[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012113958A - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
JP2012113958A
JP2012113958A JP2010261798A JP2010261798A JP2012113958A JP 2012113958 A JP2012113958 A JP 2012113958A JP 2010261798 A JP2010261798 A JP 2010261798A JP 2010261798 A JP2010261798 A JP 2010261798A JP 2012113958 A JP2012113958 A JP 2012113958A
Authority
JP
Japan
Prior art keywords
light
chromaticity
solid
light emitting
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010261798A
Other languages
Japanese (ja)
Other versions
JP5654328B2 (en
Inventor
Takaaki Kataoka
高明 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010261798A priority Critical patent/JP5654328B2/en
Publication of JP2012113958A publication Critical patent/JP2012113958A/en
Application granted granted Critical
Publication of JP5654328B2 publication Critical patent/JP5654328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize natural light colors in a light-emitting device using solid light-emitting elements (LEDs), whose chromaticity conforms to a black body radiation track at each color temperature, even though color temperatures are variable.SOLUTION: A light-emitting device 1 comprises at least three LEDs 2 with different levels of chromaticity including one which emits light of chromaticity along a black body radiation track, a chromaticity setting unit 3 which sets a prescribed level of chromaticity between the lowest and the highest of color temperatures of the LEDs 2, and a control unit 4 which adjusts dimming of the optical output of the LEDs 2 to the level of chromaticity set by the chromaticity setting unit 3. The control unit 4, if there is any LED 2 whose chromaticity matches the set level of chromaticity, causes the LED 2 to light up, and, if there is no LED 2 whose chromaticity matches the set level of chromaticity, causes at least two LEDs 2 to light up, whose color temperatures respectively are close to the high and the low sides of color temperatures from the set level of chromaticity. Thus, it is possible to realize natural light colors whose chromaticity conforms to a black body radiation track at each color temperature, even though color temperatures are variable.

Description

本発明は、光源として複数の固体発光素子を用いた発光装置に関する。   The present invention relates to a light emitting device using a plurality of solid state light emitting elements as a light source.

発光ダイオード(以下、LED)は、低電力で高輝度の発光が可能であり、表示等や照明器具等の様々な電気機器の光源として使用されている。近年では、赤色LED及び緑色LEDに加えて、青色LEDが実用化され、これらRGB3色のLEDを組み合わせることにより、様々な光色を発光することができる。また、LEDの出射光の波長を変換する蛍光体を組み合わせることにより、出射光の色温度を任意に設定することができる。   Light emitting diodes (hereinafter referred to as LEDs) are capable of emitting light with low power and high luminance, and are used as light sources for various electric devices such as displays and lighting equipment. In recent years, blue LEDs have been put into practical use in addition to red LEDs and green LEDs, and various light colors can be emitted by combining these RGB three-color LEDs. Moreover, the color temperature of the emitted light can be arbitrarily set by combining phosphors that convert the wavelength of the emitted light of the LED.

この種のものとして、2種又は3種の異なる色温度を有する複数のLED群を備え、これらのLED群に供給される夫々の電流の比率を調整して、所定の色度の光を照射できるようにした発光装置が知られている(例えば、特許文献1参照)。   As this type, it has a plurality of LED groups having two or three different color temperatures, adjusts the ratio of each current supplied to these LED groups, and irradiates light of a predetermined chromaticity A light-emitting device that can be used is known (for example, see Patent Document 1).

また、色度図における黒体放射軌跡近傍の異なる位置の色温度を有するLED光源を備え、各光源から出射された光の加法混色により混色光の色温度を連続的に変えることを可能とした発光装置が知られている(例えば、特許文献2参照)。この特許文献2には、黒体放射軌跡上で色温度が異なる2つのLEDに加えて、黒体放射軌跡に対して偏差duvが正の方向にある色度のLEDを用いた構成が記載されている。   Also, LED light sources having different color temperatures in the vicinity of the black body radiation locus in the chromaticity diagram are provided, and the color temperature of the mixed color light can be continuously changed by additive color mixing of light emitted from each light source. A light emitting device is known (see, for example, Patent Document 2). This Patent Document 2 describes a configuration in which, in addition to two LEDs having different color temperatures on a black body radiation locus, LEDs having a chromaticity with a deviation duv in the positive direction with respect to the black body radiation locus. ing.

更に、各LEDの発光色の偏差duvを−0.02≦duv≦0.02の範囲内に収まるようにした発光装置が知られている(例えば、特許文献3参照)。この特許文献3には、黒体放射軌跡に対して偏差duvが+0.02の範囲であり、色温度の異なる2種類のLEDを用いた構成が記載されている。   Furthermore, a light-emitting device is known in which the deviation duv of the emission color of each LED falls within the range of −0.02 ≦ duv ≦ 0.02 (see, for example, Patent Document 3). This Patent Document 3 describes a configuration using two types of LEDs having a deviation duv in the range of +0.02 with respect to a black body radiation locus and different color temperatures.

特開2008−262823号公報JP 2008-262823 A 特開2009−123429号公報JP 2009-123429 A 特開2009−238729号公報JP 2009-238729 A

しかしながら、昼白色及び電球色といった色温度の離れた2色の光を混色させる場合、色度の可変範囲が黒体放射軌跡を大きく逸れ、自然な色合いの光を生成することが困難である。例えば、図11に示すように、5000Kの色温度を有するLED(a)と、2000Kの色温度を有するLED(b)を用いた発光装置においては、これら2色の出力割合を制御することによって、5000Kと2000Kの色度を直線で結んだ範囲で混色光の色度が変化する。一般に、白熱灯や太陽の光は、この黒体放射軌跡の色度曲線上で変化していくとされ、この黒体放射軌跡近傍での色度がもっとも自然で違和感のない光となることが知られている。ところが、上記の混色光は、色度の変化範囲が黒体放射軌跡から大きく逸脱しており、違和感のあるピンクがかった光色となることがある。   However, when two colors of light with different color temperatures, such as daylight white and light bulb color, are mixed, the variable range of chromaticity greatly deviates from the black body radiation locus, and it is difficult to generate light of a natural hue. For example, as shown in FIG. 11, in a light emitting device using an LED (a) having a color temperature of 5000K and an LED (b) having a color temperature of 2000K, the output ratio of these two colors is controlled. The chromaticity of the mixed color light changes within a range where the chromaticities of 5000K and 2000K are connected by a straight line. Generally, incandescent lamps and sunlight are said to change on the chromaticity curve of this blackbody radiation locus, and the chromaticity near this blackbody radiation locus may be the most natural and uncomfortable light. Are known. However, the above-mentioned mixed color light has a chromaticity change range greatly deviating from the black body radiation locus, and may become a pinkish light color with a sense of incongruity.

また、色温度の異なる複数のLEDは、夫々特性の異なる半導体であり、出力に応じてLED毎に発光色度がばらつくので、それらを組み込んだ装置毎に色温度を合わせ、その色温度を自然な発光色で可変とすることは難しい。ところが、上記特許文献1乃至特許文献3には、黒体放射軌跡に沿った自然な発光色を出射するために各LEDをどのように制御するかについて具体的に記載されていない。そのため、色温度によっては照射光の色度が黒体放射軌跡から逸れてしまい、自然な光色とならないことがありえる。   Also, multiple LEDs with different color temperatures are semiconductors with different characteristics, and the emission chromaticity varies from LED to LED depending on the output, so the color temperature is adjusted for each device that incorporates them, and the color temperature is naturally set. It is difficult to make it variable with various emission colors. However, Patent Documents 1 to 3 do not specifically describe how to control each LED in order to emit a natural emission color along the black body radiation locus. Therefore, depending on the color temperature, the chromaticity of the irradiation light may deviate from the black body radiation locus, and the natural light color may not be obtained.

