JP2012104333A - Foam insulated cable and method for manufacturing the same - Google Patents
Foam insulated cable and method for manufacturing the same Download PDFInfo
- Publication number
- JP2012104333A JP2012104333A JP2010250951A JP2010250951A JP2012104333A JP 2012104333 A JP2012104333 A JP 2012104333A JP 2010250951 A JP2010250951 A JP 2010250951A JP 2010250951 A JP2010250951 A JP 2010250951A JP 2012104333 A JP2012104333 A JP 2012104333A
- Authority
- JP
- Japan
- Prior art keywords
- foamed
- foam
- cable
- foaming
- insulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Processes Specially Adapted For Manufacturing Cables (AREA)
Abstract
Description
本発明は、高速信号伝送に用いられる発泡ケーブル及びその製造方法に関するものである。 The present invention relates to a foamed cable used for high-speed signal transmission and a method for manufacturing the same.
近年、電子機器の小型化と高性能化に伴い、それらに使用される信号伝送用ケーブルにおいても高性能化、すなわち伝送速度の高速化や通信容量の増大が強く望まれている。 In recent years, along with miniaturization and high performance of electronic devices, there is a strong demand for higher performance, that is, higher transmission speed and increased communication capacity in signal transmission cables used for them.
伝送速度は遅延時間(Td)で表されることが多く、殆どの場合1mの電線を信号が通過するのに必要な時間(ns/m)で表される。このTdが小さいほど伝送速度は大きい。 The transmission speed is often represented by a delay time (Td), and in most cases, it is represented by a time (ns / m) required for a signal to pass through a 1-m wire. The smaller the Td, the higher the transmission speed.
伝送速度は電線に用いる絶縁体の誘電率の影響が大きく、誘電率が小さいほど伝送速度が向上することは広く知られており、ポリエチレン(比誘電率:約2.3)やふっ素樹脂(比誘電率:2.1〜2.2)の低誘電率絶縁体が用いられている。更に、空気の比誘電率が1であることから、これらの絶縁体中に気泡を含有させることで絶縁体全体としての比誘電率を抑制する技術も実用化されており、発泡絶縁電線として一般化している。発泡度の高いタイプではTdが4.0ns/m以下となるものがある。 It is well known that the transmission speed is greatly affected by the dielectric constant of the insulator used for the electric wire, and the smaller the dielectric constant, the higher the transmission speed. Polyethylene (relative dielectric constant: about 2.3) and fluorine resin (ratio) A low dielectric constant insulator having a dielectric constant of 2.1 to 2.2) is used. Furthermore, since the relative permittivity of air is 1, a technology for suppressing the relative permittivity of the entire insulator by including bubbles in these insulators has been put into practical use, and is generally used as a foam insulated wire. It has become. Some types with a high degree of foaming have a Td of 4.0 ns / m or less.
一方、通信容量の増大に対応する方法として、差動伝送方式が主流になりつつある。差動伝送方式は、GHz帯の高周波信号を用いて通信を行うため通信容量が大きい反面、信号到達の時間に僅かなズレを生じても通信不良となってしまう。そのため、ペアで使用する電線の遅延時間差(Skew)を小さくする必要がある。 On the other hand, a differential transmission method is becoming mainstream as a method for dealing with an increase in communication capacity. In the differential transmission method, communication is performed using a high frequency signal in the GHz band, but the communication capacity is large. However, even if a slight shift occurs in the signal arrival time, communication failure occurs. Therefore, it is necessary to reduce the delay time difference (Skew) of the electric wires used in pairs.
通信の速度と容量を向上させるため、このような用途にはTdとSkewの両方を小さくしたケーブルが求められている。 In order to improve the communication speed and capacity, a cable having both Td and Skew reduced is required for such applications.
なお、発泡絶縁電線の製造方法には大別して以下の2種類の製造方法がある。 In addition, the manufacturing method of a foam insulated wire is divided roughly and there exist the following two types of manufacturing methods.
(物理発泡法)
一つは押出機の中で溶融した樹脂中に高圧のガスを注入する方法で、物理発泡法と称される。概略手順は以下の通りである。
1) 押出機中に樹脂を投入し、加熱混練を行って溶融させる。
2) 樹脂の流路の途中から高圧のガスを注入し溶解させる。
3) 導体上にガスの溶解した樹脂を被覆する。
4) 導体の移動に伴い、被覆した樹脂を押出機外部に移動させる。
5) 押出機内部での圧力から開放され、樹脂中に溶解していたガスが気泡となる。
6) 気泡が過剰に成長して絶縁体が不均一になる前に冷却し、樹脂を固化させる。
(Physical foaming method)
One is a method of injecting a high-pressure gas into a resin melted in an extruder, which is called a physical foaming method. The general procedure is as follows.
1) A resin is put into an extruder and melted by heating and kneading.
2) A high-pressure gas is injected from the middle of the resin flow path and dissolved.
3) A gas-dissolved resin is coated on the conductor.
4) As the conductor moves, the coated resin is moved out of the extruder.
5) Gas released from the pressure inside the extruder and dissolved in the resin becomes bubbles.
6) Cooling and solidifying the resin before the bubbles grow excessively and the insulator becomes non-uniform.
(化学発泡法)
もう一つは、樹脂と共に化学的な発泡剤を投入する方法で、化学発泡法と呼ばれる。概略手順は以下の通りである。
1) 押出機中に樹脂と発泡剤を投入する。発泡剤は単独でも樹脂中に混練していてもよい。
2) 押出機中で発泡剤の分解温度以上に加熱する。その際押出機中で発泡しないよう樹脂の圧力が高い状態を維持し、発生したガスを樹脂中に溶解させる。
3) 導体上にガスの溶解した樹脂を被覆する。
4) 導体の移動に伴い、被覆した樹脂を押出機外部に移動させる。
5) 押出機内部での圧力から開放され、樹脂中に溶解していたガスが気泡となる。
6) 気泡が過剰に成長して絶縁体が不均一になる前に冷却し、樹脂を固化させる。
(Chemical foaming method)
The other is a method of adding a chemical foaming agent together with a resin, which is called a chemical foaming method. The general procedure is as follows.
1) Put resin and foaming agent in the extruder. The blowing agent may be used alone or kneaded in the resin.
2) Heat above the decomposition temperature of the blowing agent in the extruder. At that time, the pressure of the resin is kept high so as not to foam in the extruder, and the generated gas is dissolved in the resin.
3) A gas-dissolved resin is coated on the conductor.
4) As the conductor moves, the coated resin is moved out of the extruder.
5) Gas released from the pressure inside the extruder and dissolved in the resin becomes bubbles.
6) Cooling and solidifying the resin before the bubbles grow excessively and the insulator becomes non-uniform.
