JP2012126280A - Vehicle air conditioning device - Google Patents
Vehicle air conditioning device Download PDFInfo
- Publication number
- JP2012126280A JP2012126280A JP2010280385A JP2010280385A JP2012126280A JP 2012126280 A JP2012126280 A JP 2012126280A JP 2010280385 A JP2010280385 A JP 2010280385A JP 2010280385 A JP2010280385 A JP 2010280385A JP 2012126280 A JP2012126280 A JP 2012126280A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- air
- outdoor heat
- heat exchanger
- evaporator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004378 air conditioning Methods 0.000 title abstract description 17
- 239000003507 refrigerant Substances 0.000 claims abstract description 172
- 238000009423 ventilation Methods 0.000 claims abstract description 39
- 238000011084 recovery Methods 0.000 claims abstract description 31
- 238000005057 refrigeration Methods 0.000 claims abstract description 19
- 230000006835 compression Effects 0.000 claims abstract description 17
- 238000007906 compression Methods 0.000 claims abstract description 17
- 238000010438 heat treatment Methods 0.000 claims description 86
- 238000010521 absorption reaction Methods 0.000 claims description 29
- 238000005192 partition Methods 0.000 claims description 29
- 238000001514 detection method Methods 0.000 claims description 26
- 238000007664 blowing Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 15
- 238000007710 freezing Methods 0.000 claims description 14
- 230000008014 freezing Effects 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 14
- 239000003990 capacitor Substances 0.000 abstract 3
- 238000004891 communication Methods 0.000 description 7
- 230000005855 radiation Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60H—ARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
- B60H1/00—Heating, cooling or ventilating [HVAC] devices
- B60H1/02—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
- B60H1/03—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant
- B60H1/039—Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant and from a source other than the propulsion plant from air leaving the interior of the vehicle, i.e. heat recovery
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
本発明は、蒸気圧縮式冷凍サイクルを有し、車室外の空気から吸熱して車室内の暖房を行う車両用空気調和装置に関する。 The present invention relates to a vehicle air conditioner that has a vapor compression refrigeration cycle and that heats heat from air outside the vehicle compartment to heat the vehicle interior.
例えば電気自動車では、駆動源からの熱を車室内の暖房にほとんど利用することができない。そのため、蒸気圧縮式冷凍サイクルを利用し、サイクル内を循環する冷媒で車室外の空気から吸熱し、その熱を車室内の暖房に利用する車両用空気調和装置が種々提案されている(例えば特許文献1、特許文献2参照)。
For example, in an electric vehicle, the heat from the drive source can hardly be used for heating the passenger compartment. Therefore, various vehicle air conditioners that use a vapor compression refrigeration cycle, absorb heat from the air outside the passenger compartment with a refrigerant circulating in the cycle, and use the heat for heating the passenger compartment (for example, patents).
しかし、車室外の空気と熱交換する室外熱交換器が凍結(着氷)する場合があり、室外熱交換器が凍結すると熱交換性能が低下するため、所望の暖房運転を維持できなくなる。そのため、特許文献1の車両用空気調和装置では、蒸気圧縮式冷凍サイクルに室内コンデンサをバイパスするホットガスバイパス路を付設し、圧縮機で圧縮された高温高圧の冷媒を室内コンデンサに流すと共にホットガスバイパス路を介して室外熱交換器にも流す。室外熱交換器には高温の冷媒が流れるために、凍結が解消される。又、室内コンデンサによって車室内に供給する空気が加熱される。これにより、室外熱交換器が凍結しても暖房運転を維持できる。
However, the outdoor heat exchanger that exchanges heat with the air outside the passenger compartment may freeze (icing), and if the outdoor heat exchanger freezes, the heat exchange performance deteriorates, and the desired heating operation cannot be maintained. For this reason, in the vehicle air conditioner disclosed in
尚、特許文献2には、暖房運転と除湿運転とを行うことができ、除湿運転では圧縮機の回転数を制御して空調風の吹き出し温度を調整できるようになっているが、室外熱交換器が凍結しても暖房運転を維持できる技術については開示されていない。
In
しかしながら、前記従来の車両用空気調和装置では、室外熱交換器の凍結解消運転時に、室内コンデンサと室外熱交換器に冷媒を流す必要性から、通常の暖房運転時に較べて圧縮機の回転数を上昇させる必要があり、大きな動力が必要であるという問題がある。例えば電気自動車のような圧縮機の動力を車両バッテリに依存する車両においては、航続距離が短くなり、実用的ではない。 However, in the conventional vehicle air conditioner, since the refrigerant has to flow through the indoor condenser and the outdoor heat exchanger during the freeze-free operation of the outdoor heat exchanger, the rotation speed of the compressor is reduced compared to the normal heating operation. There is a problem that it needs to be raised and requires a large amount of power. For example, in a vehicle that relies on a vehicle battery for the power of a compressor such as an electric vehicle, the cruising distance becomes short, which is not practical.
そこで、本発明は、前記した課題を解決すべくなされたものであり、室外熱交換器が凍結(着氷)した場合でも、圧縮機の動力を増大させることなく暖房運転を維持できる車両用空気調和装置を提供することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and even when the outdoor heat exchanger freezes (is icing), the vehicle air that can maintain the heating operation without increasing the power of the compressor. It aims at providing a harmony device.
本発明は、冷媒を圧縮する圧縮機と、前記圧縮機で圧縮された冷媒と車室内に供給される空気との間で熱交換し、空気を加熱する室内コンデンサと、冷媒と車室外の空気との間で熱交換する室外熱交換器と、冷媒と車室内から車室外に排気する空気との間で熱交換する換気熱回収用エバポレータとを有し、前記室外熱交換器で冷媒に空気より吸熱させ、前記室内コンデンサで冷媒に空気へ放熱させる外気吸熱暖房運転と、前記換気熱回収用エバポレータで冷媒に空気より吸熱させ、前記室内コンデンサで冷媒に空気へ放熱させる排気吸熱暖房運転とを行うことができる蒸気圧縮式冷凍サイクルと、前記室外熱交換器が凍結したことを判別する凍結判別手段と、前記凍結判別手段が凍結したと判別すると、外気吸熱暖房運転から排気吸熱暖房運転に運転を切り替える制御手段とを備えたことを特徴とする。 The present invention relates to a compressor that compresses refrigerant, an indoor condenser that heats and exchanges heat between the refrigerant compressed by the compressor and air supplied to the passenger compartment, and the refrigerant and air outside the passenger compartment. An outdoor heat exchanger that exchanges heat with the refrigerant, and an evaporator for recovering ventilation heat that exchanges heat between the refrigerant and the air exhausted from the passenger compartment to the outside of the passenger compartment. Air is supplied to the refrigerant in the outdoor heat exchanger. An external heat absorption heating operation in which heat is absorbed more and the refrigerant is radiated to air by the indoor condenser, and an exhaust heat absorption heating operation in which the refrigerant is absorbed by the refrigerant by the ventilation heat recovery evaporator and is radiated to the refrigerant by the indoor condenser. When it is determined that the vapor compression refrigeration cycle, the freezing determination means for determining that the outdoor heat exchanger is frozen, and the freezing determination means are frozen, the heat absorption heating operation from the outside air is performed. Characterized in that a control means for switching the operation to.