本発明は、上記課題を解決するものであり、色温度を可変としながらも、各色温度における色度が黒体放射軌跡に沿った自然な光色を実現できる発光装置を提供することを目的とする。   An object of the present invention is to solve the above-described problems, and to provide a light emitting device capable of realizing a natural light color in which the chromaticity at each color temperature is along a black body radiation locus while the color temperature is variable. To do.

上記課題を解決するため、本発明に係る発光装置は、黒体放射軌跡上の色度の光を出射する固体発光素子を含む色度の異なる光を出射する少なくとも3つの固体発光素子と、前記固体発光素子が有する色温度のうち最も低い色温度と最も高い色温度との間において所定の色度を設定する色度設定部と、前記固体発光素子の光出力を、前記色度設定部によって設定された色度に調光制御する制御部と、を備え、前記制御部は、前記固体発光素子のうち前記設定された色度と一致する色度の光を出射する固体発光素子がある場合は、当該固体発光素子を発光させ、前記設定された色度と一致する色度の光を出射する固体発光素子がない場合は、前記設定された色度から見て色温度の高い側及び低い側に夫々近い色温度を有する少なくとも2つの固体発光素子を発光させることを特徴とする。   In order to solve the above problems, a light-emitting device according to the present invention includes at least three solid-state light-emitting elements that emit light having different chromaticities, including a solid-state light-emitting element that emits light having a chromaticity on a black body radiation locus, A chromaticity setting unit that sets a predetermined chromaticity between the lowest color temperature and the highest color temperature among the color temperatures of the solid state light emitting device, and the light output of the solid state light emitting device by the chromaticity setting unit A control unit that performs dimming control to a set chromaticity, and the control unit includes a solid-state light-emitting element that emits light having a chromaticity that matches the set chromaticity among the solid-state light-emitting elements. If there is no solid light-emitting element that emits light of the solid light-emitting element and emits light having a chromaticity that matches the set chromaticity, the color temperature is higher and lower when viewed from the set chromaticity. At least two solid colors with color temperatures close to each side And characterized in that the light emitting element.

上記発光装置において、前記固体発光素子のうち色温度が隣り合う固体発光素子の混色光の色度は、黒体放射軌跡からの偏差duvが夫々負の範囲になるよう設定されていることが好ましい。   In the light-emitting device, it is preferable that the chromaticity of the mixed light of the solid-state light-emitting elements having adjacent color temperatures among the solid-state light-emitting elements is set so that the deviation duv from the black body radiation locus is in a negative range. .

上記発光装置において、前記固体発光素子のうち色温度が隣り合う固体発光素子の混色光の色度は、黒体放射軌跡からの偏差duvが−0.02〜0の範囲になるよう設定されていることが好ましい。   In the light emitting device, the chromaticity of the mixed color light of the solid state light emitting elements having adjacent color temperatures among the solid state light emitting elements is set such that the deviation duv from the black body radiation locus is in the range of −0.02 to 0. Preferably it is.

上記発光装置において、前記固体発光素子は、1900〜3000Kの色温度を有する第1の固体発光素子と、5000K以上の色温度を有する第2の固体発光素子と、前記第1及び第2の固体発光素子の中間の色温度を有する第3の固体発光素子と、を含むことが好ましい。   In the light emitting device, the solid state light emitting element includes a first solid state light emitting element having a color temperature of 1900 to 3000K, a second solid state light emitting element having a color temperature of 5000K or more, and the first and second solid state elements. And a third solid state light emitting device having a color temperature intermediate that of the light emitting device.

上記発光装置において、前記固体発光素子は、発光部からの光を蛍光体又はフィルタを用いて波長変換した光を出射するものであることが好ましい。   In the light-emitting device, the solid-state light-emitting element preferably emits light obtained by wavelength-converting light from the light-emitting portion using a phosphor or a filter.

本発明によれば、色温度を可変としながらも、各色温度における色度が黒体放射軌跡に沿った自然な光色を実現できる。   According to the present invention, it is possible to realize a natural light color in which the chromaticity at each color temperature is along the black body radiation locus while the color temperature is variable.

本発明の一実施形態に係る発光装置の構成図。The block diagram of the light-emitting device which concerns on one Embodiment of this invention. (a)は同発光装置を組み込んだ照明器具の斜視図、(b)は同照明器具の分解斜視図、(c)は同発光装置に用いられる固体発光素子及び基板の上面図。(A) is a perspective view of a lighting fixture incorporating the light emitting device, (b) is an exploded perspective view of the lighting fixture, and (c) is a top view of a solid light emitting element and a substrate used in the light emitting device. 同発光装置に用いられる固体発光素子の色度を示す色度図。The chromaticity diagram which shows the chromaticity of the solid light emitting element used for the light-emitting device. 同固体発光素子の側断面図。The sectional side view of the solid light emitting element. 同発光装置における3つの固体発光素子の調光制御パターンを示す図。The figure which shows the light control pattern of three solid light emitting elements in the light-emitting device. 同発光装置の光色と光出力の変化を示す図。The figure which shows the change of the light color and light output of the light-emitting device. 同発光装置の光色と光出力の変化を示す図。The figure which shows the change of the light color and light output of the light-emitting device. 上記実施形態の変形例に係る発光装置に用いられる固体発光素子の色度を示す色度図。The chromaticity diagram which shows the chromaticity of the solid light emitting element used for the light-emitting device which concerns on the modification of the said embodiment. 別の変形例に係る発光装置に用いられる固体発光素子の色度を示す色度図。The chromaticity diagram which shows the chromaticity of the solid light emitting element used for the light-emitting device which concerns on another modification. 更に別の変形例に係る発光装置に用いられる固体発光素子の色度を示す色度図。Furthermore, the chromaticity diagram which shows the chromaticity of the solid light emitting element used for the light-emitting device which concerns on another modification. 従来の発光装置に用いられる固体発光素子の色度を示す色度図。The chromaticity diagram which shows the chromaticity of the solid light emitting element used for the conventional light-emitting device.

本発明の一実施形態に係る発光装置について、図1〜図7を参照して説明する。本実施形態の発光装置1は、図1に示されるように、光源である固体発光素子としての発光ダイオード(以下、LED)2と、所定の色度を設定する色度設定部3と、LED2の光出力を色度設定部3によって設定された色度に調整する制御部4と、を備える。本実施形態においては、LED2は、夫々色度の異なる光を出射するように構成された少なくとも3つ、ここでは3種のLED2a,2b,2cが用いられた構成を示す。また、これらLED2a,2b,2cは、この順に出射光の色温度が高いものとする。LED2a,2b,2cは、夫々複数個がパッケージとして基板5に実装される。なお、図例では、LED2a,2bが夫々6つ、LED2cが4つ用いられた構成を示すが、各LED2a,2b,2cの個数はこの例に限られず、また、4種以上のLED2が用いられてもよい。一般に、発光装置1の光出力が大きくなると、色温度もそれに応じて高くなるので、好ましくは、高い色温度のLED2aの個数が、低い色温度LED2cの個数よりも多く用いられる。基板5には、同種のLED2が1つのパッケージとして直列に接続されるように、配線回路51(図例では配線回路51a,51b,51c)が形成されている。   A light emitting device according to an embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the light-emitting device 1 of the present embodiment includes a light-emitting diode (hereinafter, LED) 2 as a solid-state light-emitting element that is a light source, a chromaticity setting unit 3 that sets a predetermined chromaticity, and an LED 2. And a control unit 4 that adjusts the light output to the chromaticity set by the chromaticity setting unit 3. In the present embodiment, the LED 2 has a configuration in which at least three, in this case, three types of LEDs 2a, 2b, and 2c, each configured to emit light having different chromaticities, are used. In addition, these LEDs 2a, 2b, and 2c have a higher color temperature of emitted light in this order. A plurality of LEDs 2a, 2b, and 2c are mounted on the substrate 5 as a package. In the example shown in the figure, six LEDs 2a, 2b and four LEDs 2c are used. However, the number of LEDs 2a, 2b, 2c is not limited to this example, and four or more types of LEDs 2 are used. May be. In general, as the light output of the light emitting device 1 increases, the color temperature also increases accordingly. Therefore, the number of LEDs 2a having a high color temperature is preferably used more than the number of LEDs having a low color temperature. A wiring circuit 51 (wiring circuits 51a, 51b, 51c in the illustrated example) is formed on the substrate 5 so that the same kind of LEDs 2 are connected in series as one package.

色度設定部3は、LED2a,2b,2cの出射光を混色した混色光、すなわち発光装置1の照射光の色温度を所定の値に設定するためのボリュームコントローラ31を備える。ボリュームコントローラ31は、ユーザによる摘みの回転操作によって、発光装置1をオフ状態からオン状態へ切り替え、回転範囲に応じて発光装置1の光出力を変化させる。また、ボリュームコントローラ31は、発光装置1がオン状態となって光出力が小さい間は低い色温度の光を照射し、摘みを更に回転させることによって、光出力を大きくすると共に、漸次的に低い色温度から高い色温度の光を照射する調光操作を可能とする。   The chromaticity setting unit 3 includes a volume controller 31 for setting the color temperature of the light emitted from the LEDs 2a, 2b, and 2c, that is, the color temperature of the light emitted from the light emitting device 1, to a predetermined value. The volume controller 31 switches the light emitting device 1 from the off state to the on state by a rotation operation of the knob by the user, and changes the light output of the light emitting device 1 according to the rotation range. Further, the volume controller 31 emits light of a low color temperature while the light emitting device 1 is in the on state and the light output is small, and further increases the light output by further rotating the knob, and gradually decreases. A light control operation for irradiating light with a color temperature higher than the color temperature is enabled.

ボリュームコントローラ31によって所定の色温度が入力されると、色度設定部3は、入力された色温度における黒体放射軌跡上の色度、つまり、この色温度における色度図上の等色温度線と黒体放射軌跡との交点座標を、設定された色度(以下、設定色度)とする。また、色度設定部3は、設定色度の制御情報を含むduty信号を制御部4へ出力する。   When a predetermined color temperature is input by the volume controller 31, the chromaticity setting unit 3 causes the chromaticity on the black body radiation locus at the input color temperature, that is, the equal color temperature on the chromaticity diagram at this color temperature. The intersection coordinates of the line and the black body radiation locus are set to the set chromaticity (hereinafter, set chromaticity). Further, the chromaticity setting unit 3 outputs a duty signal including control information on the set chromaticity to the control unit 4.

制御部4は、発光装置1を点灯させる電源ユニット(不図示)に組み込まれており、LED2a,2b,2cのパッケージの種類に応じた複数の出力端子(図例では、出力a,b,c)を備える。また、制御部4は、商用電源(不図示)からの給電を受けてこれを所定の直流電流に変換すると共に、色度設定部3からのduty信号に対応するよう各LED2a,2b,2cを調光制御するための印加電圧を制御する整流変圧回路(不図示)を有する。各出力(端子)a,b,cは、配線41a,41b,41cによって夫々配線回路51a,51b,51cに接続される。   The control unit 4 is incorporated in a power supply unit (not shown) that turns on the light emitting device 1, and has a plurality of output terminals (in the example shown, outputs a, b, c) according to the package type of the LEDs 2 a, 2 b, 2 c. ). The control unit 4 receives power from a commercial power source (not shown) and converts the power into a predetermined direct current, and sets the LEDs 2a, 2b, and 2c to correspond to the duty signal from the chromaticity setting unit 3. It has a rectification transformer circuit (not shown) for controlling an applied voltage for dimming control. Each output (terminal) a, b, c is connected to wiring circuits 51a, 51b, 51c by wirings 41a, 41b, 41c, respectively.

発光装置1は、図2(a)に示すように、好ましくは、天井、壁面等に埋め込まれる埋込型の照明器具10に組み込まれる。照明器具10は、発光装置1を保持すると共に、発光装置1を点灯させる電源ユニット(不図示)を収容する本体部11を備える。また、天井等に形成された開口部に嵌め込まれ、光源等を保持する枠体部12と、商用電源から電源供給を受けるための電源線が接続される端子台13と、枠体部12を天井等に固定するための取付バネ14と、を備える。   As shown in FIG. 2A, the light emitting device 1 is preferably incorporated in an embedded lighting fixture 10 embedded in a ceiling, a wall surface or the like. The lighting fixture 10 includes a main body 11 that holds the light emitting device 1 and accommodates a power supply unit (not shown) that lights the light emitting device 1. In addition, a frame body portion 12 that is fitted in an opening formed in a ceiling or the like and holds a light source or the like, a terminal block 13 to which a power supply line for receiving power supply from a commercial power source is connected, and the frame body portion 12 And an attachment spring 14 for fixing to a ceiling or the like.

また、照明器具10は、図2(b)に示すように、上述した基板5と、LED2の熱を放熱するためのヒートシンク部材6と、基板5とLEヒートシンク部材6との間に設けられる保持部材7と、を備える。また、照明器具10は、LED2を保護する保護カバー8を備える。この保護カバー8の裏面側にはネジホルダ(不図示)が設けられており、ヒートシンク部材6(本体部11)内側から挿通されたネジ(不図示)によって保護カバー8とヒートシンク部材6とが固定される。   2B, the lighting fixture 10 is provided between the substrate 5 described above, the heat sink member 6 for dissipating the heat of the LED 2, and the substrate 5 and the LE heat sink member 6. And a member 7. Moreover, the lighting fixture 10 is provided with the protective cover 8 which protects LED2. A screw holder (not shown) is provided on the back side of the protective cover 8, and the protective cover 8 and the heat sink member 6 are fixed by screws (not shown) inserted from the inside of the heat sink member 6 (main body 11). The

LED2は、図2(c)に示すように、基板5の略中央領域に色温度の低いLED2cが配され、これらLED2cよりも色温度が高いLED2b,2aが、LED2cの周囲に、同種のものが隣り合わないように互い違いに配される。なお、LED2a,2b,2cの配置は、図例の構成に限られない。   As shown in FIG. 2 (c), the LED 2 has an LED 2c having a low color temperature disposed in a substantially central region of the substrate 5, and the LEDs 2b and 2a having a higher color temperature than the LED 2c are of the same type around the LED 2c. Are arranged alternately so that they are not next to each other. In addition, arrangement | positioning of LED2a, 2b, 2c is not restricted to the structure of an example of a figure.

基板5は、汎用の発光モジュール用の基板であり、例えば、酸化アルミニウム(Al)や窒化アルミニウム(AlN)等の電気絶縁性を有する金属酸化物(セラミックスを含む)、金属窒化物、又は金属、樹脂、ガラス繊維等の材料から構成される。基板5に形成された配線回路51(図1参照)は、絶縁材料によって被覆され、LED2a,2b,2cの各正負電極と接続される箇所及び配線41a,41b,41cと接続される箇所が夫々電極端子として露出している(不図示)。 The substrate 5 is a substrate for a general-purpose light emitting module. For example, a metal oxide (including ceramics) having electrical insulating properties such as aluminum oxide (Al 2 O 3 ) or aluminum nitride (AlN), a metal nitride, Or it is comprised from materials, such as a metal, resin, and glass fiber. The wiring circuit 51 (see FIG. 1) formed on the substrate 5 is covered with an insulating material, and the portions connected to the positive and negative electrodes of the LEDs 2a, 2b, and 2c and the portions connected to the wirings 41a, 41b, and 41c, respectively. It is exposed as an electrode terminal (not shown).

本実施形態において、LED2a,2b,2cは、図3に示すように、夫々黒体放射軌跡上に異なる色度を有する光を出射するものが、夫々複数用いられる。なお、LED2a,2b,2cのうち、少なくとも1つの色度が黒体放射軌跡上にあればよい。同図においては、これらLED2a,2b,2cの色度点を、2a,2b,2cとして表示している。LED2a,2b又はLED2b,2cを発光させると、それらの混色光の色度は、発光割合に応じて、同図における線分2a−2b又は線分2b−2cに沿って変化する。上記線分で示される混色光の色度の変化範囲は、いずれも黒体放射軌跡に対する偏差duvが負の範囲に存在する。本実施形態において、LED2a,2b,2cの設定色温度は、夫々5000K,3000K,2000Kとする。つまり、発光装置1は、2000〜5000Kの範囲で色温度を可変とすることができる。   In the present embodiment, as shown in FIG. 3, a plurality of LEDs 2a, 2b, and 2c that emit light having different chromaticities on the black body radiation locus are used. Of the LEDs 2a, 2b, and 2c, at least one chromaticity may be on the black body radiation locus. In the figure, the chromaticity points of these LEDs 2a, 2b, 2c are displayed as 2a, 2b, 2c. When the LEDs 2a and 2b or the LEDs 2b and 2c are caused to emit light, the chromaticity of the mixed color light changes along the line segment 2a-2b or the line segment 2b-2c in the figure according to the light emission ratio. The change range of the chromaticity of the mixed color light indicated by the line segment is in a range where the deviation duv with respect to the blackbody radiation locus is negative. In the present embodiment, the set color temperatures of the LEDs 2a, 2b, and 2c are set to 5000K, 3000K, and 2000K, respectively. That is, the light emitting device 1 can change the color temperature in the range of 2000 to 5000K.

LED2は、図4に示すように、断面矩形状の基材20と、基材20上に実装された発光部(LEDチップ)21と、LEDチップ21を取り囲む凹部を有する枠体22と、枠体22に充填される充填材23と、を備える。充填材23には、シリコン等が用いられ、LEDチップ21からの出射光の波長を変換する蛍光体24が含有される。基材20の一側面にはカソード電極25が、他側面にはアノード電極26が設けられ、基材20の下面両端部に形成された外部接続電極27,28に夫々接続される。また、カソード電極25及びアノード電極26は、ワイヤ29によってLEDチップ21の各電極端子(不図示)に夫々接続される。枠体22の内周面は、光の導出方向に開口した円錐面として形成されており、円錐面の表面は光反射機能を有する。LEDチップ21には、好ましくは、青色光を出射する青色LED素子又は緑色光を出射する緑色LED素子が用いられ、蛍光体24の種類又は含有量を調整することによって、所望の色度の光を出射するLED2が得られる。なお、蛍光体24に加えて、又はそれに換えて所定の波長の光を選択的に透過させることによってLED2の出射光の波長を変換するフィルタ(不図示)が用いられてもよい。このフィルタは、照明器具10の保護カバー8に設けられたものであってもよい(図2(b)参照)。また、LED2には、適宜に出射光の配光を制御するためのレンズ部材(不図示)が設けられ、上述した蛍光体24又はフィルタは、このレンズ部材に、又はLED2とレンズ部材との間に組み込まれていてもよい。なお、実質的な世界標準となっている、米国で規定されたLED色度規定(ANSI規格)に準じたLEDは、色度のバラツキが黒体放射軌跡から所定の範囲内となっていることから、これらの汎用のLEDが用いられてもよい。   As shown in FIG. 4, the LED 2 includes a base material 20 having a rectangular cross section, a light emitting unit (LED chip) 21 mounted on the base material 20, a frame body 22 having a recess surrounding the LED chip 21, and a frame And a filler 23 filled in the body 22. The filler 23 is made of silicon or the like, and contains a phosphor 24 that converts the wavelength of light emitted from the LED chip 21. A cathode electrode 25 is provided on one side surface of the substrate 20, and an anode electrode 26 is provided on the other side surface, which are connected to external connection electrodes 27 and 28 formed at both ends of the lower surface of the substrate 20. Further, the cathode electrode 25 and the anode electrode 26 are connected to respective electrode terminals (not shown) of the LED chip 21 by wires 29. The inner peripheral surface of the frame 22 is formed as a conical surface that opens in the light-derived direction, and the surface of the conical surface has a light reflecting function. The LED chip 21 is preferably a blue LED element that emits blue light or a green LED element that emits green light. By adjusting the type or content of the phosphor 24, light having a desired chromaticity is used. LED2 that emits light is obtained. A filter (not shown) that converts the wavelength of the light emitted from the LED 2 by selectively transmitting light having a predetermined wavelength in addition to or instead of the phosphor 24 may be used. This filter may be provided on the protective cover 8 of the luminaire 10 (see FIG. 2B). Further, the LED 2 is provided with a lens member (not shown) for appropriately controlling the light distribution of the emitted light, and the phosphor 24 or the filter described above is disposed on the lens member or between the LED 2 and the lens member. It may be incorporated in. In addition, LED conforming to the LED chromaticity rule (ANSI standard) stipulated in the United States, which is a substantial global standard, has a chromaticity variation within a predetermined range from the black body radiation locus. Therefore, these general-purpose LEDs may be used.

ここで、発光装置1の調光制御パターンについて、上述した図1及び図3に加えて、図5を参照して説明する。制御部4は、LED2a,2b,2cのうち上述した設定色度と一致する色度の光を出射するLED2がある場合は、このLED2を発光させる。また、設定色度と一致する色度の光を出射するLED2がない場合は、設定色度から見て色温度の高い側及び低い側に夫々近い色温度を有する少なくとも2つのLED2を発光させる。つまり、図5に示すように、設定色度が色温度5000Kに相当する色度である場合、LED2aのパッケージを発光させる。同様に、設定色度が色温度3000K及び2000Kに相当する色度である場合、LED2b及びLED2cのパッケージを夫々発光させる。また、設定色度が色温度5000〜3000Kの範囲内に相当する色度である場合、この設定色度から見て色温度の高い側及び低い側に夫々近い色温度を有する2種のLED2a,2bのパッケージを発光させる。同様に、設定色度が色温度3000〜2000Kの範囲内に相当する色度である場合、2種のLED2b,2cのパッケージを発光させる。なお、ここでいう「一致」とは、夫々の色度が完全に一致する場合に限られず、例えば、偏差duvが±0.01程度の差がある場合を含むものである。   Here, in addition to FIG.1 and FIG.3 mentioned above, the light control pattern of the light-emitting device 1 is demonstrated with reference to FIG. When there is an LED 2 that emits light having a chromaticity that matches the above-described set chromaticity among the LEDs 2a, 2b, and 2c, the control unit 4 causes the LED 2 to emit light. Further, when there is no LED 2 that emits light having a chromaticity that matches the set chromaticity, at least two LEDs 2 having color temperatures close to the higher and lower color temperatures as viewed from the set chromaticity are caused to emit light. That is, as shown in FIG. 5, when the set chromaticity is a chromaticity corresponding to a color temperature of 5000K, the package of the LED 2a is caused to emit light. Similarly, when the set chromaticity is a chromaticity corresponding to a color temperature of 3000K and 2000K, the LED2b and LED2c packages are caused to emit light, respectively. Further, when the set chromaticity is a chromaticity corresponding to the range of the color temperature of 5000 to 3000K, two types of LEDs 2a having color temperatures close to the higher and lower color temperatures as viewed from the set chromaticity, respectively. The 2b package is illuminated. Similarly, when the set chromaticity is a chromaticity corresponding to a color temperature in the range of 3000 to 2000K, the two types of LEDs 2b and 2c are caused to emit light. Here, “match” is not limited to the case where the respective chromaticities are completely matched, and includes, for example, the case where the deviation duv has a difference of about ± 0.01.

より具体的な発光装置1の調光制御パターンについて、上述した図1及び図3に加えて、図6及び図7を参照して説明する。図6は、発光装置1の光色に応じた各LED2a,2b,2cの光出力を夫々個別にプロットしたものであり、図7は、それらの光出力を合算したものである。ユーザがボリュームコントローラ31を操作すると、その操作に応じて、制御部4は、発光装置1はオフ状態からオン状態に切り替え、光出力を漸次大きくする。このとき、制御部4は、LED2a,2b,2cの中で、まず最も低い色温度を有するLED2cを発光させる(図6及び図7のS1)。LED2cの出射光は、色度が黒体放射軌跡上にあるので、自然な光色が実現される。   More specific dimming control patterns of the light emitting device 1 will be described with reference to FIGS. 6 and 7 in addition to FIGS. 1 and 3 described above. FIG. 6 is a plot of the light output of each LED 2a, 2b, 2c corresponding to the light color of the light emitting device 1, and FIG. 7 is a sum of these light outputs. When the user operates the volume controller 31, according to the operation, the control unit 4 switches the light emitting device 1 from the off state to the on state, and gradually increases the light output. At this time, the control unit 4 first causes the LED 2c having the lowest color temperature among the LEDs 2a, 2b, and 2c to emit light (S1 in FIGS. 6 and 7). Since the light emitted from the LED 2c has a chromaticity on the black body radiation locus, a natural light color is realized.

続いて、ボリュームコントローラ31が操作されると、制御部4は、光出力及び色温度を断続的に大きく、また高くするため、LED2cに加えて、3000Kの色温度を有するLED2bを発光させる(図6及び図7のS2)。このとき、LED2b,2cの混色光の色度は、図3に示す線分2b−2c上に存在し、当該線分はいずれの点においても黒体放射軌跡に近接しているので、自然な光色が実現される。また、ボリュームコントローラ31における操作値が3000Kであるとき、制御部4は、LED2cを消灯し、LED2bのみを発光させる(図6及び図7のS3)。このとき、発光装置1の光出力は100%となる。LED2bの出射光も、色度が黒体放射軌跡上にあるので、自然な光色が実現される。   Subsequently, when the volume controller 31 is operated, the control unit 4 causes the LED 2b having a color temperature of 3000K to emit light in addition to the LED 2c in order to intermittently increase and increase the light output and the color temperature (see FIG. 6 and S2 in FIG. At this time, the chromaticity of the mixed color light of the LEDs 2b and 2c exists on the line segment 2b-2c shown in FIG. 3, and the line segment is close to the black body radiation locus at any point. Light color is realized. When the operation value in the volume controller 31 is 3000K, the control unit 4 turns off the LED 2c and causes only the LED 2b to emit light (S3 in FIGS. 6 and 7). At this time, the light output of the light emitting device 1 is 100%. Since the light emitted from the LED 2b has a chromaticity on the black body radiation locus, a natural light color is realized.

更に、ボリュームコントローラ31が操作されると、制御部4は、色温度を断続的に高くするため、LED2bの光出力を漸減させ、5000Kの色温度を有するLED2aの光出力を漸増させるように、それらを発光させる(図6及び図7のS4)。このとき、LED2a,2bの混色光の色度は、図3に示す線分2a−2b上に存在し、当該線分はいずれの点においても黒体放射軌跡に近接しているので、自然な光色が実現される。そして、ボリュームコントローラ31における操作値が5000Kであるとき、制御部4は、LED2bを消灯して、LED2aを発光させる(図6及び図7のS5)。LED2aの出射光も、色度が黒体放射軌跡上にあるので、自然な光色が実現される。   Further, when the volume controller 31 is operated, the control unit 4 gradually decreases the light output of the LED 2b in order to increase the color temperature intermittently, and gradually increases the light output of the LED 2a having a color temperature of 5000K. They are caused to emit light (S4 in FIGS. 6 and 7). At this time, the chromaticity of the mixed color light of the LEDs 2a and 2b exists on the line segment 2a-2b shown in FIG. 3, and the line segment is close to the black body radiation locus at any point. Light color is realized. When the operation value in the volume controller 31 is 5000K, the control unit 4 turns off the LED 2b and causes the LED 2a to emit light (S5 in FIGS. 6 and 7). The light emitted from the LED 2a also has a natural light color because the chromaticity is on the black body radiation locus.

LED2a,2b,2cは、夫々の出射光の色度が黒体放射軌跡上に存在するので、色温度が隣り合うLED2(本実施形態ではLED2a,2b又はLED2b,2c)の混色光の色度は、黒体放射軌跡からの偏差duvが、夫々負の範囲になるよう設定される。こうすれば、設定色度が、LED2a,2b,2cの出射光の固有の色度と一致するとき、その色度のLED2を選択的に発光させるので、特に自然な光色が実現される。また、設定色度が、LED2a,2b,2cの出射光の固有の色度と一致しない場合であっても、それら色温度が隣り合うLED2を適宜に調光制御することにより、混色光の色度が黒体放射軌跡に近接した、自然な光色が実現される。また、それらの混色光の色度は、黒体放射軌跡からの偏差duvが−0.02〜0の範囲になるよう設定されていることが好ましい。こうすれば、より自然な光色が実現される。   The LEDs 2a, 2b, and 2c have the chromaticity of each emitted light on the black body radiation locus, and therefore the chromaticity of the mixed color light of the LEDs 2 that have adjacent color temperatures (in the present embodiment, the LEDs 2a and 2b or the LEDs 2b and 2c). Are set so that the deviations duv from the blackbody radiation locus are in the negative range, respectively. In this way, when the set chromaticity matches the specific chromaticity of the emitted light from the LEDs 2a, 2b, and 2c, the LED 2 having the chromaticity is selectively caused to emit light, so that a particularly natural light color is realized. Even if the set chromaticity does not match the intrinsic chromaticity of the emitted light from the LEDs 2a, 2b, and 2c, the color of the mixed color light can be adjusted by appropriately dimming the adjacent LEDs 2 with their color temperatures. A natural light color with a degree close to the blackbody radiation locus is realized. Moreover, it is preferable that the chromaticity of these mixed color lights is set so that the deviation duv from the blackbody radiation locus is in the range of -0.02 to 0. In this way, a more natural light color is realized.

発光装置1は、上述したように構成されているので、色温度を可変としながらも、各色温度における色度が黒体放射軌跡に沿った自然な光色を実現できる。また、発光装置1の光出力が小さいときは、図2(c)に示したように、基板5の略中央領域に集まるように配された色温度の低いLED2cが主に点灯するので、照射面における光ムラが生じ難くなる。また、発光装置1の光出力が大きいときは、LED2cよりも色温度が高いLED2b,2aが明るく点灯しているので、LED2cが配されている非点灯箇所が打ち消され、この場合にも、照射面における光ムラが生じ難くなる。   Since the light emitting device 1 is configured as described above, it is possible to realize a natural light color in which the chromaticity at each color temperature is along the black body radiation locus while the color temperature is variable. Further, when the light output of the light emitting device 1 is small, as shown in FIG. 2C, the LEDs 2c having a low color temperature arranged so as to gather in the substantially central region of the substrate 5 are mainly lit. Light unevenness on the surface is less likely to occur. Further, when the light output of the light emitting device 1 is large, the LEDs 2b, 2a having a higher color temperature than the LED 2c are lit brightly, so that the non-lighted portion where the LED 2c is arranged is canceled out. Light unevenness on the surface is less likely to occur.

ここで、上述した実施形態の変形例について、図8を参照して説明する。上述した実施形態においては、色温度が夫々5000K,3000K,2000KであるLED2a,2b,2cを用いた構成について説明したが、LED2は、以下の3つの範囲に色温度を有する第1乃至第3のLEDであってもよい。すなわち、第1のLED2c’は、1900〜3000Kの範囲(Rc)に色温度を有し、第2のLED2a’は、5000K以上の範囲(Ra)に、第3のLED2b’は、LED2c’,2a’の中間の範囲(Rb)に色温度を有するものである。同図において、LED2a’,2b’,2c’の色度点を夫々2a’,2b’,2c’で示す。また、色温度は夫々7000K、3500K、2700Kであるものとし、いずれの色温度も夫々上記の範囲Ra,Rb,Rcに存在する。   Here, a modification of the above-described embodiment will be described with reference to FIG. In the above-described embodiment, the configuration using the LEDs 2a, 2b, and 2c having the color temperatures of 5000K, 3000K, and 2000K has been described, but the LED 2 includes the first to third colors that have color temperatures in the following three ranges. LED may be used. That is, the first LED 2c ′ has a color temperature in a range (Rc) of 1900 to 3000K, the second LED 2a ′ is in a range (Ra) of 5000K or more, and the third LED 2b ′ is an LED 2c ′, The color temperature is in the middle range (Rb) of 2a ′. In the figure, the chromaticity points of LEDs 2a ', 2b', 2c 'are indicated by 2a', 2b ', 2c', respectively. The color temperatures are assumed to be 7000K, 3500K, and 2700K, respectively, and any color temperature exists in the above-described ranges Ra, Rb, and Rc.

この変形例は、上述した実施形態に比べて各LEDの色温度が高くなるよう設定されたものである。黒体放射軌跡のカーブは3500K以上の色温度において緩やかであるため、色度点2a’,2b’を結ぶ線分2a’−2b’は、黒体放射軌跡に近接している。また、LED2c’の色温度を上述した実施形態に比べて高くしているので、色度点2a’,2c’を結ぶ線分2a’−2c’も、上述した実施形態のLED2a,2cの色度を結ぶ線分(図3の線分2a−2c)に比べると、比較的黒体放射軌跡に近接する。そのため、色温度が隣り合う2つのLED2a,2b又はLED2b,2cだけでなく、3つのLED2a,2b,2cを同時に点灯させた場合でも、混色光の色度は黒体放射軌跡の近傍に存在するので、光出力を大きくでき、しかも自然な光色が実現される。この変形例は、照明として頻用される4000〜5000Kの色温度の白色光の光出力を大きくするのに効果的である。   This modification is set so that the color temperature of each LED is higher than in the above-described embodiment. Since the curve of the black body radiation locus is gentle at a color temperature of 3500 K or higher, the line segment 2a'-2b 'connecting the chromaticity points 2a' and 2b 'is close to the black body radiation locus. Further, since the color temperature of the LED 2c ′ is higher than that of the above-described embodiment, the line segment 2a′-2c ′ connecting the chromaticity points 2a ′ and 2c ′ is also the color of the LED 2a and 2c of the above-described embodiment. Compared with the line segment connecting the degrees (line segment 2a-2c in FIG. 3), it is relatively close to the black body radiation locus. Therefore, even when the LEDs 2a, 2b, and 2c that are adjacent to each other, as well as the two LEDs 2a and 2b or LEDs 2b and 2c that are adjacent to each other, are lit simultaneously, the chromaticity of the mixed-color light exists in the vicinity of the black body radiation locus. Therefore, the light output can be increased and a natural light color can be realized. This modification is effective in increasing the light output of white light having a color temperature of 4000 to 5000 K that is frequently used as illumination.

また、別の変形例として、上述した実施形態のLED2b(色温度3000K)に蛍光体キャップを被せることにより、同じ等色温度線上で、出射光の偏差duvが正の方向にシフトさせることもできる。なお、LED2bに蛍光体キャップを被せたものをLED2b’’とし、その色度点を図9の2b’’で示す。この場合、3つのLED2a,2b’’,2cを夫々所定の調光制御することにより、混色光の色度を黒体放射軌跡に沿った自然な光色を実現することができる。   As another modification, the deviation duv of the emitted light can be shifted in the positive direction on the same color temperature line by covering the LED 2b (color temperature 3000K) of the above-described embodiment with a phosphor cap. . In addition, LED2b which covered the fluorescent substance cap is made into LED2b ", and the chromaticity point is shown by 2b" of FIG. In this case, a natural light color along the black body radiation locus can be realized by controlling the three LEDs 2 a, 2 b ″, and 2 c with predetermined dimming control.

更に別の変形例として、複数のLED2のうち、1つのLED2aが、黒体放射軌跡上の色度の光を出射し、他のLED2d,2eは、夫々黒体放射軌跡から離れた色度の光を出射するものとしてもよい。LED2a,2d,2eの色度点を図10の2a,2d,2eで示す。黒体放射軌跡上の色度の光を出射するLED2aは、複数のLED2のうち最も色温度が高いものであることが好ましい。すなわち、高い色温度のものほど、高出力で使用されることが多いので、混色光の色度に与える影響が大きい。なお、この変形例では、LED2aの色温度が、5000〜10000K程度であることが好ましい。また、LED2dは、汎用の白色LEDの一部に蛍光体キャップを被せて緑色発光としたものであり、その色度座標は(x、y:0.39、0.54)である。また、LED2eは、蛍光体キャップで赤色発光としたものであり、その色度座標は(x、y:0.59、0.36)である。これらは、汎用白色LEDパッケージを使用できるので、コスト及び調達面での利点が大きい。   As yet another modification, one LED 2a out of the plurality of LEDs 2 emits light having a chromaticity on the black body radiation locus, and the other LEDs 2d and 2e have chromaticities away from the black body radiation locus. Light may be emitted. The chromaticity points of the LEDs 2a, 2d, and 2e are indicated by 2a, 2d, and 2e in FIG. The LED 2a that emits light of chromaticity on the black body radiation locus preferably has the highest color temperature among the plurality of LEDs 2. That is, the higher the color temperature, the higher the output power, the greater the influence on the chromaticity of the mixed color light. In addition, in this modification, it is preferable that the color temperature of LED2a is about 5000-10000K. The LED 2d is a general-purpose white LED covered with a phosphor cap to emit green light, and its chromaticity coordinates are (x, y: 0.39, 0.54). The LED 2e emits red light with a phosphor cap, and its chromaticity coordinates are (x, y: 0.59, 0.36). Since these can use a general-purpose white LED package, the advantages in cost and procurement are great.

なお、本発明は、上記実施形態に限らず、種々の変形が可能である。例えば、図3に示した3つのLED2a,2b,2cを1つのパッケージとし、図8に示した3つのLED2a’,2b’,2c’を1つのパッケージとする。そして、これらを組み合わせて、夫々を調光制御することにより、色温度の可変範囲が広く、しかも各色温度において色度が黒体放射軌跡に近接した自然な光色を実現することができる。   In addition, this invention is not restricted to the said embodiment, A various deformation | transformation is possible. For example, the three LEDs 2a, 2b, and 2c shown in FIG. 3 are set as one package, and the three LEDs 2a ′, 2b ′, and 2c ′ shown in FIG. 8 are set as one package. Then, by combining these and performing dimming control, it is possible to realize a natural light color in which the variable range of the color temperature is wide and the chromaticity is close to the black body radiation locus at each color temperature.

1 発光装置
2 LED(固体発光素子)
3 色度設定部
4 制御部
24 蛍光体
DESCRIPTION OF SYMBOLS 1 Light-emitting device 2 LED (solid-state light emitting element)
3 Chromaticity setting unit 4 Control unit 24 Phosphor

Claims (5)

黒体放射軌跡上の色度の光を出射する固体発光素子を含む色度の異なる光を出射する少なくとも3つの固体発光素子と、
前記固体発光素子が有する色温度のうち最も低い色温度と最も高い色温度との間において所定の色度を設定する色度設定部と、
前記固体発光素子の光出力を、前記色度設定部によって設定された色度に調光制御する制御部と、を備え、
前記制御部は、前記固体発光素子のうち前記設定された色度と一致する色度の光を出射する固体発光素子がある場合は、当該固体発光素子を発光させ、前記設定された色度と一致する色度の光を出射する固体発光素子がない場合は、前記設定された色度から見て色温度の高い側及び低い側に夫々近い色温度を有する少なくとも2つの固体発光素子を発光させることを特徴する発光装置。
At least three solid-state light emitting elements that emit light of different chromaticities, including solid-state light emitting elements that emit light of chromaticity on a black body radiation locus;
A chromaticity setting unit that sets a predetermined chromaticity between the lowest color temperature and the highest color temperature among the color temperatures of the solid-state light emitting element;
A control unit that performs dimming control on the light output of the solid state light emitting device to the chromaticity set by the chromaticity setting unit,
When there is a solid light-emitting element that emits light having a chromaticity that matches the set chromaticity among the solid-state light-emitting elements, the control unit causes the solid-state light-emitting element to emit light, and the set chromaticity and If there is no solid light-emitting element that emits light of the same chromaticity, at least two solid-state light-emitting elements having color temperatures close to the higher and lower color temperatures as seen from the set chromaticity are caused to emit light. A light emitting device characterized by that.
前記固体発光素子のうち色温度が隣り合う固体発光素子の混色光の色度は、黒体放射軌跡からの偏差duvが夫々負の範囲になるよう設定されていることを特徴とする請求項1に記載の発光装置。   2. The chromaticity of mixed color light of solid light emitting elements having adjacent color temperatures among the solid light emitting elements is set such that a deviation duv from a black body radiation locus is in a negative range. The light emitting device according to 1. 前記固体発光素子のうち色温度が隣り合う固体発光素子の混色光の色度は、黒体放射軌跡からの偏差duvが−0.02〜0の範囲になるよう設定されていることを特徴とする請求項2に記載の発光装置。   The chromaticity of the mixed color light of the solid state light emitting elements of which the color temperature is adjacent is set so that the deviation duv from the black body radiation locus is in the range of −0.02 to 0. The light emitting device according to claim 2. 前記固体発光素子は、1900〜3000Kの色温度を有する第1の固体発光素子と、5000K以上の色温度を有する第2の固体発光素子と、前記第1及び第2の固体発光素子の中間の色温度を有する第3の固体発光素子と、を含むことを特徴とする請求項1乃至請求項3のいずれか一項に記載の発光装置。   The solid state light emitting device includes a first solid state light emitting device having a color temperature of 1900 to 3000K, a second solid state light emitting device having a color temperature of 5000K or more, and an intermediate between the first and second solid state light emitting devices. The light-emitting device according to claim 1, further comprising: a third solid-state light-emitting element having a color temperature. 前記固体発光素子は、発光部からの光を蛍光体又はフィルタを用いて波長変換した光を出射するものであることを特徴とする請求項1乃至請求項4のいずれか一項に記載の発光装置。   The light emission according to any one of claims 1 to 4, wherein the solid-state light emitting element emits light obtained by wavelength-converting light from a light emitting unit using a phosphor or a filter. apparatus.
JP2010261798A 2010-11-24 2010-11-24 Light emitting device Active JP5654328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010261798A JP5654328B2 (en) 2010-11-24 2010-11-24 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010261798A JP5654328B2 (en) 2010-11-24 2010-11-24 Light emitting device

Publications (2)

Publication Number Publication Date
JP2012113958A true JP2012113958A (en) 2012-06-14
JP5654328B2 JP5654328B2 (en) 2015-01-14

Family

ID=46497942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010261798A Active JP5654328B2 (en) 2010-11-24 2010-11-24 Light emitting device

Country Status (1)

Country Link
JP (1) JP5654328B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064928A1 (en) * 2012-10-24 2014-05-01 パナソニック株式会社 Illumination device and lighting device
WO2014136748A1 (en) * 2013-03-04 2014-09-12 三菱化学株式会社 Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
JP2014197673A (en) * 2013-03-04 2014-10-16 三菱化学株式会社 Light-emitting device including semiconductor light-emitting element, method for designing light-emitting device, method for driving light-emitting device, and illumination method
WO2015141222A1 (en) * 2014-03-20 2015-09-24 東芝マテリアル株式会社 Light-emitting device and led light bulb
JP2016170906A (en) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 Luminaire
JP2017004657A (en) * 2015-06-05 2017-01-05 パナソニック株式会社 Luminaire and display device
JPWO2014119313A1 (en) * 2013-01-31 2017-01-26 株式会社東芝 Light emitting device and LED bulb
US9722150B2 (en) 2011-09-02 2017-08-01 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JPWO2016067609A1 (en) * 2014-10-28 2017-09-14 株式会社東芝 White light source and white light source system
US9818914B2 (en) 2011-09-02 2017-11-14 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2018181693A (en) * 2017-04-18 2018-11-15 パナソニックIpマネジメント株式会社 Luminaire
JP2018198206A (en) * 2012-08-31 2018-12-13 シチズン電子株式会社 Illumination method and light emitting device
JP2022517364A (en) * 2019-01-21 2022-03-08 シグニファイ ホールディング ビー ヴィ Color adjustable filament lamp
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021353A (en) * 1998-06-30 2000-01-21 Toshiba Lighting & Technology Corp Fluorescent lamp and luminaire
JP2006302547A (en) * 2005-04-18 2006-11-02 Osram-Melco Ltd Fluorescent lamp
JP2009238729A (en) * 2007-11-12 2009-10-15 Mitsubishi Chemicals Corp Lighting system
JP2010109170A (en) * 2008-10-30 2010-05-13 Stanley Electric Co Ltd Semiconductor light-emitting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021353A (en) * 1998-06-30 2000-01-21 Toshiba Lighting & Technology Corp Fluorescent lamp and luminaire
JP2006302547A (en) * 2005-04-18 2006-11-02 Osram-Melco Ltd Fluorescent lamp
JP2009238729A (en) * 2007-11-12 2009-10-15 Mitsubishi Chemicals Corp Lighting system
JP2010109170A (en) * 2008-10-30 2010-05-13 Stanley Electric Co Ltd Semiconductor light-emitting device

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9818914B2 (en) 2011-09-02 2017-11-14 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US10236424B2 (en) 2011-09-02 2019-03-19 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US20180198036A1 (en) 2011-09-02 2018-07-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US10355177B2 (en) 2011-09-02 2019-07-16 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9997677B2 (en) 2011-09-02 2018-06-12 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9954149B2 (en) 2011-09-02 2018-04-24 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
US9722150B2 (en) 2011-09-02 2017-08-01 Citizen Electronics Co., Ltd. Illumination method and light-emitting device
JP2018198206A (en) * 2012-08-31 2018-12-13 シチズン電子株式会社 Illumination method and light emitting device
WO2014064928A1 (en) * 2012-10-24 2014-05-01 パナソニック株式会社 Illumination device and lighting device
JPWO2014119313A1 (en) * 2013-01-31 2017-01-26 株式会社東芝 Light emitting device and LED bulb
EP2966944A4 (en) * 2013-03-04 2016-11-23 Citizen Electronics Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9755118B2 (en) 2013-03-04 2017-09-05 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US10930823B2 (en) 2013-03-04 2021-02-23 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9997678B2 (en) 2013-03-04 2018-06-12 Citizen Electronics Co. Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US9530821B2 (en) 2013-03-04 2016-12-27 Citizen Electronics Co., Ltd. Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
JP2018164105A (en) * 2013-03-04 2018-10-18 シチズン電子株式会社 Light-emitting device including semiconductor light-emitting element, method for designing light-emitting device, method for driving light-emitting device, and illumination method
JP2014197673A (en) * 2013-03-04 2014-10-16 三菱化学株式会社 Light-emitting device including semiconductor light-emitting element, method for designing light-emitting device, method for driving light-emitting device, and illumination method
WO2014136748A1 (en) * 2013-03-04 2014-09-12 三菱化学株式会社 Light-emitting device, method for designing light-emitting device, method for driving light-emitting device, illumination method, and method for manufacturing light-emitting device
US11450789B2 (en) 2013-12-27 2022-09-20 Citizen Electronics Co., Ltd. Illumination method using a light-emitting device
US10368409B2 (en) 2014-03-20 2019-07-30 Toshiba Materials Co., Ltd. Light emitting device and LED light bulb
US10368408B2 (en) 2014-03-20 2019-07-30 Toshiba Materials Co., Ltd. Light emitting device and LED light bulb
WO2015141222A1 (en) * 2014-03-20 2015-09-24 東芝マテリアル株式会社 Light-emitting device and led light bulb
JP2019062236A (en) * 2014-10-28 2019-04-18 株式会社東芝 White light source
JPWO2016067609A1 (en) * 2014-10-28 2017-09-14 株式会社東芝 White light source and white light source system
JP2021122014A (en) * 2014-10-28 2021-08-26 東芝マテリアル株式会社 Method for using white light source and method for using white light source system
JP7285877B2 (en) 2014-10-28 2023-06-02 ソウル セミコンダクター カンパニー リミテッド white light source system
JP2016170906A (en) * 2015-03-11 2016-09-23 パナソニックIpマネジメント株式会社 Luminaire
JP2017004657A (en) * 2015-06-05 2017-01-05 パナソニック株式会社 Luminaire and display device
JP2018181693A (en) * 2017-04-18 2018-11-15 パナソニックIpマネジメント株式会社 Luminaire
JP2022517364A (en) * 2019-01-21 2022-03-08 シグニファイ ホールディング ビー ヴィ Color adjustable filament lamp
JP7418449B2 (en) 2019-01-21 2024-01-19 シグニファイ ホールディング ビー ヴィ color adjustable filament lamp

Also Published As

Publication number Publication date
JP5654328B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5654328B2 (en) Light emitting device
EP2637224B1 (en) Light emitting device, illumination apparatus and system using same
US8212466B2 (en) Solid state lighting devices including light mixtures
US8664846B2 (en) Solid state lighting device including green shifted red component
US8884508B2 (en) Solid state lighting device including multiple wavelength conversion materials
JP2012113959A (en) Light-emitting device
TWI468614B (en) Color temperature adjustable lamp
JP4386693B2 (en) LED lamp and lamp unit
US8901829B2 (en) Solid state lighting apparatus with configurable shunts
US8358089B2 (en) Solid-state lighting of a white light with tunable color temperatures
JP2010129583A (en) Lighting fixture
US20100254127A1 (en) LED-based lighting module for emitting white light with easily adjustable color temperature
KR20180131244A (en) Led package set and led bulb including the same
JP2007214603A (en) Led lamp and lamp unit
US20200053852A1 (en) Light emitting device
JP6384704B2 (en) Lighting device
JP2017069284A (en) Light-emitting device and illumination apparatus
KR101322458B1 (en) Multi color light emitting apparatus
JP2014194858A (en) Led lighting device
JP2011192472A (en) Light source unit and light source device
JP2020140810A (en) Luminaire
JP2014212082A (en) Lighting apparatus
JP7296579B2 (en) lighting equipment
JP2014130728A (en) Illuminating device
KR20220153220A (en) LED sunlight and LED luminaire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141007

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150