[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012121013A - Method for remediation of polluted soil in situ - Google Patents

Method for remediation of polluted soil in situ Download PDF

Info

Publication number
JP2012121013A
JP2012121013A JP2010276214A JP2010276214A JP2012121013A JP 2012121013 A JP2012121013 A JP 2012121013A JP 2010276214 A JP2010276214 A JP 2010276214A JP 2010276214 A JP2010276214 A JP 2010276214A JP 2012121013 A JP2012121013 A JP 2012121013A
Authority
JP
Japan
Prior art keywords
soil
water
contaminated soil
activator
contaminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010276214A
Other languages
Japanese (ja)
Other versions
JP5779346B2 (en
Inventor
Eiichiro Imayasu
英一郎 今安
Toshihiko Takagi
敏彦 高木
Kazuhisa Fukunaga
和久 福永
Tomoki Ushida
智樹 牛田
Nobuhiko Yamashita
信彦 山下
Yoshiaki Hagino
芳章 萩野
Tatsuya Ito
辰也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Fudo Tetra Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Osaka Gas Co Ltd
Fudo Tetra Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Fudo Tetra Corp, Nippon Steel Engineering Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010276214A priority Critical patent/JP5779346B2/en
Publication of JP2012121013A publication Critical patent/JP2012121013A/en
Application granted granted Critical
Publication of JP5779346B2 publication Critical patent/JP5779346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for sufficiently remediating polluted soil in an unsaturated band at a low cost in situ without eluting a polluting substance before its decomposition even in the case the polluted area is spread in a wide range and in the case the pollutant concentration is uneven.SOLUTION: The method is for remediating polluted soil in situ by supplying water or an aqueous solution containing an activation agent for microorganism for decomposing a polluting substance to the surface layer of the soil polluted with the polluting substance in an unsaturated band, penetrating the soil with the water or the solution by spontaneous flow, and carrying out biological treatment of the polluted soil and is characterized in that the water amount in an arbitrary depth in the unsaturated band of the polluted soil is measured by a water analyzer and the water amount of the polluted soil is controlled.

Description

本発明は、不飽和帯の汚染土壌の原位置浄化方法に関する。   The present invention relates to an in-situ purification method for contaminated soil in an unsaturated zone.

汚染された土壌や地下水の浄化には、その場所(in situ)で浄化する方法(原位置浄化)や、汚染された土壌を掘り出して(on situ)浄化する方法などがある。特に、原位置浄化は、土壌を掘り出すことなく原位置で土壌を浄化できるので、on situによる浄化に比べてコストが安く、地上に建物が存在する場合でも施工が可能となる場合が多い。また、原位置浄化は、汚染が広範囲にわたる場合の浄化にも適している。
汚染土壌の浄化方法としては、微生物により土壌を浄化するバイオレメディエーション(生物処理)などの方法が知られている。
In order to purify contaminated soil and groundwater, there are a method of purifying the soil (in situ), a method of excavating the contaminated soil (on situ), and a method of purifying the soil. In particular, in-situ purification can purify soil in-situ without digging up the soil, so it is less expensive than on-situ purification and can often be constructed even when there are buildings on the ground. In-situ purification is also suitable for purification when the contamination is extensive.
As a purification method for contaminated soil, a method such as bioremediation (biological treatment) for purifying soil with microorganisms is known.

ところで、地中においては、汚染物質が帯水層(飽和帯)まで到達せずに、その上部に位置する不飽和帯に留まる場合があり、不飽和帯の土壌が汚染物質によって汚染されることもある。
しかし、上述した生物処理は、一般的に飽和帯の汚染土壌の浄化に適した方法であって、不飽和帯の汚染土壌を浄化する方法はこれまで確立されていなかった。
By the way, in the ground, the pollutant may not reach the aquifer (saturated zone) but may remain in the unsaturated zone located above it, and the soil in the unsaturated zone may be contaminated by the pollutant. There is also.
However, the biological treatment described above is generally a method suitable for the purification of saturated soil in a saturated zone, and a method for purifying unsaturated soil in a contaminated zone has not been established so far.

近年、不飽和帯の汚染土壌の浄化に、生物処理を利用する試みがなされている。
例えば特許文献1には、不飽和帯汚染領域中または周辺の不飽和帯部分に、複数の注入井戸と真空抽出井戸を設け、微生物の活動を利用して原位置浄化する方法が開示されている。特許文献1によれば、注入井戸から栄養成分等を含む注入水を供給しつつ、注入地点に減圧影響の及ぶ範囲内の2箇所以上に設置した真空抽出井戸を運転することにより、汚染した不飽和帯内で注入液を拡散でき、その結果、微生物の活動が活性化されるとしている。
In recent years, attempts have been made to use biological treatments for the purification of unsaturated soil contaminated soil.
For example, Patent Document 1 discloses a method of in-situ purification using microorganism activity by providing a plurality of injection wells and vacuum extraction wells in an unsaturated zone contaminated region or in the surrounding unsaturated zone portion. . According to Patent Document 1, while supplying injection water containing nutrient components and the like from the injection well, operating the vacuum extraction wells installed at two or more locations within the range where pressure reduction influences the injection point, It is said that the injected solution can be diffused in the saturation zone, and as a result, the activity of microorganisms is activated.

また、生物処理以外の方法、すなわち物理的または化学的処理によって不飽和帯の汚染土壌を浄化する方法も提案されている。
例えば特許文献2には、土壌汚染物質を洗浄ないし無毒化する薬剤を含む溶液(薬剤液)を、特定の供給速度にて地表から散布する方法が開示されている。特許文献2によれば、少ない中和剤で効率的に土壌浄化できるとしている。
In addition, a method other than biological treatment, that is, a method of purifying unsaturated soil contaminated soil by physical or chemical treatment has been proposed.
For example, Patent Document 2 discloses a method of spraying a solution (drug solution) containing a chemical that cleans or detoxifies soil contaminants from the ground surface at a specific supply rate. According to Patent Document 2, the soil can be efficiently purified with a small amount of neutralizing agent.

特開2002−45841号公報JP 2002-45841 A 特開2008−211984号公報Japanese Patent Laid-Open No. 2008-211984

しかしながら、特許文献1に記載のように、井戸を用いて微生物を活性化させる栄養成分を汚染土壌に注入する方法では、井戸近傍は栄養成分によって微生物が活性化され、汚染土壌が浄化されやすいものの、井戸から遠くなるにつれて栄養成分が行渡りにくくなり、汚染土壌が十分に浄化されにくかった。
なお、特許文献1では、真空抽出井戸を設けることで栄養成分を拡散させているが、汚染領域が広範囲に及ぶ場合、拡散効果は十分ではない。
そのため、広範囲に及ぶ汚染土壌を浄化するためには多数の井戸を設置する必要があり、施工費用がかさむといった問題があった。
However, as described in Patent Document 1, in the method of injecting a nutrient component that activates a microorganism into a contaminated soil using a well, the microorganism is activated by the nutrient component in the vicinity of the well, and the contaminated soil is easily purified. As the distance from the well increased, the nutrients became difficult to reach and the contaminated soil was difficult to clean.
In Patent Document 1, nutrient components are diffused by providing a vacuum extraction well. However, if the contaminated area covers a wide area, the diffusion effect is not sufficient.
For this reason, in order to purify contaminated soil over a wide area, it is necessary to install a large number of wells, and there is a problem that construction costs are increased.

また、特許文献2に記載のように、特定の供給速度で薬剤液を散布する方法では、薬剤液が過剰に散布される場合があった。薬剤液が過剰に散布されると、分解前の汚染物質が薬剤液によって汚染領域外や飽和帯へ流出しやすくなり、新たな汚染を招く恐れがある。また、汚染領域内において汚染濃度にムラがある場合でも一律に薬剤液が散布されるため、例えば汚染濃度の高い場所では薬剤液が不足して浄化が十分に行われにくくなる場合がある。一方、汚染濃度の低い場所では薬剤液が過剰に散布されて無駄になるばかりか、上述したような汚染物質の流出の原因にもなりうる。   Further, as described in Patent Document 2, in the method of spraying the drug solution at a specific supply rate, the drug solution may be sprayed excessively. If the chemical liquid is sprayed excessively, the contaminant before decomposition is likely to flow out of the contaminated area or the saturated zone by the chemical liquid, which may cause new contamination. In addition, even when the concentration of contamination is uneven in the contaminated area, the drug solution is uniformly sprayed. For example, in a place with a high concentration of contamination, the drug solution may be insufficient and purification may not be performed sufficiently. On the other hand, in a place where the concentration of contamination is low, the drug solution is excessively sprayed and is wasted, and can also cause the outflow of contaminants as described above.

本発明は、上記事情に鑑みてなされたものであり、汚染領域が広範囲に及ぶ場合や汚染濃度にムラがある場合であっても、分解前の汚染物質が流出することなく、不飽和帯の汚染土壌を低コストで十分に原位置浄化できる方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and even when the contaminated area extends over a wide range or when the contamination concentration is uneven, the contaminant before the decomposition does not flow out, An object of the present invention is to provide a method that can sufficiently clean in-situ contaminated soil at low cost.

本発明の汚染土壌の原位置浄化方法は、汚染物質により汚染された不飽和帯の土壌の表層に、水または汚染物質分解微生物用の活性剤を含む水溶液を供給し、自然流下により汚染土壌中に浸透させて、汚染土壌を生物処理により原位置浄化する方法であって、不飽和帯の任意の深度における汚染土壌の水分量を水分計により測定し、汚染土壌の水分量を管理することを特徴とする。
また、汚染土壌またはその近傍に達する注入井戸を設け、該注入井戸から空気の注入を行うことが好ましい。
さらに、汚染土壌またはその近傍に達する吸引井戸を設け、該吸引井戸から吸引を行うことが好ましい。
The in-situ purification method for contaminated soil according to the present invention supplies water or an aqueous solution containing an activator for pollutant-degrading microorganisms to the surface layer of unsaturated zone contaminated by contaminants, and naturally flows into the contaminated soil. Infiltration of the contaminated soil by biological treatment, the moisture content of the contaminated soil at an arbitrary depth in the unsaturated zone is measured with a moisture meter, and the moisture content of the contaminated soil is controlled. Features.
In addition, it is preferable to provide an injection well reaching the contaminated soil or the vicinity thereof and inject air from the injection well.
Furthermore, it is preferable to provide a suction well that reaches the contaminated soil or the vicinity thereof and perform suction from the suction well.

本発明によれば、汚染領域が広範囲に及ぶ場合や汚染濃度にムラがある場合であっても、分解前の汚染物質が流出することなく、不飽和帯の汚染土壌を低コストで十分に原位置浄化できる方法を提供できる。   According to the present invention, even when the contaminated area covers a wide range or when the concentration of contamination is uneven, the contaminated soil in the unsaturated zone is sufficiently produced at a low cost without causing the contaminant before the decomposition to flow out. A method capable of cleaning the position can be provided.

水および活性剤水溶液の供給方法の一例を示す概略図である。It is the schematic which shows an example of the supply method of water and activator aqueous solution. 実施例および比較例で用いたカラム試料を示す概略図である。It is the schematic which shows the column sample used by the Example and the comparative example.

以下、本発明について説明する。
本発明の対象となる土壌は、汚染物質により汚染された不飽和帯の土壌(汚染土壌)である。
本発明において「不飽和帯」とは、地下水によって飽和している帯水層(飽和帯)より上に位置する層のことである。
汚染原因となる汚染物質としては、シアン化合物、全石油系炭化水素を主成分とする油類、有機塩素化合物などが挙げられる。なお、「シアン化合物」とは、シアン化物や金属(鉄、ニッケル、銅等)のシアン錯体など、構造にCNを含む化合物をいう。
The present invention will be described below.
The soil which is the subject of the present invention is unsaturated zone soil (contaminated soil) contaminated with a pollutant.
In the present invention, the “unsaturated zone” is a layer located above an aquifer saturated with groundwater (saturated zone).
Examples of pollutants that cause contamination include cyanide compounds, oils mainly composed of all petroleum hydrocarbons, and organic chlorine compounds. The “cyanide compound” refers to a compound containing CN in its structure, such as a cyanide or a cyan complex of metal (iron, nickel, copper, etc.).

本発明の汚染土壌の原位置浄化方法(以下、単に「浄化方法」という。)は、汚染土壌の表層に、水または汚染物質分解微生物用の活性剤を含む水溶液(以下、「活性剤水溶液」という。)を供給し、自然流下により汚染土壌中に浸透させて、生物処理により原位置浄化することを特徴とする。加えて、不飽和帯の任意の深度における汚染土壌の水分量を水分計により測定し、汚染土壌の水分量を管理する。   The in-situ purification method for contaminated soil of the present invention (hereinafter simply referred to as “purification method”) includes an aqueous solution (hereinafter referred to as “active agent aqueous solution”) containing water or an activator for degrading microorganisms in the surface layer of the contaminated soil. )), Infiltrated into the contaminated soil by natural flow, and purified in situ by biological treatment. In addition, the moisture content of the contaminated soil at an arbitrary depth in the unsaturated zone is measured with a moisture meter, and the moisture content of the contaminated soil is managed.

生物処理による汚染土壌の浄化には、水分の存在が重要となる。かかる理由は以下のように考えられる。
水分は、水または活性剤水溶液を表層に供給することで汚染土壌に浸透するが、水や活性剤水溶液の供給量が少ないと汚染土壌中の水分が不足し、微生物による汚染物質の分解が進行せず、汚染土壌が十分に浄化されにくくなる。また、供給量が過剰となり水や活性剤水溶液が不飽和帯に留まらず飽和帯まで浸透すると、汚染が飽和帯に落ち込む。従って、汚染土壌の浄化には一定量の水分が必要である。
The presence of moisture is important for the purification of contaminated soil by biological treatment. The reason for this is considered as follows.
Moisture penetrates into contaminated soil by supplying water or an aqueous solution of an activator to the surface layer. However, if the supply amount of water or an aqueous solution of the activator is small, the water in the contaminated soil is insufficient and the decomposition of the pollutants by microorganisms proceeds. Without contaminating the soil. Further, if the supply amount becomes excessive and water or an aqueous solution of the activator does not stay in the unsaturated zone but penetrates to the saturated zone, the contamination falls into the saturated zone. Therefore, a certain amount of water is required for purification of contaminated soil.

本発明の浄化方法であれば、不飽和帯の任意の深度における汚染土壌の水分量を水分計等により測定し、汚染土壌の水分量を管理するので、地下水によって飽和されていない不飽和帯であっても、生物処理による浄化に重要とされる水分を一定の範囲でコントロールできる。よって、汚染土壌中において適正な水分量が維持され、浄化が十分に進行する。   In the purification method of the present invention, the moisture content of the contaminated soil at an arbitrary depth of the unsaturated zone is measured with a moisture meter or the like, and the moisture content of the contaminated soil is managed, so in the unsaturated zone that is not saturated with groundwater. Even if it exists, the water | moisture content important for purification | cleaning by biological treatment can be controlled in a certain range. Therefore, an appropriate amount of water is maintained in the contaminated soil, and purification proceeds sufficiently.

生物処理は、土壌に生息する微生物の有無によって、バイオスティミュレーション(土壌にもとから生息する微生物を活用し、土壌を浄化する方法)を採用してもよいし、バイオオーグメンテーション(土壌に生息する微生物が少ないか、微生物がいない場合、大量培養した微生物を外部から投入し、土壌を浄化する方法)を採用してもよい。   Biological treatment may employ biostimulation (a method of purifying soil by utilizing microorganisms that naturally inhabit the soil) or bioaugmentation (soil) depending on the presence or absence of microorganisms that inhabit the soil. If there are few or no microorganisms inhabiting the soil, a method of purifying soil by introducing a large amount of microorganisms from outside may be employed.

汚染物質を分解し、土壌を浄化する微生物としては、Novosphingobium(ノボスフィンゴビウム属細菌)、Pseudomonas(シュードモナス属細菌)などが挙げられる。また、土壌の浄化に使用する微生物は好気性でもよいし、嫌気性でもよい。特に微生物が好気性の場合は、詳しくは後述するが、土壌へ空気を注入し、微生物の活性を適度に促すバイオスパージングを採用するのが好ましい。   Examples of microorganisms that decompose pollutants and purify soil include Novosphingobium (Novosphingobium spp.) And Pseudomonas (Pseudomonas spp.). Moreover, the microorganisms used for soil purification may be aerobic or anaerobic. In particular, when the microorganism is aerobic, it will be described in detail later. However, it is preferable to employ biosparging that injects air into the soil and appropriately promotes the activity of the microorganism.

微生物用の活性剤としては、例えばアミノ酸、炭水化物およびこれらの混合物などが挙げられる。
これら活性剤は1種単独で用いてもよく、2種以上を併用してもよい。
Examples of active agents for microorganisms include amino acids, carbohydrates, and mixtures thereof.
These active agents may be used individually by 1 type, and may use 2 or more types together.

活性剤水溶液は、上述した活性剤を水で希釈することで調製できる。
活性剤を2種以上併用する場合は、活性剤の混合物を水で希釈して活性剤水溶液を調製してもよいし、各活性剤をそれぞれ水で希釈して、複数の活性剤水溶液を調製してもよい。
The activator aqueous solution can be prepared by diluting the above-mentioned activator with water.
When two or more activators are used in combination, a mixture of activators may be diluted with water to prepare an activator aqueous solution, or each activator may be diluted with water to prepare a plurality of activator aqueous solutions. May be.

活性剤水溶液中の活性剤の濃度については特に制限されず、原位置浄化を行う汚染領域のうち、任意の場所の汚染土壌を採取して汚染状態(汚染濃度など)を確認しておき、汚染状態に応じて適切な濃度になるように活性剤水溶液を調製すればよい。
例えば、シアン化合物により汚染された土壌であり、遊離シアン含有量が10mg/kgの場合、汚染土壌1.0m当たり0.1〜5.0kgとなる量の活性剤を、10〜100倍に水で希釈して活性剤水溶液を調製するのが好ましい。
なお、汚染土壌の遊離シアン含有量は、平成15年3月環境省告示第19号「土壌含有量調査に係る測定方法を定める件」に準拠して測定される値である。
The concentration of the activator in the activator aqueous solution is not particularly limited. Contaminated soil is collected at any place in the contaminated area where in-situ purification is performed, and the contamination state (contamination concentration, etc.) is confirmed to check the contamination. What is necessary is just to prepare an active agent aqueous solution so that it may become a suitable density | concentration according to a state.
For example, a soil contaminated by cyanide, if free cyanide content is 10 mg / kg, the amount of active agent which is a contaminated soil 1.0 m 3 per 0.1~5.0Kg, to 10 to 100 times It is preferred to prepare an aqueous activator solution by diluting with water.
The free cyanide content in the contaminated soil is a value measured in accordance with March 2003 Notification of Ministry of the Environment No. 19 “Matters for Measuring Soil Content Survey”.

水および活性剤水溶液の供給方法は特に制限されず、例えばホースを用いて汚染領域の表層に散水することができる。また、汚染領域が広範囲に及ぶ場合は、例えば図1に示すように、散水車10を走行させながら散水すればよい。
ここで、図1中、符号「A」は表層、「B」は不飽和帯、「C」は飽和帯であり、「X」は汚染土壌である。
There are no particular restrictions on the method of supplying water and the aqueous activator solution, and water can be sprayed onto the surface layer of the contaminated area using, for example, a hose. When the contaminated area covers a wide area, for example, as shown in FIG.
Here, in FIG. 1, the symbol “A” is the surface layer, “B” is the unsaturated zone, “C” is the saturated zone, and “X” is the contaminated soil.

また、複数の活性剤水溶液を供給する場合は、一度に供給してもよいし、間隔を設けて順次供給してもよい。供給の間隔は特に制限されず、汚染状態に応じて適宜決定すればよい。   Moreover, when supplying several activator aqueous solution, you may supply at once and may supply sequentially in intervals. The supply interval is not particularly limited, and may be appropriately determined according to the contamination state.

汚染土壌の表層に水または活性剤水溶液を供給すると、図1に示すように、水または活性剤水溶液は自然流下によって汚染土壌中に浸透する。すると、微生物の活動が活性化され、汚染物質の分解が効率よく行われ、汚染土壌が浄化される。特に、活性剤水溶液を供給すると微生物の活動がより活性化されやすくなる。
また、本発明は汚染土壌の表層に供給した水や活性剤水溶液を浸透によって汚染土壌中にまで供給するので、広範囲に水や活性剤水溶液を行渡らせることができる。従って、汚染領域が広範囲に及ぶ場合にも容易に対応でき、井戸からの注入方式に比べてコストを削減できる。
When water or an activator aqueous solution is supplied to the surface layer of the contaminated soil, the water or the activator aqueous solution penetrates into the contaminated soil by natural flow as shown in FIG. Then, the activity of microorganisms is activated, the pollutants are efficiently decomposed, and the contaminated soil is purified. In particular, when an activator aqueous solution is supplied, the activity of microorganisms is more easily activated.
Moreover, since this invention supplies the water and activator aqueous solution which were supplied to the surface layer of the contaminated soil even to the contaminated soil by infiltration, the water and the activator aqueous solution can be widely distributed. Therefore, it is possible to easily cope with a wide range of contaminated areas, and the cost can be reduced as compared with the injection method from the well.

本発明においては、不飽和帯の任意の深度における汚染土壌の水分量を水分計等により測定し、汚染土壌の水分量を管理する。
水分計としては、土壌中の水分量を測定できるものであれば特に限定されず、例えばテンシオメータ、pF計、土壌水分センサーなどを用いることができる。
また、水分量の測定箇所は、汚染状態(縦方向や横方向の広がり)に応じて適宜決定すればよい。なお、「不飽和帯の任意の深度」とは、汚染の縦方向(深さ方向)の広がりに応じて1箇所の深度であってもよいし、複数個所の深度であってもよい。すなわち、縦方向の広がりが狭い場合は1箇所の深度について測定すれば十分であるし、縦方向の広がりが広い場合は複数個所の深度について測定する。また、横方向についても任意の場所を測定すればよく、横方向の広がりが狭い場合は1箇所の深度について測定すれば十分であるし、横方向の広がりが広い場合は複数個所の深度について測定する。
また、水分量の測定は、浄化が完了するまで定期的に行うのが好ましく、1日に1回行えば十分である。
In the present invention, the moisture content of the contaminated soil at an arbitrary depth in the unsaturated zone is measured with a moisture meter or the like, and the moisture content of the contaminated soil is managed.
The moisture meter is not particularly limited as long as it can measure the amount of moisture in the soil. For example, a tensiometer, a pF meter, a soil moisture sensor, or the like can be used.
Moreover, what is necessary is just to determine the measurement location of a moisture content suitably according to a contamination state (spread of a vertical direction or a horizontal direction). The “arbitrary depth of the unsaturated zone” may be one depth or a plurality of depths depending on the spread of contamination in the vertical direction (depth direction). In other words, when the vertical spread is narrow, it is sufficient to measure the depth at one location, and when the vertical spread is wide, the depth is measured at a plurality of locations. In addition, it is only necessary to measure an arbitrary location in the lateral direction. If the lateral spread is narrow, it is sufficient to measure at one depth, and if the lateral spread is wide, measure at multiple depths. To do.
Moreover, it is preferable to measure the amount of water regularly until the purification is completed, and it is sufficient to perform the measurement once a day.

汚染土壌の水分量の管理は以下のようにして行う。
まず、予め水または活性剤水溶液を供給する前の汚染土壌の含水量と圃場容水量を測定しておく。そして、この圃場容水量の値を基準にして水分量の管理設定値を定め、水または活性剤水溶液を供給した後の汚染土壌の水分量を測定し、管理する。具体的には、供給前後における汚染土壌の水分量の差が管理設定値の範囲内であれば適正であると判断する。また、水分量が管理設定値より多ければ過剰と判断し、逆に少なければ不足と判断する。
管理設定値は、圃場容水量の0.15〜1.00倍とするのが好ましい。
The water content of the contaminated soil is managed as follows.
First, the water content of the contaminated soil and the field water volume before supplying water or an aqueous activator solution are measured in advance. Then, a management setting value of the moisture content is determined based on the value of the field water capacity, and the moisture content of the contaminated soil after the supply of the water or the aqueous activator solution is measured and managed. Specifically, if the difference in moisture content of the contaminated soil before and after the supply is within the range of the management set value, it is determined to be appropriate. Further, if the amount of water is greater than the management set value, it is determined that the amount is excessive, and conversely if it is less, it is determined that the amount is insufficient.
The management set value is preferably 0.15 to 1.00 times the field capacity.

ここで、「圃場容水量」とは、多量の降雨または潅水の後、重力によって余分な水が下に排水され、排水速度が蒸発速度と同程度に小さくなったときの、土壌の含水量のことである。つまり、降雨などの後、排水が殆ど終了し、表面蒸発を防いでおくと土壌の水分量は一定になる。この一定の水分量が圃場容水量である。   Here, “field water capacity” means the water content of the soil when excess water is drained down by gravity after a large amount of rainfall or irrigation, and the drainage rate becomes as low as the evaporation rate. That is. In other words, after raining, drainage is almost finished, and if the surface evaporation is prevented, the amount of water in the soil becomes constant. This constant amount of water is the field capacity.

汚染土壌の水分量を測定し、適正または過剰と判断した場合は、それ以降の測定において不足と判断するまで水または活性剤水溶液の供給は行わない。
一方、不足と判断した場合は、汚染土壌の水分量が適正値になるまで水または活性剤水溶液を供給する。
If the moisture content of the contaminated soil is measured and determined to be appropriate or excessive, water or an aqueous activator solution will not be supplied until it is determined to be insufficient in subsequent measurements.
On the other hand, if it is determined that the amount is insufficient, water or an aqueous activator solution is supplied until the moisture content of the contaminated soil reaches an appropriate value.

なお、活性剤水溶液を供給する場合、水分は表層に供給された活性剤水溶液が浸透することで汚染土壌に供給されるので、汚染土壌の水分量を測定することにより、汚染土壌への活性剤の到達の程度も確認できる。すなわち、ある深度において供給前後で汚染土壌の水分量が増えれば、活性剤がその地点まで到達したことを意味し、水分量に変化がなければ(水分量の差が0の場合)、活性剤がその地点まで到達していないことを意味する。
従って、汚染土壌の水分量を測定し不足と判断したときに、供給前後における水分量の差が0の場合は、活性剤がその地点まで到達していないので活性剤水溶液を供給する。水分量の差が0でない場合は、活性剤水溶液を供給してもよいが、活性剤は汚染土壌まで到達しているので、水のみを供給してもよい。
In addition, when supplying an activator aqueous solution, moisture is supplied to the contaminated soil by permeation of the activator aqueous solution supplied to the surface layer. Therefore, by measuring the amount of water in the contaminated soil, the activator to the contaminated soil is measured. The degree of reach of can also be confirmed. That is, if the moisture content of the contaminated soil increases before and after supply at a certain depth, it means that the activator has reached that point, and if there is no change in the moisture content (if the moisture content difference is 0), the activator Does not reach that point.
Therefore, when the moisture content of the contaminated soil is measured and determined to be insufficient, if the difference in moisture content before and after the supply is 0, the activator aqueous solution is supplied because the activator has not reached that point. When the difference in water content is not 0, an aqueous activator solution may be supplied. However, since the active agent has reached the contaminated soil, only water may be supplied.

このように汚染土壌の水分量を管理することで、生物処理による浄化に重要とされる水分を一定の範囲でコントロールでき、汚染土壌中の水分を適正量に維持できる。また、活性剤水溶液を供給する場合は活性剤の到達の程度も確認できる。よって、汚染土壌の浄化を円滑に進行できる。
また、事前に管理設定値を決めておくので、水や活性剤水溶液の供給量の目安になる。従って、水や活性剤水溶液の過剰な供給を防ぐことができ、水や活性剤水溶液が不飽和帯に留まらず飽和帯まで浸透するのを抑制できる。よって、分解前の汚染物質が飽和帯へ流出するのを防止できる。
By controlling the amount of water in the contaminated soil in this way, the water important for purification by biological treatment can be controlled within a certain range, and the water in the contaminated soil can be maintained at an appropriate amount. Moreover, when the activator aqueous solution is supplied, the degree of reach of the activator can also be confirmed. Therefore, purification of contaminated soil can proceed smoothly.
Moreover, since the management set value is determined in advance, it becomes a standard of the supply amount of water and the aqueous solution of the activator. Accordingly, it is possible to prevent excessive supply of water and the aqueous solution of the activator, and to suppress the penetration of the water and the aqueous solution of the activator into the saturated zone without remaining in the unsaturated zone. Therefore, it is possible to prevent the contaminant before decomposition from flowing into the saturation zone.

ところで、微生物の活性は、水や活性剤水溶液が浸透した部分から促進されるので、深度の浅い部分から汚染土壌の浄化は進行する。従って、浸透速度にもよるが、汚染濃度が高い場所では、深度の浅い部分において水や活性剤水溶液が消費されやすく、深度が深くなるに連れて水や活性剤水溶液が到達しにくくなる傾向にある。
しかし、本発明であれば、任意の深度における汚染土壌の水分量を測定することで、水や活性剤水溶液の到達の程度を確認できる。水や活性剤水溶液が到達していなかったり、水分が不足していたりする場合は、水や活性剤水溶液を再度供給すればよく、供給を再度行うか否か、容易に判断できる。また、2回目以降に供給する場合の供給量や活性剤水溶液の濃度も決定しやすい。従って、本発明であれば、汚染領域内において汚染濃度にムラがある場合でも、供給場所の汚染状態に応じて水や活性剤水溶液の供給を調整できるので、汚染濃度に関係なく汚染土壌を十分に浄化できる。
By the way, since the activity of microorganisms is promoted from a portion where water or an aqueous solution of an activator has permeated, purification of contaminated soil proceeds from a shallow portion. Therefore, depending on the permeation speed, water and active agent aqueous solution are likely to be consumed at shallow depths in places where the concentration of contamination is high, and water and active agent aqueous solution tend not to reach as the depth increases. is there.
However, if it is this invention, the extent of arrival of water and aqueous solution of an activator can be confirmed by measuring the water content of the contaminated soil at an arbitrary depth. If the water or the aqueous activator solution has not reached or the water content is insufficient, the water or the aqueous activator solution may be supplied again, and it can be easily determined whether the supply is performed again. In addition, it is easy to determine the supply amount and the concentration of the active agent aqueous solution in the case of supplying from the second time. Therefore, according to the present invention, even if the concentration of contamination is uneven in the contaminated area, the supply of water and the aqueous solution of the activator can be adjusted according to the state of contamination at the supply location. Can be purified.

なお、事前に各場所の汚染濃度が分かっていれば、供給場所に応じて供給量や活性剤水溶液の濃度を調整することもできる。
汚染領域が広範囲に及ぶため各場所での汚染濃度を把握するのが困難な場合は、供給量や活性剤水溶液の濃度を減らして供給した後、任意の深度における汚染土壌の水分量を測定し、不足と判断された場所のみ、水または活性剤水溶液を再度供給すればよい。
If the contamination concentration at each location is known in advance, the supply amount and the concentration of the aqueous activator solution can be adjusted according to the supply location.
If it is difficult to determine the concentration of contamination at each location because the contaminated area covers a wide area, reduce the supply amount and concentration of the active agent aqueous solution, and then measure the moisture content of the contaminated soil at an arbitrary depth. It is only necessary to supply water or the aqueous solution of the activator again only to the place judged to be insufficient.

本発明の浄化方法では、例えば図1に示すように、汚染土壌またはその近傍に達する注入井戸20を設け、該注入井戸20から空気の注入を行うことが好ましい。また、汚染土壌またはその近傍に達する吸引井戸30を設け、該吸引井戸30から吸引を行うことが好ましい。   In the purification method of the present invention, for example, as shown in FIG. 1, it is preferable to provide an injection well 20 reaching the contaminated soil or the vicinity thereof and inject air from the injection well 20. Further, it is preferable to provide a suction well 30 reaching the contaminated soil or the vicinity thereof and perform suction from the suction well 30.

注入井戸20、および吸引井戸30としては、汚染土壌の位置に相当する部分がスクリーン加工されたスクリーン井戸などが挙げられる。
注入井戸20、および吸引井戸30は、汚染土壌Xの広がりなどに応じて、それぞれ1本または複数本掘削される。
Examples of the injection well 20 and the suction well 30 include a screen well in which a portion corresponding to the position of contaminated soil is screened.
One or a plurality of the injection wells 20 and the suction wells 30 are excavated according to the spread of the contaminated soil X or the like.

注入井戸20には、注入井戸20を介して汚染土壌に空気を送り込むブロワ21が連結されている。
一方、吸引井戸30には、吸引井戸30を介して汚染土壌から空気や、気体状の汚染物質の分解物などを吸引するブロワ31が連結されている。
ブロワ21、31としては、バイオスパージングに用いられる公知のブロワを使用できる。
A blower 21 for sending air to the contaminated soil through the injection well 20 is connected to the injection well 20.
On the other hand, the suction well 30 is connected to a blower 31 for sucking air, decomposition products of gaseous pollutants, and the like from the contaminated soil through the suction well 30.
As the blowers 21 and 31, known blowers used for bio sparging can be used.

上述したように、土壌の浄化に使用する微生物は好気性でもよいし、嫌気性でもよいが、微生物が好気性の場合は、注入井戸10から汚染土壌へ空気の注入を行うことで微生物がより活性化され、汚染土壌の浄化がより進行しやすくなる。
なお、汚染土壌の表層が通気性のよい場所であれば、注入井戸20を用いて空気の注入を行わなくても、自然に空気が汚染土壌に供給されるので微生物は活性化されるが、注入井戸20から積極的に空気を注入すれば、より効果的に微生物を活性化できる。
As described above, the microorganisms used for soil purification may be aerobic or anaerobic, but when the microorganisms are aerobic, the microorganisms are more injected by injecting air from the injection well 10 into the contaminated soil. It becomes activated and the purification of the contaminated soil becomes easier to proceed.
In addition, if the surface layer of the contaminated soil is a place with good ventilation, the microorganisms are activated because air is naturally supplied to the contaminated soil without injecting air using the injection well 20. If air is actively injected from the injection well 20, microorganisms can be activated more effectively.

ところで、微生物が好気性の場合、生物処理によって汚染物質が分解され汚染土壌が浄化されると、汚染物質の種類にもよるが、分解物としてシアン化水素など人体に影響を及ぼすガスが発生する場合がある。このような場合には、吸引井戸30を介して汚染土壌から空気や汚染物質の分解物であるガスを吸引することで、汚染土壌の浄化によって発生したガスが地表へ拡散するのを抑制できる。   By the way, when microorganisms are aerobic, when pollutants are decomposed by biological treatment and contaminated soil is purified, depending on the type of pollutants, gases that affect the human body such as hydrogen cyanide may be generated as decomposition products. is there. In such a case, it is possible to suppress the diffusion of the gas generated by the purification of the contaminated soil to the ground surface by sucking air or a gas that is a decomposition product of the contaminant from the contaminated soil through the suction well 30.

注入井戸20からの吸引および吸引井戸30からの吸引は、同時に行ってもよいし、交互に行ってもよいし、いずれか一方のみを行ってもよい。ただし、シアン化水素などのガスが発生する場合には、少なくとも吸引井戸30からの吸引を行うのが好ましい。   The suction from the injection well 20 and the suction from the suction well 30 may be performed simultaneously, may be performed alternately, or only one of them may be performed. However, when a gas such as hydrogen cyanide is generated, it is preferable to perform at least suction from the suction well 30.

なお、注入井戸20は空気の注入、吸引井戸30は空気やガスの吸引を目的として設けられる。空気やガスなどの気体は液体に比べて拡散範囲が広い。従って、従来のように井戸から活性剤水溶液を汚染土壌に注入する場合に比べて井戸の設置数が少なくて済むので、施工費用はかかりにくい。   The injection well 20 is provided for the purpose of air injection, and the suction well 30 is provided for the purpose of air or gas suction. Gases such as air and gas have a wider diffusion range than liquids. Therefore, since the number of wells to be installed is small as compared with the case where the aqueous activator solution is injected from the well into the contaminated soil as in the prior art, the construction cost is less likely to be required.

以上説明したように、本発明の浄化方法によれば、汚染土壌の表層に供給した水や活性剤水溶液を浸透によって汚染土壌中にまで供給するので、広範囲に水や活性剤水溶液を行渡らせることができる。従って、汚染領域が広範囲に及ぶ場合にも容易に対応でき、井戸からの注入方式に比べて不飽和帯の汚染土壌を低コストで十分に原位置浄化できる。
また、汚染土壌の水分量を測定し管理することで、生物処理による浄化に重要とされる水分を一定の範囲でコントロールでき、汚染土壌中の水分を適正量に維持できる。また、活性剤水溶液を供給する場合は活性剤の到達の程度も確認できる。従って、水や活性剤水溶液の過剰な供給を防ぐことができ、分解前の汚染物質の流出を抑制できる。加えて、汚染領域内において汚染濃度にムラがある場合でも、供給場所の汚染状態に応じて水活や活性剤水溶液の供給を調整できるので、汚染濃度に関係なく汚染土壌を十分に浄化できる。
As described above, according to the purification method of the present invention, the water and the active agent aqueous solution supplied to the surface layer of the contaminated soil are supplied to the contaminated soil by infiltration, so that the water and the active agent aqueous solution are widely distributed. be able to. Therefore, it is possible to easily cope with a wide range of contaminated areas, and it is possible to sufficiently clean in situ the contaminated soil in the unsaturated zone at a lower cost than the injection method from the well.
In addition, by measuring and managing the amount of water in the contaminated soil, the water important for purification by biological treatment can be controlled within a certain range, and the water in the contaminated soil can be maintained at an appropriate amount. Moreover, when the activator aqueous solution is supplied, the degree of reach of the activator can also be confirmed. Accordingly, it is possible to prevent excessive supply of water or an aqueous solution of the activator, and to suppress the outflow of contaminants before decomposition. In addition, even when the concentration of contamination is uneven in the contaminated area, the water activity and the supply of the aqueous solution of the activator can be adjusted according to the state of contamination at the supply location, so that the contaminated soil can be sufficiently purified regardless of the concentration of contamination.

また、本発明においては、汚染土壌の表層に透水性の盛土やアスファルトを施工してから、水または活性剤水溶液を供給してもよい。供給前に施工を行えば、公園、グランド、駐車場などの土地を二次利用しながら原位置浄化できる。
また、アスファルトなどを施工した後で汚染土壌が確認された場合であっても、アスファルトなどが透水性であれば、その上から水または活性剤水溶液を供給すれば、水または活性剤水溶液は自然流下により汚染土壌中に浸透する。従って、改めて水や活性剤水溶液を供給するための井戸を掘削する必要がないので、低コストで原位置浄化できる。
Moreover, in this invention, after constructing a water-permeable embankment and asphalt in the surface layer of contaminated soil, you may supply water or aqueous activator solution. If construction is carried out before supply, in-situ purification can be performed while secondary use of land such as parks, grounds, and parking lots.
Also, even if contaminated soil is confirmed after construction of asphalt, etc., if the asphalt is permeable, water or an aqueous solution of the activator is natural if water or an activator aqueous solution is supplied from above. It penetrates into contaminated soil by flowing down. Therefore, it is not necessary to excavate a well for supplying water or an activator aqueous solution, so that in-situ purification can be performed at low cost.

以下、本発明について実施例を挙げて具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

[評価用土壌の作製]
シアン化合物により汚染された汚染土壌を掘り出した。掘り出した汚染土壌の遊離シアン含有量(F−CN含有量)を測定したところ、20mg/kgであった。
ついで、汚染土壌中のシアン濃度を均一にするために汚染土壌を十分に混練し、これを評価用土壌とした。
なお、土壌のF−CN含有量は、平成15年3月環境省告示第19号「土壌含有量調査に係る測定方法を定める件」に準拠して測定した。
[Production of soil for evaluation]
The soil contaminated with cyanide was excavated. It was 20 mg / kg when the free cyan content (F-CN content) of the excavated contaminated soil was measured.
Subsequently, the contaminated soil was sufficiently kneaded to make the cyan concentration in the contaminated soil uniform, and this was used as evaluation soil.
In addition, F-CN content of soil was measured based on March, 2003 Ministry of the Environment Notification No. 19 “Matters for Measuring Soil Content Survey”.

[活性剤水溶液の調製]
以下に示す2種類の活性剤水溶液A、Bを調製した。
なお、汚染物質分解微生物用の活性剤として用いた下記の混合物A、Bの使用量は、その合計が評価用土壌1kgに対して0.8kgに相当する量である。また、質量比(混合物A:混合物B)が1:5になるように、混合物A、Bの使用量を決定した。
[Preparation of aqueous activator solution]
Two types of aqueous activator solutions A and B shown below were prepared.
In addition, the usage-amount of the following mixture A and B used as an activator for pollutant-degrading microorganisms is the quantity which the sum corresponds to 0.8 kg with respect to 1 kg of soil for evaluation. Moreover, the usage-amount of the mixture A and B was determined so that mass ratio (mixture A: mixture B) might be set to 1: 5.

<活性剤水溶液A>
活性剤として、アミノ酸と炭水化物の混合物A(新日鉄エンジニアリング株式会社製、「NSバイオアクティ−CN1」)0.2gを50倍に希釈し、10mLの活性剤水溶液Aを調製した。
<Activator aqueous solution A>
As an activator, 0.2 g of a mixture A of amino acid and carbohydrate (manufactured by Nippon Steel Engineering Co., Ltd., “NS Bioacty-CN1”) was diluted 50 times to prepare 10 mL of an aqueous activator solution A.

<活性剤水溶液B>
活性剤として、アミノ酸と炭水化物の混合物B(新日鉄エンジニアリング株式会社製、「NSバイオアクティ−CN2」)1.0gを50倍に希釈し、10mLの活性剤水溶液Bを調製した。
<Activator aqueous solution B>
As an activator, 1.0 g of a mixture B of amino acid and carbohydrate B (manufactured by Nippon Steel Engineering Co., Ltd., “NS Bioacty-CN2”) was diluted 50 times to prepare 10 mL of an activator aqueous solution B.

[実施例1]
<カラム試料の作製>
カラム試料の作製には、図2に示すカラム41を用いた。
カラム41は、上部41aの直径dが26cm、底部41bの直径dが22.5cm、高さhが25.5cmであり、上部41aは解放状態となっている。また、底部41bは図2に示すように上げ底状のメッシュ構造(目開き1mm)になっており、通気および通水が可能となっている。
このカラム41に、底部41bから高さhが約6cmの位置まで玉砂利を充填しこれを支持層42とした。この支持層42上に、嵩比重が1.5〜2.0kg/Lの範囲内になるように、高さhが約15cm(充填容積6.7Lに相当)の評価用土壌43を充填し、カラム試料40を作製した。
カラム41に充填した評価用土壌43の質量を測定し、下記式(1)から嵩比重を求めた。結果を表1に示す。
嵩比重[kg/L]=カラムに充填した評価用土壌の質量/充填容積 ・・・(1)
[Example 1]
<Preparation of column sample>
The column 41 shown in FIG. 2 was used for preparation of the column sample.
Column 41, the diameter d 1 of the upper 41a is 26cm, the diameter d 2 of the bottom portion 41b 22.5cm, the height h 1 is 25.5cm, the upper 41a has a released state. Further, as shown in FIG. 2, the bottom 41b has a raised bottom mesh structure (aperture 1 mm), which allows ventilation and water flow.
This column 41 was filled with gravel from the bottom 41 b to a position where the height h 2 was about 6 cm, and this was used as the support layer 42. On the support layer 42 filled, as the bulk specific gravity is within a range of 1.5~2.0kg / L, the evaluation soil 43 in the height h 3 is approximately 15cm (corresponding to the filling volume 6.7 L) Thus, a column sample 40 was produced.
The mass of the soil for evaluation 43 packed in the column 41 was measured, and the bulk specific gravity was determined from the following formula (1). The results are shown in Table 1.
Bulk specific gravity [kg / L] = mass of the soil for evaluation packed in the column / packing volume (1)

得られたカラム試料40について、評価用土壌の圃場容水量を以下の手順で測定した。
まず、カラム試料40の質量を測定した。ついで、水を張ったバケツ内にカラム試料40を24時間浸漬して、評価用土壌43を水で飽和させた。その後、カラム試料40をバケツから揚げて24時間自然排水した。自然排水後のカラム試料40の質量を測定し、下記式(2)より圃場容水量を求めた。結果を表1に示す。
圃場容水量[kg]=自然排水後のカラム試料40の質量−飽和前のカラム試料40の質量 ・・・(2)
About the obtained column sample 40, the field capacity of the soil for evaluation was measured in the following procedures.
First, the mass of the column sample 40 was measured. Subsequently, the column sample 40 was immersed in a bucket filled with water for 24 hours to saturate the evaluation soil 43 with water. Thereafter, the column sample 40 was lifted from the bucket and naturally drained for 24 hours. The mass of the column sample 40 after natural drainage was measured, and the field capacity was determined from the following formula (2). The results are shown in Table 1.
Field capacity [kg] = mass of column sample 40 after natural drainage−mass of column sample 40 before saturation (2)

また、自然排水後のカラム試料40について、評価用土壌の水分量をpF計(大起理化工業株式会社製、「DIKI−8343」)、および土壌水分センサー(デカゴン社製、「エコチック・ECH2Oプローブ EC−5」)を用いて測定し、質量測定によって求めた圃場容水量との相関関係を確認した。   Moreover, about the column sample 40 after natural drainage, the moisture content of the soil for evaluation is made into a pF meter (made by Dairika Chemical Co., Ltd., “DIKI-8343”), and a soil moisture sensor (made by Decagon Co., Ltd., “Ecotic ECH2O probe”). EC-5 "), and the correlation with the field water volume determined by mass measurement was confirmed.

<浄化試験>
浄化試験を行うに際して、評価用土壌の水分量の管理設定値を「圃場容水量×1.0」、試験期間を1ヶ月に設定し、以下のようにして浄化試験を行った。
なお、評価用土壌の浄化は、汚染土壌にもとから生息する微生物を利用したバイオスティミュレーションを採用した。また、カラム41の底部41bはメッシュ構造であり通気が可能であるため、評価用土壌には常に空気が供給される。従って、浄化試験はバイオスパージングと同等とみなす。
<Purification test>
In conducting the purification test, the management setting value of the water content of the soil for evaluation was set to “field water volume × 1.0”, the test period was set to 1 month, and the purification test was conducted as follows.
For the purification of the soil for evaluation, biostimulation using microorganisms that originally inhabit the contaminated soil was adopted. In addition, since the bottom 41b of the column 41 has a mesh structure and can be ventilated, air is always supplied to the evaluation soil. Therefore, the purification test is considered equivalent to biosparging.

カラム試料40について、圃場容水量を測定した後、養生して管理設定値になった時点で評価用土壌43の表面に活性剤水溶液A(50mL)を供給した。
活性剤水溶液Aの供給から1週間経過した後、評価用土壌43の表面に活性剤水溶液B(250mL)を供給した。
活性剤水溶液Aの供給から1ヶ月経過した後にカラム41を解体し、評価用土壌のF−CN含有量を測定した。なお、カラム41に充填する前に評価用土壌のF−CN含有量を予め測定しておき、下記式(3)より浄化率を求めた。結果を表1に示す。
浄化率[%]={(浄化試験前のF−CN含有量)−(浄化試験前のF−CN含有量)}/(浄化試験前のF−CN含有量)×100 ・・・(3)
For the column sample 40, the field water volume was measured, and after curing and reaching the management set value, the aqueous activator solution A (50 mL) was supplied to the surface of the soil 43 for evaluation.
After one week from the supply of the activator aqueous solution A, the activator aqueous solution B (250 mL) was supplied to the surface of the soil 43 for evaluation.
After one month from the supply of the aqueous activator solution A, the column 41 was disassembled, and the F-CN content of the evaluation soil was measured. In addition, before filling the column 41, F-CN content of the soil for evaluation was measured beforehand, and the purification rate was calculated | required from following formula (3). The results are shown in Table 1.
Purification rate [%] = {(F-CN content before purification test) − (F-CN content before purification test)} / (F-CN content before purification test) × 100 (3 )

また、浄化試験中(活性剤水溶液Aを供給してから1ヶ月)は1日に1回、カラム試料40の質量を測定し、この測定値から圃場容水量を測定したときに求めた「飽和前のカラム試料40の質量」を差し引いて、これを評価用土壌の水分量とした。そして、この質量測定によって求めた水分量の値が、先に設定した管理設定値から乖離25%以上の場合、水分量が不足と判断し、管理設定値となるように評価用土壌43の表面に水を供給することで水分管理を行った。
また、評価用土壌の水分量を測定するのに併せて、pF計および土壌水分センサーでも水分量を測定し、質量測定によって求めた水分量との相関関係を確認した。
In addition, during the purification test (one month after supplying the activator aqueous solution A), the mass of the column sample 40 was measured once a day, and the “saturation” obtained when the field capacity was measured from the measured value. The “mass of the previous column sample 40” was subtracted and used as the moisture content of the soil for evaluation. And when the value of the water content obtained by this mass measurement is 25% or more of the deviation from the previously set management setting value, it is determined that the water content is insufficient and the surface of the soil 43 for evaluation is set to the management setting value. Water was controlled by supplying water to the water.
In addition to measuring the moisture content of the soil for evaluation, the moisture content was also measured using a pF meter and a soil moisture sensor, and the correlation with the moisture content determined by mass measurement was confirmed.

[実施例2、3]
実施例1と同様にしてカラム試料を作製し、各カラム試料について圃場容水量を測定した。結果を表1に示す。
評価用土壌の水分量の管理設定値を表1に示す値に変更した以外は、実施例1と同様にして浄化試験を行った。結果を表1に示す。
[Examples 2 and 3]
Column samples were prepared in the same manner as in Example 1, and the field water capacity was measured for each column sample. The results are shown in Table 1.
A purification test was conducted in the same manner as in Example 1 except that the management set value of the moisture content of the soil for evaluation was changed to the value shown in Table 1. The results are shown in Table 1.

[比較例1]
実施例1と同様にしてカラム試料を作製し、各カラム試料について圃場容水量を測定した。結果を表1に示す。
評価用土壌の水分量の管理設定値を表1に示す値に変更し、かつ活性剤水溶液A、Bを供給しなかった以外は、実施例1と同様にして浄化試験を行った。結果を表1に示す。
[Comparative Example 1]
Column samples were prepared in the same manner as in Example 1, and the field water capacity was measured for each column sample. The results are shown in Table 1.
A purification test was conducted in the same manner as in Example 1 except that the management set value of the water content of the soil for evaluation was changed to the value shown in Table 1 and the aqueous activator solutions A and B were not supplied. The results are shown in Table 1.

[比較例2]
実施例1と同様にしてカラム試料を作製し、各カラム試料について圃場容水量を測定した。結果を表1に示す。
評価用土壌の水分量の管理設定値を表1に示す値に変更し、かつ水分管理を行わなかった以外は、実施例1と同様にして浄化試験を行った。結果を表1に示す。
[Comparative Example 2]
Column samples were prepared in the same manner as in Example 1, and the field water capacity was measured for each column sample. The results are shown in Table 1.
A purification test was performed in the same manner as in Example 1 except that the management set value of the moisture content of the soil for evaluation was changed to the value shown in Table 1 and the moisture management was not performed. The results are shown in Table 1.

Figure 2012121013
Figure 2012121013

表1から明らかなように、各実施例の場合、浄化試験終了後の評価用土壌のF−CN含有量が浄化試験前に比べて著しく減少し、汚染土壌を十分に浄化できた。
実施例1〜3のうち、最も浄化率の値が高く浄化に優れていたのは、評価用土壌中の水分を圃場容水量75%で管理し、活性剤を添加した実施例2であった。
As is clear from Table 1, in each example, the F-CN content in the evaluation soil after the completion of the purification test was significantly reduced compared to that before the purification test, and the contaminated soil was sufficiently purified.
Among Examples 1 to 3, the value of the purification rate was the highest and excellent in purification was Example 2 in which water in the evaluation soil was controlled at a field water volume of 75% and an activator was added. .

ところで、実際に汚染土壌の浄化を行う現場では、pF計および土壌水分センサーなどの水分計を用いて汚染土壌の水分量を測定する。
しかし、本実施例では、より正確に測定できる観点で、質量測定によって評価用土壌の水分量を測定した。そこで、評価用土壌の水分量を測定するのに併せて、pF計および土壌水分センサーでも水分量を測定し、質量測定によって求めた水分量との相関関係を確認したところ、これらは常に一定の関係にあることが確認された。従って、質量測定によって水分量を求める方法は、水分計を用いて水分量を求める方法の代替として用いても、何ら支障がない。
By the way, in the field where the contaminated soil is actually purified, the moisture content of the contaminated soil is measured using a moisture meter such as a pF meter and a soil moisture sensor.
However, in this example, the moisture content of the soil for evaluation was measured by mass measurement from the viewpoint of being able to measure more accurately. Therefore, in addition to measuring the moisture content of the soil for evaluation, the moisture content was also measured with a pF meter and a soil moisture sensor, and the correlation with the moisture content determined by mass measurement was confirmed. The relationship was confirmed. Therefore, there is no problem even if the method for obtaining the moisture content by mass measurement is used as an alternative to the method for obtaining the moisture content using a moisture meter.

一方、活性剤水溶液を供給しなかった比較例1の場合、浄化試験による評価用土壌の浄化率は52.9%と低かった。すなわち、比較例1では汚染土壌が十分に浄化されなかった。
水分管理を行わなかった比較例2の場合、比較例1に比べると浄化率は上がったが、水分管理以外の浄化試験の条件が同じである実施例2と比べると浄化率は低かった。
On the other hand, in the case of the comparative example 1 which did not supply activator aqueous solution, the purification rate of the soil for evaluation by a purification test was as low as 52.9%. That is, in Comparative Example 1, the contaminated soil was not sufficiently purified.
In the case of Comparative Example 2 in which moisture management was not performed, the purification rate was higher than that in Comparative Example 1, but the purification rate was lower than that in Example 2 where the conditions of the purification test other than moisture management were the same.

10:散水車、20:注入井戸、21:ブロワ、30:吸引井戸、31:ブロワ、40:カラム試料、41:カラム、42:支持層、43:評価用土壌、A:表層、B:不飽和帯、C:飽和帯、X:汚染土壌。   10: Watering wheel, 20: Injection well, 21: Blower, 30: Suction well, 31: Blower, 40: Column sample, 41: Column, 42: Support layer, 43: Soil for evaluation, A: Surface layer, B: Not used Saturated zone, C: saturated zone, X: contaminated soil.

Claims (3)

汚染物質により汚染された不飽和帯の土壌の表層に、水または汚染物質分解微生物用の活性剤を含む水溶液を供給し、自然流下により汚染土壌中に浸透させて、汚染土壌を生物処理により原位置浄化する方法であって、
不飽和帯の任意の深度における汚染土壌の水分量を水分計により測定し、汚染土壌の水分量を管理することを特徴とする汚染土壌の原位置浄化方法。
Water or an aqueous solution containing an activator for pollutant-degrading microorganisms is supplied to the surface layer of unsaturated soil contaminated with pollutants, and the soil is infiltrated into the contaminated soil by natural flow. A method for position purification,
An in-situ purification method for contaminated soil, characterized in that the moisture content of the contaminated soil at an arbitrary depth in the unsaturated zone is measured with a moisture meter and the moisture content of the contaminated soil is managed.
汚染土壌またはその近傍に達する注入井戸を設け、該注入井戸から空気の注入を行うことを特徴とする請求項1に記載の汚染土壌の原位置浄化方法。   2. The in-situ purification method for contaminated soil according to claim 1, wherein an injection well reaching or near the contaminated soil is provided, and air is injected from the injection well. 汚染土壌またはその近傍に達する吸引井戸を設け、該吸引井戸から吸引を行うことを特徴とする請求項1または2に記載の汚染土壌の原位置浄化方法。   The in-situ purification method for contaminated soil according to claim 1 or 2, wherein a suction well reaching or near the contaminated soil is provided, and suction is performed from the suction well.
JP2010276214A 2010-12-10 2010-12-10 In-situ purification method for contaminated soil Active JP5779346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276214A JP5779346B2 (en) 2010-12-10 2010-12-10 In-situ purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276214A JP5779346B2 (en) 2010-12-10 2010-12-10 In-situ purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2012121013A true JP2012121013A (en) 2012-06-28
JP5779346B2 JP5779346B2 (en) 2015-09-16

Family

ID=46503053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276214A Active JP5779346B2 (en) 2010-12-10 2010-12-10 In-situ purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP5779346B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075527A (en) * 2016-11-09 2018-05-17 株式会社竹中工務店 Soil purification system
CN111558614A (en) * 2020-05-09 2020-08-21 周尚生 Cultivated land restoration device based on microorganism restoration principle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628364A (en) * 1995-12-04 1997-05-13 Terrane Remediation, Inc. Control system for governing in-situ removal of subterranean hydrocarbon-based fluids
JPH09276839A (en) * 1996-04-12 1997-10-28 Canon Inc Purification of contaminated soil
JP2009154152A (en) * 2007-12-07 2009-07-16 Kurita Water Ind Ltd Method for clarifying contaminated soil or ground water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5628364A (en) * 1995-12-04 1997-05-13 Terrane Remediation, Inc. Control system for governing in-situ removal of subterranean hydrocarbon-based fluids
JPH09276839A (en) * 1996-04-12 1997-10-28 Canon Inc Purification of contaminated soil
JP2009154152A (en) * 2007-12-07 2009-07-16 Kurita Water Ind Ltd Method for clarifying contaminated soil or ground water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018075527A (en) * 2016-11-09 2018-05-17 株式会社竹中工務店 Soil purification system
CN111558614A (en) * 2020-05-09 2020-08-21 周尚生 Cultivated land restoration device based on microorganism restoration principle

Also Published As

Publication number Publication date
JP5779346B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
Gibert et al. Performance of a field-scale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater
US7264419B2 (en) System and method for remediating contaminated soil and groundwater in situ
EP1166904B1 (en) Method for detoxification treatment of soil
KR20070118380A (en) Deep-site biopile system of soils and groundwater contaminated by petrobleum and organic matter using horizontal pipe with controlling pressure
Pleasant et al. Evaluation of air sparging and vadose zone aeration for remediation of iron and manganese-impacted groundwater at a closed municipal landfill
CN108580533B (en) Method and structure for controlling pollution site risk by using humic acid
JP5779346B2 (en) In-situ purification method for contaminated soil
US6464005B1 (en) Remediation method
JP4281551B2 (en) Soil and groundwater contamination purification equipment and purification method
JP5569618B1 (en) In-situ purification method by multi-point injection
JP5405936B2 (en) Microbial purification method
Sethi et al. Remediation of contaminated groundwater
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
US20090232603A1 (en) In Situ Remediation Methods Using Electron Donors And Dispersant Gas
JP5053127B2 (en) Method for confirming suitability of microorganisms for contaminated soil
Abit et al. Fate of nitrate in the capillary fringe and shallow groundwater in a drained sandy soil
KR101994436B1 (en) Method of cleaning up soil contamination by oil and system of the same
Adam US EPA Contaminated Site Cleanup Information (CLU-IN)
Tindall et al. Part 1: Vadose-zone column studies of toluene (enhanced bioremediation) in a shallow unconfined aquifer
JP5686368B2 (en) Laminated soil purification method and system
JP6639947B2 (en) Aquifer purification method
KR100522141B1 (en) Apparatus And Method for Purifying Ground water and Porous Media
Ling et al. Long-term effectiveness and sustainability of EHC remediation in carbon tetrachloride-contaminated groundwater: Mechanistic understanding and practical applications
JP2005046658A (en) Soil purifying method and apparatus therefor
JP5374272B2 (en) Purification system and purification method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5779346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250