車室内の空気を前記換気熱回収用エバポレータを通して車室外に送風する送風機を有することが好ましい。 It is preferable to have a blower that blows air in the passenger compartment to the outside of the passenger compartment through the ventilation heat recovery evaporator.
前記蒸気圧縮式冷凍サイクルは、前記室外熱交換器及び前記換気熱回収用エバポレータに供給する冷媒の圧力を調整できる圧力調整手段と、前記室外熱交換器をバイパスし、前記換気熱回収用エバポレータが配置されたドラフタ用分岐路と、冷媒を前記室外熱交換器側に流すか前記換気熱回収用エバポレータ側に流すかを切り替えできる第1流路切替手段とを備え、外気吸熱暖房運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記圧力調整手段、前記室外熱交換器を通って前記圧縮機に戻る冷媒経路とし、冷媒を前記圧力調整手段によって減圧し、前記室外熱交換器で冷媒に空気より吸熱させ、排気吸熱暖房運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記圧力調整手段、前記換気熱回収用エバポレータを通って前記圧縮機に戻る冷媒経路とし、冷媒を前記圧力調整手段によって減圧し、前記換気熱回収用エバポレータで冷媒に空気より吸熱させることが好ましい。 The vapor compression refrigeration cycle bypasses the outdoor heat exchanger and pressure adjusting means capable of adjusting the pressure of refrigerant supplied to the outdoor heat exchanger and the ventilation heat recovery evaporator, and the ventilation heat recovery evaporator includes And a first flow path switching means that can switch whether the refrigerant flows to the outdoor heat exchanger side or the ventilation heat recovery evaporator side, and in the outdoor heat absorption heating operation, The refrigerant compressed by the compressor is used as a refrigerant path that returns to the compressor through the indoor condenser, the pressure adjusting means, and the outdoor heat exchanger, and the refrigerant is depressurized by the pressure adjusting means, and the outdoor heat exchanger In the exhaust heat absorption heating operation, the refrigerant is made to absorb heat from the air, and the refrigerant compressed by the compressor is used as the indoor condenser, the pressure adjusting means, and the ventilation heat recovery evaporator. Through the refrigerant path back to the compressor, the refrigerant depressurized by the pressure regulating means, it is preferable to heat absorption from the air to the refrigerant in the ventilation heat recovery evaporator.
前記蒸気圧縮式冷凍サイクルは、冷媒と車室内に供給される空気との間で熱交換し、空気を冷却する室内エバポレータと、前記室内エバポレータに供給する冷媒の圧力を減圧する減圧手段と、前記室内エバポレータをバイパスするバイパス路と、冷媒を前記室内エバポレータ側に流すか前記バイパス路に流すかを切り替えできる第2流路切替手段とを備え、前記室内エバポレータで冷媒に空気より吸熱させ、前記室内コンデンサと前記室外熱交換器で冷媒に空気に放熱させる冷房リヒート運転を行うことができ、冷房リヒート運転では、前記圧縮機で圧縮された冷媒を前記室内コンデンサ、前記圧力調整手段、前記室外熱交換器、前記減圧手段、前記室内エバポレータを通って前記圧縮機に戻る冷媒経路とし、冷媒を前記圧力調整手段によって減圧せずに通し、前記室外熱交換器で冷媒に空気に放熱させることが好ましい。 The vapor compression refrigeration cycle is configured to exchange heat between the refrigerant and air supplied to the passenger compartment, to cool the air, and to reduce the pressure of the refrigerant supplied to the indoor evaporator, A bypass path for bypassing the indoor evaporator, and second flow path switching means capable of switching between flowing the refrigerant to the indoor evaporator side or the bypass path, and causing the refrigerant to absorb heat from the air by the indoor evaporator, Cooling reheat operation can be performed in which heat is released to the refrigerant by the condenser and the outdoor heat exchanger. In the cooling reheat operation, the refrigerant compressed by the compressor is used as the indoor condenser, the pressure adjusting unit, and the outdoor heat exchange. And a refrigerant path that returns to the compressor through the indoor evaporator, the refrigerant, and the refrigerant by the pressure adjusting means. Passed without decompression, it is preferable to heat radiation in the air to the refrigerant in the outdoor heat exchanger.
前記室外熱交換器を通過した空気温度を検出する室外熱交換器通過空気温度検出手段と、前記室外熱交換器の出口側の冷媒温度を検出する冷媒温度検出手段とを有し、前記凍結判別手段は、前記室外熱交換器通過空気温度検出手段の検出した前記室外熱交換器の通過空気温度と前記冷媒温度検出手段の検出した前記室外熱交換器の冷媒出口温度との差異より凍結の有無を判別することが好ましい。 An outdoor heat exchanger passing air temperature detecting means for detecting an air temperature that has passed through the outdoor heat exchanger; and a refrigerant temperature detecting means for detecting a refrigerant temperature on the outlet side of the outdoor heat exchanger; Means is freezing based on a difference between a passing air temperature of the outdoor heat exchanger detected by the outdoor heat exchanger passing air temperature detecting means and a refrigerant outlet temperature of the outdoor heat exchanger detected by the refrigerant temperature detecting means. Is preferably discriminated.
排気吸熱暖房運転時には、車室外の空気を前記室内コンデンサに導入することが好ましい。 During the exhaust heat absorption heating operation, it is preferable to introduce the air outside the passenger compartment into the indoor condenser.
前記室内コンデンサの他に、車室内に供給される空気を加熱する加熱手段と、フット吹出口より吹き出す空気温度を検出するフット吹出温度検出手段と、デフロスタ吹出口及びベント吹出口より吹き出す空気温度を検出するデフロスタ・ベント吹出温度検出手段とを有し、前記制御手段は、前記フット吹出温度検出手段と前記デフロスタ・ベント吹出温度検出手段の検出温度に基づいて前記加熱手段の加熱量を制御することが好ましい。 In addition to the indoor condenser, heating means for heating the air supplied to the vehicle interior, foot blowing temperature detection means for detecting the air temperature blown from the foot blowout port, and air temperature blown out from the defroster blowout port and the vent blowout port Defroster / vent outlet temperature detecting means for detecting, and the control means controls the heating amount of the heating means based on the detected temperatures of the foot outlet temperature detecting means and the defroster / vent outlet temperature detecting means. Is preferred.
前記室外熱交換器は、複数のチューブと複数のチューブの両端側に設けられた一対のタンク部とを有し、前記タンク部内には仕切壁を設け、前記室外熱交換器内の冷媒流れ経路の内で最も下流側に位置する仕切壁は、冷媒を液溜め部にガイドでき、且つ、冷媒を小さな流通抵抗で通すよう構成されることが好ましい。 The outdoor heat exchanger has a plurality of tubes and a pair of tank portions provided on both ends of the plurality of tubes, a partition wall is provided in the tank portions, and a refrigerant flow path in the outdoor heat exchanger It is preferable that the partition wall located on the most downstream side is configured to be able to guide the refrigerant to the liquid reservoir and to pass the refrigerant with a small flow resistance.