物理発泡方式は、化学発泡方式に比べ以下の利点がある。
(1)高い発泡度を得やすい。
(2)化学的な発泡剤を使用しないため、発泡剤や発泡剤の残渣による絶縁体の電気特性(誘電率εや誘電正接tanδ)の低下が少ない。
The physical foaming method has the following advantages over the chemical foaming method.
(1) It is easy to obtain a high foaming degree.
(2) Since no chemical foaming agent is used, there is little decrease in the electrical characteristics (dielectric constant ε and dielectric loss tangent tan δ) of the insulator due to the foaming agent and the residue of the foaming agent.
以上の理由から、高性能発泡絶縁電線の製造には物理発泡方式が多用されている。 For these reasons, the physical foaming method is frequently used in the production of high-performance foam insulated wires.
しかしながら、当該発泡方式による発泡絶縁電線には、気泡成長が不安定になるという問題がある。気泡成長は、気泡内のガス圧を推進力としているため、周囲の材料粘度が高い場合は遅く、ゼロせん断粘度が低い場合は速くなることが知られている。気泡成長が速すぎると、気泡の成長にバラつきが生じたり、異常成長が起きやすくなり、外径変動、偏心(偏肉)、発泡度変動が原因となって個々の発泡絶縁電線のTdにバラつきが生じてSkewが大きくなる。 However, the foam insulated wire by the foaming method has a problem that bubble growth becomes unstable. It is known that the bubble growth is slow when the surrounding material viscosity is high and fast when the zero shear viscosity is low because the gas pressure in the bubble is the driving force. If the bubble growth is too fast, the bubble growth will vary, or abnormal growth will likely occur, and the Td of individual foam insulated wires will vary due to fluctuations in outer diameter, eccentricity (thickness deviation), and fluctuation in foaming degree. Occurs and Skew increases.
また、特に細径薄肉の発泡絶縁電線、ケーブルの場合、僅かな気泡成長の違いが発泡絶縁体の変動に繋がるため、比較的高粘度の材料を用いて気泡の成長を穏やかにする場合が多い。しかし、高発泡の絶縁体を形成する場合は、高粘度の材料を使用してもさらに高圧のガスで発泡させるため気泡の異常成長が起きやすく、このような電線、ケーブルは生産性が低くなってしまう。 In particular, in the case of thin-diameter, thin-walled foam insulated wires and cables, a slight difference in bubble growth leads to fluctuations in the foam insulation, so the bubble growth is often moderated using a relatively high viscosity material. . However, when forming a highly foamed insulator, even if a high-viscosity material is used, bubbles are likely to grow abnormally because it is foamed with a higher pressure gas, and such wires and cables are less productive. End up.
この問題への対策のひとつとして、発泡核剤を極端に微粒子化して用いる方法(特許文献1)などが提案されている。これは発泡起点となる微粒子の核剤を使用することで気泡を大量に発生させ、個々の気泡に流入するガスを減らすことで、気泡の異常成長防止を狙っている。しかし、この方法も以下のような問題を抱えている。
(1) 超微粒子核剤は樹脂中への均一な分散が難しいため、2次凝集や分散不良の問題が発生しやすい。
(2) 核剤が超微粒子になると、作業環境を汚染しやすいため、取扱い上の手間がかかり、作業性が低下する。
(3) 微粒子の核剤を使用しても、発泡度を向上させるため添加量を増やした場合、発泡絶縁体としての誘電率εや誘電正接tanδに悪影響を与えやすい。
As one of countermeasures against this problem, a method (Patent Document 1) that uses an extremely fine foam nucleating agent has been proposed. This is aimed at preventing the abnormal growth of bubbles by generating a large amount of bubbles by using a fine particle nucleating agent that becomes the starting point of foaming and reducing the gas flowing into each bubble. However, this method also has the following problems.
(1) Since the ultrafine particle nucleating agent is difficult to uniformly disperse in the resin, problems such as secondary aggregation and poor dispersion are likely to occur.
(2) When the nucleating agent becomes ultrafine particles, the work environment is likely to be contaminated, so that handling is troublesome and workability is lowered.
(3) Even if a fine particle nucleating agent is used, if the amount added is increased in order to improve the degree of foaming, the dielectric constant ε and dielectric loss tangent tanδ as a foamed insulator are likely to be adversely affected.
上述の通り、Tdを小さくするとTdにバラつきが生じてしまい、Skewを小さくすることは難しい。 As described above, when Td is reduced, Td varies, and it is difficult to reduce Skew.
本発明は、掛かる点に関して成されたものであり、TdとSkewの小さな発泡ケーブルとその製造方法を提供するものである。 The present invention has been made with respect to the point of application, and provides a foamed cable having a small Td and Skew and a manufacturing method thereof.
上記課題を解決するために本発明は、中心導体の外周に、発泡絶縁体を形成してなる発泡絶縁電線を、少なくとも2本並行に配置或いは少なくとも2本対よりにした構造をもつ発泡ケーブルにおいて、前記発泡絶縁電線の遅延時間(Td)が3.9ns/m以上4.2ns/m以下であり、かつ前記発泡絶縁体の170℃におけるゼロせん断粘度が3000Pa・s以上18000Pa・s以下の発泡ケーブルである。 In order to solve the above-mentioned problems, the present invention relates to a foam cable having a structure in which at least two foam insulated wires formed by forming a foam insulator on the outer periphery of a central conductor are arranged in parallel or at least two pairs. The foam insulated wire has a delay time (Td) of 3.9 ns / m to 4.2 ns / m and the foamed insulator has a zero shear viscosity at 170 ° C. of 3000 Pa · s to 18000 Pa · s. It is a cable.
前記発泡絶縁体の外径が2mm以下で、かつ前記中心導体の直径が1mm以下であるとよい。 It is preferable that the foamed insulator has an outer diameter of 2 mm or less and the center conductor has a diameter of 1 mm or less.
前記発泡ケーブルの遅延時間差(Skew)が、8ps/m以下であるとよい。 The delay time difference (Skew) of the foamed cable is preferably 8 ps / m or less.
前記発泡ケーブルにおいて、中心導体の外周に被覆された発泡絶縁体が、直鎖状低密度ポリエチレンを主成分とする材料からなるとよい。 In the foamed cable, the foamed insulator coated on the outer periphery of the center conductor may be made of a material mainly composed of linear low density polyethylene.
