application has a tubular nanocarbon having a carbon six-membered ring structure in the outer shell and at least one end being opened, and a photocatalyst that generates electrons and holes when irradiated with light. And ingredients. The photocatalyst according to the present application exhibits high activity in a photocatalytic reaction containing water molecules as a reactant. For photocatalytic reactions that contain water molecules (water molecules, hydrogen ions, or hydrogen radicals) as reactants or reaction intermediates, for example, hydrogen is produced by allowing a photocatalyst to act on hydrogen-containing organic compounds such as alcohols or aqueous solutions thereof. Reaction.

本願に係る光触媒成分は、光を照射されることによって電子および正孔を生成する性質を有する物質として公知の物質を利用することができる。例えば、TiO,SrTiO,CdS,GaP,ZrO,KTaO,KTa0.77,Nb0.23,Nb,ZnO,Fe,WO,SnO,In,MoOCuO,CuFeO,InTaO,NiO/In0.9Ni0.1TaO等の公知の光を照射されることによって電子および正孔を生成する性質を有する物質を単独または複数組み合わせて用いることができる。TiOは、高活性で実用性が高く、光触媒成分として好ましく、アナターゼ型、ルチル型のいずれも好適に利用できるが、より高活性なアナターゼ型を用いることが特に好ましい。 As the photocatalyst component according to the present application, a known substance can be used as a substance having a property of generating electrons and holes when irradiated with light. For example, TiO 2, SrTiO 3, CdS , GaP, ZrO 2, KTaO 3, KTa 0.77, Nb 0.23 O 3, Nb 2 O 5, ZnO, Fe 2 O 3, WO 3, SnO 2, In 2 Substances having the property of generating electrons and holes when irradiated with known light, such as O 3 , MoO 3 Cu 2 O, CuFeO 2 , InTaO 4 , NiO x / In 0.9 Ni 0.1 TaO 4 Can be used alone or in combination. TiO 2 has high activity and high practicality, and is preferable as a photocatalytic component. Either anatase type or rutile type can be suitably used, but it is particularly preferable to use a higher activity anatase type.

本願に係るナノカーボン類は、グラファイトシート又はグラフェンが管状に丸まった形態を有するナノオーダーのカーボン構造体もしくはその誘導体である。外殻は、グラファイトシートと同様の網目状の炭素の6員環構造を有しており、その一部に5員環、7員環、8員環等を含んでいてもよい。本願に係るナノカーボン類としては、特に限定されないが、外殻が単層の単層ナノチューブ(SWNT)、外殻が多層の多層ナノチューブ(MWNT)、カーボンナノホーンおよびその誘導体を例示することができ、これらを単独でもしくは複数組み合わせて用いることができる。なお、本願に係るナノカーボン類は、2つの端部を有する一連の直管状または曲がり管状であってもよいし、分岐を有して3つ以上の端部を有する形状であってもよい。   The nanocarbons according to the present application are a nano-order carbon structure or a derivative thereof having a form in which a graphite sheet or graphene is rounded into a tubular shape. The outer shell has a network-like carbon 6-membered ring structure similar to the graphite sheet, and a part thereof may include a 5-membered ring, a 7-membered ring, an 8-membered ring, or the like. Examples of the nanocarbons according to the present application include, but are not limited to, single-walled single-walled nanotubes (SWNT) whose outer shell is a single-walled nanotube (MWNT), carbon nanohorns, and derivatives thereof. These can be used alone or in combination. The nanocarbons according to the present application may be a series of straight tubes or bent tubes having two ends, or may have a shape having three or more ends with a branch.

さらに、本願に係るナノカーボン類は、管状の外殻の端部の一部または全部が、開放された状態となっている。例えば、2つの端部を有し、一端から他端に伸びる管状のナノチューブの場合、その一方のみが開放端であってもよいし、両端が開放端であってもよい。特に限定されないが、開放された端部は2つ以上であることが好ましい。   Further, in the nanocarbons according to the present application, part or all of the end portion of the tubular outer shell is in an open state. For example, in the case of a tubular nanotube having two end portions and extending from one end to the other end, only one of them may be an open end or both ends may be open ends. Although not particularly limited, it is preferable that there are two or more open ends.

本願に係る少なくとも一端が開放されているナノカーボン類は、水分子等を外殻の内部に積極的に引き込む性質を有することが知られている。ナノカーボン類の内部では、外部と比べて電子の移動速度が向上する。また、ナノカーボン類の内部に水分子等が内包されて水分子等の移動がある程度拘束されるため、ナノカーボン類から水分子等への電子の引渡しが起こり易くなる。すなわち、本願に係る光触媒によれば、ナノカーボン類から水分子等への電子の移動がナノカーボン類の外殻の内側で行われるため、ナノカーボン類から水分子等への電子の移動が起こり易くなる。このため、本願に係る光触媒は、水分子等を反応物質として含む光触媒反応において高い活性を示す。特許文献1には、カーボンナノチューブを光触媒の助触媒成分として用いることが記載されているが、上記のような端部が開放されたナノカーボン類に特有の性質を利用することは、特許文献1に記載も示唆もされていない。   It is known that nanocarbons having at least one open end according to the present application have a property of actively drawing water molecules and the like into the outer shell. Inside the nanocarbons, the movement speed of electrons is improved compared to the outside. In addition, since water molecules and the like are encapsulated in the nanocarbons and movement of the water molecules is restricted to some extent, electrons are easily transferred from the nanocarbons to the water molecules and the like. That is, according to the photocatalyst according to the present application, electrons move from nanocarbons to water molecules and the like inside the outer shell of the nanocarbons, so electrons move from nanocarbons to water molecules and the like. It becomes easy. For this reason, the photocatalyst according to the present application exhibits high activity in a photocatalytic reaction including water molecules as a reactant. Patent Document 1 describes the use of carbon nanotubes as a cocatalyst component of a photocatalyst. However, the use of the properties unique to nanocarbons having open ends as described above is disclosed in Patent Document 1. Is neither described nor suggested.

また、ナノカーボン類の内部では、通常とは異なり、水分子が45℃程度の低い温度で沸騰し、さらにナノカーボン類の外部に噴出することが知られている。本願に係る光触媒を用いて、45℃程度以上の温度条件で光触媒反応を行うと、ナノカーボン類の開放した端部からナノカーボン類内に水分子が引き込まれて沸騰し、噴出するという現象が繰り返し発生する。ナノカーボン類から電子を受け取った水分子等が速やかにナノカーボン類の内部から放出されるので、ナノカーボン類から水分子等への電子の移動速度がさらに高くなる。また、ナノカーボン類の内部で水分子は沸騰し、高活性化して電子を受け取り易くなることによっても、ナノカーボン類から水分子等への電子の移動速度がさらに高くなる。すなわち、本願に係る光触媒を用いて、水分子等を反応物質として含む光触媒反応を45℃程度以上の温度条件で行う場合には、特に高い触媒活性を得ることができる。光触媒反応においては、光触媒に光を照射する必要があり、この光の照射により、反応系の温度が高くなることが多い。このため、反応系を加熱する機構を特に設けなくても、反応系が45℃程度以上になる場合がある。本願に係る光触媒によれば、反応系を全く加熱することなく、もしくは殆ど加熱することなく、特に高い触媒活性を得ることができる。   In addition, it is known that water molecules boil at a temperature as low as about 45 ° C. inside the nanocarbons, and are ejected outside the nanocarbons. When the photocatalyst reaction is performed under a temperature condition of about 45 ° C. or more using the photocatalyst according to the present application, a phenomenon in which water molecules are drawn into the nanocarbons from the open ends of the nanocarbons, boils and erupts. It occurs repeatedly. Since water molecules and the like that have received electrons from the nanocarbons are quickly released from the inside of the nanocarbons, the transfer rate of electrons from the nanocarbons to the water molecules and the like is further increased. In addition, the water molecules boil inside the nanocarbons and are highly activated to easily receive electrons, so that the transfer rate of electrons from the nanocarbons to water molecules and the like is further increased. That is, when the photocatalyst according to the present application is used and a photocatalytic reaction including water molecules as a reactant is performed at a temperature of about 45 ° C. or higher, particularly high catalytic activity can be obtained. In the photocatalytic reaction, it is necessary to irradiate the photocatalyst with light, and this light irradiation often increases the temperature of the reaction system. For this reason, even if a mechanism for heating the reaction system is not particularly provided, the reaction system may be about 45 ° C. or higher. According to the photocatalyst according to the present application, a particularly high catalytic activity can be obtained without heating the reaction system at all or hardly.

本願に係る少なくとも一端が開放されたナノカーボン類は、例えば、一般的な全ての端部が閉じたナノカーボン類に熱処理や酸処理を行うことによって製造することができることが知られている。ナノチューブを例示して説明すると、一般的な方法でナノチューブを合成すると、その先端は半球状のキャップで覆われて閉じている。この先端のキャップを消失させると、開放型のナノチューブが得られる。開放型ナノチューブは、例えば、ナノチューブを生成させた後に、ナノチューブを熱処理して部分酸化することによって製造できる。熱処理による部分酸化は、例えば、酸素雰囲気内において、所定の温度で所定時間加熱することにより行うことができる。また、硝酸等の酸によってナノチューブを部分酸化することもできる。   It is known that the nanocarbons having at least one end opened according to the present application can be manufactured by, for example, performing heat treatment or acid treatment on general nanocarbons having all ends closed. For example, when nanotubes are synthesized by a general method, their tips are covered with a hemispherical cap and closed. When this cap at the tip is eliminated, an open-type nanotube is obtained. An open-type nanotube can be manufactured, for example, by generating a nanotube and then subjecting the nanotube to a partial oxidation by heat treatment. The partial oxidation by the heat treatment can be performed, for example, by heating at a predetermined temperature for a predetermined time in an oxygen atmosphere. The nanotubes can also be partially oxidized with an acid such as nitric acid.

本願に係る光触媒は、本願に係るナノカーボン類と光触媒成分を混合したものであってもよい。また、本願に係るナノカーボン類を担体として用い、光触媒成分を担持したものであってもよい。さらに、本願に係る光触媒は、基板や基体に固定化されていてもよい。本願に係る光触媒の固定化は、例えば、ナノカーボン類を基板や基体に固定化し、これに光触媒成分を含浸法等によって担持させることによって行うことができる。光触媒成分としてナノカーボン類を生成する反応において触媒活性を有する物質を用いる場合には、光触媒成分を基点としてナノカーボン類を成長させてもよい。   The photocatalyst according to the present application may be a mixture of the nanocarbons according to the present application and a photocatalytic component. Moreover, what carried | supported the photocatalyst component using the nanocarbon concerning this application as a support | carrier may be used. Furthermore, the photocatalyst according to the present application may be immobilized on a substrate or a substrate. The immobilization of the photocatalyst according to the present application can be performed, for example, by immobilizing nanocarbons on a substrate or a substrate and supporting the photocatalyst component thereon by an impregnation method or the like. In the case of using a substance having catalytic activity in the reaction for producing nanocarbons as the photocatalyst component, the nanocarbons may be grown using the photocatalyst component as a base point.

本願に係る光触媒は、本願に係るナノカーボン類以外の助触媒成分をさらに含んでいてもよいし、本願に係るナノカーボン類のみを助触媒成分として含むものであってもよい。本願に係るナノカーボン類以外の助触媒成分としては、例えば、Pt,Ni,Pd,Au,Ag,Ru,Rh,Fe,Co,Cu,Zn等の金属成分を好適に用いることができる。上記のPt等の金属成分を助触媒成分としてさらに含有する場合には、光触媒成分と金属成分のうち一方が他方に担持された担持触媒であってもよい。特に、TiO表面にPt等の貴金属の微粒子を担持させた場合には、高い触媒活性を得ることができ、好ましい。光触媒成分と、上記のPt等の助触媒成分とを用いた担持触媒は、含浸法、共沈法、蒸着法等の公知の物理的化学的手法を用いて製造することができる。Pt等の金属成分を助触媒としてさらに含む光触媒を用いる場合にも、同様に、本願に係るナノカーボン類と混合して用いてもよく、また、本願に係るナノカーボン類に担持して用いてもよい。助触媒成分としての金属成分がナノカーボン類を生成する反応において触媒活性を有する物質を用いる場合には、助触媒成分を基点としてナノカーボン類を成長させてもよい。 The photocatalyst according to the present application may further include a promoter component other than the nanocarbons according to the present application, or may include only the nanocarbons according to the present application as a promoter component. As the promoter component other than the nanocarbons according to the present application, for example, metal components such as Pt, Ni, Pd, Au, Ag, Ru, Rh, Fe, Co, Cu, and Zn can be suitably used. When the metal component such as Pt is further contained as a promoter component, a supported catalyst in which one of the photocatalyst component and the metal component is supported on the other may be used. In particular, when noble metal fine particles such as Pt are supported on the TiO 2 surface, high catalytic activity can be obtained, which is preferable. The supported catalyst using the photocatalyst component and the above-described promoter component such as Pt can be produced using a known physical chemical method such as an impregnation method, a coprecipitation method, or a vapor deposition method. Similarly, when using a photocatalyst further containing a metal component such as Pt as a co-catalyst, it may be used by mixing with the nanocarbons according to the present application, Also good. When using a substance having catalytic activity in the reaction in which the metal component as the promoter component generates nanocarbons, the nanocarbons may be grown using the promoter component as a base point.

本願に係る光触媒は、アルコール類等の水素含有有機化合物またはその水溶液から水素を製造するための光触媒として好適に利用することができる。この場合、光触媒の温度を45℃以上とすることが好ましい。本願に係る光触媒を用いた水素製造方法では、例えば、アルコール類等の水素含有有機化合物またはその水溶液からなる溶媒に、本願に係る光触媒を混合し、この混合液に光(例えば紫外線)を照射することによって、水素を製造することができる。この場合、混合液の温度が45℃以上となる条件で光触媒反応を行えば、より高い触媒活性を得ることができるため、好ましい。光を照射することによって反応系を45℃程度以上することができる場合には、この混合系を加熱する機構を設置する必要はないが、必要に応じて、加熱機構を用いて光触媒反応を行い、水素を製造してもよい。   The photocatalyst according to the present application can be suitably used as a photocatalyst for producing hydrogen from a hydrogen-containing organic compound such as alcohols or an aqueous solution thereof. In this case, the temperature of the photocatalyst is preferably 45 ° C. or higher. In the hydrogen production method using the photocatalyst according to the present application, for example, the photocatalyst according to the present application is mixed in a solvent comprising a hydrogen-containing organic compound such as alcohol or an aqueous solution thereof, and light (for example, ultraviolet rays) is irradiated to the mixed solution. Thus, hydrogen can be produced. In this case, it is preferable to carry out the photocatalytic reaction under the condition that the temperature of the mixed solution is 45 ° C. or higher because higher catalytic activity can be obtained. If the reaction system can be heated to about 45 ° C. or higher by irradiating light, it is not necessary to install a mechanism for heating the mixed system. Hydrogen may be produced.

以上、本発明の実施形態の一例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although an example of embodiment of the present invention was explained in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。


The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.


Claims (4)

炭素の6員環構造を外殻に有しており、少なくとも一端が開放されている管状のナノカーボン類と、
光を照射されることによって電子および正孔を生成する光触媒成分とを含む光触媒。
Tubular nanocarbons having a carbon six-membered ring structure in the outer shell and having at least one open end;
A photocatalyst comprising a photocatalyst component that generates electrons and holes when irradiated with light.
前記ナノカーボン類は、開放された端部を2つ以上有する、請求項1に記載の光触媒。   The photocatalyst according to claim 1, wherein the nanocarbon has two or more open ends. アルコール類等の水素含有有機化合物またはその水溶液に、請求項1または2に記載の光触媒を作用させる、水素製造方法。   A method for producing hydrogen, wherein the photocatalyst according to claim 1 or 2 is allowed to act on a hydrogen-containing organic compound such as alcohol or an aqueous solution thereof. 光触媒の温度を45℃以上とする、請求項3に記載の水素製造方法。

The method for producing hydrogen according to claim 3, wherein the temperature of the photocatalyst is 45 ° C or higher.

JP2011119396A 2011-05-27 2011-05-27 Photocatalyst and method for producing hydrogen using the same Withdrawn JP2012245469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119396A JP2012245469A (en) 2011-05-27 2011-05-27 Photocatalyst and method for producing hydrogen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119396A JP2012245469A (en) 2011-05-27 2011-05-27 Photocatalyst and method for producing hydrogen using the same

Publications (1)

Publication Number Publication Date
JP2012245469A true JP2012245469A (en) 2012-12-13

Family

ID=47466454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119396A Withdrawn JP2012245469A (en) 2011-05-27 2011-05-27 Photocatalyst and method for producing hydrogen using the same

Country Status (1)

Country Link
JP (1) JP2012245469A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204200A1 (en) * 2013-06-18 2014-12-24 서강대학교산학협력단 Hydrogen fuel converter provided with photocatalyst and method for preparing hydrogen from methanol using photocatalyst
WO2016158806A1 (en) * 2015-03-27 2016-10-06 富士化学工業株式会社 Novel composite of iron compound and graphene oxide
WO2017191521A1 (en) * 2016-05-06 2017-11-09 Sabic Global Technologies B.V. Photo-thermal reactions of alcohols to hydrogen and organic products over metal oxide photo-thermal catalysts
CN109715291A (en) * 2016-10-05 2019-05-03 学校法人关西学院 Metallic compound-graphene oxide complex

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204200A1 (en) * 2013-06-18 2014-12-24 서강대학교산학협력단 Hydrogen fuel converter provided with photocatalyst and method for preparing hydrogen from methanol using photocatalyst
WO2016158806A1 (en) * 2015-03-27 2016-10-06 富士化学工業株式会社 Novel composite of iron compound and graphene oxide
CN107531489A (en) * 2015-03-27 2018-01-02 富士化学工业株式会社 The complex of new iron compound and graphene oxide
JPWO2016158806A1 (en) * 2015-03-27 2018-01-25 富士化学工業株式会社 New iron compound and graphene oxide complex
RU2706318C2 (en) * 2015-03-27 2019-11-15 Квансей Гакуин Эдьюкейшнл Фаундейшн Novel composite material containing iron compound and graphene oxide
WO2017191521A1 (en) * 2016-05-06 2017-11-09 Sabic Global Technologies B.V. Photo-thermal reactions of alcohols to hydrogen and organic products over metal oxide photo-thermal catalysts
CN108883932A (en) * 2016-05-06 2018-11-23 沙特基础工业全球技术公司 Alcohol on metal oxide photo-thermal catalyst to hydrogen and organic product photochemical and thermal reaction
CN109715291A (en) * 2016-10-05 2019-05-03 学校法人关西学院 Metallic compound-graphene oxide complex

Similar Documents

Publication Publication Date Title
Jin et al. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures
Espinal et al. Electrochemical catalysis of styrene epoxidation with films of MnO2 nanoparticles and H2O2
Xing et al. Novel ternary MoS2/C-ZnO composite with efficient performance in photocatalytic NH3 synthesis under simulated sunlight
Serp et al. Catalysis in carbon nanotubes
Singh et al. Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect
Yin et al. Engineering interface with one-dimensional Co3O4 nanostructure in catalytic membrane electrode: toward an advanced electrocatalyst for alcohol oxidation
Yan et al. Ultrastable Au nanocatalyst supported on surface-modified TiO2 nanocrystals
Ghosh et al. Selective oxidation of propylene to propylene oxide over silver-supported tungsten oxide nanostructure with molecular oxygen
Kim et al. Robust co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light
Pearson et al. Decoration of TiO2 nanotubes with metal nanoparticles using polyoxometalate as a UV-switchable reducing agent for enhanced visible and solar light photocatalysis
Bulushev et al. Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid
Kiatkittipong et al. Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties
Cai et al. Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation
Takenaka et al. Formation of carbon nanofibers and carbon nanotubes through methane decomposition over supported cobalt catalysts
Yang et al. Synthesis of fullerene–, carbon nanotube–, and graphene–TiO2 nanocomposite photocatalysts for selective oxidation: a comparative study
Vijayan et al. Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites
Zhang et al. A unique silk mat-like structured Pd/CeO2 as an efficient visible light photocatalyst for green organic transformation in water
Wu et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response
Teoh et al. Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors
Lavacchi et al. Titanium dioxide nanomaterials in electrocatalysis for energy
He et al. Lattice-refined transition-metal oxides via ball milling for boosted catalytic oxidation performance
Pitchaimuthu et al. Solution plasma process-derived defect-induced heterophase anatase/brookite TiO2 nanocrystals for enhanced gaseous photocatalytic performance
Allaedini et al. Synthesis of Fe–Ni–Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation
Czelej et al. Toward a comprehensive understanding of enhanced photocatalytic activity of the bimetallic PdAu/TiO2 catalyst for selective oxidation of methanol to methyl formate
Keller et al. Macroscopic carbon nanofibers for use as photocatalyst support

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805