JP2012111809A - Dew condensation prevention agent - Google Patents
Dew condensation prevention agent Download PDFInfo
- Publication number
- JP2012111809A JP2012111809A JP2010260016A JP2010260016A JP2012111809A JP 2012111809 A JP2012111809 A JP 2012111809A JP 2010260016 A JP2010260016 A JP 2010260016A JP 2010260016 A JP2010260016 A JP 2010260016A JP 2012111809 A JP2012111809 A JP 2012111809A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- porous material
- volatile solvent
- dew condensation
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Paints Or Removers (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
Description
この発明は、主に建材に用いて、断熱、吸音、結露防止などの効果を得ることができる組成物に関する。 The present invention relates to a composition that can be used mainly as a building material to obtain effects such as heat insulation, sound absorption, and prevention of condensation.
建材の壁面に多孔質の材料を塗工することによって、断熱効果、吸音効果、結露防止効果を発揮させようとすることが行われている。多孔質材料が内部に有する空気の層により、断熱、吸音効果が発揮される。また、内部に有する空気の層により建材の内外温度差の緩衝剤ともなることで表面を結露しにくくすることができる。さらに、結露して表面に雫が生じる際に、その雫を表面の孔から内部に染みこませることで、表面に露が蓄積されることを防ぐことができ、二重の結露防止効果が発揮される。 By applying a porous material to the wall surface of a building material, attempts are made to exert a heat insulating effect, a sound absorbing effect, and a dew condensation preventing effect. A heat insulating and sound absorbing effect is exhibited by the air layer in the porous material. Moreover, the surface can be made hard to dew by being a buffering agent for the temperature difference between the inside and outside of the building material due to the air layer inside. In addition, when dew forms on the surface due to condensation, it can be prevented from accumulating on the surface by soaking the wrinkle into the inside from the surface hole, and double dew condensation prevention effect is demonstrated Is done.
このような多孔質材料を塗工した例として、特許文献1に、バーミキュライトをセメントや珪酸カルシウム、スラグ石膏などと配合した建材組成物が記載されている。バーミキュライトとは、ヒル石を焼結膨張させた材料であり、膨張により多孔質の粒子からなる材料となっているものである。このようなバーミキュライトを塗工した建材は、内部に空気の層を含むことから一定の断熱効果、吸音効果を発揮する。また、バーミキュライトの比重が軽いために塗工後も重量の増加が少ないという利点も有する。例えば、現在の建築現場において安価な壁材として広く使われている石膏ボードに付加し、バーミキュライト含有建材としたものが用いられている。
As an example of coating such a porous material,
ただし、バーミキュライトをセメントの骨材として用いた建材組成物は、バーミキュライトによる断熱効果や吸音効果があるものの、バーミキュライトの周囲をセメントなどが覆っており、そのセメントが組成物の表面から建材へ熱や音を伝達してしまい、場合によっては断熱効果や吸音効果が不十分になる場合があった。 However, a building material composition using vermiculite as an aggregate of cement has a heat insulating effect and a sound absorbing effect by vermiculite, but the surrounding of vermiculite is covered with cement, and the cement is heated from the surface of the composition to the building material. Sound is transmitted, and in some cases, the heat insulating effect and the sound absorbing effect may be insufficient.
これに対して、ポリ酢酸ビニルなどからなる樹脂接着剤を用いてバーミキュライトを固めた塗装用組成物が考案されている(特許文献2[0016])。このような組成物からなる層を建材の表面に形成させることで、セメントよりも熱や音が伝達しにくい、より空気含有率の高い層を有する建材とすることができる。また、バーミキュライト自体は鉱物であるので、接着剤の含有量が少なければ難燃材としても利用することができる。 On the other hand, a coating composition in which vermiculite is hardened using a resin adhesive made of polyvinyl acetate or the like has been devised (Patent Document 2 [0016]). By forming a layer made of such a composition on the surface of the building material, it is possible to obtain a building material having a layer having a higher air content rate that is less likely to transmit heat and sound than cement. Further, since vermiculite itself is a mineral, it can be used as a flame retardant if the adhesive content is low.
また、未膨張のバーミキュライトをポリ酢酸ビニルやポリウレタンなどの有機バインダーと混合した塗装用組成物(特許文献3)や、未焼成バーミキュライトを水ガラスで固めたものが開示されている。これらは建材に用いるものの、上記のものとは使用目的が異なり、耐火性を目的としたものである。未膨張であったバーミキュライトが、火事の際の高熱環境下において埋め込まれた建材内部で膨張することで、空気の層を作り、耐火性を発揮する。 Moreover, the composition for a coating (patent document 3) which mixed the unexpanded vermiculite with organic binders, such as a polyvinyl acetate and a polyurethane, and what hardened the unbaked vermiculite with the water glass are disclosed. Although these are used for building materials, the purpose of use is different from the above, and the purpose is fire resistance. The unexpanded vermiculite expands inside the building material embedded in a high heat environment during a fire, creating an air layer and exhibiting fire resistance.
しかしながら、ポリ酢酸ビニルやポリウレタンなどの樹脂接着剤でバーミキュライトを固めると、個々の樹脂の粒が小さく、バーミキュライト1の表面の孔が樹脂2によって塞がってしまうために、発生した露を孔から吸収することができなかった。その概念図を図4に示す。このため、バーミキュライトが発揮すべき結露防止効果のうち、空気の層による温度緩衝効果しか見込めなかった。
However, when vermiculite is hardened with a resin adhesive such as polyvinyl acetate or polyurethane, the particles of each resin are small, and the pores on the surface of the
また、バーミキュライトはそれが有する孔により、高湿度下では湿気を吸収し、低湿度下では吸収した湿気を放出する湿度調整効果を有するが、樹脂によって孔が塞がるとこの効果も失われてしまった。 Also, vermiculite has a humidity adjustment effect that absorbs moisture under high humidity and releases the absorbed moisture under low humidity due to the pores it has, but this effect is lost when the pores are blocked by resin .
そこでこの発明は、建材に塗工する多孔質素材を含む組成物において、断熱吸音効果を維持しつつ、結露防止効果を十分に発揮できるように塗工することを目的とする。 In view of this, an object of the present invention is to perform coating in a composition containing a porous material to be applied to building materials so that the effect of preventing condensation can be sufficiently exhibited while maintaining the heat insulating sound absorbing effect.
この発明は、樹脂として樹脂水分散体を使用し、かつ、多孔質材料を、揮発性溶媒及び樹脂水分散体と混合して結露防止剤を調製することで、上記の課題を解決したのである。この結露防止剤を建材に塗工すると、樹脂が接着剤となって上記多孔質材料を建材に固定した後でも、上記多孔質材料は吸水、吸湿などの効果を失わないものとなった。 The present invention solves the above-mentioned problems by using a resin water dispersion as a resin and mixing a porous material with a volatile solvent and a resin water dispersion to prepare a dew condensation inhibitor. . When this anti-condensation agent was applied to a building material, the porous material did not lose the effects of water absorption and moisture absorption even after the resin became an adhesive and the porous material was fixed to the building material.
その機構は完全に解明されていないが、以下のような仕組みが仮説として考えられる。まず、多孔質材料が揮発性溶媒と接触すると、揮発性溶媒は分子量が比較的小さく、浸透力が大きいため、多孔質材料の孔に速やかに侵入すると考えられる。その後、混合体である結露防止剤から水が蒸発していくに従って、樹脂水分散体からも水が抜け出ていき、樹脂は徐々に固まっていくことになる。これにより、上記多孔質材料の表面に樹脂の膜が出来ることになるが、水とともに多孔質材料の孔に入り込んでいた揮発性溶媒が揮発しながら樹脂が固まるため、樹脂膜には気体の揮発性溶媒が抜け出るための微孔が残り、結果として、樹脂層の表面から多孔質材料の孔まで通じる細孔を形成する。 The mechanism is not completely elucidated, but the following mechanism is considered as a hypothesis. First, when the porous material comes into contact with the volatile solvent, the volatile solvent has a relatively small molecular weight and a large penetrating power, so it is considered that the porous material quickly enters the pores of the porous material. Thereafter, as the water evaporates from the anti-condensation agent as a mixture, the water also escapes from the resin water dispersion, and the resin gradually solidifies. As a result, a resin film can be formed on the surface of the porous material. However, since the volatile solvent that has entered the pores of the porous material together with water volatilizes, the resin hardens. Micropores for leaving the organic solvent remain, and as a result, pores are formed from the surface of the resin layer to the pores of the porous material.
この細孔が樹脂表面に多数空いており、多孔質材料の孔から内部の空洞まで通じていることで、塗工した組成物の表面が結露しようとしたときに、その雫を多孔質材料の内部へ吸収することができる。この組成物を建材等に塗工して上記のような状態にすることで、十分に高い結露防止効果を発揮させることができると考えられる。 Many pores are vacant on the surface of the resin and lead from the pores of the porous material to the internal cavities, so that when the surface of the coated composition is about to condense, the wrinkles of the porous material Can be absorbed inside. It is considered that a sufficiently high dew condensation preventing effect can be exhibited by applying this composition to a building material or the like to obtain the above-described state.
この組成物からなる結露防止剤を建材に塗工して、樹脂水分散体を構成する水や、必要に応じて混合後に追加する水、とともに揮発性溶媒とを揮発させて、多孔質材料が樹脂を接着剤として建材上に固めることができる。この固められた材料は、多孔質材料が内部に有する孔が保持する空気の層による断熱効果、吸音効果が失われることなく発揮されるとともに、結露防止効果を十分に発揮させることができる。また、湿度調整効果を有する珪藻土などを多孔質材料に用いる場合、その効果も失われることなく発揮させることができる。 By applying a dew condensation inhibitor comprising this composition to a building material, volatilizing the volatile solvent together with the water constituting the resin water dispersion and the water added after mixing, if necessary, the porous material becomes Resin can be hardened on building materials as an adhesive. This hardened material can exhibit the heat insulation effect and the sound absorption effect due to the air layer held by the pores inside the porous material without losing it, and can sufficiently exhibit the dew condensation prevention effect. Moreover, when diatomaceous earth etc. which have a humidity adjustment effect are used for a porous material, the effect can be exhibited without being lost.
以下、この発明の実施形態について詳細に説明する。この発明は、建材などに塗工して、断熱効果及び吸音効果を有する結露防止剤として用いる組成物である。この結露防止剤を構成する組成物は少なくとも、揮発性溶媒と、樹脂水分散体と、多孔質材料とを有する混合体である。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is a composition used as a dew condensation preventing agent that is applied to building materials and the like and has a heat insulating effect and a sound absorbing effect. The composition constituting this anti-condensation agent is a mixture having at least a volatile solvent, a resin water dispersion, and a porous material.
上記多孔質材料とは、内部に通じる多数の孔を表面に有し、内部に空洞を有する材料であり、細かい粒子状である材料である。具体的には、嵩比重が0.20kg/l以下であることが好ましく、0.15kg/l以下であるとより好ましい。粒子が小さかったり、内部の空洞が不足していたりして、嵩比重が大きすぎると、断熱吸音効果を十分に発揮できず、雫の吸収速度も不十分で結露防止効果も不十分になりやすい。なお、嵩比重は小さいほど好ましいが、0.01kg/l未満では粒子が形状を維持しづらくなるので、現実的には0.01kg/l以上である。 The porous material is a material having a large number of pores leading to the inside on the surface and a cavity inside, and is a fine particulate material. Specifically, the bulk specific gravity is preferably 0.20 kg / l or less, and more preferably 0.15 kg / l or less. If the particles are small or the internal cavities are insufficient and the bulk specific gravity is too large, the adiabatic sound absorption effect cannot be fully exhibited, the soot absorption rate is insufficient, and the anti-condensation effect tends to be insufficient. . The smaller the bulk specific gravity, the better. However, if the bulk density is less than 0.01 kg / l, it is difficult to maintain the shape of the particles, so it is practically 0.01 kg / l or more.
上記多孔質材料の、個々の粒子の大きさは、10mm以下であると好ましい。10mmを超えると、樹脂水分散体及び揮発性溶媒との混合がしにくくなり、一般的な吹き付け装置では装置が詰まるおそれが出てくるため、塗工もしにくくなってしまう。塗工厚みは最大で6mm程度で十分に耐熱吸音効果等を発揮できるので、粒子の大きさは5mm以下であるとより好ましい。一方で、0.1mm未満では小さすぎて、粒子内部に有する空洞も小さくなって嵩比重が大きくなり、断熱吸音効果がほとんど発揮されなくなってしまう。このため、0.1mm以上が好ましく、0.5mm以上であるとより好ましい。なお、ここで粒子の大きさとは、いびつな形をしている粒子の最大の幅となる径である。 The size of each particle of the porous material is preferably 10 mm or less. If it exceeds 10 mm, it becomes difficult to mix the resin water dispersion and the volatile solvent, and a general spraying device may clog the device, so that coating becomes difficult. Since the coating thickness is about 6 mm at the maximum and a sufficient heat-resistant sound absorption effect can be exhibited, the particle size is more preferably 5 mm or less. On the other hand, if it is less than 0.1 mm, it is too small, the cavity inside the particle also becomes small, the bulk specific gravity becomes large, and the adiabatic sound absorption effect is hardly exhibited. For this reason, 0.1 mm or more is preferable and it is more preferable in it being 0.5 mm or more. Here, the particle size is a diameter that is the maximum width of an irregularly shaped particle.
具体的な材料の選別方法としては、例えば、メッシュ幅が1.2mmである14メッシュの篩に掛けて、篩を通る粒子の質量百分率が1%以上99%以下であるものを用いると、概ね上記の嵩比重、粒子の大きさの条件を満たすものとなる。 As a specific material selection method, for example, when a material having a mesh percentage of 1.2 mm is applied to a 14-mesh sieve and the mass percentage of particles passing through the sieve is 1% to 99%, The above-described bulk specific gravity and particle size are satisfied.
厳密に粒子の大きさを調整する場合には、この発明にかかる結露防止剤の建材等への塗工厚みに応じて、用いる上記多孔質材料の粒径を調整してもよい。塗工厚みを厚くする場合には、比較的粒径が大きいものを用いることができ、塗工厚みを薄くする場合には、粒径が小さいものを用いることとなる。 When the particle size is strictly adjusted, the particle size of the porous material to be used may be adjusted according to the coating thickness of the anti-condensation agent according to the present invention on the building material or the like. When the coating thickness is increased, one having a relatively large particle size can be used, and when the coating thickness is decreased, one having a small particle size is used.
上記多孔質材料として使用可能な具体的な材料としては、ヒル石を加熱膨張させたバーミキュライトや、火山岩を焼成した発泡パーライト、珪藻土、シラス灰、ゼオライト、アロフェン、シリカゲルなどが挙げられる。建材に用いる際の耐熱性及び耐火性の点から、有機物より無機物であると好ましい。上記の中でも、バーミキュライトやパーライトなどの孔が比較的大きなものを用いると、吸水性、保水性に優れた結露防止剤となる。一方、吸湿放湿性が優れた結露防止剤にしたい場合は、珪藻土や、シラスの焼結体であるシラスバルーンなどの比較的孔の小さい材料が好ましい。 Specific materials that can be used as the porous material include vermiculite obtained by heating and expanding hillstone, foamed perlite obtained by firing volcanic rock, diatomaceous earth, shirasu ash, zeolite, allophane, and silica gel. From the viewpoints of heat resistance and fire resistance when used for building materials, inorganic materials are preferable to organic materials. Among these, when a relatively large pore such as vermiculite or pearlite is used, a dew condensation preventing agent having excellent water absorption and water retention is obtained. On the other hand, when it is desired to use an anti-condensation agent having excellent moisture absorption and desorption properties, a material having relatively small pores such as diatomaceous earth or a shirasu balloon that is a sintered shirasu is preferable.
次に、上記樹脂水分散体について説明する。上記樹脂水分散体は、水に樹脂を分散させたものであり、重合体自体の性質によったり、乳化剤などを用いたりして、乳化分散させたものが挙げられる。具体的には、エマルジョン又はディスパージョンと呼ばれる形態のものである。水中に樹脂は乳化剤に包まれた樹脂の粒子として浮かんでいる。この水分散体を形成させる際に乳化剤を用いる場合、その乳化剤の種類は、アニオン系、ノニオン系、又はアニオン・ノニオン系の界面活性剤であれば特に限定されない。ただし、カチオン系界面活性剤は好ましくない。 Next, the resin water dispersion will be described. The resin aqueous dispersion is obtained by dispersing a resin in water, and examples thereof include those obtained by emulsifying and dispersing depending on the properties of the polymer itself or using an emulsifier. Specifically, it is in a form called emulsion or dispersion. The resin floats in the water as resin particles wrapped in an emulsifier. When an emulsifier is used when forming this aqueous dispersion, the type of the emulsifier is not particularly limited as long as it is an anionic, nonionic, or anionic / nonionic surfactant. However, a cationic surfactant is not preferable.
乳化分散させる樹脂としては、上記多孔質材料を建材に固定する接着剤として利用できるものであれば、成分は特に限定されない。具体的には例えば、アクリル系重合体、酢酸ビニル系重合体、ウレタン系重合体、スチレン系重合体、エポキシ系重合体などが挙げられる。これらを単独で用いてもよいし、二種以上の樹脂を混合して用いてもよいし、一つの高分子中にそれらを複合させたものでもよい。また、別個に重合させた重合体をさらに結合させたものでもよい。 The resin to be emulsified and dispersed is not particularly limited as long as it can be used as an adhesive for fixing the porous material to a building material. Specific examples include acrylic polymers, vinyl acetate polymers, urethane polymers, styrene polymers, and epoxy polymers. These may be used alone, or two or more kinds of resins may be mixed and used, or a combination of them in one polymer. Moreover, what further combined the polymer polymerized separately may be used.
アクリル系重合体とは、アクリル酸、メタクリル酸や、アクリル酸エステル、メタクリル酸エステルなどのアクリル基又はメタクリル基を有する単量体が重合単位の半分以上を占める重合体である。エステルの場合は、側鎖の炭素数はC1〜C4程度であるとよい。酢酸ビニル単位やスチレン単位が一部に含まれていてもよい。 An acrylic polymer is a polymer in which a monomer having an acrylic group or a methacrylic group such as acrylic acid, methacrylic acid, acrylic ester, and methacrylic ester occupies more than half of the polymerized units. In the case of an ester, the number of carbons in the side chain is preferably about C1 to C4. Vinyl acetate units and styrene units may be partially included.
また、上記酢酸ビニル系重合体とは、酢酸ビニル単位が重合単位の50%以上を占める重合体である。エチレン−酢酸ビニル共重合体でもよいし、一部の酢酸ビニル単位がビニルアルコール単位にケン化された重合体であってもよい。 The vinyl acetate polymer is a polymer in which vinyl acetate units occupy 50% or more of the polymerization units. An ethylene-vinyl acetate copolymer may be used, or a polymer in which some vinyl acetate units are saponified to vinyl alcohol units.
上記ウレタン系重合体とは、90質量%以上が、ポリオールやポリイソシアネートなどのウレタン結合によって構成された重合体であるとよい。これの中には、いわゆるウレタンディスパージョンと呼ばれるものも含まれる。 The urethane polymer is preferably a polymer in which 90% by mass or more is constituted by urethane bonds such as polyols and polyisocyanates. Among these, what is called a urethane dispersion is also included.
これらの中でも特に、アクリル系重合体を用いると分散しやすく、アクリル系重合体のエマルジョンは接着剤としても使いやすいので好ましい。一方、直接風雨に曝されるような環境で用いる場合には、耐水性を発揮するウレタン系重合体のディスパージョンを用いると好ましい場合がある。また、スチレンエマルジョン、エポキシエマルジョンは、接着剤としての強さが高いため、接着力を必要とする環境で用いると好ましい。 Among these, an acrylic polymer is particularly preferable because it is easy to disperse, and an acrylic polymer emulsion is easy to use as an adhesive. On the other hand, when used in an environment that is directly exposed to wind and rain, it may be preferable to use a dispersion of a urethane polymer that exhibits water resistance. Moreover, since the strength as an adhesive agent is high, a styrene emulsion and an epoxy emulsion are preferable when used in an environment that requires adhesive strength.
上記樹脂の分子量は10万以上であると好ましい。小さすぎると揮発性溶媒と相溶してしまうおそれがある。一方、100万を超える分子量となることは現実的ではなく、ほとんどの場合100万以下となる。 The molecular weight of the resin is preferably 100,000 or more. If it is too small, it may be compatible with the volatile solvent. On the other hand, a molecular weight exceeding 1 million is not realistic, and in most cases it is 1 million or less.
上記ウレタン系重合体の場合、乳化剤を用いなくてもアンモニアなどにより分散可能である。一方、アクリル系重合体や酢酸ビニル系重合体などを用いる場合には、乳化剤を用いて水分散体化するとよい。また、アクリル系重合体や酢酸ビニル系重合体に、ウレタン系重合体を結合させてもよい。 In the case of the urethane polymer, it can be dispersed with ammonia or the like without using an emulsifier. On the other hand, when an acrylic polymer, a vinyl acetate polymer, or the like is used, an aqueous dispersion may be formed using an emulsifier. Further, a urethane polymer may be bonded to an acrylic polymer or a vinyl acetate polymer.
なお、上記樹脂水分散体には、樹脂に対して5質量%以下程度の有機溶剤が含まれていてもよい。樹脂の重合の際に同伴する溶剤を全て除去するのが困難な場合があるからである。この有機溶剤は、後述する揮発性溶媒と同種のものであると、それと同様に扱うことができるので好ましい。 In addition, the said resin water dispersion may contain the organic solvent about 5 mass% or less with respect to resin. This is because it may be difficult to remove all of the solvent accompanying the polymerization of the resin. This organic solvent is preferably the same kind as the volatile solvent described later, since it can be handled in the same manner.
上記樹脂水分散体中の固形分と上記多孔質材料との質量混合比は、500:100〜5:100であると好ましい。500:100よりも上記樹脂水分散体の固形分が多いと、樹脂の成分が多すぎて塗工しても樹脂層としての性質が強く現れてしまい、断熱効果、吸音効果、結露防止効果が十分に発揮されなくなってしまう。好ましくは、30:100よりも上記多孔質材料が多い混合比である。一方で、5:100よりも上記多孔質材料が多いと、粒径が比較的大きな上記多孔質材料を用いたとしても、塗工後の組成物を上記樹脂が保持しきれずに、剥落を起こしやすくなってしまう。 The mass mixing ratio of the solid content in the resin water dispersion and the porous material is preferably 500: 100 to 5: 100. When the solid content of the resin water dispersion is larger than 500: 100, the resin component is too much to be applied and the properties as a resin layer appear strongly even when applied, and the heat insulation effect, sound absorption effect, and condensation prevention effect are exhibited. It will not be fully demonstrated. Preferably, the mixing ratio is greater in the amount of the porous material than 30: 100. On the other hand, when the amount of the porous material is larger than 5: 100, even if the porous material having a relatively large particle size is used, the composition after coating cannot be held and the resin is peeled off. It becomes easy.
次に、上記揮発性溶媒について説明する。上記揮発性溶媒は、揮発性を有するものである必要がある。上記多孔質材料の孔に浸透して樹脂が孔を塞ぐことを防ぎ、塗工後は樹脂が固まりつつある際に揮発して抜け出ていくことで、樹脂に細孔を空けるためである。常温揮発性でない高分子量の溶媒であると、上記多孔質材料の孔に十分に入りこむことができなくなり、また、塗工後も抜け出ていかないのでその孔による露や湿度の吸収効果が失われてしまう。 Next, the volatile solvent will be described. The volatile solvent needs to be volatile. This is because the resin is prevented from penetrating into the pores of the porous material, and after coating, the resin volatilizes and escapes when the resin is solidifying, thereby opening the pores in the resin. If it is a high molecular weight solvent that is not volatile at room temperature, it will not be able to penetrate into the pores of the porous material, and it will not escape after coating, so the effect of absorbing dew and humidity from the pores will be lost. End up.
このような揮発性であるものとは、沸点が50℃〜150℃程度の有機物が好適に用いられ、120℃以下だと揮発させやすくより好ましい。具体的には、トルエン、キシレン、シクロヘキサン、酢酸エチルなどの疎水性溶媒であると好ましい。アルコール類などの親水性溶媒の場合、樹脂水分散体を破壊してしまわないよう注意する必要がある。また、上記樹脂水分散体としてウレタン系樹脂水分散体を用いる場合、製造工程で沸点が200℃を超えるような高沸点溶媒が混入することがあるが、本願で用いる上記揮発性溶媒としては、このような高沸点溶媒は不適格である。 Such a volatile substance is preferably an organic substance having a boiling point of about 50 ° C. to 150 ° C., and more preferably 120 ° C. or less because it is easily volatilized. Specifically, a hydrophobic solvent such as toluene, xylene, cyclohexane or ethyl acetate is preferable. In the case of hydrophilic solvents such as alcohols, care must be taken not to destroy the aqueous resin dispersion. In addition, when a urethane-based resin water dispersion is used as the resin water dispersion, a high-boiling solvent having a boiling point exceeding 200 ° C. may be mixed in the production process, but as the volatile solvent used in the present application, Such high boiling solvents are ineligible.
上記揮発性溶媒の含有量は、上記樹脂水分散体が含有する樹脂に対して、0.1質量%以上であると好ましい。0.1質量%未満では少なすぎて、上記多孔質材料の孔に侵入する効果や樹脂の膜に細孔を空ける効果が不十分になり、結果として結露防止効果が不十分になってしまう。一方で、上記揮発性溶媒が大量にあったとしても、細孔を空ける効果は十分に発揮されるのでこの発明の実施は可能であり、含有量に理論上の上限はない。ただし、100質量%を超えると、塗工時に揮発させきるまでに時間がかかりすぎてしまい、運用上問題となる場合が生じやすくなるので、100質量%以下が好ましく、50質量以下がより好ましく、20質量%以下がさらに好ましい。 The content of the volatile solvent is preferably 0.1% by mass or more based on the resin contained in the resin water dispersion. If it is less than 0.1% by mass, the effect of intruding into the pores of the porous material and the effect of opening the pores in the resin film are insufficient, and as a result, the effect of preventing condensation is insufficient. On the other hand, even if there is a large amount of the volatile solvent, the effect of opening the pores is sufficiently exhibited so that the present invention can be carried out, and the content has no theoretical upper limit. However, when it exceeds 100% by mass, it takes too much time to volatilize at the time of coating, and it becomes easy to cause a problem in operation. Therefore, it is preferably 100% by mass or less, more preferably 50% by mass or less, 20 mass% or less is more preferable.
上記揮発性溶媒と、上記樹脂水分散体に含まれる水と、元の上記樹脂水分散体以外に必要に応じて足してもよい水とを合わせた液体成分の量は、上記多孔質材料に対して質量比で3倍以上、10倍以下であると好ましい。液体分が少なすぎると十分に流動せず、必要な混合が行いきれない場合がある。一方で、液体分が多すぎると粘度が低下し、建材上に塗工することが困難になってしまう。なお、液固質量比を上記の範囲に調整するため、上記揮発性溶媒と上記水分散体とを混合した後に水を追加してもよいし、後述する他の調整方法でも、必要に応じて水を追加してもよい。 The amount of the liquid component that combines the volatile solvent, the water contained in the resin water dispersion, and water that may be added if necessary in addition to the original resin water dispersion is On the other hand, the mass ratio is preferably 3 to 10 times. If the liquid content is too small, the liquid may not flow sufficiently and the necessary mixing may not be performed. On the other hand, when there is too much liquid, viscosity will fall and it will become difficult to apply on building materials. In addition, in order to adjust the liquid-solid mass ratio to the above range, water may be added after mixing the volatile solvent and the water dispersion, and other adjustment methods described later may be used as necessary. Water may be added.
この発明にかかる結露防止剤は、上記多孔質材料と、上記樹脂水分散体と、上記揮発性溶媒を混合した組成物とする。予め混合して密封しておいてもよいが、これらの材料を別個にまとめた材料として用意しておき、建材への塗工の直前に混合するものでもよい。上記多孔質材料の孔に樹脂が入る可能性を徹底して抑制するには、塗工直前に混合する形態としておくと好ましい。予め混合しておくと、保存中に樹脂水分散体の樹脂が上記多孔質材料の孔に入り込んで凝集してしまう可能性があるからである。 The anti-condensation agent according to the present invention is a composition in which the porous material, the resin water dispersion, and the volatile solvent are mixed. They may be mixed and sealed in advance, but these materials may be prepared as separately collected materials and mixed immediately before application to building materials. In order to thoroughly suppress the possibility of the resin entering the pores of the porous material, it is preferable to mix them immediately before coating. This is because, if pre-mixed, the resin of the resin water dispersion may enter into the pores of the porous material and aggregate during storage.
この発明にかかる結露防止剤を調整するにあたり、混合の順序により多少の特性の変化が生じるが、上記樹脂水分散体と上記揮発性溶媒とを混合した後に上記多孔質材料と混合してもよいし、上記多孔質材料と上記揮発性溶媒とを混合した後に上記樹脂水分散体と混合してもよい。ただし、上記樹脂水分散体と上記多孔質材料とを先に混合した場合、上記揮発性溶媒との混合までの間に時間がかかりすぎると、多孔質材料の表面に樹脂膜が形成されてしまうおそれがある。 In adjusting the anti-condensation agent according to the present invention, some characteristics change depending on the order of mixing, but the resin water dispersion and the volatile solvent may be mixed and then mixed with the porous material. And after mixing the said porous material and the said volatile solvent, you may mix with the said resin aqueous dispersion. However, when the resin water dispersion and the porous material are mixed first, if it takes too much time to mix with the volatile solvent, a resin film is formed on the surface of the porous material. There is a fear.
また、いずれの順番による場合も、三成分を混合してから一日以上放置しておくと、先に上記揮発性溶媒が孔に入っていたとしても、ゆっくりと樹脂水分散体が孔に入ってしまうおそれがある。このため、この結露防止剤は塗工する現場で最後の混合を行って調製することが好ましい。 In any order, if the three components are mixed and left for more than a day, the resin water dispersion slowly enters the pores even if the volatile solvent has previously entered the pores. There is a risk that. For this reason, it is preferable to prepare this dew condensation inhibitor by performing the final mixing at the site of coating.
いずれの順序であっても、調整された結露防止剤を用いることによって、多孔質材料の表面に孔を開けつつ樹脂で建材上に上記多孔質材料を固めることができる仕組みは、完全に解明されているわけではないが、得られる結果から、次のような仮説が考えられる。 Regardless of the order, the mechanism by which the porous material can be solidified on the building material with a resin while making a hole in the surface of the porous material by using the adjusted anti-condensation agent has been completely elucidated. However, the following hypothesis can be considered from the obtained results.
上記揮発性溶媒と上記多孔質材料とを先に混合した場合の仮説を図1〜3により説明する。まず、揮発性溶媒13が多孔質材料11と接触すると、多孔質材料11の表面の孔14に揮発性溶媒13が入り込み、孔14を埋める(図1)。次に、水16と樹脂の粒17とからなる樹脂水分散体と混合すると、揮発性溶媒13に邪魔をされて、樹脂水分散体は孔14に入り込むことが困難になっている(図2)。この状態で建材等に塗工した後、水16を蒸発させると、樹脂の粒17が樹脂膜18を形成するが、このときに、揮発性溶媒13により樹脂膜18の一部が溶解されて、樹脂膜18に細孔19が空く(図3)。この揮発性溶媒13はその後揮発するので、樹脂の表面に空いたこの細孔19から孔14への通路が残り、ここから雫や湿気を吸収できるので、塗工した建材に結露防止効果を付与することができる。
The hypothesis when the volatile solvent and the porous material are mixed first will be described with reference to FIGS. First, when the volatile solvent 13 comes into contact with the
上記揮発性溶媒と上記樹脂水分散体とを先に混合し、それから上記多孔質材料とを混合する場合も、上記揮発性溶媒は一旦エマルジョンになるものの不安定なため、上記揮発性溶媒のままで単独で液中に存在し、上記多孔質材料の表面の孔に選択吸収されて、上記の場合と同様の現象が起き、同様の効果が得られる。 Even when the volatile solvent and the resin water dispersion are mixed first, and then the porous material is mixed, the volatile solvent once becomes an emulsion but is unstable. In the liquid alone, it is selectively absorbed by the pores on the surface of the porous material, the same phenomenon as described above occurs, and the same effect is obtained.
また、この発明にかかる結露防止剤は、これらの必須材料の他に、この発明にかかる結露防止剤の効果を失わない範囲で、他の添加剤を含んでいてもよい。濡れ剤や流動化剤、消泡剤などを、塗工方法や塗工機械などの条件に合わせて適宜含有していてもよい。例えば、吹き付けにより塗工する際にはこれらの成分が必須となる。特に、濡れ剤や流動化剤を含有していると、施工後における吸水速度が著しく向上し、結露防止効果が高まる。 In addition to these essential materials, the anti-condensation agent according to the present invention may contain other additives as long as the effects of the anti-condensation agent according to the present invention are not lost. A wetting agent, a fluidizing agent, an antifoaming agent, and the like may be appropriately contained in accordance with conditions such as a coating method and a coating machine. For example, when applying by spraying, these components are essential. In particular, when a wetting agent or a fluidizing agent is contained, the water absorption speed after construction is remarkably improved, and the effect of preventing condensation is increased.
この発明にかかる結露防止剤を建材の表面に塗工することで断熱、吸音、そして結露防止効果を発揮する多機能板材を得ることができる。塗工する対象となる建材としては、木材板、石膏ボード、コンクリート壁面、アルミ板、スチール板など、特に限定されることなく用いることができる。 By applying the anti-condensation agent according to the present invention to the surface of the building material, it is possible to obtain a multifunctional plate material that exhibits heat insulation, sound absorption, and anti-condensation effect. The building material to be coated can be used without particular limitation, such as wood board, gypsum board, concrete wall surface, aluminum board, steel board.
また、多層壁の内面など、ほぼ密閉された区域に塗工した建材を配した場合には、その区域内の湿度調整効果も発揮できる。区域内の湿度が高いときは多孔質材料が水分を吸収して湿度を抑制し、湿度が低くなると吸収されていた水分が多孔質材料から放出されて湿気を補うことができる。 Moreover, when the coated building material is arranged in a substantially sealed area such as the inner surface of the multilayer wall, the humidity adjustment effect in the area can also be exhibited. When the humidity in the area is high, the porous material absorbs moisture and suppresses the humidity, and when the humidity is low, the absorbed moisture is released from the porous material to supplement the moisture.
この発明にかかる結露防止剤を建材に塗工する方法は、特に限定されるものではなく、混合した組成物を壁面に固定することができればよい。ただし、できるだけ均一に塗工することが望ましい。具体的には、孔径が2〜6mm程度のエアガンを用いて噴射する方法や、刷毛による塗布、組成物中への建材の浸漬など、いずれの方法も用いることができる。ただし、建材の建築現場では噴射が有効な手法であり、予め結露防止剤を塗工した建材を工場で製造する場合には、噴射又は浸漬が有効な手法となる。 The method of applying the anti-condensation agent according to the present invention to the building material is not particularly limited as long as the mixed composition can be fixed to the wall surface. However, it is desirable to apply as uniformly as possible. Specifically, any method such as a method of spraying using an air gun having a hole diameter of about 2 to 6 mm, a coating with a brush, and a dipping of a building material in the composition can be used. However, spraying is an effective technique at the construction site of building materials, and spraying or dipping is an effective technique when building materials pre-coated with an anti-condensation agent are manufactured in a factory.
この、上記結露防止剤の塗工厚みは、2mm以上であると好ましく、3mm以上であるとより好ましい。2mm未満では断熱、吸音効果がほとんど発揮されなくなってしまう。一方で、10mm以下であると好ましく、さらに6mm以下であるとより好ましい。10mmを超えると、塗工後に乾くまでに時間が掛かりすぎてしまう。 The coating thickness of the anti-condensation agent is preferably 2 mm or more, and more preferably 3 mm or more. If it is less than 2 mm, the heat insulation and sound absorption effects are hardly exhibited. On the other hand, it is preferably 10 mm or less, and more preferably 6 mm or less. If it exceeds 10 mm, it will take too much time to dry after coating.
以下、この発明について具体的な実施例を挙げる。まず、試料の作成方法について説明し、次に試験方法について説明する。 Hereinafter, specific examples of the present invention will be given. First, a sample preparation method will be described, and then a test method will be described.
(実施例1)
揮発性溶媒であるトルエン5gと、アクリル系樹脂エマルジョン(セメダイン(株)製:セメダイン630)45gとを混合し、さらに、水500gを加えて十分に添加した。なお、アクリル系樹脂エマルジョンには、1質量%の市販の濡れ剤を含有させたものを使用した。これに、多孔質材料としてバーミキュライト(ヒルイシ化学工業(株)製:S−2、カサ比重0.08〜0.10kg/l)100gを投下して混合し、塗工可能な結露防止剤を得た。この結露防止剤を、幅100mm×高さ100mm×厚さ2mmの鉄板上に5mmの厚さとなるように塗布した試料を作製した。
Example 1
5 g of toluene as a volatile solvent and 45 g of an acrylic resin emulsion (Cemedine Co., Ltd .: Cemedine 630) were mixed, and 500 g of water was further added and sufficiently added. The acrylic resin emulsion used contained 1% by mass of a commercially available wetting agent. To this, 100 g of vermiculite (manufactured by Hiruishi Chemical Co., Ltd .: S-2, specific gravity of 0.08 to 0.10 kg / l) is dropped and mixed as a porous material to obtain a dew condensation inhibitor that can be applied. It was. A sample was prepared by applying this anti-condensation agent on an iron plate having a width of 100 mm, a height of 100 mm, and a thickness of 2 mm to a thickness of 5 mm.
(比較例1)
実施例1において、トルエン5gを投下せず、アクリル系樹脂水分散体の量を50gとしたこと以外は同様の条件で結露防止剤を得て、試料を作製した。
(Comparative Example 1)
In Example 1, a dew condensation inhibitor was obtained under the same conditions except that 5 g of toluene was not dropped and the amount of the acrylic resin aqueous dispersion was 50 g, and a sample was prepared.
<吸水保水量試験>
JIS A 690920037.23に準拠した防露性試験を行った。具体的には、装置内の温度は50℃、防露時間は6時間、試料面積は100cm2、基準値は0.25g/cm3である。それぞれの試料を乾燥した後の重量と、防露性試験後の質量を測定し、その差を吸水量として算出した。
<Water absorption water retention test>
A dew proof test was conducted in accordance with JIS A 6909 2003 7.23. Specifically, the temperature in the apparatus is 50 ° C., the dew prevention time is 6 hours, the sample area is 100 cm 2 , and the reference value is 0.25 g / cm 3 . The weight after each sample was dried and the mass after the dew-proofing test were measured, and the difference was calculated as the amount of water absorption.
実施例1、比較例1について二つずつの試料を用意して上記の吸水量試験を行った。その結果を表1に示す。比較例に比べて、実施例は単位体積当たりの吸水量が約3倍であり、従来品よりも十分に高い吸水性を発揮することが確かめられた。これにより、トルエンが先にバーミキュライトの内部に入り込むことで、樹脂水分散体の樹脂が固まる際に揮発していき、吸水可能な穴とそこへの通路を確保していることが確認できた。 Two samples were prepared for Example 1 and Comparative Example 1, and the above water absorption test was performed. The results are shown in Table 1. Compared with the comparative example, the water absorption amount per unit volume of the example was about three times, and it was confirmed that the water absorption was sufficiently higher than that of the conventional product. Thus, it was confirmed that the toluene entered the inside of the vermiculite first, so that it volatilized when the resin of the resin water dispersion solidified, and a hole capable of absorbing water and a passage therethrough were secured.
<結露試験>
試料を二つの区画の境界に立てて設置し、結露防止剤を塗布した側を60℃90%RHとし、鉄板側の温度を25℃として、結露防止剤を塗布した側の真下に、落下する水滴を回収する結露水回収容器を設置した。この結露水回収容器には予め水を張っておく。一方で、結露防止剤側の区画内に、対照とするブランク容器(結露水回収容器と同じ大きさ)を設置してこれにも同じ量の水を張っておく。実験開始から所定時間経過後における結露水回収容器の水量から、ブランク容器の水量を引いた差を、落下した結露水量として算出した。これは、60℃90%RHの環境で常時蒸発が起こるため、蒸発量を補正する必要があるためである。
<Condensation test>
The sample is set up at the boundary between the two compartments, the side on which the anti-condensation agent is applied is 60 ° C. and 90% RH, the temperature on the iron plate side is 25 ° C., and the sample falls directly below the side on which the anti-condensation agent is applied A dew condensation water collection container was installed to collect water droplets. The condensed water collection container is filled with water in advance. On the other hand, a blank container (the same size as the dew condensation water collection container) as a control is installed in the compartment on the dew condensation prevention agent side, and the same amount of water is spread over this. The difference obtained by subtracting the amount of water in the blank container from the amount of water in the condensed water collection container after the lapse of a predetermined time from the start of the experiment was calculated as the amount of condensed water dropped. This is because evaporation always occurs in an environment of 60 ° C. and 90% RH, and thus the evaporation amount needs to be corrected.
実施例、比較例について、1時間ごとの落下した結露水量の算出値を表2に示す。比較例では多量の水が落下することが確認されたが、実施例ではその十分の一以下の結露水量に留まり、結露するはずの水を十分に壁面に吸収していることが確かめられた。なお、比較例で落下する結露水量を、面積1m2の一般的な扉に換算すると、6時間で900gの水が落下することになる。 Table 2 shows calculated values of the amount of condensed water dropped every hour for the examples and comparative examples. In the comparative example, it was confirmed that a large amount of water was dropped, but in the example, it was confirmed that the amount of condensed water was less than one tenth, and the water that should be condensed was sufficiently absorbed by the wall surface. In addition, when the amount of condensed water falling in the comparative example is converted into a general door having an area of 1 m 2 , 900 g of water will drop in 6 hours.
1 バーミキュライト
2 樹脂
11 多孔質材料
13 揮発性溶媒
14 孔
16 水
17 樹脂の粒
18 樹脂膜
19 細孔
DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010260016A JP2012111809A (en) | 2010-11-22 | 2010-11-22 | Dew condensation prevention agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010260016A JP2012111809A (en) | 2010-11-22 | 2010-11-22 | Dew condensation prevention agent |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012111809A true JP2012111809A (en) | 2012-06-14 |
Family
ID=46496392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010260016A Pending JP2012111809A (en) | 2010-11-22 | 2010-11-22 | Dew condensation prevention agent |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012111809A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105038595A (en) * | 2014-10-30 | 2015-11-11 | 合肥蓝天家具制造有限责任公司 | Decorative aqueous ceramic-simulating coating |
JP2018193441A (en) * | 2017-05-15 | 2018-12-06 | 輝明 嘉納 | Thermal radiation/insulation fireproof coating material and combination of thermal radiation/insulation fireproof coating material with additive |
JP2019203242A (en) * | 2018-05-21 | 2019-11-28 | 大成建設株式会社 | Opening structure of external thermal insulation skeleton |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5334832A (en) * | 1976-09-11 | 1978-03-31 | Eidai Co Ltd | Primer coating composition |
JPS62132936A (en) * | 1985-12-04 | 1987-06-16 | Seitetsu Kagaku Co Ltd | Granulation of water absorbing resin |
JPS6335663A (en) * | 1986-07-30 | 1988-02-16 | Sanyo Electric Co Ltd | Paint for use in coating heat insulating member |
JPH01292051A (en) * | 1988-05-19 | 1989-11-24 | Sakota Kagaku Kaihatsu Kenkyusho:Kk | Coating composition |
JPH1077416A (en) * | 1996-08-30 | 1998-03-24 | Sumitomo Chem Co Ltd | Composition, its production and its use |
JP2000001649A (en) * | 1998-04-15 | 2000-01-07 | Sk Kaken Co Ltd | Coating composition for interior |
JP2000313840A (en) * | 1999-10-22 | 2000-11-14 | Rikuo Himeno | Coating material composition |
JP2001187858A (en) * | 1999-05-21 | 2001-07-10 | Rikuo Himeno | Coating composition |
JP2002080798A (en) * | 2000-06-28 | 2002-03-19 | Sk Kaken Co Ltd | Moisture-absorbing and releasing coating composition and moisture-absorbing and releasing sheet |
JP2002285037A (en) * | 2001-03-23 | 2002-10-03 | Mitsubishi Shoji Construction Materials Corp | Coating composition |
JP2002363546A (en) * | 2001-06-01 | 2002-12-18 | Fumakilla Ltd | Anti-fogging agent and method for treatment therewith |
JP2003010631A (en) * | 2001-07-03 | 2003-01-14 | Sanyo Chem Ind Ltd | Moisture conditioning agent for storage box and storage box using the same |
JP2003261831A (en) * | 2001-12-13 | 2003-09-19 | Sk Kaken Co Ltd | Interior coating composition and interior board using the same |
JP2005074855A (en) * | 2003-09-01 | 2005-03-24 | Toray Coatex Co Ltd | Moisture-permeable, water-proof composite film and moisture-permeable, water-proof composite sheet using the film |
JP2005126561A (en) * | 2003-10-23 | 2005-05-19 | Dainichi Giken Kogyo Kk | Composition for multi-functional coating |
JP2006009231A (en) * | 2004-05-21 | 2006-01-12 | Komatsu Seiren Co Ltd | Wallpaper having moisture permeability/water absorbency and method for producing the same |
JP2007031710A (en) * | 2005-06-24 | 2007-02-08 | Mitsubishi Chemicals Corp | Coating composition and its manufacturing method, and resin molding and its manufacturing method |
JP2010174060A (en) * | 2009-01-27 | 2010-08-12 | Masanaga Sakaguchi | Vermiculite-containing composition |
-
2010
- 2010-11-22 JP JP2010260016A patent/JP2012111809A/en active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5334832A (en) * | 1976-09-11 | 1978-03-31 | Eidai Co Ltd | Primer coating composition |
JPS62132936A (en) * | 1985-12-04 | 1987-06-16 | Seitetsu Kagaku Co Ltd | Granulation of water absorbing resin |
JPS6335663A (en) * | 1986-07-30 | 1988-02-16 | Sanyo Electric Co Ltd | Paint for use in coating heat insulating member |
JPH01292051A (en) * | 1988-05-19 | 1989-11-24 | Sakota Kagaku Kaihatsu Kenkyusho:Kk | Coating composition |
JPH1077416A (en) * | 1996-08-30 | 1998-03-24 | Sumitomo Chem Co Ltd | Composition, its production and its use |
JP2000001649A (en) * | 1998-04-15 | 2000-01-07 | Sk Kaken Co Ltd | Coating composition for interior |
JP2001187858A (en) * | 1999-05-21 | 2001-07-10 | Rikuo Himeno | Coating composition |
JP2000313840A (en) * | 1999-10-22 | 2000-11-14 | Rikuo Himeno | Coating material composition |
JP2002080798A (en) * | 2000-06-28 | 2002-03-19 | Sk Kaken Co Ltd | Moisture-absorbing and releasing coating composition and moisture-absorbing and releasing sheet |
JP2002285037A (en) * | 2001-03-23 | 2002-10-03 | Mitsubishi Shoji Construction Materials Corp | Coating composition |
JP2002363546A (en) * | 2001-06-01 | 2002-12-18 | Fumakilla Ltd | Anti-fogging agent and method for treatment therewith |
JP2003010631A (en) * | 2001-07-03 | 2003-01-14 | Sanyo Chem Ind Ltd | Moisture conditioning agent for storage box and storage box using the same |
JP2003261831A (en) * | 2001-12-13 | 2003-09-19 | Sk Kaken Co Ltd | Interior coating composition and interior board using the same |
JP2005074855A (en) * | 2003-09-01 | 2005-03-24 | Toray Coatex Co Ltd | Moisture-permeable, water-proof composite film and moisture-permeable, water-proof composite sheet using the film |
JP2005126561A (en) * | 2003-10-23 | 2005-05-19 | Dainichi Giken Kogyo Kk | Composition for multi-functional coating |
JP2006009231A (en) * | 2004-05-21 | 2006-01-12 | Komatsu Seiren Co Ltd | Wallpaper having moisture permeability/water absorbency and method for producing the same |
JP2007031710A (en) * | 2005-06-24 | 2007-02-08 | Mitsubishi Chemicals Corp | Coating composition and its manufacturing method, and resin molding and its manufacturing method |
JP2010174060A (en) * | 2009-01-27 | 2010-08-12 | Masanaga Sakaguchi | Vermiculite-containing composition |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105038595A (en) * | 2014-10-30 | 2015-11-11 | 合肥蓝天家具制造有限责任公司 | Decorative aqueous ceramic-simulating coating |
JP2018193441A (en) * | 2017-05-15 | 2018-12-06 | 輝明 嘉納 | Thermal radiation/insulation fireproof coating material and combination of thermal radiation/insulation fireproof coating material with additive |
JP2019203242A (en) * | 2018-05-21 | 2019-11-28 | 大成建設株式会社 | Opening structure of external thermal insulation skeleton |
JP7094773B2 (en) | 2018-05-21 | 2022-07-04 | 大成建設株式会社 | Opening structure of external insulation frame |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ramakrishnan et al. | A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites | |
EP2671038B1 (en) | Latent heat storage device | |
EP3652218A1 (en) | Liquid-retaining elastomeric compositions, process of preparation and uses thereof | |
JP2012111809A (en) | Dew condensation prevention agent | |
WO2017140388A1 (en) | Method for producing a sound- and/or heat-insulating element, and sound- and/or heat-insulating element | |
JP2000143322A (en) | Explosion-resistant concrete | |
JP4195813B2 (en) | Water repellent and water vapor permeable multilayer material for outdoor use | |
CN101962505A (en) | Aqueous anti-fogging coating and production process thereof | |
DE102014006336A1 (en) | Manufacturing Method for Phase Change Composite Material (PCM-V) | |
JP2004143019A (en) | Cement hardening material, cement hardened body, concrete placing mold and concrete structure | |
EP1236566B1 (en) | Water-repellent and vapour permeable multilayer composite sheet for exterior use | |
JP2012152697A (en) | Method for manufacturing humidity conditioning material, and humidity conditioning material | |
DE102011018171A1 (en) | Gradual hydrophilization of aerogel particles, to produce partially hydrophilic aerogel particles, which are useful to produce composite material, comprises subjecting all sides of hydrophobic aerogel particles to a heat treatment | |
KR101831323B1 (en) | A composition for preventing condensation using charcoal powder and wood flour and a method for producing the same | |
US20070281146A1 (en) | Porous, heat-insulating shaped body, method for producing the shaped body and the use thereof | |
JP4644561B2 (en) | Pavement injection material and water retentive pavement | |
JP5352229B2 (en) | Processing method of spray material containing asbestos | |
EP3348534B1 (en) | Method for filling cavities in mouldings with a paste that comprises an activated photoinitiator | |
JP4604245B2 (en) | Surface finishing structure of a building and method for forming a surface finishing layer | |
JP7136616B2 (en) | Method for fixing water-absorbing resin, method for producing water-retentive pavement, and water-retaining agent for porous pavement | |
JP2005015257A (en) | Plastered wall, wall plastering material and wall plastering method | |
JP6393950B2 (en) | Artificial turf filler and artificial turf using the same | |
JP2005089274A (en) | Method of manufacturing humidity conditioning tile and humidity conditioning tile | |
JP2001049022A (en) | Conditioning material and its preparation | |
JP2004285611A (en) | Thermal insulation humidity conditioning material and building material using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150407 |