また、本発明は、ポリオレフィン樹脂と発泡剤もしくは発泡核剤を含む樹脂組成物を押出機で押し出すと共に化学発泡又は物理発泡させ、中心導体の外周に発泡絶縁体を被覆して発泡絶縁電線を形成し、その発泡絶縁電線を少なくとも2本並行に配置或いは少なくとも2本対よりにして形成する発泡ケーブルの製造方法において、前記発泡絶縁体が、ポリオレフィン樹脂と発泡剤もしくは発泡核剤を含む樹脂組成物から成り、かつ前記発泡絶縁体の170℃におけるゼロせん断粘度が3000Pa・s以上18000Pa・s以下である発泡ケーブルの製造方法である。 In addition, the present invention extrudes a resin composition containing a polyolefin resin and a foaming agent or a foaming nucleating agent with an extruder and chemically foams or physically foams it, and forms a foamed insulated wire by covering the outer periphery of the center conductor with a foamed insulator. In the method of manufacturing a foamed cable in which at least two foamed insulated wires are arranged in parallel or formed by at least two pairs, the foamed insulator includes a polyolefin resin and a foaming agent or a foaming nucleating agent. And a zero shear viscosity of the foamed insulator at 170 ° C. of 3000 Pa · s to 18000 Pa · s.
前記発泡絶縁体の発泡度は50%以上であることが好ましい。 The foaming degree of the foamed insulator is preferably 50% or more.
本発明によれば、発泡ケーブルのTdとSkewの両方を小さくできる。 According to the present invention, both Td and Skew of the foamed cable can be reduced.
以下、本発明の一実施の形態を添付図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
本発明に係る発泡ケーブルは、中心導体の外周に、ポリオレフィン樹脂と発泡剤もしくは発泡核剤を含む樹脂組成物からなる発泡絶縁体を形成してなる発泡絶縁電線を、少なくとも2本並行に配置或いは少なくとも2本対よりにした構造を有するものである。 In the foamed cable according to the present invention, at least two foam insulated wires formed by forming a foam insulator made of a resin composition containing a polyolefin resin and a foaming agent or a foam nucleating agent are arranged in parallel on the outer periphery of the central conductor, or The structure has at least two pairs.
本発明に係る発泡ケーブルの一例として、発泡絶縁電線を2本並行に配置した構造の図1に示すツインナックスケーブルについて説明するが、発泡ケーブルは図1の構造に限るものではなく、上述のように2本の発泡絶縁電線を撚り合わせた対より線構造としてもよい。また、4本あるいは6本以上の発泡絶縁電線を撚り合わせて、向かい合う2本を1組として使用する構造、スペーサーや介材を使用する構造としてもよい。さらに、これらを複数まとめて1本のケーブルとすることも可能である。 As an example of the foamed cable according to the present invention, the twinax cable shown in FIG. 1 having a structure in which two foam insulated wires are arranged in parallel will be described. However, the foamed cable is not limited to the structure of FIG. Alternatively, a twisted wire structure in which two foam insulated wires are twisted together may be used. Moreover, it is good also as a structure which twists together 4 or 6 foam insulation electric wires, and uses 2 facing each other as 1 set, and a structure which uses a spacer and an intermediary material. Further, a plurality of these can be combined into one cable.
図1に示すように、本実施の形態に係る発泡ケーブル1は、2本並行に配置された発泡絶縁電線10と、発泡絶縁電線10に沿うように配置されたドレイン線11とを有し、これらの外周にシールドテープ12が被覆され、更にその外周に樹脂テープ13が巻きつけられて形成される。 As shown in FIG. 1, the foamed cable 1 according to the present embodiment has two foam insulated wires 10 arranged in parallel and a drain wire 11 arranged along the foam insulated wires 10. A shield tape 12 is coated on the outer periphery, and a resin tape 13 is wound around the outer periphery.
シールドテープ12は、外部からのノイズを遮蔽するためのものであり、シールドテープ12で遮蔽した外部からのノイズは、ドレイン線11を通じて外部のアースへ落とされる。 The shield tape 12 is for shielding external noise, and the external noise shielded by the shield tape 12 is dropped to the external ground through the drain wire 11.
発泡絶縁電線10は、図2に示すように、中心導体21の外周に、無数の気泡22を有する発泡絶縁体23を押出被覆して形成される。中心導体21は、単線でもより線でもよい。なお、より線の場合は単線に比べて導体断面積が小さくなるため、同一断面積に換算したより線径に読み替えるものとする。 As shown in FIG. 2, the foam insulated wire 10 is formed by extrusion coating a foam insulator 23 having countless bubbles 22 around the outer periphery of the center conductor 21. The central conductor 21 may be a single wire or a stranded wire. In the case of a stranded wire, the conductor cross-sectional area is smaller than that of a single wire.
発泡絶縁電線10の発泡絶縁体23の外径は2mm以下で、かつ中心導体21の直径は1mm以下である。そうすることで、細径薄肉の発泡ケーブル1が形成される。 The outer diameter of the foam insulator 23 of the foam insulated wire 10 is 2 mm or less, and the diameter of the central conductor 21 is 1 mm or less. By doing so, the thin diameter thin-walled foamed cable 1 is formed.
ここで、発泡絶縁電線においては、伝送速度の高速化の観点から遅延時間(Td)を小さくすることが望まれる。そのためには、発泡絶縁電線の発泡絶縁体における発泡度を高くする必要がある。 Here, in the foam insulated wire, it is desired to reduce the delay time (Td) from the viewpoint of increasing the transmission speed. For this purpose, it is necessary to increase the degree of foaming in the foam insulation of the foam insulated wire.
しかし、発泡絶縁体の発泡度を高くすることによってTdを小さくしても、発泡絶縁電線の長手方向に亘って発泡を均一にすることは難しく、Tdにバラつきが生じてしまう。このように、Tdにバラつきがあると、これを用いて構成されるツインナックスケーブルなど、複数本の発泡絶縁電線を束ねてなる発泡ケーブルでは遅延時間差(Skew)を小さくするのが難しい。 However, even if Td is reduced by increasing the foaming degree of the foamed insulating material, it is difficult to make the foam uniform over the longitudinal direction of the foamed insulated wire, resulting in variations in Td. Thus, when there is variation in Td, it is difficult to reduce the delay time difference (Skew) in a foamed cable formed by bundling a plurality of foam insulated wires, such as a twinax cable configured using the Td.
そこで、本発明者らは、発泡絶縁電線におけるTdのバラつきの発生を防止して、発泡ケーブルとしたときのSkewを小さくすることができる条件を規定した。 Therefore, the present inventors have defined the conditions that can prevent the variation of Td in the foam insulated wire and reduce the skew when the foamed cable is used.
すなわち、本発明は、発泡絶縁電線のTdが3.9ns/m以上4.2ns/m以下であり、かつ発泡絶縁電線の発泡絶縁体の170℃におけるゼロせん断粘度が3000Pa・s以上18000Pa・s以下であれば、発泡ケーブルとしたときにSkewを8ps/m以下にできる旨、保証するものである。 That is, according to the present invention, the foam insulated wire has a Td of 3.9 ns / m or more and 4.2 ns / m or less, and the foam insulation of the foam insulated wire has a zero shear viscosity at 170 ° C. of 3000 Pa · s or more and 18000 Pa · s. The following guarantees that the skew can be reduced to 8 ps / m or less when a foamed cable is used.