本発明によれば、室外熱交換器をエバポレータとして機能させる外気吸熱暖房運転時に室外熱交換器が凍結すると、換気熱回収用エバポレータで冷媒に吸熱させる排気吸熱暖房運転に切り替えて暖房運転を続行し、外気吸熱暖房運転と排気吸熱暖房運転では吸熱作用を行わせる熱交換器を変更するだけであるため、暖房運転の続行に圧縮機の動力を増大させる必要がない。以上より、室外熱交換器が凍結(着氷)した場合でも、圧縮機の動力を増大させることなく暖房運転を維持できる。 According to the present invention, when the outdoor heat exchanger freezes during the outdoor heat absorption heating operation in which the outdoor heat exchanger functions as an evaporator, the heating operation is continued by switching to the exhaust heat absorption heating operation in which the refrigerant absorbs heat in the ventilation heat recovery evaporator. In the outdoor air endothermic heating operation and the exhaust endothermic heating operation, since only the heat exchanger that performs the endothermic action is changed, it is not necessary to increase the power of the compressor to continue the heating operation. As described above, even when the outdoor heat exchanger is frozen (icing), the heating operation can be maintained without increasing the power of the compressor.
以下、本発明の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図1に示すように、車両用空気調和装置1は、蒸気圧縮式冷凍サイクル2を備えている。蒸気圧縮式冷凍サイクル2は、冷媒を圧縮する圧縮機3と、室内コンデンサ4と、室内コンデンサ4の下流に配置された圧力調整手段5と、この圧力調整手段5の下流に配置された室外熱交換器6と、室外熱交換器6の下流に配置され、冷媒を減圧する減圧手段である温度式膨張弁7と、温度式膨張弁7の下流に配置された室内エバポレータ8と、室内エバポレータ8の下流に配置されたアキュムレータ9とを備え、これらが各冷媒配管10によって接続されている。
As shown in FIG. 1, the
圧縮機3は、例えばベーン型であり、制御手段30からの指令によってオン・オフや回転数が制御される。
The
室内コンデンサ4は、空調ケース21内で、且つ、室内エバポレータ8の下流に配置されている。室内コンデンサ4は、圧縮機3で圧縮された高温高圧の冷媒と空調ケース21内を通過する空気(車室内に供給される空気)との間で熱交換する。室内コンデンサ4は、冷媒の放熱作用によって空気を加熱する。
The
圧力調整手段5は、オリフィス5aと、オリフィス5aに並列接続された開閉弁5b付きのバイパス路5cとから構成されている。開閉弁5bを開位置とすることにより、冷媒を減圧させずにそのまま流すことができる。開閉弁5bを閉位置とするにより、冷媒をオリフィス5aで減圧させて流すことができる。開閉弁5bは、制御手段30によって制御される。
The pressure adjusting means 5 includes an
室外熱交換器6は、例えばエンジンルーム内に配置されている。室外熱交換器6は、室内コンデンサ4を通過した冷媒と車室外の空気との間で熱交換する。室外熱交換器6は、圧力調整手段5の減圧状態に応じてコンデンサとして機能したり、エバポレータとして機能したりする。室外熱交換器6の内部構成は、下記に詳説する。
The
温度式膨張弁7は、室内エバポレータ8の出口側に取り付けられた感温筒部(図示せず)を有し、室内エバポレータ8の出口側の冷媒過熱度(スーパーヒート)が所定値に維持されるように弁開度を自動調整する。
The temperature
室内エバポレータ8は、空調ケース21内で、且つ、室内コンデンサ4の上流に配置されている。室内エバポレータ8は、温度式膨張弁7で減圧された冷媒と空調ケース21内を通過する空気(車室内に供給される空気)との間で熱交換する。室内エバポレータ8は、冷媒の吸熱作用によって空気を冷却し、除湿する。
The
アキュムレータ9は、室内エバポレータ8から送られてきた冷媒の内で余剰冷媒を一時的に溜めると共にガス冷媒のみを圧縮機3に送る。
The
空調ケース21には、車室外の空気を導入する外気導入口22と、車室内の空気を導入する内気導入口23が設けられている。外気導入口22と内気導入口23は、インテークドア24によって開閉される。インテークドア24は、制御手段30によって位置が可変される。空調ケース21内には、送風機25が設けられている。送風機25は、インテークドア24の位置に応じて外気や内気を空調ケース21内に吸引する。空調ケース21内には、室内コンデンサ4の下流に配置された加熱手段である加熱器26とエアミックスドア27が設けられている。エアミックスドア27は、室内コンデンサ4及び加熱器26を通過する送風とこれらをバイパスする送風との配風割合を調整する。加熱器26は、蒸気圧縮式冷凍サイクル2とは別の熱源であり、例えばPTCヒータによって構成されている。加熱器26は、制御手段30によって加熱量が制御される。
The
空調ケース21の加熱器26の下流には、フット吹出口28a、デフロスタ吹出口28b、ベント吹出口28cが設けられている。これら吹出口より空調風が車室内に供給される。
A
また、蒸気圧縮式冷凍サイクル2は、室内コンデンサ4で圧縮された冷媒を室外熱交換器6を通さずにバイパスさせるドラフタ用分岐路11と、ドラフタ用分岐路11の上流側端と冷媒配管10との接続箇所に設けられた第1流路切替手段である第1流路切替弁12と、ドラフタ用分岐路11に配置された換気熱回収用エバポレータ13と、換気熱回収用エバポレータ13の下流側のドラフタ用分岐路11に配置された逆止め弁19とを有する。第1流路切替弁12は、冷媒を室外熱交換器6に通すか換気熱回収用エバポレータ13(ドラフタ用分岐路11)に通すかを切り替える。逆止め弁19は、冷媒が外気吸熱暖房運転や冷房リヒート運転の冷媒経路で循環される時に、冷媒が換気熱回収用エバポレータ13側に逆流するのを防止する。
In addition, the vapor
換気熱回収用エバポレータ13は、車室内と車室外を連通する排気通路(ドラフタ通路)29aに配置されている。排気通路29aには、送風機29bが配置されている。送風機29bの駆動により、車室内の空気が排気通路29aに強制的に吸引される。吸引された車室内の空気は、換気熱回収用エバポレータ13を通って車室外に排気される。送風機29bは、制御手段30によって制御される。
The
更に、蒸気圧縮式冷凍サイクル2は、冷媒を室内エバポレータ8を通さずにバイパスさせるバイパス路15と、バイパス路15の上流側端と冷媒配管10との接続箇所に設けられた第2流路切替手段である第2流路切替弁16とを有する。第2流路切替弁16は、冷媒を室内エバポレータ8に通すかバイパス路15に通すかを切り替える。
Furthermore, the vapor
第1流路切替弁12と第2流路切替弁16は、制御手段30によってそれぞれ切り替えられる。具体的には、外気吸熱暖房運転では、図4に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、圧力調整手段5、室外熱交換器6、バイパス路15を通って圧縮機3に戻る冷媒経路に切り替えられる。圧力調整手段5は冷媒を減圧し、室外熱交換器6はエバポレータとして機能する。排気吸熱暖房運転では、図3に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、圧力調整手段5、換気熱回収用エバポレータ13、バイパス路15を通って圧縮機3に戻る冷媒経路に切り替えられる。圧力調整手段5は冷媒を減圧する。冷房リヒート運転では、図5に示すように、圧縮機3で圧縮された冷媒を室内コンデンサ4、圧力調整手段5、室外熱交換器6、温度式膨張弁7、室内エバポレータ8を通って圧縮機3に戻る冷媒経路に切り替えられる。圧力調整手段5は冷媒を減圧せず、室外熱交換器6はコンデンサとして機能する。
The first flow
また、車両用空気調和装置1は、室外熱交換器6を通過した空気温度を検出する室外熱交換器通過空気温度検出手段である室外熱交換器通過空気温度検出センサS1と、室外熱交換器6の出口側の冷媒温度を検出する冷媒温度検出手段である冷媒温度検出センサS2と、室内エバポレータ8の空気吹き出し温度を検出するエバ出口空気温度検出手段であるエバ出口空気温度検出センサS3と、フット吹出口28aより吹き出す空気温度を検出するフット吹出温度検出手段であるフット吹出温度検出センサS4と、デフロスタ吹出口28b及びベント吹出口28cより吹き出す空気温度を検出するデフロスタ・ベント吹出温度検出手段であるデフロスタ・ベント吹出検出センサS5と、車室内の温度を検出する室内温度検出手段である室内温度検出センサS6とを有する。
Further, the
制御手段30は、操作部31からの入力データ、各種センサS1〜S6の検出データ等に基づいて、圧縮機3、圧力調整手段5の開閉弁5b、第1流路切替弁12、第2流路切替弁16、インテークドア24、送風機25、加熱器26、エアミックスドア27等を制御する。又、制御手段30は、室外熱交換器6が凍結したことを判別する凍結判別手段を兼用する。制御手段30は、室外熱交換器通過空気温度検出センサS1と冷媒温度検出センサS2を入力し、室外熱交換器6を通過した空気温度と室外熱交換器6の出口側の冷媒温度との差異が所定温度差(例えば10℃)以上となったときに凍結(着氷)と判定する。
The control means 30 is based on input data from the
操作部31は、暖房スイッチSW1、冷房スイッチSW2、室内温度設定ノブ32等を有する。室内温度設定ノブ32によって車室内の目標温度を設定する。制御手段30は、暖房スイッチSW1、冷房スイッチSW2のオン操作によって、図6に示すフローチャートを実行する。このフローチャートの内容については、下記の動作箇所で説明する。又、制御手段30は、室内温度検出センサS6の検出温度が目標温度になるよう暖房運転等を制御する。
次に、室外熱交換器6の詳しい構成を説明する。室外熱交換器6は、図2(a)に示すように、間隔を置いて水平方向に配置された複数のチューブ40と、隣接するチューブ40の隙間に配置された放熱フィン41と、複数のチューブ40の両端側に配置された一対のタンク部42,43とを備えている。一方のタンク部42には、その上端側に冷媒入口44が、その下端側に冷媒出口45がそれぞれ設けられている。他方のタンク部43の外部には液溜め部46が付設されている。他方のタンク部43内と液溜め部46内は連通路47によって連通している。双方のタンク部42,43内には、仕切壁48,49がそれぞれ一箇所に設けられている。一方のタンク部42内の仕切壁48は、タンク部42内を完全に仕切っている。他方のタンク部43の仕切壁49は、室外熱交換器6内の冷媒流れ経路の内で最も下流側に位置し、連通路47を仕切らないように配置されている。つまり、仕切壁49は、室外熱交換器6がコンデンサとして機能する場合に、液冷媒を液溜め部46にガイドする機能を有するが、室外熱交換器6がエバポレータとして機能する場合に、気化冷媒を小さな通路抵抗で通す。
The
Next, a detailed configuration of the
次に、車両用空気調和装置1の動作を説明する。図6に示すように、制御手段30は、暖房スイッチSW1、冷房スイッチSW2のいずれかがオンされるか否かを常時チェックする(ステップST1〜ST3)。冷房スイッチSW2がオンされると(ステップST1)、制御手段30は冷房リヒート運転を実行する(ステップST3)。冷房リヒート運転では、図5に示すように、第1流路切替弁12は冷媒が室外熱交換器6側に、第2流路切替弁16は冷媒が室内エバポレータ8側に流れるようそれぞれ切り替えられる。圧力調整手段5の開閉弁5bは、冷媒を減圧しないで通過させる開位置とされる。
Next, the operation of the
圧縮機3で圧縮された冷媒は、室内コンデンサ4、圧力調整手段5、第1流路切替弁12、室外熱交換器6、第2流路切替弁16、温度式膨張弁7、室内エバポレータ8、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4と室外熱交換器6で空気に放熱する。放熱によって低温となり、温度式膨張弁7で低圧とされた冷媒は、室内エバポレータ8で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されると共にその一部若しくは全部が室内コンデンサ4で再加熱される。これにより、所望温度の冷風が作製される。
The refrigerant compressed by the
暖房スイッチSW1がオンされると(ステップST2)、制御手段30は、外気吸熱暖房運転を実行する(ステップST4)。外気吸熱暖房運転では、図4に示すように、第1流路切替弁12は冷媒が室外熱交換器6側に、第2流路切替弁16は冷媒がバイパス路15側に流れるようそれぞれ切り替えられる。圧力調整手段5の開閉弁5bは、閉位置に位置される。インテークドア24は、外気導入側に切り替えられる。エアミックスドア27は、例えば全開位置に切り替えられる。圧縮機3で圧縮された冷媒は、室内コンデンサ4、第1流路切替弁12、室外熱交換器6、第2流路切替弁16、バイパス路15、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4で空気に放熱する。この放熱によって低温となり、圧力調整手段5のオリフィス5aの通過で低圧とされた冷媒は、室外熱交換器6で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されることなく通過し、室内コンデンサ4で加熱される。これにより、所望温度の温風が作製される。
When the heating switch SW1 is turned on (step ST2), the control means 30 executes an outdoor air endothermic heating operation (step ST4). In the outdoor air endothermic heating operation, as shown in FIG. 4, the first flow
室内コンデンサ4の加熱能力が小さい場合には、加熱器26を作動させて所望温度の温風を作製する。
When the heating capacity of the
外気吸熱暖房運転では、湿気が少ない車室外の空気を空調ケース21内に導入(外気循環)するので、極力窓曇りの発生を抑制できる。 In the outside air endothermic heating operation, air outside the passenger compartment with low humidity is introduced into the air conditioning case 21 (circulation of outside air), so that the occurrence of window fogging can be suppressed as much as possible.
外気吸熱暖房運転時には、所定時間毎に、室外熱交換器6が凍結(着氷)したか否かの判別を行う(ステップST5)。
During the outdoor air endothermic heating operation, it is determined whether or not the
室外熱交換器6が凍結したと判別した場合には、外気吸熱暖房運転を排気吸熱暖房運転に切り替える(ステップST6)。
If it is determined that the
排気吸熱暖房運転では、図3に示すように、第1流路切替弁12は冷媒が換気熱回収用エバポレータ13側に、第2流路切替弁16は冷媒がバイパス路15側に流れるようそれぞれ切り替えられる。圧力調整手段5の開閉弁5bは、閉位置に位置される。インテークドア24は、外気導入側に切り替えられる。エアミックスドア27は、例えば全開位置に切り替えられる。排気通路29aの送風機29bは、駆動される。圧縮機3で圧縮された冷媒は、室内コンデンサ4、圧力調整手段5、ドラフタ用分岐路11(換気熱回収用エバポレータ13)、第2流路切替弁16、バイパス路15、アキュムレータ9を通る冷媒経路を循環する。圧縮機3で圧縮された高温高圧の冷媒は、室内コンデンサ4で空気に放熱する。この放熱によって低温となり、圧力調整手段5のオリフィス5aの通過で低圧とされた冷媒は、換気熱回収用エバポレータ13で空気より吸熱する。従って、空調ケース21内を通る送風は、室内エバポレータ8で冷却されることなく通過し、その全部が室内コンデンサ4で加熱される。これにより、所望温度の温風が作製される。
In the exhaust heat absorption heating operation, as shown in FIG. 3, the first flow
室内コンデンサ4の加熱能力が小さい場合には、加熱器26を作動させて所望温度の温風を作製する。
When the heating capacity of the
排気吸熱暖房運転では、湿気が少ない車室外の空気を空調ケース21内に導入(外気循環)するので、極力窓曇りの発生を抑制できる。又、車室内の空気は、排気通路29aより強制的に車室外に排気されるので、車室内に所定の空気流れが形成されると共に排気通路29a以外からの車体空気漏洩がなくなるため、窓曇りの発生が確実に抑制される。このような理由から、内気導入率を50%程度にまで上げて換気負荷の低減を図るようにしても窓曇りを抑制できる。つまり、窓曇りを防止しつつ換気負荷の低減による省動力を図ることができる。
In the exhaust heat absorption heating operation, air outside the passenger compartment with low humidity is introduced into the air conditioning case 21 (circulation of the outside air), so that the occurrence of window fogging can be suppressed as much as possible. Further, since the air in the passenger compartment is forcibly exhausted from the
排気吸熱暖房運転中は、所定時間毎に室外熱交換器6の凍結が解消したか否かの判別を行う(ステップST5)。室外熱交換器6の凍結が解消した(室外熱交換器6が凍結していない)と判別した場合には、外気吸熱暖房運転に戻される(ステップST4))。
During the exhaust heat absorption heating operation, it is determined whether or not the freezing of the
尚、室外熱交換器6の凍結が解消した(室外熱交換器6が凍結していない)と判別した場合に、外気吸熱暖房運転に戻すタイミングについては種々のタイミングが考えられる。
In addition, when it determines with the freezing of the
以上説明したように、室外熱交換器6をエバポレータとして機能させる外気吸熱暖房運転時に室外熱交換器6が凍結すると、換気熱回収用エバポレータ13で冷媒に吸熱させる排気吸熱暖房運転に切り替えて暖房運転を続行し、外気吸熱暖房運転と排気吸熱暖房運転では吸熱作用を行わせる熱交換器を変更するだけであるため、暖房運転の続行に圧縮機3の動力を増大させる必要がない。以上より、室外熱交換器6が凍結(着氷)した場合でも、圧縮機3の動力を増大させることなく暖房運転を維持できる。
As described above, when the
このように室外熱交換器6が凍結しても暖房運転を維持できるため、室外熱交換器6としては特別なもの(例えば凍結し難い構造、結露が極力滞留しない構造)を使用する必要がなく汎用性のあるものを使用すれば良い。
As described above, since the heating operation can be maintained even when the
室外熱交換器6は室外の空気より吸熱するが、換気熱回収用エバポレータ13は室外の空気よりも高温である室内の空気より吸熱するため、省動力とコストダウンにもなる。
The
蒸気圧縮式冷凍サイクル2は、圧縮機3と室内コンデンサ4と室外熱交換器6と温度式膨張弁7と室内エバポレータ8から成る通常の冷凍サイクルに対し、室外熱交換器6に供給する冷媒の圧力を調整できる圧力調整手段5と、室外熱交換器6をバイパスするドラフタ用分岐路11と、ドラフタ用分岐路11に配置された換気熱回収用エバポレータ13と、第1冷媒を室外熱交換器6側に流すか換気熱回収用エバポレータ13側に流すかを切り替えできる第1流路切替弁12と、室内エバポレータ8をバイパスするバイパス路15と、冷媒を室内エバポレータ8側に流すかバイパス路15に流すかを切り替えできる第2流路切替弁16とを付設したので、比較的簡単な冷凍サイクル構成で、しかも、比較的簡単な冷媒経路の切替えによって、2種類の暖房運転(外気吸熱暖房運転、排気吸熱暖房運転)と1種類の冷房運転(冷房リヒート運転)を行うことができる。
The vapor
凍結判別手段である制御手段30は、室外熱交換器6の空気吹き出し温度と室外熱交換器6の冷媒出口温度の差異より凍結の有無を判別するので、比較的単純な比較によって確実に室外熱交換器6の凍結の有無を判別できる。
Since the control means 30 which is a freezing judgment means judges the presence or absence of freezing from the difference between the air blowing temperature of the
排気吸熱暖房運転では、車室外の空気を空調ケース21内(室内エバポレータ8及び室内コンデンサ4)に導入し、車室内の空気を排気通路29aより強制排気する。従って、湿気が少ない車室外の空気を車室内に導入されるため、極力窓曇りの発生を抑制できる。又、車室内の空気は、排気通路29aより強制的に車室外に排気されるため、車室内に所定の空気流れが形成されると共に排気通路29a以外からの車体空気漏洩がなくなり、窓曇りの発生が確実に抑制される。このような理由から、内気導入率を50%程度にまで上げて換気負荷の低減を図るようにしても窓曇りを抑制できる。つまり、窓曇りを防止しつつ換気負荷の低減による省動力を図ることができる。
In the exhaust endothermic heating operation, the air outside the passenger compartment is introduced into the air conditioning case 21 (the
室内コンデンサ4の他に、車室内に供給される空気を加熱する加熱器26を有する。そして、制御手段30は、フット吹出温度検出センサS4とデフロスタ・ベント吹出温度検出センサS5の検出温度に基づいて加熱器26の加熱量を制御する。従って、フット吹出口28aとベント吹出口28cの空気温度に温度差を付ける場合(バイレベルモード)においても、加熱器26の加熱量を調整でき、所望の空調風を吹き出させることができる。
In addition to the
この実施形態では、加熱器26を設置したが、外気吸熱暖房運転、内気吸熱暖房運転及び排気吸熱暖房運転のそれぞれにおいて、室内コンデンサ4のみで十分な暖房性能が得られる場合には、加熱器26を設置する必要はない。
In this embodiment, the
室外熱交換器6は、複数のチューブ40と複数のチューブ40の両端側に設けられた一対のタンク部42,43とを有し、各タンク部42,43内には一箇所に仕切壁48,49をぞれぞれ設け、室外熱交換器6内の冷媒流れ経路の内で最も下流側に位置する仕切壁49は、冷媒を液溜め部46にガイドでき、且つ、冷媒を小さな流通抵抗で通すよう構成されている。
The
従って、室外熱交換器6がコンデンサとして機能する場合には、冷媒入口44より一方のタンク部42内に流入した冷媒は、仕切壁48より上方側のタンク部42より各チューブ40内を流れて他方のタンク部43内に流入する。他方のタンク部43内に流入した冷媒は、仕切壁49でガイドされて連通路47を介して液溜め部46に入り込む。液溜め部46よりオーバーフローした液冷媒は、連通路47より他方のタンク部43の下方側に入り込み、チューブ40内を流れて液冷媒が冷媒出口45より流出し、温度式膨張弁7に送られる。
Therefore, when the
室外熱交換器6がエバポレータとして機能する場合には、冷媒入口44より一方のタンク部42内に流入した冷媒は、仕切壁48より上方側のタンク部42より各チューブ40内を流れて他方のタンク部43内に流入する。他方のタンク部43内に流入した気化冷媒は、仕切壁49を避けて連通路47を迂回するようにしてタンク部43の下方側に入り込む。タンク部43の下方側に流れ込んだ冷媒は、チューブ40内を流れて一方のタンク部42の冷媒出口45より流出される。他方のタンク部43内で仕切壁49の位置を通過する際には、仕切壁49によって連通路47が仕切られていないため、小さな通路抵抗で通過する。これにより、室外熱交換器6内を流れる冷媒の圧力損失を小さく抑えることができ、冷媒の蒸発温度が低下することに起因する吸熱性能の低下を防止できる。
When the
この実施形態では、圧力調整手段は、オリフィス5aと、オリフィス5aに並列接続された開閉弁5b付きのバイパス路5cとから構成したが、冷媒通路を開放する開放状態と冷媒通路を狭くする絞り状態とに選択的に切り替えできるものであれば良い。例えば、開度調整できる電磁弁にて構成しても良い。
In this embodiment, the pressure adjusting means is composed of the
この実施形態では、室外熱交換器6は、その一対のタンク部42,43内の各一箇所に仕切壁48,49が設けられているが、仕切壁48,49を二箇所以上に設けたものであっても良い。この場合には、室外熱交換器6内の冷媒流れ経路の内で最も下流側に位置する仕切壁49について、連通路47を仕切らないように配置する。
In this embodiment, the
(変形例の室外熱交換器の構造)
次に、変形例に係る室外熱交換器6Aを示す。図2(b)に示すように、変形例に係る室外熱交換器6Aは、前記実施形態のものと比較して、その他方のタンク部43Aが大きな容積に形成され、他方のタンク部43Aの下方側が液溜め部を兼用するよう構成されている。他方のタンク部43A内には、乾燥剤入りのフィルタ50が内蔵されている。タンク部43A内で、且つ、フィルタ50の外周側は、仕切壁49Aによって上下方向に仕切られている。タンク部43Aの上方側に流入した冷媒は、フィルタ50内を通ってのみタンク部43Aの下方側に流れ込む。仕切壁49Aの内径(換言すれば、フィルタ50の外径)は、気化冷媒を小さな通路抵抗で通すことができる寸法に設定されている。仕切壁49Aは、室外熱交換器6Aがコンデンサとして機能する場合に、冷媒をフィルタ50内にガイドする機能を有するが、室外熱交換器6Aがエバポレータとして機能する場合に、冷媒を小さな通路抵抗で通す。
(Structure of modified outdoor heat exchanger)
Next, an
従って、この変形例に係る室外熱交換器6Aにあっても、前記室外熱交換器6と同様に、室外熱交換器6Aがコンデンサとして機能する場合には、他方のタンク部43A内に流入した冷媒は、仕切壁49Aでガイドされてフィルタ50を介して他方のタンク部43Aの下方側(液溜め部に相当)に入り込む。室外熱交換器6がエバポレータとして機能する場合には、他方のタンク部43A内で仕切壁49Aの位置を通過する際には、小さな通路抵抗で通過する。これにより、室外熱交換器6A内を流れる冷媒の圧力損失を小さく抑えることができ、冷媒の蒸発温度が低下することに起因する吸熱性能の低下を防止できる。
Therefore, even in the
(暖房運転の切り替えタイミングの変形例)
前記実施形態では、室外熱交換器6をエバポレータとして機能させる外気吸熱暖房運転時に室外熱交換器6が凍結すると、換気熱回収用エバポレータ13で冷媒に吸熱させる排気吸熱暖房運転に切り替えたが、次のような場合にも暖房運転の切替えを行うようにしても良い。
(Modification of switching timing of heating operation)
In the above embodiment, when the
つまり、窓晴らしをしたい場合、雨天等で快適性向上のために除湿したい場合にも、外気吸熱暖房運転から排気吸熱暖房運転に切り替えるようにしても良い。 In other words, when it is desired to clear the window, or when it is desired to dehumidify in the rain to improve comfort, the outdoor heat absorption heating operation may be switched to the exhaust heat absorption heating operation.
1 車両用空気調和装置
2 蒸気圧縮式冷凍サイクル
3 圧縮機
4 室内コンデンサ
5 圧力調整手段
6 室外熱交換機
7 温度式膨張弁(減圧手段)
8 室内エバポレータ
11 ドラフタ用分岐路
12 第1流路切替弁(第1流路切替手段)
13 換気熱回収用エバポレータ
15 バイパス路
16 第2流路切替弁(第2流路切替手段)
26 加熱器(加熱手段)
28a フット吹出口
28b デフロスタ吹出口
28c ベント吹出口
30 制御手段
40 チューブ
42,43 タンク部
43A タンク部の下方側(液溜め部)
46 液溜め部
48,49,49A 仕切壁
S1 室外熱交換器通過空気温度検出手段(室外熱交換器通過空気温度検出センサ)
S2 冷媒温度検出手段(冷媒温度検出センサ)
S4 フット吹出温度検出手段(フット吹出温度検出センサ)
S5 デフロスタ・ベント吹出温度検出手段(デフロスタ・ベント吹出温度検出センサ)
DESCRIPTION OF
8
13 Ventilation
26 Heater (heating means)
46
S2 Refrigerant temperature detection means (refrigerant temperature detection sensor)
S4 Foot blowing temperature detection means (foot blowing temperature detection sensor)
S5 Defroster / vent outlet temperature detection means (defroster / vent outlet temperature sensor)
Claims (8)
前記圧縮機(3)で圧縮された冷媒と車室内に供給される空気との間で熱交換し、空気を加熱する室内コンデンサ(4)と、
冷媒と車室外の空気との間で熱交換する室外熱交換器(6)と、
冷媒と車室内から車室外に排気する空気との間で熱交換する換気熱回収用エバポレータ(13)とを有し、
前記室外熱交換器(6)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)で冷媒に空気へ放熱させる外気吸熱暖房運転と、前記換気熱回収用エバポレータ(13)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)で冷媒に空気へ放熱させる排気吸熱暖房運転とを行うことができる蒸気圧縮式冷凍サイクル(2)と、
前記室外熱交換器(6)が凍結したことを判別する凍結判別手段(30)と、
前記凍結判別手段(30)が凍結したと判別すると、外気吸熱暖房運転から排気吸熱暖房運転に運転を切り替える制御手段(30)とを備えたことを特徴とする車両用空気調和装置(1)。 A compressor (3) for compressing the refrigerant;
An indoor condenser (4) for exchanging heat between the refrigerant compressed by the compressor (3) and the air supplied to the passenger compartment to heat the air;
An outdoor heat exchanger (6) for exchanging heat between the refrigerant and the air outside the vehicle compartment;
A ventilation heat recovery evaporator (13) for exchanging heat between the refrigerant and the air exhausted from the passenger compartment to the outside of the passenger compartment,
The outdoor heat exchanger (6) causes the refrigerant to absorb heat from the air, the indoor condenser (4) causes the refrigerant to dissipate heat to the air, and the ventilation heat recovery evaporator (13) absorbs heat from the air to the refrigerant. A vapor compression refrigeration cycle (2) capable of performing an exhaust heat absorption heating operation in which the indoor condenser (4) causes the refrigerant to radiate heat to the air;
Freezing determination means (30) for determining that the outdoor heat exchanger (6) is frozen;
A vehicle air conditioner (1), comprising: a control means (30) for switching the operation from the outside air endothermic heating operation to the exhaust endothermic heating operation when it is determined that the freezing determination means (30) is frozen.
車室内の空気を前記換気熱回収用エバポレータ(13)を通して車室外に送風する送風機(29b)を有することを特徴とする車両用空気調和装置(1)。 A vehicle air conditioner (1) according to claim 1,
A vehicle air conditioner (1) having a blower (29b) that blows air inside the passenger compartment to the outside of the passenger compartment through the evaporator (13) for recovering ventilation heat.
前記蒸気圧縮式冷凍サイクル(2)は、前記室外熱交換器(6)及び前記換気熱回収用エバポレータ(13)に供給する冷媒の圧力を調整できる圧力調整手段(5)と、前記室外熱交換器(6)をバイパスし、前記換気熱回収用エバポレータ(13)が配置されたドラフタ用分岐路(11)と、冷媒を前記室外熱交換器(6)側に流すか前記換気熱回収用エバポレータ(13)側に流すかを切り替えできる第1流路切替手段(12)とを備え、
外気吸熱暖房運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記圧力調整手段(5)、前記室外熱交換器(6)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記圧力調整手段(5)によって減圧し、前記室外熱交換器(6)で冷媒に空気より吸熱させ、
排気吸熱暖房運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記圧力調整手段(5)、前記換気熱回収用エバポレータ(13)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記圧力調整手段(5)によって減圧し、前記換気熱回収用エバポレータ(13)で冷媒に空気より吸熱させることを特徴とする車両用空気調和装置(1)。 A vehicle air conditioner (1) according to claim 1 or claim 2,
The vapor compression refrigeration cycle (2) includes pressure adjusting means (5) capable of adjusting the pressure of refrigerant supplied to the outdoor heat exchanger (6) and the ventilation heat recovery evaporator (13), and the outdoor heat exchange. A bypass branch passage (11) in which the evaporator (6) is bypassed and the ventilation heat recovery evaporator (13) is disposed, and the refrigerant is flowed to the outdoor heat exchanger (6) side or the ventilation heat recovery evaporator (13) first flow path switching means (12) that can switch whether to flow to the side,
In the outdoor heat absorption heating operation, the refrigerant compressed by the compressor (3) passes through the indoor condenser (4), the pressure adjusting means (5), and the outdoor heat exchanger (6), and the compressor (3). And the refrigerant is depressurized by the pressure adjusting means (5), and the refrigerant is absorbed from the air by the outdoor heat exchanger (6),
In the exhaust heat absorption heating operation, the refrigerant compressed by the compressor (3) passes through the indoor condenser (4), the pressure adjusting means (5), the ventilation heat recovery evaporator (13), and the compressor (3 The vehicle air conditioner (1) is characterized in that the refrigerant is depressurized by the pressure adjusting means (5), and the ventilation heat recovery evaporator (13) causes the refrigerant to absorb heat from the air.
前記蒸気圧縮式冷凍サイクル(2)は、冷媒と車室内に供給される空気との間で熱交換し、空気を冷却する室内エバポレータ(8)と、前記室内エバポレータ(8)に供給する冷媒の圧力を減圧する減圧手段(7)と、前記室内エバポレータ(8)をバイパスするバイパス路(15)と、冷媒を前記室内エバポレータ(8)側に流すか前記バイパス路(15)に流すかを切り替えできる第2流路切替手段(16)とを備え、
前記室内エバポレータ(8)で冷媒に空気より吸熱させ、前記室内コンデンサ(4)と前記室外熱交換器(6)で冷媒に空気に放熱させる冷房リヒート運転を行うことができ、
冷房リヒート運転では、前記圧縮機(3)で圧縮された冷媒を前記室内コンデンサ(4)、前記圧力調整手段(5)、前記室外熱交換器(6)、前記減圧手段(7)、前記室内エバポレータ(8)を通って前記圧縮機(3)に戻る冷媒経路とし、冷媒を前記圧力調整手段(5)によって減圧せずに通し、前記室外熱交換器(6)で冷媒に空気に放熱させることを特徴とする車両用空気調和装置(1)。 The vehicle air conditioner (1) according to claim 3,
The vapor compression refrigeration cycle (2) includes an indoor evaporator (8) that cools air by exchanging heat between the refrigerant and air supplied to the vehicle interior, and a refrigerant that is supplied to the indoor evaporator (8). Switching between pressure reducing means (7) for reducing the pressure, bypass passage (15) for bypassing the indoor evaporator (8), and whether the refrigerant flows to the indoor evaporator (8) side or the bypass passage (15) Second flow path switching means (16) capable of,
The indoor evaporator (8) can perform a cooling reheat operation in which the refrigerant absorbs heat from the air, and the indoor condenser (4) and the outdoor heat exchanger (6) dissipate heat to the refrigerant.
In the cooling reheat operation, the refrigerant compressed by the compressor (3) is converted into the indoor condenser (4), the pressure adjusting means (5), the outdoor heat exchanger (6), the pressure reducing means (7), the indoor A refrigerant path is returned to the compressor (3) through the evaporator (8), and the refrigerant is passed through the pressure adjusting means (5) without being depressurized, and is radiated to the refrigerant by the outdoor heat exchanger (6). The vehicle air conditioner (1) characterized by the above-mentioned.
前記室外熱交換器(6)を通過した空気温度を検出する室外熱交換器通過空気温度検出手段(S1)と、前記室外熱交換器(6)の出口側の冷媒温度を検出する冷媒温度検出手段(S2)とを有し、
前記凍結判別手段(30)は、前記室外熱交換器通過空気温度検出手段(S1)の検出した前記室外熱交換器(6)の通過空気温度と前記冷媒温度検出手段(S2)の検出した前記室外熱交換器(6)の冷媒出口温度との差異より凍結の有無を判別することを特徴とする車両用空気調和装置(1)。 The vehicle air conditioner according to any one of claims 1 to 4,
The outdoor heat exchanger passing air temperature detection means (S1) for detecting the temperature of the air that has passed through the outdoor heat exchanger (6), and the refrigerant temperature detection for detecting the refrigerant temperature on the outlet side of the outdoor heat exchanger (6). Means (S2),
The freezing determination means (30) is configured to detect the passage air temperature of the outdoor heat exchanger (6) detected by the outdoor heat exchanger passage air temperature detection means (S1) and the refrigerant temperature detection means (S2). The vehicle air conditioner (1), wherein the presence or absence of freezing is determined from the difference from the refrigerant outlet temperature of the outdoor heat exchanger (6).
排気吸熱暖房運転時には、車室外の空気を前記室内コンデンサ(4)に導入することを特徴とする車両用空気調和装置(1)。 A vehicle air conditioner (1) according to any one of claims 1 to 5,
A vehicle air conditioner (1), wherein air outside the passenger compartment is introduced into the indoor condenser (4) during exhaust heat absorption heating operation.
前記室内コンデンサ(4)の他に、車室内に供給される空気を加熱する加熱手段(26)と、
フット吹出口(28a)より吹き出す空気温度を検出するフット吹出温度検出手段(S4)と、
デフロスタ吹出口(28b)及びベント吹出口(28c)より吹き出す空気温度を検出するデフロスタ・ベント吹出温度検出手段(S5)とを有し、
前記制御手段(30)は、前記フット吹出温度検出手段(S4)と前記デフロスタ・ベント吹出温度検出手段(S5)の検出温度に基づいて前記加熱手段(26)の加熱量を制御することを特徴とする車両用空気調和装置(1)。 The vehicle air conditioner (1) according to any one of claims 1 to 6,
In addition to the indoor condenser (4), heating means (26) for heating the air supplied to the vehicle interior;
Foot blowing temperature detecting means (S4) for detecting the temperature of air blown from the foot blowing outlet (28a);
Defroster vent outlet temperature detecting means (S5) for detecting the air temperature blown out from the defroster outlet (28b) and the vent outlet (28c);
The control means (30) controls the heating amount of the heating means (26) based on the detected temperatures of the foot blowing temperature detecting means (S4) and the defroster / vent blowing temperature detecting means (S5). A vehicle air conditioner (1).
前記室外熱交換器(6),(6A)は、複数のチューブ(40)と複数のチューブ(40)の両端側に設けられた一対のタンク部(42),(43),(43A)とを有し、前記タンク部(42),(43),(43A)内には仕切壁(48),(49),(49A)を設け、
前記室外熱交換器(6),(6A)内の冷媒流れ経路の内で最も下流側に位置する仕切壁(49),(49A)は、冷媒を液溜め部(46),(43A)にガイドでき、且つ、冷媒を小さな流通抵抗で通すよう構成されたことを特徴とする車両用空気調和装置(1)。 A vehicle air conditioner (1) according to any one of claims 1 to 7,
The outdoor heat exchangers (6), (6A) include a plurality of tubes (40) and a pair of tank portions (42), (43), (43A) provided on both ends of the tubes (40). Partition walls (48), (49), (49A) are provided in the tank portions (42), (43), (43A),
The partition walls (49) and (49A) located on the most downstream side in the refrigerant flow paths in the outdoor heat exchangers (6) and (6A) are arranged so that the refrigerant enters the liquid reservoirs (46) and (43A). A vehicle air conditioner (1) characterized by being capable of guiding and allowing a refrigerant to pass therethrough with a small flow resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010280385A JP5668455B2 (en) | 2010-12-16 | 2010-12-16 | Air conditioner for vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010280385A JP5668455B2 (en) | 2010-12-16 | 2010-12-16 | Air conditioner for vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012126280A true JP2012126280A (en) | 2012-07-05 |
JP5668455B2 JP5668455B2 (en) | 2015-02-12 |
Family
ID=46643828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010280385A Expired - Fee Related JP5668455B2 (en) | 2010-12-16 | 2010-12-16 | Air conditioner for vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5668455B2 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55157642U (en) * | 1980-05-07 | 1980-11-12 | ||
JPH0288320A (en) * | 1988-09-26 | 1990-03-28 | Nissan Shatai Co Ltd | Compensation control device by distribution of air quantity of automatic air condition |
JPH06174344A (en) * | 1992-12-07 | 1994-06-24 | Sanden Corp | Frost formation detection method for outdoor heat exchanger for heat pump type air conditioner |
JPH07186710A (en) * | 1993-12-27 | 1995-07-25 | Nippondenso Co Ltd | Air conditioner for electric vehicle |
JPH1128926A (en) * | 1997-07-10 | 1999-02-02 | Zexel Corp | Air conditioner for electric vehicle |
JP2000052753A (en) * | 1998-03-27 | 2000-02-22 | Daimlerchrysler Ag | Device and method for heating and air-conditioning available space of automobile |
JP2004019952A (en) * | 2002-06-12 | 2004-01-22 | Denso Corp | Liquid receiver integrated condenser |
JP2006327428A (en) * | 2005-05-26 | 2006-12-07 | Denso Corp | Vehicular air-conditioner |
JP2009113610A (en) * | 2007-11-06 | 2009-05-28 | Honda Motor Co Ltd | Air conditioning system for vehicle |
JP2009525914A (en) * | 2006-02-09 | 2009-07-16 | ソシエテ ドゥ ヴェイキュル エレキトリック(エスアーエス) | Electric or hybrid vehicle with thermal conditioning system to improve low level resources |
-
2010
- 2010-12-16 JP JP2010280385A patent/JP5668455B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55157642U (en) * | 1980-05-07 | 1980-11-12 | ||
JPH0288320A (en) * | 1988-09-26 | 1990-03-28 | Nissan Shatai Co Ltd | Compensation control device by distribution of air quantity of automatic air condition |
JPH06174344A (en) * | 1992-12-07 | 1994-06-24 | Sanden Corp | Frost formation detection method for outdoor heat exchanger for heat pump type air conditioner |
JPH07186710A (en) * | 1993-12-27 | 1995-07-25 | Nippondenso Co Ltd | Air conditioner for electric vehicle |
JPH1128926A (en) * | 1997-07-10 | 1999-02-02 | Zexel Corp | Air conditioner for electric vehicle |
JP2000052753A (en) * | 1998-03-27 | 2000-02-22 | Daimlerchrysler Ag | Device and method for heating and air-conditioning available space of automobile |
JP2004019952A (en) * | 2002-06-12 | 2004-01-22 | Denso Corp | Liquid receiver integrated condenser |
JP2006327428A (en) * | 2005-05-26 | 2006-12-07 | Denso Corp | Vehicular air-conditioner |
JP2009525914A (en) * | 2006-02-09 | 2009-07-16 | ソシエテ ドゥ ヴェイキュル エレキトリック(エスアーエス) | Electric or hybrid vehicle with thermal conditioning system to improve low level resources |
JP2009113610A (en) * | 2007-11-06 | 2009-05-28 | Honda Motor Co Ltd | Air conditioning system for vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP5668455B2 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5468982B2 (en) | Air conditioner for vehicles | |
JP6855281B2 (en) | Vehicle air conditioner | |
JP4232463B2 (en) | Air conditioner | |
WO2018161907A1 (en) | Thermal management system | |
CN112424006B (en) | Air conditioner for vehicle | |
CN110536808A (en) | Air conditioner for motor vehicle | |
US12065016B2 (en) | Heat pump system | |
JP6415943B2 (en) | Heat pump air conditioning system for vehicles | |
JP7664117B2 (en) | Vehicle air conditioning system and vehicle air conditioning method | |
CN105764727A (en) | Heat pump system | |
JP2015000620A (en) | Heat pump type vehicular air-conditioning system | |
CN106608157B (en) | Air conditioning system and air conditioning control method | |
JPH05104942A (en) | Automotive air conditioner | |
US11828507B2 (en) | Air conditioning system and control method therefor | |
JP2000052757A (en) | Air-conditioning and heating equipment for automobile | |
JP6680626B2 (en) | Vehicle air conditioner | |
JP2012001037A (en) | Air conditioning device for vehicle | |
JPH07232547A (en) | Air conditioner for vehicle | |
WO2023160198A1 (en) | Vehicle thermal management system and new energy vehicle | |
JPH05155245A (en) | Automotive air-conditioner | |
JP2009149288A (en) | Vehicular air conditioner | |
JP5617596B2 (en) | Air conditioner for vehicles | |
JP5510374B2 (en) | Heat exchange system | |
JP5142032B2 (en) | Air conditioner for vehicles | |
KR100954015B1 (en) | Ceiling air conditioner for bus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140701 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140715 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141118 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141201 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5668455 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |