[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012139342A - 自動血圧測定装置 - Google Patents

自動血圧測定装置 Download PDF

Info

Publication number
JP2012139342A
JP2012139342A JP2010293603A JP2010293603A JP2012139342A JP 2012139342 A JP2012139342 A JP 2012139342A JP 2010293603 A JP2010293603 A JP 2010293603A JP 2010293603 A JP2010293603 A JP 2010293603A JP 2012139342 A JP2012139342 A JP 2012139342A
Authority
JP
Japan
Prior art keywords
pulse wave
frequency component
related value
blood pressure
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010293603A
Other languages
English (en)
Other versions
JP5584111B2 (ja
Inventor
Shigehiro Ishizuka
繁廣 石塚
Nobuhiko Yasui
伸彦 安居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&D Holon Holdings Co Ltd
Original Assignee
A&D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&D Co Ltd filed Critical A&D Co Ltd
Priority to JP2010293603A priority Critical patent/JP5584111B2/ja
Publication of JP2012139342A publication Critical patent/JP2012139342A/ja
Application granted granted Critical
Publication of JP5584111B2 publication Critical patent/JP5584111B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】血圧測定と同時に自律神経の活動状態を比較的高い精度で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練を可能とする簡便な自動血圧測定装置を提供する。
【解決手段】脈波伝播速度関連値周波数解析手段52により算出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを出力する出力制御手段60を備えるので、被測定者の血圧測定時において自律神経の活動状態を小型且つ簡単な装置で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練が可能となる。
【選択図】図3

Description

本発明は、生体の一部をカフを用いて圧迫したときに得られる脈拍同期波に基づいて該生体の血圧値を測定する自動血圧測定手段を備えた自動血圧測定装置に関し、特に、自律神経をトレーニングするための自律神経の活動状態を評価する機能を備えた自動血圧測定装置に関するものである。
一般に、生体の血圧値に対する自律神経による制御は、たとえば図10に示すように観念されている。すなわち、先ず血圧値を圧受容器或いは伸展受容器が検出し、たとえば血圧値が高い場合は交感神経の活動を抑制するために血管中枢から出されるノルアドレナリンを抑制すると同時にアセチルコリンを増加させて、心臓の心拍数を低下させ且つ心筋の収縮力を弱めて拍出圧を低く且つ拍出量を少なくし、容量血管(静脈)の収縮を弱めて拡張を行うことにより還流量を増加させ、同時に、抵抗血管(抹消血管)の収縮を弱めて抹消血管抵抗を低くして血圧値を低下させる。このような生体の血圧制御システムにおいて、心拍数による制御の方が応答性が高く、従来では、その心拍数のゆらぎが生体の自律神経の活動状態を示すパラメータであると評価されていたが、血圧値のゆらぎは生体の自律神経の活動状態を示すパラメータとしては、それほど評価されていなかった。
しかし、本発明者等は、血圧値は自律神経系の支配を受けて制御されており、基礎血圧値などの評価にはそのときの自律神経系の活動を示すパラメータを用いる必要があるために同時に記録することが必要であると考えるとともに、脳、環状動脈疾患のリスクを下げるために、自律神経系の活動、特に血圧を上昇させている交感神経系をコントロールして血圧を下げる訓練をすることができる装置を案出しようと考えた。
これらに関し、副交感神経、交感神経の自律神経活動を心拍数のゆらぎ(経時的変動)を周波数スペクトラム解析し、それにより得られる周波数成分の大きさに基づいて評価する装置が従来知られていた。また、血圧変動については、観血法により測定された血圧のゆらぎ(変動)を周波数スペクトラム解析し、評価することが行われていた。しかし、観血法による血圧測定は1拍毎の血圧値が直接的且つ連続的に得られるが、医療資格を有する術者を必要とし、外来や家庭において一般的に用いることができるものには成り得なかった。
これに対して、上記1拍毎の血圧値を非観血法による連続血圧測定装置を用いて測定することが考えられる。たとえば特許文献1に記載されたものがそれである。
特開2002−272690号公報
しかしながら、上記のような連続血圧測定装置を用いて血圧値を連続的に得ようとする場合には、比較的抹消部位の血圧値であるために精度が比較的得られ難いことや、専用の複雑な測定系が必要となって自律神経評価装置が大型且つ高価となるなどの問題があった。
本発明は、以上の事情を背景として為されたものであり、その目的とするところは、血圧測定と同時に自律神経の活動状態を比較的高い精度で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練を可能とする簡便な自動血圧測定装置を提供することにある。
本発明者等は、以上の事情を背景として種々の実験を行った結果、心電図誘導波形を起点とし、血管系末梢部位の脈波形を遠位点とした計測において、生体の1拍毎に得られる脈波伝播時間PWTから換算された脈波伝播速度PWV(=C・L/PWT、Cは血圧値換算定数)は、その生体1拍毎の血圧値と密接に相関して変動し、その脈波伝播時間の変動の周波数解析結果と生体1拍毎の血圧値変動の周波数解析結果とが同様の周波数スペクトラムをもたらすという点を見いだした。図11には、本発明者等による実験結果であって、カテーテル等を用いる直接法により生体から実測された1拍毎の最高血圧値SBPが破線にて示され、生体から1拍毎に得られる脈波伝播時間PWTから換算された上記脈波伝播速度PWVが実線にて示されている。それら破線と実線とが同様の変化を示していることから、脈波伝播速度PWVは生体の血圧値と密接に相関していることが明らかである。本実験によるPWTは、大動脈弁閉鎖から開放までの心室の収縮期の情報(心筋の収縮力)と脈波が伝播する動脈系の情報(末梢血管系の拡張、収縮)とを含んでおり、生体の血圧動揺と良く相関している。本発明はこの知見に基づいて為されたものである。
すなわち、請求項1に係る発明の要旨とするところは、(a)生体の一部をカフを用いて圧迫したときに動脈から得られる心拍同期波に基づいて該生体の血圧値を測定する自動血圧測定手段を備えた自動血圧測定装置であって、(b)前記生体の脈波伝播時間に関連する脈波伝播速度関連値を逐次検出する脈波伝播速度関連値検出手段と、(c)前記生体の心拍周期に関連する心拍周期関連値を逐次検出する心拍周期関連値検出手段と、(d)その心拍周期関連値検出手段により検出された心拍周期関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する心拍周期関連値周波数解析手段と、(e)前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と、前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを出力する出力制御手段とを、含むことにある。
また、請求項2に係る発明の要旨とするところは、請求項1に係る発明において、(f)前記生体に装着する複数の電極を有し、該複数の電極に発生する信号に基づいて心電誘導波を出力する心電誘導装置と、前記生体の一部に装着されて該生体の動脈内を伝播する脈波を検出する脈波センサとを備え、(g)前記脈波伝播速度関連値検出手段は、該心電誘導波に含まれるR波の発生時点からその脈波センサにより脈波が検出された発生時点までの時間差に基づいて脈波伝播速度関連値を検出するものであることにある。
また、請求項3に係る発明の要旨とするところは、請求項2に係る発明において、(h)前記心電誘導装置の前記複数の電極の一部は、前記カフの内周面に配置されており、(i)前記脈波センサは前記カフ内の圧力振動を用いて脈波を検出するものであることにある。
また、請求項4に係る発明の要旨とするところは、請求項2または3に係る発明において、(j)前記心拍周期関連値検出手段は、前記心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期関連値を検出するものであることにある。
また、請求項5に係る発明の要旨とするところは、請求項1乃至4のいずれか1に係る発明において、(k)前記出力制御手段は、前記脈波伝播速度関連値の所定時間区間内における変化値を示す軸と、前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を示す軸とを含む二次元座標において、該脈波伝播速度関連値の所定時間区間内における変化値と該心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを示す点を繰り返し表示出力するものであることにある。
また、請求項6に係る発明の要旨とするところは、請求項1乃至5のいずれか1の発明において、(l)前記出力制御手段は、前記自動血圧測定手段による血圧測定時点からの、前記脈波伝播速度関連値の変化値、および、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の変化値とを示す点を算出し、所定の時間間隔で繰り返し表示出力するものであることを特徴とする。
また、請求項7に係る発明の要旨とするところは、請求項1乃至6のいずれか1に係る発明において、(m)前記自動血圧測定手段による血圧測定が実行された後であって、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とが前記出力制御手段により予め設定された回数表示出力された後に、或いは予め設定された経過時間の経過後に、前記自動血圧測定手段による血圧測定を再度起動させる血圧測定再起動手段を、さらに含むことにある。
また、請求項8に係る発明の要旨とするとろは、請求項1乃至7のいずれか1に係る発明において、(n)前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する脈波伝播速度関連値周波数解析手段を、含み、(o)前記出力制御手段は、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値に代えて或いは加え、前記脈波伝播速度関連値周波数解析手段により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と共に出力するものであり、(p)前記脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることにある。
請求項1に係る発明の自動血圧測定装置によれば、(b)前記生体の脈波伝播時間に関連する脈波伝播速度関連値を逐次検出する脈波伝播速度関連値検出手段と、(c)前記生体の心拍周期に関連する心拍周期関連値を逐次検出する心拍周期関連値検出手段と、(d)その心拍周期関連値検出手段により検出された心拍周期関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する心拍周期関連値周波数解析手段と、(e)前記脈波伝播速度関連値検出手段により算出された脈波伝播速度関連値の所定時間区間内における変化値と、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを出力する出力制御手段とを、含むことから、心拍周期関連値のゆらぎの周波数解析からは心臓の心拍数制御に関わる自律神経系の活動状態と、脈波伝搬速度関連値のゆらぎの周波数解析からは、心臓の収縮力制御に関わる自律神経系の活動状態と、動脈血管系の拡張および収縮による末梢血管抵抗の制御に関わる自律神経系の活動状態とを別々に把握できる。前記心拍周期関連値周波数解析手段により算出された高周波数成分のスペクトラムは副交感神経系の活動を反映し、低周波数成分のスペクトラムは交感神経系、副交感神経系両方の活動が可能な領域であるが、その周波数成分比をもって交感神経系の活動を反映する指標とすることができる。一方、前記脈波伝播速度関連値周波数解析手段により算出された高周波数成分のスペクトラムは心臓の前負荷の変動に起因した心筋の収縮力の変動を反映していると考えられ、副交感神経系の心臓の収縮力を制御する活動を反映し、低周波数成分のスペクトラムは脈波伝播速度関連値との比較により、動脈血管系の収縮による末梢血管抵抗の制御に関わる交感神経系の活動を容易に把握できる。これにより、生体の血圧値の動揺に関連する脈波伝播速度関連値の所定時間区間内における変化値と、生体の交感神経の動揺に対応する周波数成分比の所定時間区間内における変化値とを見ることで自律神経の活動状態を容易に把握できるので、被測定者の血圧測定時において自律神経の活動状態を小型且つ簡単な装置で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練が可能となる。また、上記脈波伝播時間は、心臓から所定の部位までの中枢部位の情報を容易に得ることができることから、比較的高い精度で中枢の血圧値に対応する脈波伝播時間が得られる。
ここで、生体の交感神経系の制御系としての応答は0.15Hz以下であり、生体の副交感神経系は0.4Hzまでは応答が可能であることが知られている。心拍数制御には交感神経系と副交感神経系の両方が関与しているが、心拍変動の0.40Hz以上の高周波成分のスペクトラムは副交感神経系の活動に対応しているが0.15Hz以下の低周波数成分のスペクトラムは両方が関与している可能性があり交感神経系の活動を特定できない。一方、血圧変動の末梢血管抵抗による制御は交感神経系により専ら行われており、その0.15Hz以下の低周波数成分のスペクトラムは交感神経系の活動に対応している。従って、請求項1に係る発明では、心拍周期関連値で示される心拍数変動、脈波伝播速度関連値で示される血圧変動の両方を測定する事が自律神経系の客観的評価することが可能となっている。
また、請求項2に係る発明の自動血圧測定装置によれば、(f)前記生体に装着する複数の電極を有し、該複数の電極に発生する信号に基づいて心電誘導波を出力する心電誘導装置と、前記生体の一部に装着されて該生体の動脈内を伝播する脈波を検出する脈波センサとを備え、(g)前記脈波伝播速度関連値検出手段は、該心電誘導波に含まれるR波の発生時点からその脈波センサにより脈波が検出された発生時点までの時間差に基づいて脈波伝播速度関連値を検出するものであるので、心筋の収縮時点から脈波が脈波センサに到達するまでの脈波伝播速度関連値が容易に検出される。
また、請求項3に係る発明の自動血圧測定装置によれば、(h)前記心電誘導装置の前記複数の電極の一部は、前記カフの内周面に配置されており、(i)前記脈波センサは前記カフ内の圧力振動を用いて脈波を検出するものであることから、生体にカフを装着することで同時に電極および脈波センサを装着することができ、装着作業が簡単となる。
また、請求項4に係る発明の自動血圧測定装置によれば、(j)前記心拍周期関連値検出手段は、前記心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期関連値を検出するものであることから、脈波間隔からの場合に比較して、正確な心拍周期関連値が得られる。
また、請求項5に係る発明の自動血圧測定装置によれば、(k)前記出力制御手段は、前記脈波伝播速度関連値の所定時間区間内における変化値を示す軸と、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を示す軸とを含む二次元座標において、その脈波伝播速度関連値の所定時間区間内における変化値とその心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを示す点を繰り返し表示出力するものであるので、数値表示や棒グラフ等の表示に比較して、自律神経の活動状態を正確に把握できる利点がある。
また、請求項6に係る発明の自動血圧測定装置によれば、請求項1乃至5のいずれか1の発明において、(l)前記出力制御手段は、前記自動血圧測定手段による血圧測定時点からの、前記脈波伝播速度関連値のゆらぎの主周波数成分の変化値、および、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の変化値とを示す点を算出し、所定の時間間隔で繰り返し表示出力するものであることから、前回の血圧測定以後の自律神経の活動状態を容易に把握することができる。
また、請求項7に係る発明の自動血圧測定装置によれば、(m)前記自動血圧測定手段による血圧測定が実行された後であって、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とが前記出力制御手段により予め設定された回数以上表示出力された後に、或いは予め設定された経過時間の経過後に、前記自動血圧測定手段による血圧測定を再度起動させる血圧測定再起動手段が、さらに含まれることから、自律神経の活動状態と血圧値との関係を繰り返し体得できるので、自律神経の活動をコントロールする訓練が容易となる。
また、請求項8に係る発明の自動血圧測定装置によれば、(n)前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する脈波伝播速度関連値周波数解析手段を、含み、(o)前記出力制御手段は、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値に代えて或いは加えて、前記脈波伝播速度関連値周波数解析手段により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と共に出力するものであり、(p)前記脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることから、脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段のスペクトラム推定の次数のとり方の相違による周波数解析スペクトラムでのパワーの大きさの相違が解消されるので、出力制御手段により出力される、脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値との対比が正確となる利点がある。ここで、一般に、スペクトラム解析において汎用されるフーリェ法で得られるスペクトラムは解析的であるがスペクトラムに多数のピークが現れ有効なピークの判断が困難である。AR法及びMEM法はピークの検出に優れており、心拍動揺解析に良く用いられる。AR法及びMEM法は時系列データに依存してスペクトラム推定のモデルの次数が決定される。しかし、モデルの次数の取り方によってはスペクトラムのパワーに影響が現れることが分かった。このため、スペクトラムの変化やトレンドの監視、異なる種類のスペクトラム比較の精度を高めるためにスペクトラム推定のモデルの次数を共通とすることで、上記脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値との対比が正確となるのである。
本発明の一実施例の自律神経評価機能付の自動血圧測定装置の全体的な構成を説明する斜視図である。 図1の自動血圧測定装置の電気的な制御系の構成を説明するブロック図である。 図2の電子制御装置の制御機能の要部を説明する機能ブロック線図である。 図3の脈波伝播速度関連値周波数解析検出手段における周波数解析前の脈波伝播時間hbPWTの時間的変化(ゆらぎ)を示す図である。 図3の脈波伝播速度関連値周波数解析検出手段によって図4の脈波伝播時間hbPWTを周波数解析した結果である周波数スペクトラムを示す図である。 図3の心拍周期関連値周波数解析検出手段における周波数解析前の心拍周期RRIの時間的変化(ゆらぎ)を示す図である。 図3の心拍周期関連値周波数解析検出手段によって図6の心拍周期RRIを周波数解析した結果である周波数スペクトラムを示す図である。 図3の出力制御段によって脈波伝播時間hbPWTの所定区間の変化量ΔhbPWTを示す軸と心拍周期RRIの低周波成分LFおよび高周波成分HFの周波数成分比LF/HFの所定時間区間内における変化値dLF/HFを示す軸とから成る二次元座標内に、上記変化量ΔhbPWTおよび変化値dLF/HFを示す点を表示した例を示す図である。 図2の電子制御装置の制御作動の要部を説明するフローチャートである。 生体内において行われている血圧値制御の機序を説明する図である。 本発明者等による実験結果であって、カテーテル等を用いる直接法により生体から実測された1拍毎の最高血圧値SBPを破線にて示し、生体から1拍毎に得られる脈波伝播時間PWTから換算された上記脈波伝播速度PWVを実線にて示す、時間的変化を示す図である。
以下、本発明の好適な実施例を図面に基づいて詳細に説明する。なお、以下の実施例において説明に用いる図は適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。
図1は、本発明の一実施例である自律神経評価機能付の自動血圧測定装置10の全体的な構成を説明する斜視図である。この自動血圧測定装置10は、生体の一部たとえば上腕部に巻回されるカフ12と、ECG電極14a 、14b を含む複数のECG電極14と、本体16の上面に設けられた複数のキーを有する入力キーボード18と、本体16の前面に設けられた画像表示器20と、本体16の側面に設けられた出力プリンタ22とを備え、カフ12が巻回され且つ複数のECG電極14が装着された生体の血圧を測定して血圧測定値BPを画像表示器20に表示させる一方で、その生体の自律神経の活動度の評価値として、脈波伝播速度関連値の変化値たとえば脈波伝播速度PWVの所定時間区間での変化値ΔPWVと、心拍周期RRIのゆらぎを周波数解析したときに得られるたとえば0.75乃至2Hz程度の周波数帯の低周波数成分とたとえば0.25乃至0.35Hz程度の周波数帯の高周波数成分との周波数成分比(ピークの高さ比、信号電力比)(LF/HF)RRI の所定区間或いは単位時間あたりの変化値(ΔLF/HF)RRI とを示す点を、画像表示器20の2次元座標内に順次表示させるとともに、必要に応じて出力プリンタ22から出力させる。また、脈波伝播時間PWTのゆらぎを周波数解析したときに得られるたとえば0.75乃至2Hz程度の周波数帯の低周波数成分とたとえば0.25乃至0.35Hz程度の周波数帯の高周波数成分との周波数成分比(LF/HF)PWT の所定区間或いは単位時間あたりの変化値(ΔLF/HF)PWT と、上記変化値(ΔLF/HF)RRI とを示す点を、画像表示器20の2次元座標内に順次表示させるとともに、必要に応じて出力プリンタ22から出力させる。
図2は、上記自動血圧測定装置10を構成する制御回路を説明するブロック線図である。図2において、自動血圧測定装置10には、カフ12へ空気を供給するための電動型の空気ポンプ26と、そのカフ12と空気ポンプ26との間の配管に設けられてそのカフ12内へ急速供給し、カフ12内の圧力を所定の低下速度で低下制御し、カフ12内の空気圧を急速排圧する圧力制御弁28と、カフ12内の圧迫圧力を検出するためにカフ12と圧力制御弁28との間の配管に設けられた圧力センサ30とが設けられている。圧力センサ30によって検出された圧力はA/D変換器32を介して電子制御装置34へ供給される。
電子制御装置34は、良く知られたCPU、ROM、RAM、インターフェース、外部記憶装置等を有する所謂マイクロコンピュータであって、予めROM等に記憶されたプログラムに従って入力信号を処理し、演算結果を画像表示器20および出力プリンタ22に、カフ12から出力させる。入力キーボード18は、入力されたキーに対応する信号たとえば起動/停止キーの操作に応答して起動/停止信号を電子制御装置34へ供給する。心電誘導装置36は、生体の心臓を挟む部位に装着或いは貼着される複数のECG電極14を備え、その生体の心電誘導波信号をA/D変換器38を介して電子制御装置34へ供給する。この心電誘導装置36の前記複数のECG電極14の一部の電極14b は、カフ12の内周面に配置されているが、カフ12とは独立に手或いは足に装着されてもよい。電子制御装置34は、駆動制御回路40を介して空気ポンプ26を駆動するとともに圧力制御弁28を制御する。また、電子制御装置34は、駆動制御回路42を介して画像表示器20およびプリンタ22を制御する。
図3は、上記電子制御装置34の制御機能の要部を説明する機能ブロック線図である。自動血圧測定手段50は、生体の一部たとえば上腕部に装着されたカフ12の圧力を最高血圧値よりも十分に高く予め設定された昇圧目標値まで急速昇圧させた後に所定の速度で徐速降圧させ、その徐速降圧の過程で圧力センサ30の出力信号からバンドパスフィルタを通して得られる交流成分である心拍同期波(カフ12内において心拍或いは脈拍に同期して発生する圧力振動信号:オシロメトリック信号)の大きさの変化に基づいてたとえばカフ12内の圧力振動を示すカフ脈波の大きさの差分の最大値に基づいて生体の最高血圧値SBPおよび最低血圧値DBPを決定し、その最低血圧値DBPが決定されると、カフ12の圧力を急速排圧させる。
脈波伝播速度関連値検出手段52は、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点から、生体の一部に装着された脈波センサによる脈波の検出時点たとえば上腕に巻回されたカフ12内の圧力振動の発生時点までの脈波伝播時間hbPWTを脈波伝播速度関連値として逐次検出たとえば1拍毎或いは数拍毎に繰り返し検出する。この脈波伝播速度関連値とは、脈波伝播速度PWVに1対1に密接に関連するパラメータであり、上記脈波伝播時間hbPWTのみならず脈波伝播速度(L/hbPWT、但しLは生体の心臓から生体の上腕に巻回されたカフ12までの伝播距離である)であってもよい。また、上記心臓から上腕までの脈波伝播時間hbPWTは、心音マイクロホンにより検出された心音の発生時点からカフ12内の圧力振動の発生時点までの時間差が計測されることによって検出されてもよい。また、上記カフ12内の圧力振動の発生時点に代えて、耳たぶに装着される光電脈波センサ、指先に装着される指尖脈波センサ、或いは手首に装着される圧脈波センサによる脈波発生時点が用いられてもよい。カフ12内の圧力振動の発生を検出する場合には、好適には、カフ12内を所定圧たとえば予め設定された最低血圧値DBPより低い値とした状態で検出される。
脈波伝播速度関連値周波数解析手段54は、上記脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを、算出する。また、脈波伝播速度関連値周波数解析手段54は、上記脈波伝播速度関連値検出手段52により検出された脈波伝播速度関連値のゆらぎ(変動)をスペクトラム推定のモデルを用いて周波数解析し、スペクトラム上に表れた、そのゆらぎの主周波数成分MFおよびその大きさPmfを算出する。この主周波数成分MFの大きさとは、ピーク値の大きさであってもよいし、そのピークの面積に対応する信号電力(信号パワー)であってもよい。脈波伝播速度関連値周波数解析手段54は、上記脈波伝播速度関連値検出手段52により検出された生体の脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎを周波数解析してそのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT を算出する。この脈波伝播速度関連値周波数解析手段54による上記周波数解析手法について以下に説明する。
ここで、上記脈波伝播速度関連値は1拍毎の不等間隔の時系列データ{x:x(t0),x(t1),・・・, x(tn)}であるので、この時系列データを2Hzの等間隔データとしてLagrange法によりリサンプリングする{x(n):x(Δt),x(2*Δt),・・・,x(n*Δt);Δt=0.5[sec]}。AR法により仮定されるスペクトラム推定のモデルは下記の数式1で示される。下記数式1において、ωn は白色ノイズである。なお、MEM法ではガウス分布の白色ノイズが用いられる。
Figure 2012139342
即ちデータx(n)がp次の自己回帰過程に従って生成される。実際のデータと上記モデルのp次の打ち切り誤差を白色ノイズωn で補完する。上記モデルで次数pを決定すると、AR係数ak がユールウォーカ方程式から決定できる。この結果推定されるスペクトラムは下記の数式2で示される。下記数式2において、σp 2 は白色ノイズωn の分散を表す。
Figure 2012139342
AR法におけるモデルの次数pは通常単調減少する2乗予測誤差σi2 が減少しなくなった時点の次数として時系列データ毎に最適に選定される。実際は時系列データ間で決定される次数がかなり異なり、スペクトラムが大きく異なることが多い。このため本法では時系列データの相関時間、得られるスペクトラムの最低周波数LF0はある程度予測されているので、あらかじめ決定しておく手法を採用した。p=(1/Δt)*(1/LF0)。Δt=0.5[sec]、LF0=0.06[Hz]のときp=32に決定される。これを、一連の周波数解析に適用した。
図4は周波数解析される1乃至2分の所定区間内の伝播時間hbPWTのゆらぎを示し、図5はその所定区間内の伝播時間hbPWTが周波数解析された後の周波数解析スペクトラムを示している。図5の周波数解析スペクトラムにおいて、0.2乃至0.35Hzの周波数帯域において主周波数成分MFが示され、0.28Hz付近にピーク値が示されている。上記伝播時間hbPWTから算出される脈波伝播速度PWV(=C・L/hbPWT、Cは血圧値換算定数)も、上記図4および図5に示すものと同様の、ゆらぎおよび周波数スペクトラムを示す。
心拍周期関連値検出手段56は、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点の間隔を求めることにより、生体の心拍周期RRIに関連する心拍周期関連値を逐次検出たとえば1拍毎或いは数拍毎に繰り返し検出する。この心拍周期関連値とは、心拍周期に1対1に密接に関連するパラメータであり、上記生体の心拍周期RRIのみならずカフ12内の圧力振動の発生周期や別途設けられる脈波センサにより検出される脈拍の検出周期であってもよい。
心拍周期関連値周波数解析手段58は、上記心拍周期関連値検出手段56により検出された生体の心拍周期(心拍周期関連値)RRIのゆらぎを周波数解析してそのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI を算出する。図6は周波数解析される1分乃至2分程度の所定区間の生体の心拍周期RRIのゆらぎを示し、図7はその所定区間の生体の心拍周期RRIが周波数解析された後の周波数解析スペクトラムを示している。図7の0.4Hzまでの周波数帯域の周波数解析スペクトラムにおいては2つのピークが示され、0.05乃至0.2Hzの周波数帯域において低周波数成分LFが示され、0.23乃至0.35Hzの周波数帯域において高周波数成分HFが示されている。この心拍周期関連値周波数解析手段58は、上記脈波伝播速度関連値周波数解析手段54と同様のスペクトラム推定のモデル式と同様の次数とを用いて周波数解析を行う。
出力制御手段60は、上記脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、心拍周期関連値周波数解析手段58により算出された心拍周期(心拍周期関連値)RRIのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを、オペレータ或いは被測定者が同時に認識できるように、数値、グラフ、画像等の形態で画像表示器20および/またはプリンタ22へ共に出力する。出力制御手段60は、たとえば図8に示すように、上記脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを示す横軸63と、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)の所定時間区間内における変化値(dLF/HF)RRI を示す縦軸64とを含む直交二次元座標において、その脈波伝播時間hbPWTの所定時間区間内における変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す点(白丸印)Pn 、Pn+1 、Pn+2 を、1分乃至数分程度の周期で繰り返し表示出力する。上記所定時間区間は、たとえば自動血圧測定手段50による血圧測定時点からの経過時間区間であり、上記の脈波伝播時間hbPWTの変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の変化値(dLF/HF)RRI とは、自動血圧測定手段50による血圧測定時点からの変化値(変化量)である。その変化値は、一定周期毎の変化量をそれまでの変化値に加えたものである。
また、上記出力制御手段60は、さらに、脈波伝播速度関連値52により算出された生体の脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、心拍周期関連値周波数解析手段58により算出された心拍周期RRIのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比LF/HFの所定時間区間内における変化値(dLF/HF)RRI とを、オペレータ或いは被測定者が同時に認識できるように、数値、グラフ、画像等の形態で画像表示器20および/またはプリンタ22へ共に出力する。出力制御手段60は、たとえば図8に示すように、上記脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内におけるゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT を示す横軸63と、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI を示す縦軸64とを含む直交二次元座標において、その脈波伝播時間hbPWTの所定時間区間内における変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT とを示す点(黒丸印)Pn 、Pn+1 、Pn+2 を、1分乃至数分程度の周期で繰り返し表示出力する。
血圧測定再起動手段62は、自動血圧測定手段50による血圧測定が実行された後であって、脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが、出力制御手段60によって予め設定された回数以上出力された後、或いは自動血圧測定手段50による血圧測定が実行されてからたとえば10分程度の予め設定された時間が経過後に、自動血圧測定手段50による血圧測定を再度起動させ、その血圧測定結果を、出力制御手段60によって画像表示器20或いはプリンタ22に表示出力させる。
図9は、上記電子制御装置34の制御作動の要部を説明するためのフローチャートである。生体の上腕部にカフ12が装着され且つ複数個のECG電極14が生体の所定位置に装着された状態で図示しない起動入力キーの操作によって自動血圧測定装置10が起動されると、自動血圧測定手段50に対応するステップS1(以下、ステップを省略する)において、生体の血圧測定ルーチンが実行される。すなわち、空気ポンプ26の作動下で圧力制御弁28が制御されることにより、上腕部に装着されたカフ12の圧力が最高血圧値よりも十分に高く予め設定された昇圧目標値まで急速昇圧させられた後に所定の速度で徐速降圧させられる。この徐速降圧の過程で圧力センサ30の出力信号からバンドパスフィルタを通して得られる交流成分である心拍同期波(カフ12内において心拍或いは脈拍に同期して発生する圧力振動信号:オシロメトリック信号)の大きさの変化に基づいてたとえばカフ12内の圧力振動を示すカフ脈波の大きさの差分の最大値に基づいて生体の最高血圧値SBPおよび最低血圧値DBPが決定され、その最低血圧値DBPが決定されると、カフ12の圧力を急速排圧させられる。
次いで、脈波伝播速度関連値検出手段52および心拍周期関連値検出手段56に対応するS2では、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点から、生体の一部に装着された脈波センサによる脈波の検出時点たとえば上腕に巻回されたカフ12内の圧力振動の発生時点までの脈波伝播時間hbPWTが脈波伝播速度関連値としてたとえば1拍毎或いは数拍毎に繰り返し検出される。また、たとえば心電誘導装置36から出力される心電誘導波のR波の発生時点の間隔が求められることにより、生体の心拍周期RRIに関連する心拍周期関連値がたとえば1拍毎或いは数拍毎に繰り返し検出される。
続いて、脈波伝播速度関連値周波数解析手段54および心拍周期関連値周波数解析手段58に対応するS3では、上記S2により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎ(変動)が周波数解析されてたとえば0.2乃至0.35Hzの周波数帯域において発生するそのゆらぎの主周波数成分MFおよびその大きさPmfが算出される。また、上記S2により検出された生体の心拍周期(心拍周期関連値)RRIのゆらぎが周波数解析されてそのゆらぎのたとえば0.05乃至0.2Hz程度の周波数帯域の低周波数成分LFおよびたとえば0.23乃至0.35Hz程度の周波数帯域の高周波数成分HFの周波数成分比(LF/HF)RRI が、低周波数成分LFおよび高周波数成分HFのピーク値の比、或いは低周波数成分LFおよび高周波数成分HFの面積比などとして算出される。
次に、出力制御手段60に対応するS4では、上記S3により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが、オペレータ或いは被測定者が同時に認識できるように、数値、グラフ、画像等の形態で画像表示器20および/またはプリンタ22へ共に出力される。たとえば図8に示すように、上記脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを示す軸63と、心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI を示す軸64とを含む直交二次元座標において、その脈波伝播時間hbPWTの所定時間区間内における変化値ΔhbPWTと低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す白丸表示の点Pn 、Pn+1 、Pn+2 が、1分乃至数分程度の周期で繰り返し表示されることにより出力される。同様に、脈波伝播時間hbPWTのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す黒丸表示の点Pn 、Pn+1 、Pn+2 が、1分乃至数分程度の周期で繰り返し表示されることにより出力される。
S5では、S1における血圧測定時点以後において、S2(脈波伝播速度関連値検出手段52)により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWT、および、生体の脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、S3(心拍周期関連値周波数解析手段58)により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが、S4(出力制御手段60)によって予め設定された回数以上出力されたか否か、或いは自動血圧測定手段50による血圧測定が実行されてからたとえば10分程度の予め設定された時間が経過したか否かが判断される。このS5の判断が否定されるうちは上記S2以下が繰り返し実行される。
しかし、上記S5の判断が肯定されると、血圧測定再起動手段62に対応するS6において、自動血圧測定手段50による血圧測定を再度起動させ、その血圧測定結果を、出力制御手段60によって画像表示器20或いはプリンタ22に表示出力させる。
上述のように、本実施例の自動血圧測定装置10によれば、生体の脈波伝播時間(脈波伝播速度関連値)hbPWTを逐次検出する脈波伝播速度関連値検出手段52と、生体の心拍周期(心拍周期関連値)RRIを逐次検出する心拍周期関連値検出手段56と、その心拍周期関連値検出手段56により検出された心拍周期関連値RRIのゆらぎを周波数解析してそのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI を算出する心拍周期関連値周波数解析手段58と、脈波伝播速度関連値周波数解析手段54により算出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを出力する出力制御手段60とを、含むことから、生体の血圧値の動揺に関連する脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと、生体の交感神経の動揺に対応する心拍周期(心拍周期関連値)RRIの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを見ることで自律神経の活動状態を容易に把握できるので、被測定者の血圧測定時において自律神経の活動状態を小型且つ簡単な装置で評価でき、自律神経の活動状態と血圧値との関係を体得できることにより自律神経の活動をコントロールする訓練が可能となる。また、上記脈波伝播時間は、心臓から所定の部位までの中枢部位の情報を容易に得ることができることから、比較的高い精度で中枢の血圧値に対応する脈波伝播時間が得られる。ここで、心拍周期関連値のゆらぎの周波数解析からは心臓の心拍数制御に関わる自律神経系の活動状態と、脈波伝搬速度関連値のゆらぎの周波数解析からは、心臓の収縮力制御に関わる自律神経系の活動状態と、動脈血管系の拡張、収縮による末梢血管抵抗の制御に関わる自律神経系の活動状態とを別々に把握できる。前記心拍周期関連値周波数解析手段により算出された高周波数成分のスペクトラムは副交感神経系の活動を反映し、低周波数成分のスペクトラムは交感神経系、副交感神経系両方の活動が可能な領域であるが、その周波数成分比をもって交感神経系の活動を反映する指標とすることができる。一方、前記脈波伝播速度関連値周波数解析手段により算出された高周波数成分のスペクトラムは心臓の前負荷の変動に起因した心筋の収縮力の変動を反映していると考えられ、副交感神経系の心臓の収縮力を制御する活動を反映し、低周波数成分のスペクトラムは脈波伝播速度関連値との比較により、動脈血管系の収縮による末梢血管抵抗の制御に関わる交感神経系の活動を容易に把握できる。
また、本実施例の自動血圧測定装置10によれば、生体に装着する複数のECG電極14を有し、その複数のECG電極14に発生する信号に基づいて心電誘導波を出力する心電誘導装置36と、生体の一部に装着されてその生体の動脈内を伝播する脈波を検出する脈波センサ(たとえばカフ12)とを備え、脈波伝播速度関連値検出手段52は、その心電誘導波に含まれるR波の発生時点からその脈波センサにより脈波が検出された発生時点までの時間差に基づいて脈波伝播時間(脈波伝播速度関連値)hbPWTを検出するものであることから、心筋の収縮時点から脈波が脈波センサに到達するまでの脈波伝播速度関連値が容易に検出される。
また、本実施例の自動血圧測定装置10によれば、心電誘導装置36の複数のECG電極14の一部のECG電極14b は、カフ12の内周面に配置されており、脈波センサとしてはカフ12内の圧力振動を用いて脈波を検出するものであることから、生体にカフ12を装着することで同時にECG電極14b および脈波センサを装着することができ、装着作業が簡単となる。
また、本実施例の自動血圧測定装置10によれば、心拍周期関連値検出手段56は、心電誘導装置36から出力される心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期(心拍周期関連値)RRIを検出するものであることから、脈波間隔からの場合に比較して、正確な心拍周期(心拍周期関連値)RRIが得られる。
また、本実施例の自動血圧測定装置10によれば、出力制御手段60は、脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTを示す軸63と、心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI を示す軸64とを含む直交二次元座標において、その脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTとその心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す点Pn を繰り返し表示出力するものであることから、数値表示や棒グラフ等の表示に比較して、自律神経の活動状態を正確に把握できる利点がある。
また、本実施例の自動血圧測定装置10によれば、出力制御手段60は、自動血圧測定手段50による血圧測定時点からの脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWT、および、心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す点Pn を算出し、所定の時間間隔で繰り返し表示出力するものであることから、前回の血圧測定以後の自律神経の活動状態を容易に把握することができる。
また、本実施例の自動血圧測定装置10によれば、自動血圧測定手段50による血圧測定が実行された後であって、脈波伝播速度関連値検出手段52により検出された脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された心拍周期(心拍周期関連値)RRIの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とが出力制御手段60により予め設定された回数以上表示出力された後に、或いは予め設定された経過時間を経過した後に、自動血圧測定手段50による血圧測定を再度起動させる血圧測定再起動手段62が、さらに含まれることから、自律神経の活動状態と血圧値との関係を繰り返し体得できるので、自律神経の活動をコントロールする訓練が容易となる。
また、本実施例の自動血圧測定装置10によれば、脈波伝播速度関連値検出手段52により検出された脈波伝播速度関連値のゆらぎを周波数解析してそのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT を算出する脈波伝播速度関連値周波数解析手段54を、含み、出力制御手段60は、その脈波伝播速度関連値周波数解析手段54により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と、心拍周期関連値周波数解析手段58により算出された低周波数成分および高周波数成分の周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを共に出力するものであり、脈波伝播速度関連値周波数解析手段54および心拍周期関連値周波数解析手段58は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることから、脈波伝播速度関連値周波数解析手段54および心拍周期関連値周波数解析手段58のスペクトラム推定の次数のとり方の相違による周波数解析スペクトラムでのパワーの大きさの相違が解消されるので、出力制御手段60により出力される、脈波伝播時間(脈波伝播速度関連値)hbPWTの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と心拍周期関連値周波数解析手段58により算出された心拍周期RRIのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI との対比が正確となる利点がある。
なお、本実施例の自動血圧測定装置10によれば、出力制御手段60は、図8の横軸を共通の軸として、脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT とを共に表示するものであったが、それら変化値ΔhbPWTおよび変化値(dLF/HF)PWT の一方を表示するものであってもよい。また、出力制御手段60は、図8に示す二次元図表を分離して、脈波伝播時間(脈波伝播速度関連値)hbPWTの所定時間区間内における変化値ΔhbPWTと心拍周期関連値周波数解析手段58により算出された心拍周期(心拍周期関連値)RRIのゆらぎの低周波数成分LFおよび高周波数成分HFの周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す二次元図表と、脈波伝播時間(脈波伝播速度関連値)hbPWTのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)PWT の所定時間区間内における変化値(dLF/HF)PWT と心拍周期RRIのゆらぎの低周波数成分および高周波数成分の周波数成分比(LF/HF)RRI の所定時間区間内における変化値(dLF/HF)RRI とを示す二次元図表とを、別々の表示するものであってもよい。
その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。
10:自動血圧測定装置
12:カフ(脈波センサ)
14:ECG電極(電極)
36:心電誘導装置
50:自動血圧測定手段
52:脈波伝播速度関連値検出手段
54:脈波伝播速度関連値周波数解析手段
56:心拍周期関連値検出手段
58:心拍周期関連値周波数解析手段
60:出力制御手段
62:血圧測定再起動手段

Claims (8)

  1. 生体の一部をカフを用いて圧迫したときに動脈から得られる心拍同期波に基づいて該生体の血圧値を測定する自動血圧測定手段を備えた自動血圧測定装置であって、
    前記生体の脈波伝播速度に関連する脈波伝播速度関連値を逐次検出する脈波伝播速度関連値検出手段と、
    前記生体の心拍周期に関連する心拍周期関連値を逐次検出する心拍周期関連値検出手段と、
    該心拍周期関連値検出手段により検出された心拍周期関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する心拍周期関連値周波数解析手段と、
    前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを共に出力する出力制御手段と
    を、含むことを特徴とする自動血圧測定装置。
  2. 前記生体に装着する複数の電極を有し、該複数の電極に発生する信号に基づいて心電誘導波を出力する心電誘導装置と、前記生体の一部に装着されて該生体の動脈内を伝播する脈波を検出する脈波センサとを備え、
    前記脈波伝播速度関連値検出手段は、該心電誘導波に含まれるR波の発生時点から前記脈波センサによる脈波の検出時点までの時間差に基づいて脈波伝播速度関連値を検出するものであることを特徴とする請求項1の自動血圧測定装置。
  3. 前記心電誘導装置の前記複数の電極の少なくとも一部は、前記カフの内周面に配置されており、
    前記脈波センサは前記カフ内の圧力振動を用いて脈波を検出するものであることを特徴とする請求項2の自動血圧測定装置。
  4. 前記心拍周期関連値検出手段は、前記心電誘導波に含まれるR波の発生時点間隔に基づいて心拍周期関連値を検出するものであることを特徴とする請求項2または3の自動血圧測定装置。
  5. 前記出力制御手段は、前記脈波伝播速度関連値の所定時間区間内における変化値を示す軸と、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を示す軸とを含む二次元座標において、該脈波伝播速度関連値の所定時間区間内における変化値と該心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とを示す点を繰り返し表示出力するものであることを特徴とする請求項1乃至4のいずれか1の自動血圧測定装置。
  6. 前記出力制御手段は、前記自動血圧測定手段による血圧測定時点からの、前記脈波伝播速度関連値の変化値、および、前記心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の変化値とを示す点を算出し、所定の時間間隔で繰り返し表示出力するものであることを特徴とする請求項1乃至5のいずれか1の自動血圧測定装置。
  7. 前記自動血圧測定手段による血圧測定が実行された後であって、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値と前記心拍周期関連値周波数解析手段により算出された心拍周期関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値とが前記出力制御手段により予め設定された回数以上出力された後に或いは予め設定された経過時間の経過後に、前記自動血圧測定手段による血圧測定を再度起動させる血圧測定再起動手段を、さらに含むことを特徴とする請求項1乃至6のいずれか1の自動血圧測定装置。
  8. 前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値のゆらぎを周波数解析して該ゆらぎの低周波数成分および高周波数成分の周波数成分比を算出する脈波伝播速度関連値周波数解析手段を、含み、
    前記出力制御手段は、前記脈波伝播速度関連値検出手段により検出された脈波伝播速度関連値の所定時間区間内における変化値に代えて或いは加えて、前記脈波伝播速度関連値周波数解析手段により算出された脈波伝播速度関連値の低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値を、前記心拍周期関連値周波数解析手段により算出された低周波数成分および高周波数成分の周波数成分比の所定時間区間内における変化値と共に出力するものであり、
    前記脈波伝播速度関連値周波数解析手段および前記心拍周期関連値周波数解析手段は、測定中のそれぞれの区間を通してスペクトラム推定のモデルの次数を同一とすることを特徴とする請求項1乃至7のいずれか1の自動血圧測定装置。
JP2010293603A 2010-12-28 2010-12-28 自動血圧測定装置 Active JP5584111B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010293603A JP5584111B2 (ja) 2010-12-28 2010-12-28 自動血圧測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010293603A JP5584111B2 (ja) 2010-12-28 2010-12-28 自動血圧測定装置

Publications (2)

Publication Number Publication Date
JP2012139342A true JP2012139342A (ja) 2012-07-26
JP5584111B2 JP5584111B2 (ja) 2014-09-03

Family

ID=46676256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010293603A Active JP5584111B2 (ja) 2010-12-28 2010-12-28 自動血圧測定装置

Country Status (1)

Country Link
JP (1) JP5584111B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208289A1 (ja) * 2013-06-28 2014-12-31 株式会社村田製作所 生体状態推定装置
JP2017176833A (ja) * 2016-03-29 2017-10-05 豪展醫療科技股▲分▼有限公司 精神的ストレス指数計測及び血圧計測を兼備した測定装置及び方法
CN109069031A (zh) * 2016-10-20 2018-12-21 京东方科技集团股份有限公司 用于确定对象血压的设备和方法
CN111386071A (zh) * 2017-11-30 2020-07-07 国立大学法人东北大学 生物体信息计测装置、生物体信息计测程序以及生物体信息计测方法
DE112018004492T5 (de) 2017-10-12 2020-07-30 Omron Corporation Vitalparameter-messeinrichtung, blutruck-messeinrichtung, -gerät, vitalparameter-messverfahren und blutdruck-messverfahren

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110772242A (zh) * 2018-07-31 2020-02-11 北京太阳升高科医药研究股份有限公司 带有自主神经分析功能的自动血压测定装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105354A (en) * 1989-01-23 1992-04-14 Nippon Kayaku Kabushiki Kaisha Method and apparatus for correlating respiration and heartbeat variability
JP3004615U (ja) * 1994-05-25 1994-11-22 日本コーリン株式会社 心電波形表示装置
JP2001321347A (ja) * 2000-05-16 2001-11-20 Nippon Koden Corp 血圧監視装置
JP2002537911A (ja) * 1999-03-02 2002-11-12 チルドレ,ドック・エル 生理的コヒーレンスおよび自律神経バランスを促進するための方法および装置
JP2006034803A (ja) * 2004-07-29 2006-02-09 Denso Corp 生体情報表示方法及び装置
JP2008086568A (ja) * 2006-10-02 2008-04-17 Fukuda Denshi Co Ltd 血圧反射機能測定装置
JP2008110086A (ja) * 2006-10-31 2008-05-15 Crosswell:Kk 血管機能検査装置とプログラム
US20090192399A1 (en) * 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. Apparatus and method to detect heart-rate and air conditioning system having the apparatus
JP4487015B1 (ja) * 2009-12-08 2010-06-23 株式会社クロスウェル 自律神経機能評価装置およびプログラム
JP2010142593A (ja) * 2008-12-22 2010-07-01 Toyota Motor Corp 車両用自律神経機能診断装置、車両用自律神経機能診断方法
JP2010172365A (ja) * 2009-01-27 2010-08-12 Crosswell:Kk 自律神経機能診断装置およびプログラム

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105354A (en) * 1989-01-23 1992-04-14 Nippon Kayaku Kabushiki Kaisha Method and apparatus for correlating respiration and heartbeat variability
JP3004615U (ja) * 1994-05-25 1994-11-22 日本コーリン株式会社 心電波形表示装置
JP2002537911A (ja) * 1999-03-02 2002-11-12 チルドレ,ドック・エル 生理的コヒーレンスおよび自律神経バランスを促進するための方法および装置
JP2001321347A (ja) * 2000-05-16 2001-11-20 Nippon Koden Corp 血圧監視装置
JP2006034803A (ja) * 2004-07-29 2006-02-09 Denso Corp 生体情報表示方法及び装置
JP2008086568A (ja) * 2006-10-02 2008-04-17 Fukuda Denshi Co Ltd 血圧反射機能測定装置
JP2008110086A (ja) * 2006-10-31 2008-05-15 Crosswell:Kk 血管機能検査装置とプログラム
US20090192399A1 (en) * 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. Apparatus and method to detect heart-rate and air conditioning system having the apparatus
JP2010142593A (ja) * 2008-12-22 2010-07-01 Toyota Motor Corp 車両用自律神経機能診断装置、車両用自律神経機能診断方法
JP2010172365A (ja) * 2009-01-27 2010-08-12 Crosswell:Kk 自律神経機能診断装置およびプログラム
JP4487015B1 (ja) * 2009-12-08 2010-06-23 株式会社クロスウェル 自律神経機能評価装置およびプログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208289A1 (ja) * 2013-06-28 2014-12-31 株式会社村田製作所 生体状態推定装置
CN105377137A (zh) * 2013-06-28 2016-03-02 株式会社村田制作所 生物状态推测装置
JPWO2014208289A1 (ja) * 2013-06-28 2017-02-23 株式会社村田製作所 生体状態推定装置
US10034612B2 (en) 2013-06-28 2018-07-31 Murata Manufacturing Co., Ltd. Biological state eliminating apparatus and method
JP2017176833A (ja) * 2016-03-29 2017-10-05 豪展醫療科技股▲分▼有限公司 精神的ストレス指数計測及び血圧計測を兼備した測定装置及び方法
CN109069031A (zh) * 2016-10-20 2018-12-21 京东方科技集团股份有限公司 用于确定对象血压的设备和方法
CN109069031B (zh) * 2016-10-20 2021-12-24 京东方科技集团股份有限公司 用于确定对象血压的设备和方法
DE112018004492T5 (de) 2017-10-12 2020-07-30 Omron Corporation Vitalparameter-messeinrichtung, blutruck-messeinrichtung, -gerät, vitalparameter-messverfahren und blutdruck-messverfahren
CN111386071A (zh) * 2017-11-30 2020-07-07 国立大学法人东北大学 生物体信息计测装置、生物体信息计测程序以及生物体信息计测方法
CN111386071B (zh) * 2017-11-30 2023-06-27 国立大学法人东北大学 生物体信息计测装置、记录介质

Also Published As

Publication number Publication date
JP5584111B2 (ja) 2014-09-03

Similar Documents

Publication Publication Date Title
JP6659830B2 (ja) 生体情報分析装置、システム、及び、プログラム
US8668649B2 (en) System for cardiac status determination
JP6513005B2 (ja) 疲労度計
JP6579890B2 (ja) 疲労度計
JP6789280B2 (ja) 内皮機能を評価するシステムおよび方法
JP5584111B2 (ja) 自動血圧測定装置
JP6282887B2 (ja) 血圧測定装置および血圧測定方法
JP6602248B2 (ja) 電子血圧計
CN111386071B (zh) 生物体信息计测装置、记录介质
WO2018168805A1 (ja) 血圧測定装置、方法及びプログラム
JP2022512449A (ja) 動脈コンプライアンスの尺度を導出するための制御ユニット
WO2016006250A1 (ja) 生体情報測定装置
JP7327816B2 (ja) 脈波信号の解析装置、脈波信号の解析方法およびコンピュータプログラム
JP7019951B2 (ja) 血圧データ処理装置、血圧データ処理方法、およびプログラム
JP2020110443A (ja) 血行情報算出装置、血行情報算出方法、及びプログラム
EP4088653A1 (en) Pulse wave analysis device, pulse wave analysis method, and pulse wave analysis program
JP6109514B2 (ja) 生体情報処理装置
JP7087267B2 (ja) 血圧データ処理装置、血圧データ処理方法、およびプログラム
JP6013111B2 (ja) 生体情報処理装置
JP2022178053A (ja) 循環血液量判定装置、循環血液量判定プログラム、および循環血液量判定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5584111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250