以下、発泡ケーブル1の製造方法と共に、各項目について説明する。 Hereafter, each item is demonstrated with the manufacturing method of the foamed cable 1. FIG.
まず、中心導体21の外周に無数の気泡22を有する発泡絶縁体23を押出被覆して発泡絶縁電線10を形成する。このときの条件は以下の通りである。 First, the foamed insulated wire 10 is formed by extrusion-coating the foamed insulator 23 having countless bubbles 22 on the outer periphery of the center conductor 21. The conditions at this time are as follows.
(発泡方式、条件)
発泡方式について述べる。発泡方法としては、物理発泡、化学発泡の2つの方法があり、本発明に適用する方法としては物理発泡方式が好ましいが、製品の目的と要求性能にあわせて化学発泡方式を選択することも出来る。
(Foaming method, conditions)
The foaming method is described. There are two foaming methods, physical foaming and chemical foaming. The physical foaming method is preferred as the method applied to the present invention, but the chemical foaming method can be selected according to the purpose and required performance of the product. .
発泡絶縁電線10のTdは、発泡絶縁体23の発泡度により調整する。例えば、樹脂組成物の主成分がLLDPE(直鎖状低密度ポリエチレン)の場合、発泡度を50%以上とすれば、Tdを4.2ns/m以下とすることが出来る。 The Td of the foam insulated wire 10 is adjusted by the foaming degree of the foam insulator 23. For example, when the main component of the resin composition is LLDPE (linear low density polyethylene), Td can be 4.2 ns / m or less if the foaming degree is 50% or more.
(ゼロせん断粘度)
樹脂組成物のゼロせん断粘度は、3000Pa・s以上18000Pa・s以下の範囲であるが、より好ましくは8000Pa・s以上12000Pa・s程度の範囲である。この範囲から更に粘度が高くなると、高圧のガスを用いて発泡せざるを得ず、巣の発生や気泡の異常成長が生じやすくなる。一方、低粘度に傾くと、中心導体21の外周に被覆した際に液ダレによる偏心(偏肉)が生じやすくなる。このため、材料の粘度は、最適範囲を中心とした3000Pa・s以上18000Pa・s以下が望ましい。
(Zero shear viscosity)
The zero shear viscosity of the resin composition is in the range of 3000 Pa · s to 18000 Pa · s, more preferably in the range of about 8000 Pa · s to 12000 Pa · s. When the viscosity is further increased from this range, foaming is inevitably performed using a high-pressure gas, and nest formation and abnormal bubble growth are likely to occur. On the other hand, if the viscosity is low, eccentricity (thickness) due to liquid dripping tends to occur when the outer periphery of the center conductor 21 is covered. For this reason, the viscosity of the material is desirably 3000 Pa · s or more and 18000 Pa · s or less centering on the optimum range.
ゼロせん断粘度の測定には、例えば、TAインスツルメンツ社製、動的粘度測定装置ARESを使用し、170℃でφ20mmパラレルプレートにて周波数をパラメータとして測定する。ゼロせん断粘度は、この測定結果を低周波側に延長し、せん断速度0に外挿して求める。 For the measurement of the zero shear viscosity, for example, a dynamic viscosity measuring device ARES manufactured by TA Instruments is used, and the frequency is measured at 170 ° C. using a φ20 mm parallel plate as a parameter. The zero shear viscosity is obtained by extending this measurement result to the low frequency side and extrapolating the shear rate to zero.
中心導体上に被覆すると共に発泡し、形成された発泡絶縁体の170℃におけるゼロせん断粘度は、被覆形成前の樹脂組成物の170℃におけるゼロせん断粘度と変わらない。 The zero shear viscosity at 170 ° C. of the foamed insulation formed and coated on the center conductor is the same as the zero shear viscosity at 170 ° C. of the resin composition before coating formation.
(樹脂組成物の配合)
本発明は、170℃におけるゼロせん断粘度が3000Pa・s以上18000Pa・s以下のポリオレフィン樹脂と発泡剤もしくは発泡核剤を含む樹脂組成物を発泡させることに特徴があり、特に材料組成を規定するものではないが、より、好ましい樹脂組成物の配合の例を表1に示す。
(Formulation of resin composition)
The present invention is characterized by foaming a resin composition containing a polyolefin resin having a zero shear viscosity at 170 ° C. of 3000 Pa · s or more and 18000 Pa · s or less and a foaming agent or a foaming nucleating agent, and particularly defines a material composition. However, a more preferable example of the composition of the resin composition is shown in Table 1.
すなわちJIS−K7210に準拠して測定したMFR(190℃、荷重2.16kg)が0.3〜2のHDPE(高密度ポリエチレン)とMFRが6〜10のLLDPE、第三成分としての発泡剤または発泡核剤を含むマスターバッチ(MB)のそれぞれの比率(質量部)が、15〜35、55〜75、20以下、である。MBについては後述する。 That is, HDPE (high density polyethylene) having an MFR (190 ° C., load 2.16 kg) measured in accordance with JIS-K7210 of 0.3-2 and LLDPE having an MFR of 6-10, a foaming agent as a third component or The ratio (parts by mass) of the master batch (MB) containing the foam nucleating agent is 15 to 35, 55 to 75, 20 or less. The MB will be described later.
LLDPEは、同レベルのゼロせん断粘度を持つ、他のHDPEやLDPE(低密度ポリエチレン)と比較すると、伸張粘度の歪硬化性が大きいという特徴を持つ(図3参照)。そのため、気泡が大きく成長した場合、歪硬化が発現して樹脂の粘性抵抗が増すことで、異常成長による破泡や巣の発生、外径変動等の問題を軽減できる。このLLDPEを主材料とすることで、低粘度でありながら気泡の異常成長を防止して性能の安定した発泡絶縁電線10の製造が可能になる。低粘度と歪硬化特性を併せ持つLLDPEとしては、(株)プライムポリマー製のウルトゼックス(登録商標)15150Jや、住友化学(株)製のスミカセン(登録商標)L−5721が挙げられる。 LLDPE is characterized by a high strain hardening property of extensional viscosity compared to other HDPE and LDPE (low density polyethylene) having the same level of zero shear viscosity (see FIG. 3). Therefore, when bubbles grow large, strain hardening develops and the viscous resistance of the resin increases, thereby reducing problems such as bubble breakage and nest generation due to abnormal growth, and fluctuations in the outer diameter. By using this LLDPE as a main material, it is possible to manufacture a foam insulated wire 10 having a stable performance by preventing abnormal growth of bubbles while having a low viscosity. Examples of LLDPE having both low viscosity and strain-hardening properties include Ultexex (registered trademark) 15150J manufactured by Prime Polymer Co., Ltd. and Sumikasen (registered trademark) L-5721 manufactured by Sumitomo Chemical Co., Ltd.
無論、上記は本発明の考え方を示したものであり、樹脂組成物の材料配合は発泡ケーブル1に要求される性能に応じて選択できる。 Of course, the above shows the idea of the present invention, and the material composition of the resin composition can be selected according to the performance required for the foamed cable 1.
(発泡核剤MB)
物理発泡方式を採用する場合、樹脂中に溶解しているガスが気泡として発生するための起点として、発泡核剤を使用することが出来る。発泡核剤は殆どの場合微細な粉体状であり、これらを押出機中に投入した場合は樹脂中で分散不良を起こしやすい。このため、予めマスターバッチ(MB)と称する、発泡核剤を高濃度に配合したコンパウンドを添加する方法が一般的である。
(Foaming nucleating agent MB)
When the physical foaming method is employed, a foam nucleating agent can be used as a starting point for generating gas dissolved in the resin as bubbles. In most cases, the foam nucleating agent is in the form of fine powder, and when these are put into an extruder, poor dispersion tends to occur in the resin. For this reason, the method of adding the compound which mix | blended the foam nucleating agent with the high concentration previously called a masterbatch (MB) is common.
発泡核剤MBは、高濃度の発泡核剤を分散させることが目的であるため、特にその性状、形態は問わない。また、押出機中での分散性を更に向上させるため、予め本発明で使用するHDPEやLDPEあるいはLLDPEの一部または全部で希釈混練を行うことも出来る。 Since the foam nucleating agent MB is intended to disperse a high concentration foaming nucleating agent, its nature and form are not particularly limited. Further, in order to further improve the dispersibility in the extruder, it is possible to carry out dilution kneading with a part or all of HDPE, LDPE or LLDPE used in the present invention in advance.
発泡核剤の種類は、有機物、無機物、あるいは大きさや形状によって様々な選択肢が考えられるが、特に規定するものではなく、その目的と効果によって選択することが出来る。 Various types of foam nucleating agents can be considered depending on the organic substance, the inorganic substance, or the size and shape, but are not particularly limited, and can be selected depending on the purpose and effect.
有機物の一例としてはADCA(アゾジカルボンアミド)に代表されるアゾ化合物、N−N’−ジニトロソペンタメチレンテトラミンに代表されるニトロソ化合物、OBSH(4,4’−オキシビス(ベンゼンスルホニルヒドラジド))やHDCA(ヒドラゾジカルボンアミド)に代表されるヒドラジン誘導体などが挙げられる。これらは後述の発泡剤としての作用も持つが、発泡核剤として使用することを制限するものではない。また、ポリエステル、ポリイミド、ふっ素樹脂、ポリメチルペンテン、環状オレフィンコポリマー、ポリスチレン、スチレン共重合体、ポリ乳酸、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルケトン、その他各種樹脂の粉末を選択できる。 Examples of organic substances include azo compounds represented by ADCA (azodicarbonamide), nitroso compounds represented by NN′-dinitrosopentamethylenetetramine, OBSH (4,4′-oxybis (benzenesulfonylhydrazide)), Examples include hydrazine derivatives represented by HDCA (hydrazodicarbonamide). Although these also have an effect | action as a below-mentioned foaming agent, using it as a foaming nucleating agent is not restrict | limited. Further, polyester, polyimide, fluororesin, polymethylpentene, cyclic olefin copolymer, polystyrene, styrene copolymer, polylactic acid, polyimide, polyamideimide, polyetherimide, polyetherketone, and other various resin powders can be selected.
また、ポリオレフィン樹脂とは異なる樹脂を発泡核剤として添加し、押出機中で混練、攪拌することで発泡核剤としての効果を発揮させる方法も選択できる。 Moreover, the method of exhibiting the effect as a foam nucleating agent by adding resin different from polyolefin resin as a foam nucleating agent, kneading | mixing and stirring in an extruder can also be selected.
無機物としては、シリカ、タルク、その他金属化合物を選択できる。 Silica, talc, and other metal compounds can be selected as the inorganic substance.
勿論、発泡核剤の添加が一般的ではあるが、発泡絶縁電線10の用途や目的よっては発泡核剤の添加を行わない方法も選択できる。 Of course, addition of a foam nucleating agent is common, but depending on the use and purpose of the foam insulated wire 10, a method in which the foam nucleating agent is not added can also be selected.
(発泡剤MB)
一方、化学発泡を行う場合、発泡ガスの発生源としての発泡剤を樹脂中に混練しておく必要がある。発泡剤の場合も、発泡核剤MBと同様に予めMB化しておくことが一般的であるが、単体で押出機中に投入、あるいは事前に希釈混練を行うことも出来る。
(Foaming agent MB)
On the other hand, when chemical foaming is performed, it is necessary to knead a foaming agent as a generation source of foaming gas in the resin. In the case of a foaming agent, it is common to pre-form MB like the foaming nucleating agent MB, but it can be put into the extruder alone or diluted and kneaded in advance.
発泡剤としては、ADCA(アゾジカルボンアミド)に代表されるアゾ化合物、N−N’−ジニトロソペンタメチレンテトラミンに代表されるニトロソ化合物、OBSH(4,4’−オキシビス(ベンゼンスルホニルヒドラジド))やHDCA(ヒドラゾジカルボンアミド)に代表されるヒドラジン誘導体、炭酸水素ナトリウムなど、用途と目的に応じて使用できる。 As the foaming agent, an azo compound typified by ADCA (azodicarbonamide), a nitroso compound typified by NN′-dinitrosopentamethylenetetramine, OBSH (4,4′-oxybis (benzenesulfonylhydrazide)), A hydrazine derivative typified by HDCA (hydrazodicarbonamide), sodium hydrogen carbonate and the like can be used according to the purpose and purpose.
(その他、添加剤など)
本実施の形態で用いる発泡絶縁電線10の本来の目的から、その電気特性上可能な限り、樹脂組成物は純粋にポリオレフィン樹脂と発泡剤もしくは発泡核剤のみからなることが好ましいが、その他の性能維持や、樹脂組成物の製造上止むを得ない添加剤等の使用は可能である。
(Other additives)
From the original purpose of the foam insulated wire 10 used in the present embodiment, it is preferable that the resin composition is purely composed of a polyolefin resin and a foaming agent or a foaming nucleating agent as far as possible in terms of its electrical characteristics. It is possible to use additives that are unavoidable for maintenance and production of the resin composition.
前者の例では、酸化防止剤、発泡核剤分散のための分散助剤、多数の発泡絶縁電線10を識別するための着色剤などがあり、後者の例では樹脂組成物合成時の分子量制御(過剰重合防止のための失活剤)や触媒の残留などである。これらはその目的と効果に応じて、使用することが出来る。 In the former example, there are an antioxidant, a dispersion aid for dispersing the foam nucleating agent, a colorant for identifying a large number of foam insulated wires 10, etc. In the latter example, the molecular weight control during the synthesis of the resin composition ( Such as a deactivator for preventing excessive polymerization) and a catalyst residue. These can be used according to the purpose and effect.
また、着色剤(顔料、染料など)を配合した樹脂組成物を別途用意し、発泡絶縁体23の外層に被覆する方法も可能である。 Further, a method of separately preparing a resin composition containing a colorant (pigment, dye, etc.) and coating the outer layer of the foamed insulator 23 is also possible.
(構造上の変形例)
構造上の変形例も考えられる。着色剤を配合した樹脂組成物による外層被覆だけでなく、中心導体21直上(外周)に非発泡層を設け、その外周に発泡層を設けることも可能である。これは、特により線を使用した場合に、素線のより目に沿ってガスが抜ける現象を防止するのに効果的である。また、これの変形例として、少しでも発泡度を向上させるため、内層を僅かに発泡させる方法もある。
(Structural variation)
Structural variations are also conceivable. It is possible not only to coat the outer layer with a resin composition containing a colorant, but also to provide a non-foamed layer directly above (outer periphery) of the central conductor 21 and provide a foamed layer on the outer periphery thereof. This is effective in preventing the phenomenon of gas escape along the eyes of the strands, particularly when stranded wires are used. As a modification of this, there is a method of slightly foaming the inner layer in order to improve the degree of foaming even a little.
また、中心導体21に用いる導体も銅線に限らず、その他の金属や合金、充分な導電性が確保できるのであればセラミックスや有機物の線条体に導電性を付与したものでも使用可能である。 The conductor used for the central conductor 21 is not limited to a copper wire, and other metals, alloys, and ceramics or organic filaments with conductivity can be used as long as sufficient conductivity can be secured. .
更にめっきの有無やその種類についてもその目的と用途に応じて、金、銀、錫あるいはそれ以外のめっきが選択可能である。めっき以外の表面改質方法として、コーティング、焼結、クラッド材の使用なども選択可能である。 Further, regarding the presence or absence of plating and the type thereof, gold, silver, tin, or other plating can be selected according to the purpose and application. As a surface modification method other than plating, coating, sintering, use of a clad material, or the like can be selected.
以上の条件により発泡絶縁電線10を形成した後、発泡絶縁電線10を2本並行に配置し、これにドレイン線11を沿わせ、これらの外周にシールドテープ12を被覆し、更にその外周に樹脂テープ13を巻きつけて発泡ケーブル1を製造する。 After forming the foam insulated wire 10 under the above conditions, the two foam insulated wires 10 are arranged in parallel, the drain wire 11 is placed along the foam insulated wire 10, the shield tape 12 is coated on the outer periphery thereof, and the resin is disposed on the outer periphery. The foam cable 1 is manufactured by winding the tape 13.
こうして得られた発泡ケーブル1は、発泡絶縁体23の気泡22が異常成長していないのでTdにバラつきが生じず、Skewが8ps/m以下と小さい。 In the foamed cable 1 obtained in this way, since the bubbles 22 of the foamed insulator 23 do not grow abnormally, the Td does not vary and the skew is as small as 8 ps / m or less.
以上要するに、本発明によれば、発泡絶縁電線のTdと発泡絶縁体の170℃におけるゼロせん断粘度とを規定することで、発泡ケーブルのTdとSkewの両方を小さくできる。 In short, according to the present invention, by defining the Td of the foam insulated wire and the zero shear viscosity at 170 ° C. of the foamed insulator, both the Td and Skew of the foamed cable can be reduced.
また、本発明によれば、発泡を均一に行えるので、発泡絶縁体の外径を2mm以下とし、かつ中心導体の直径を1mm以下とする発泡絶縁電線を用いた細径薄肉の発泡ケーブルを形成でき、電子機器の小型化と高性能化に対応できる。 In addition, according to the present invention, since foaming can be performed uniformly, a thin foamed cable having a thin diameter using a foam insulated wire in which the outer diameter of the foam insulator is 2 mm or less and the diameter of the center conductor is 1 mm or less is formed. It can cope with downsizing and high performance of electronic equipment.
さらに、LLDPEを主成分とする樹脂組成物を発泡絶縁体に用いることで、低粘度でありながら気泡の異常成長を防止して性能の安定した発泡絶縁電線の製造が可能となる。 Furthermore, by using a resin composition containing LLDPE as a main component for the foamed insulation, it is possible to produce a foamed insulated wire with stable performance while preventing abnormal bubble growth while having a low viscosity.
次に、本発明の実施例を比較例と共に説明する。 Next, examples of the present invention will be described together with comparative examples.
表2に実施例と比較例の材料組成を示す。樹脂組成物として、密度0.951g/cm3,MFR0.8のHDPE、密度0.937g/cm3,MFR8のLLDPE、発泡核剤MB(核剤MB)をそれぞれ配合し、表中のゼロせん断粘度をもつ材料を得た。核剤MBはベース樹脂に密度0.918g/cm3,MFR4のLDPEを使用し、核剤としてADCAを10mass%含有している。 Table 2 shows material compositions of Examples and Comparative Examples. As the resin composition, density 0.951 g / cm 3, HDPE of MFR0.8, density 0.937g / cm 3, MFR8 of LLDPE, foam nucleating agent MB (the nucleating agent MB) were blended respectively, zero shear in the table A material with viscosity was obtained. The nucleating agent MB uses LDPE having a density of 0.918 g / cm 3 and MFR4 as a base resin, and contains 10% by mass of ADCA as a nucleating agent.
これらの材料組成からなる樹脂組成物を用いて、電線試作を行った。試作条件を表3に示す。Tdの目標は3.9ns/m、4.2ns/mとし、中心導体上に各樹脂組成物からなる発泡絶縁体を形成し、それぞれのTdの電線を試作した。 Electric wire trial manufacture was performed using the resin composition which consists of these material composition. Table 3 shows the prototype conditions. The target of Td was set to 3.9 ns / m and 4.2 ns / m, a foamed insulator made of each resin composition was formed on the central conductor, and each Td electric wire was prototyped.
試作には、口径45mm、L/D25(L:押出機のシリンダー長さ、D:押出機のシリンダーの口径)の押出機を用いた。試作ライン中に、静電容量、外径、偏心の各測定機を設け、静電容量と外径から求めた発泡度と外径が、それぞれの目標に一致するよう温度や線速、ガス圧を調節した。押出温度は150〜190℃、線速は80〜150m/min、ガス圧は20〜60MPaであった。 For the trial manufacture, an extruder having a diameter of 45 mm and L / D25 (L: cylinder length of the extruder, D: diameter of the cylinder of the extruder) was used. In the prototype line, capacitance, outer diameter, and eccentricity measuring instruments are installed, and the degree of foaming and outer diameter obtained from the capacitance and outer diameter are matched to the respective targets. Adjusted. The extrusion temperature was 150 to 190 ° C., the linear velocity was 80 to 150 m / min, and the gas pressure was 20 to 60 MPa.
使用した導体は錫めっき銅線の単線で、外径0.81mm(20AWG)であった。この導体に発泡押出を行い、外径1.84mmの発泡絶縁電線を得た。 The conductor used was a single wire of tin-plated copper wire and had an outer diameter of 0.81 mm (20 AWG). This conductor was subjected to foam extrusion to obtain a foam insulated wire having an outer diameter of 1.84 mm.
試作した結果を表4,5に示す。試作結果と材料粘度の関係を見やすくするため、Td別に表4には4.2ns/mを目標とした試作結果、表5には3.9ns/mを目標とした試作結果を表示し、粘度の順に並べた。なお、表4,5には、評価結果も併せて記載しているが、具体的な判定基準については後述する。 The results of trial manufacture are shown in Tables 4 and 5. In order to make it easy to see the relationship between the prototype results and the material viscosity, Table 4 displays the prototype results targeting 4.2 ns / m in Table 4, and Table 5 displays the prototype results targeting 3.9 ns / m. Arranged in the order of. In Tables 4 and 5, the evaluation results are also shown, but specific criteria will be described later.
表4,5中の各評価項目について、測定方法の概略を述べる。 The outline of the measuring method is described for each evaluation item in Tables 4 and 5.
各試料とも5000m以上を作製し、押出機のライン中に設けたセンサのデータから偏平量、発泡度変動量を評価した。 Each sample was prepared with a length of 5000 m or more, and the amount of flatness and the amount of fluctuation in foaming degree were evaluated from the data of sensors provided in the line of the extruder.
これらの発泡絶縁電線を使用して、それぞれツインナックスケーブルと対よりケーブルを作製し、Skewを評価した。評価は、それぞれ100m以上の間隔を置いて3mの試料を10本採取して測定を行い、それぞれの最大値を記載した。 Using these foam insulated wires, a cable was prepared from a twinax cable and a pair, and Skew was evaluated. In the evaluation, 10 samples of 3 m were collected at intervals of 100 m or more and measured, and the maximum values were described.
Tdについては、各試料で目標値(4.2ns/m、3.9ns/m)を満たすことを確認し、下記の評価を行った。 About Td, it confirmed that each sample satisfy | filled target value (4.2 ns / m, 3.9 ns / m), and performed the following evaluation.
試作した発泡絶縁電線とケーブルの判定基準を表6に示した。判定基準に対する合否の○、×だけでなく、特に優れる◎も含めた3段階評価とした。各項目の具体的な判定基準を表7に示す。 Table 6 shows the judgment criteria of the prototype foam insulated wires and cables. A three-level evaluation including not only good and bad of the acceptance criteria but also excellent ◎ was made. Table 7 shows specific criteria for each item.
表7に示した発泡度変動量、Td及びSkewの測定方法を詳述する。 A method for measuring the variation in foaming degree, Td and Skew shown in Table 7 will be described in detail.
(偏平量)
偏平量の測定は、偏平測定機において、試料が偏平化した際の長径と短径を読み取り、その差が10μm以下を○、5μm以下を◎とした。
(Flat amount)
In the measurement of the flatness, the major axis and the minor axis when the sample was flattened were read with a flatness measuring machine, and the difference was 10 μm or less as ◯, and 5 μm or less as ◎.
(発泡度変動量)
発泡変動量の測定は、外径変動量の測定と共に行った。外径変動量の測定には、電線製造ライン上に設置した2台(X−Y軸)の外径測定機を使用した。0.2秒毎に外径を測定し、データロガーを経由してPCにデータを蓄積することで、経時的な外径変動を測定すると共に、静電容量Cも連続的に測定を行った。導体直径aと発泡絶縁電線の外径b、静電容量Cから発泡絶縁体の誘電率εsが計算でき、さらに発泡前の樹脂組成物の誘電率εpは既知であることから、発泡絶縁体の発泡度Fが計算できる。これにより、発泡変動量を測定した。発泡度の詳細な計算方法は、下式(1)(2)の通りである。なお、発泡度は、Td4.2ns/mでは50%、Td3.9ns/mでは70%であった。
(Foaming degree variation)
The measurement of the foaming fluctuation amount was performed together with the measurement of the outer diameter fluctuation amount. For measurement of the outer diameter fluctuation amount, two outer diameter measuring machines (XY axes) installed on the electric wire production line were used. By measuring the outer diameter every 0.2 seconds and accumulating data in the PC via the data logger, the outer diameter variation over time was measured, and the capacitance C was also continuously measured. . Since the dielectric constant εs of the foamed insulator can be calculated from the conductor diameter a, the outer diameter b of the foam insulated wire, and the capacitance C, and further, the dielectric constant εp of the resin composition before foaming is known. The degree of foaming F can be calculated. Thereby, the amount of foaming fluctuation was measured. The detailed calculation method of a foaming degree is as the following Formula (1) (2). The foaming degree was 50% at Td 4.2 ns / m and 70% at Td 3.9 ns / m.
(Td及びSkewの測定方法)
いずれも高機能オシロスコープのTDT(Time Domain Transmission)や、TDR(Time Domain Reflection)モードで測定を行った。
(Measurement method of Td and Skew)
In either case, measurement was performed in a TDT (Time Domain Transmission) mode or a TDR (Time Domain Reflection) mode of a high-function oscilloscope.
実施例及び比較例の結果を比較検討する。 The results of the examples and comparative examples will be compared.
Td4.2ns/mの試作結果を比較した表4を説明する。最も低粘度材料を用いた比較例1では偏平量が大きいため、発泡度変動は基準内であってもSkewが大きくなっており、対よりでは基準を超過した。一方、実施例1〜4においては、Skewも8ps/m以下であり、偏平量、発泡度変動量はいずれも小さく充分に実用に耐えることがわかった。高粘度材料を用いた比較例2では偏平量は非常に小さかったが、発泡度の変動量が大きいためSkewも大きくなった。 Table 4 comparing the trial results of Td 4.2 ns / m will be described. In Comparative Example 1 using the lowest-viscosity material, since the flattening amount was large, the skew was large even if the foaming degree fluctuation was within the standard, and the standard exceeded the standard. On the other hand, in Examples 1 to 4, Skew was 8 ps / m or less, and it was found that both the amount of flatness and the variation in foaming degree were small enough to withstand practical use. In Comparative Example 2 using a high-viscosity material, the amount of flatness was very small, but the skew was also large due to the large amount of variation in the degree of foaming.
Td3.9ns/mの試作結果を比較した表5を説明する。やはり低粘度材料を用いた比較例3では偏平量、発泡度変動量共に大きく、Skewは明らかに基準を超過している。実施例5では各項目とも基準値に入り、裕度はないものの実用上の問題は無い。実施例6,7ではいずれの項目も基準に対し充分な裕度を持っていることがわかる。実施例8では発泡度変動が大きくなり、裕度は少ないもののSkewの基準内に納まっている。比較例4になると、発泡度変動が大きいため、Skewも基準値を超えて実用に適さないことが判る。 Table 5 that compares the trial results of Td 3.9 ns / m will be described. In Comparative Example 3 using a low-viscosity material, both the amount of flatness and the amount of fluctuation in foaming degree are large, and Skew clearly exceeds the standard. In Example 5, each item falls within the reference value and there is no tolerance, but there is no practical problem. In Examples 6 and 7, it can be seen that all items have a sufficient margin with respect to the reference. In Example 8, the variation in foaming degree is large and the tolerance is small, but it is within the standard of Skew. In Comparative Example 4, since the variation in foaming degree is large, it can be seen that Skew exceeds the reference value and is not suitable for practical use.
以上、表4,5の評価結果に示したように、本発明による発泡絶縁電線は、偏平量や発泡度変動量が小さく、ケーブルにした際のSkewがいずれも従来のものよりも小さいことがわかった。これにより、高速信号伝送用の高性能な発泡ケーブルが、効率よく生産できる。 As described above, as shown in the evaluation results of Tables 4 and 5, the foam insulated wire according to the present invention has a small amount of flatness and variation in the degree of foaming, and the skew when the cable is made is smaller than the conventional one. all right. Thereby, a high-performance foam cable for high-speed signal transmission can be produced efficiently.
1 発泡ケーブル
10 発泡絶縁電線
11 ドレイン線
12 シールドテープ
13 樹脂テープ
21 中心導体
22 気泡
23 発泡絶縁体
DESCRIPTION OF SYMBOLS 1 Foam cable 10 Foam insulated wire 11 Drain wire 12 Shield tape 13 Resin tape 21 Center conductor 22 Air bubble 23 Foam insulator
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010250951A JP5545178B2 (en) | 2010-11-09 | 2010-11-09 | Foamed cable and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010250951A JP5545178B2 (en) | 2010-11-09 | 2010-11-09 | Foamed cable and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012104333A true JP2012104333A (en) | 2012-05-31 |
JP5545178B2 JP5545178B2 (en) | 2014-07-09 |
Family
ID=46394499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010250951A Active JP5545178B2 (en) | 2010-11-09 | 2010-11-09 | Foamed cable and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5545178B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0448509A (en) * | 1990-06-14 | 1992-02-18 | Hitachi Cable Ltd | Foaming plastic insulated wire |
JPH05198214A (en) * | 1991-10-30 | 1993-08-06 | Furukawa Electric Co Ltd:The | Foamed insulation type electric wire and coaxial cable using this |
JPH09501796A (en) * | 1994-04-12 | 1997-02-18 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | Twinaxial cable |
JP2001031792A (en) * | 1999-07-19 | 2001-02-06 | Mitsubishi Cable Ind Ltd | Foaming composition and foamed coaxial insulating cable |
JP2003109441A (en) * | 2001-09-28 | 2003-04-11 | Mitsubishi Cable Ind Ltd | Foam insulated coaxial cable |
JP2006339099A (en) * | 2005-06-06 | 2006-12-14 | Hitachi Cable Ltd | Foaming wire |
-
2010
- 2010-11-09 JP JP2010250951A patent/JP5545178B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0448509A (en) * | 1990-06-14 | 1992-02-18 | Hitachi Cable Ltd | Foaming plastic insulated wire |
JPH05198214A (en) * | 1991-10-30 | 1993-08-06 | Furukawa Electric Co Ltd:The | Foamed insulation type electric wire and coaxial cable using this |
JPH09501796A (en) * | 1994-04-12 | 1997-02-18 | ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド | Twinaxial cable |
JP2001031792A (en) * | 1999-07-19 | 2001-02-06 | Mitsubishi Cable Ind Ltd | Foaming composition and foamed coaxial insulating cable |
JP2003109441A (en) * | 2001-09-28 | 2003-04-11 | Mitsubishi Cable Ind Ltd | Foam insulated coaxial cable |
JP2006339099A (en) * | 2005-06-06 | 2006-12-14 | Hitachi Cable Ltd | Foaming wire |
Also Published As
Publication number | Publication date |
---|---|
JP5545178B2 (en) | 2014-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8715798B2 (en) | Resin composition and foam insulated wire | |
JP5975334B2 (en) | Foamed resin molded body, foamed insulated wire and cable, and method for producing foamed resin molded body | |
JP5581722B2 (en) | Method for manufacturing foam insulated wire | |
JP5187214B2 (en) | Foamed resin composition and electric wire / cable using the same | |
JP5842780B2 (en) | Foamed resin composition, electric wire, and cable | |
CN107924738B (en) | Cable core and transmission cable | |
JP2014058625A (en) | Foamed resin molded article, foam insulated wire, cable and method of manufacturing foamed resin molded article | |
CN108292539A (en) | It include the cable of the foaming layer containing polyolefin polymer and foaming agent | |
JP2012507832A (en) | Foam wire | |
JP5545179B2 (en) | Foam insulated wire and manufacturing method thereof | |
JP2006022276A (en) | Composition for insulator and high-foaming insulator and coaxial cable for high frequency using the composition | |
JP5545178B2 (en) | Foamed cable and manufacturing method thereof | |
JP5420662B2 (en) | Foamed electric wire and transmission cable having the same | |
JP5303639B2 (en) | Manufacturing method of foamed wire | |
JP5426948B2 (en) | Foamed electric wire and transmission cable having the same | |
JP5420663B2 (en) | Foamed electric wire and transmission cable having the same | |
JP2010215796A (en) | Foaming resin composition, method for producing the same and foam-insulated wire using the same | |
JP2012121990A (en) | Resin composition and foam insulated wire | |
US20170011818A1 (en) | Foam insulated conductors | |
KR101141064B1 (en) | Low loss coaxial cable and manufacturing method thereof | |
JP5489561B2 (en) | Foamed electric wire and transmission cable having the same | |
JP2008226772A (en) | Foam-insulated wire | |
JPS63276831A (en) | Manufacture of foamed fluoroplastic insulated wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130125 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131105 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140415 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140428 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5545178 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |