JP2012104290A - Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery - Google Patents
Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery Download PDFInfo
- Publication number
- JP2012104290A JP2012104290A JP2010250210A JP2010250210A JP2012104290A JP 2012104290 A JP2012104290 A JP 2012104290A JP 2010250210 A JP2010250210 A JP 2010250210A JP 2010250210 A JP2010250210 A JP 2010250210A JP 2012104290 A JP2012104290 A JP 2012104290A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- lithium
- electrolyte battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007774 positive electrode material Substances 0.000 title claims abstract description 271
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 93
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims abstract description 228
- 239000011572 manganese Substances 0.000 claims abstract description 139
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 116
- 239000011163 secondary particle Substances 0.000 claims abstract description 110
- 239000000203 mixture Substances 0.000 claims abstract description 98
- 238000010521 absorption reaction Methods 0.000 claims abstract description 97
- 239000010450 olivine Substances 0.000 claims abstract description 76
- 229910052609 olivine Inorganic materials 0.000 claims abstract description 76
- 239000011164 primary particle Substances 0.000 claims abstract description 73
- 239000000126 substance Substances 0.000 claims abstract description 68
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 37
- -1 lithium phosphoric acid compound Chemical class 0.000 claims abstract description 36
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract description 34
- 239000004020 conductor Substances 0.000 claims abstract description 34
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 34
- 239000010949 copper Substances 0.000 claims abstract description 19
- 239000011777 magnesium Substances 0.000 claims abstract description 18
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 10
- 239000010941 cobalt Substances 0.000 claims abstract description 10
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052802 copper Inorganic materials 0.000 claims abstract description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims abstract description 9
- 239000002245 particle Substances 0.000 claims description 146
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 64
- 229910052799 carbon Inorganic materials 0.000 claims description 56
- 239000006258 conductive agent Substances 0.000 claims description 32
- 239000011230 binding agent Substances 0.000 claims description 27
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 19
- 229910001386 lithium phosphate Inorganic materials 0.000 claims description 18
- 239000003921 oil Substances 0.000 description 93
- 229910052744 lithium Inorganic materials 0.000 description 62
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 59
- 239000002994 raw material Substances 0.000 description 50
- 230000000052 comparative effect Effects 0.000 description 40
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 36
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 31
- 238000009826 distribution Methods 0.000 description 31
- 229910052698 phosphorus Inorganic materials 0.000 description 31
- 239000011574 phosphorus Substances 0.000 description 31
- 239000013078 crystal Substances 0.000 description 29
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 27
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 27
- 235000019838 diammonium phosphate Nutrition 0.000 description 27
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 27
- 238000002441 X-ray diffraction Methods 0.000 description 26
- 239000012535 impurity Substances 0.000 description 26
- RUTXIHLAWFEWGM-UHFFFAOYSA-H iron(3+) sulfate Chemical compound [Fe+3].[Fe+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O RUTXIHLAWFEWGM-UHFFFAOYSA-H 0.000 description 26
- 238000000790 scattering method Methods 0.000 description 26
- 238000012916 structural analysis Methods 0.000 description 26
- 150000001875 compounds Chemical class 0.000 description 25
- 239000002002 slurry Substances 0.000 description 25
- 229910000360 iron(III) sulfate Inorganic materials 0.000 description 24
- PAVJEQIFHXNOSM-UHFFFAOYSA-H manganese(3+);trisulfate Chemical compound [Mn+3].[Mn+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O PAVJEQIFHXNOSM-UHFFFAOYSA-H 0.000 description 24
- 238000000034 method Methods 0.000 description 23
- 239000000725 suspension Substances 0.000 description 23
- 229910052782 aluminium Inorganic materials 0.000 description 21
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000007773 negative electrode material Substances 0.000 description 21
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical group [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 20
- 239000002131 composite material Substances 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 17
- 239000002904 solvent Substances 0.000 description 17
- 239000002184 metal Substances 0.000 description 16
- 239000011888 foil Substances 0.000 description 14
- 238000002156 mixing Methods 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 13
- 229910001416 lithium ion Inorganic materials 0.000 description 13
- 239000011148 porous material Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000008151 electrolyte solution Substances 0.000 description 11
- 239000003792 electrolyte Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 239000002033 PVDF binder Substances 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 239000003575 carbonaceous material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002243 precursor Substances 0.000 description 8
- 238000010298 pulverizing process Methods 0.000 description 8
- 238000004804 winding Methods 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 239000005001 laminate film Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000011245 gel electrolyte Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 229910052752 metalloid Inorganic materials 0.000 description 6
- 238000012856 packing Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000010935 stainless steel Substances 0.000 description 6
- 229910001220 stainless steel Inorganic materials 0.000 description 6
- 238000003466 welding Methods 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 229910052596 spinel Inorganic materials 0.000 description 5
- 239000011029 spinel Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 4
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000007833 carbon precursor Substances 0.000 description 4
- 238000007600 charging Methods 0.000 description 4
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000003125 aqueous solvent Substances 0.000 description 3
- 239000002134 carbon nanofiber Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- CRMJLJFDPNJIQA-UHFFFAOYSA-N 2,4-difluoro-1-methoxybenzene Chemical compound COC1=CC=C(F)C=C1F CRMJLJFDPNJIQA-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical group COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical group C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000007719 peel strength test Methods 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- QKPVEISEHYYHRH-UHFFFAOYSA-N 2-methoxyacetonitrile Chemical compound COCC#N QKPVEISEHYYHRH-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical group CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- SBUOHGKIOVRDKY-UHFFFAOYSA-N 4-methyl-1,3-dioxolane Chemical compound CC1COCO1 SBUOHGKIOVRDKY-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021577 Iron(II) chloride Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- YNQRWVCLAIUHHI-UHFFFAOYSA-L dilithium;oxalate Chemical compound [Li+].[Li+].[O-]C(=O)C([O-])=O YNQRWVCLAIUHHI-UHFFFAOYSA-L 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000374 eutectic mixture Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000006713 insertion reaction Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- LNOZJRCUHSPCDZ-UHFFFAOYSA-L iron(ii) acetate Chemical compound [Fe+2].CC([O-])=O.CC([O-])=O LNOZJRCUHSPCDZ-UHFFFAOYSA-L 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001537 lithium tetrachloroaluminate Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- 229910021437 lithium-transition metal oxide Inorganic materials 0.000 description 1
- QVXQYMZVJNYDNG-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound [Li+].FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F QVXQYMZVJNYDNG-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229940071125 manganese acetate Drugs 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- 229940099596 manganese sulfate Drugs 0.000 description 1
- 235000007079 manganese sulphate Nutrition 0.000 description 1
- 239000011702 manganese sulphate Substances 0.000 description 1
- UOGMEBQRZBEZQT-UHFFFAOYSA-L manganese(2+);diacetate Chemical compound [Mn+2].CC([O-])=O.CC([O-])=O UOGMEBQRZBEZQT-UHFFFAOYSA-L 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- MPDOUGUGIVBSGZ-UHFFFAOYSA-N n-(cyclobutylmethyl)-3-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC=CC(NCC2CCC2)=C1 MPDOUGUGIVBSGZ-UHFFFAOYSA-N 0.000 description 1
- 239000011331 needle coke Substances 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- MCSAJNNLRCFZED-UHFFFAOYSA-N nitroethane Chemical compound CC[N+]([O-])=O MCSAJNNLRCFZED-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000006253 pitch coke Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002296 pyrolytic carbon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- BHZCMUVGYXEBMY-UHFFFAOYSA-N trilithium;azanide Chemical compound [Li+].[Li+].[Li+].[NH2-] BHZCMUVGYXEBMY-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
この発明は、正極活物質および非水電解質二次電池に関し、特に高容量、高出力特性に優れる非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池に関する。 The present invention relates to a positive electrode active material and a nonaqueous electrolyte secondary battery, and more particularly to a positive electrode active material for a nonaqueous electrolyte battery, a positive electrode for a nonaqueous electrolyte battery, and a nonaqueous electrolyte battery that are excellent in high capacity and high output characteristics.
近年、携帯型電子機器の多機能化・高性能化につれて、電子機器の消費電力は高まりつつあり、その電源となる電池に対してより一層の高容量が要求されている。経済性と電子機器の小型軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。代表的な二次電池としては、鉛蓄電池、アルカリ蓄電池、リチウムイオン二次電池等が知られている。上記のような二次電池の中でも特に、リチウムイオン二次電池は、高出力、高エネルギー密度などの利点を有している。リチウムイオン二次電池は、リチウムイオンを可逆的に脱挿入可能な正極と負極と、非水電解液あるいはゲル状もしくは固体状の非水電解質とから構成される。 In recent years, with the increase in functionality and performance of portable electronic devices, the power consumption of electronic devices is increasing, and a higher capacity is required for batteries serving as power sources. From the viewpoint of economy and reduction in size and weight of electronic devices, there is a strong demand for secondary batteries with high energy density. As typical secondary batteries, lead storage batteries, alkaline storage batteries, lithium ion secondary batteries, and the like are known. Among the secondary batteries as described above, the lithium ion secondary battery has advantages such as high output and high energy density. The lithium ion secondary battery includes a positive electrode and a negative electrode capable of reversibly inserting and removing lithium ions, and a nonaqueous electrolyte solution or a gel or solid nonaqueous electrolyte.
リチウムイオン二次電池では、リチウムイオンをインターカレート・デインターカレートができる正極活物質として、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)あるいはこれらのリチウム含有遷移金属化合物に金属元素を一部置換した複合酸化物が用いられる。また、スピネル構造を有するマンガン酸リチウム(LiMn2O4)は、高エネルギー密度、高電圧を有する安価な材料として開発が進められている。一方、リン酸鉄リチウム(LiFePO4)で示されるオリビン化合物は、安価で資源的に豊富な鉄を用いる正極活物質として注目されている。また、オリビン化合物は、リンと酸素との結合が強く、高温でも酸素を放出せず、熱安定性に優れているため、パワーツール用、ハイブリッド自動車用、電気自動車用、電力平準化用、電力貯蔵用、ロボット用など多方面に、その需要が今後期待されている。 In lithium ion secondary batteries, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), or lithium-containing transition metal compounds are used as positive electrode active materials capable of intercalating and deintercalating lithium ions. A complex oxide partially substituted with an element is used. Further, lithium manganate (LiMn 2 O 4 ) having a spinel structure is being developed as an inexpensive material having a high energy density and a high voltage. On the other hand, an olivine compound represented by lithium iron phosphate (LiFePO 4 ) has attracted attention as a positive electrode active material using cheap and resource-rich iron. In addition, the olivine compound has a strong bond between phosphorus and oxygen, does not release oxygen even at high temperatures, and has excellent thermal stability, so it is used for power tools, hybrid vehicles, electric vehicles, power leveling, power The demand is expected in the future in various fields such as storage and robot.
しかしながら、これらの正極活物質には様々な問題点があった。例えば、コバルト酸リチウム(LiCoO2)は、コバルト(Co)の埋蔵量が少なく高価であるという問題点の他、コバルト(Co)自体の毒性等の問題点が指摘されている。また、ニッケル酸リチウム(LiNiO2)は、優れた充放電特性を有するものの決して安価ではなく、また、高温での安定性、定比からの組成ずれによる急激な特性低下等、問題点も多い。さらに、マンガン酸リチウム(LiMn2O4)、高温でマンガン(Mn)が溶出するという問題点や、Mn3+のヤーン・テラー歪によるサイクル劣化の問題点等が指摘されている。 However, these positive electrode active materials have various problems. For example, lithium cobaltate (LiCoO 2 ) has been pointed out to be problematic in that the cobalt (Co) itself is toxic, in addition to the problem that the cobalt (Co) reserve is small and expensive. Moreover, although lithium nickelate (LiNiO 2 ) has excellent charge / discharge characteristics, it is not cheap, and there are many problems such as stability at high temperatures and a sudden deterioration in characteristics due to composition deviation from a constant ratio. Furthermore, it has been pointed out that lithium manganate (LiMn 2 O 4 ) and manganese (Mn) are eluted at a high temperature, cycle deterioration due to Yarn-Teller strain of Mn 3+ , and the like.
一方、リン酸鉄リチウム(LiFePO4)は、人体や環境に対する毒性の問題が無いという優れた点はあるものの、リン酸鉄リチウム(LiFePO4)そのものの導電性が低く、充放電時のリチウムの挿入脱離反応が遅いという問題がある。このため、電池にした場合に高出力が得られず、導電剤との混合が検討されている。 On the other hand, although lithium iron phosphate (LiFePO 4 ) has an excellent point that there is no problem of toxicity to the human body and the environment, the conductivity of lithium iron phosphate (LiFePO 4 ) itself is low, There is a problem that the insertion / elimination reaction is slow. For this reason, when it is set as a battery, high output is not obtained and mixing with a electrically conductive agent is examined.
この欠点を解決するために、現在、
(1)LiFePO4の二次粒子中の一次粒子を微粒子化すること(特許文献1)
(2)LiFePO4の二次粒子中の細孔径をコントロールして、導電性を与えること(特許文献2)
(3)微粒子全体、つまり外表面積の大きくなった正極活物質に均一に導電性を与えること(特許文献3〜5)
がなされており、また
(4)LiFePO4の一部を異種元素で置換して導電性を改善すること(特許文献6〜8、非特許文献1)
(5)炭素とLiFePO4との複合体の充填密度を高くすること(非特許文献2)
が報告、提案されている。
To solve this shortcoming,
(1) Making primary particles in secondary particles of LiFePO 4 into fine particles (Patent Document 1)
(2) To provide conductivity by controlling the pore diameter in secondary particles of LiFePO 4 (Patent Document 2)
(3) Uniformly impart conductivity to the entire fine particles, that is, the positive electrode active material having a large outer surface area (Patent Documents 3 to 5)
Has been made, and
(4) Replacing part of LiFePO 4 with a different element to improve conductivity (Patent Documents 6 to 8, Non-Patent Document 1)
(5) Increasing the packing density of the composite of carbon and LiFePO 4 (Non-patent Document 2)
Has been reported and proposed.
上述の(1)については、例えば特許文献1に水熱合成法や粒子成長を抑制する方法が開示されている。また、(2)については、例えば特許文献2に、二次粒子を構成する一次粒子の平均粒径と、二次粒子の細孔径との最適比率を規定している。(3)については、例えば特許文献3のように、粒子の周りに導電性の粒子を存在させて導電性を改善しようとする方法や、特許文献4および特許文献5のように、炭素あるいは炭素前駆体と一緒に焼成する方法が開示されている。 Regarding the above (1), for example, Patent Literature 1 discloses a hydrothermal synthesis method and a method for suppressing particle growth. As for (2), for example, Patent Document 2 defines an optimum ratio between the average particle diameter of primary particles constituting the secondary particles and the pore diameter of the secondary particles. As for (3), for example, as in Patent Document 3, there is a method of improving the conductivity by making conductive particles exist around the particles, or as in Patent Document 4 and Patent Document 5, carbon or carbon is used. A method of firing with a precursor is disclosed.
さらに、(4)のLiFePO4の一部を異種元素(M)で置換する方法については、特許文献6、7および8など多くの方法が開示されている。 Furthermore, as a method of substituting a part of LiFePO 4 (4) with a different element (M), many methods such as Patent Documents 6, 7 and 8 are disclosed.
しかしながら、特許文献1の方法でオリビン化合物の正極活物質を製造する場合、製造方法が難しい上に粒子成長を抑制するために焼成時間が長時間必要であり、多量の合成に向いていない。他方、粒子成長を抑制しないで製造するLiFePO4粒子は、一次粒子が集合した二次粒子であって、この二次粒子は、粒子成長した一次粒子で包囲された空間(孔)が多数存在する多孔質体を形成している。そのため、粒子成長を抑制しなかったLiFePO4粒子は導電性が非常に悪い。その結果、電極作製時にアセチレンブラックなどの導電剤と結着剤が多量に必要である。多量の導電剤と結着剤を添加すると、電極中の活物質密度が低くなるばかりでなく、電極作製時においてLiFePO4粒子のスラリーを形成することができず、スラリーを塗布して電極を作製できない。無理に電極を作製しても電極密度が低く、形成した正極活物質層が剥離しやすく実質的な電極を構成していない。このような正極活物質では、高容量、高出力、高寿命の電池は得られていない。 However, when the positive electrode active material of the olivine compound is produced by the method of Patent Document 1, the production method is difficult, and a baking time is required for a long time in order to suppress particle growth, which is not suitable for a large amount of synthesis. On the other hand, LiFePO 4 particles produced without suppressing particle growth are secondary particles in which primary particles are aggregated, and the secondary particles have many spaces (pores) surrounded by the primary particles that have grown. A porous body is formed. Therefore, the LiFePO 4 particles that did not suppress particle growth have very poor conductivity. As a result, a large amount of a conductive agent such as acetylene black and a binder are required for electrode preparation. When a large amount of conductive agent and binder are added, not only the density of the active material in the electrode is lowered, but also a slurry of LiFePO 4 particles cannot be formed at the time of electrode preparation, and the electrode is prepared by applying the slurry. Can not. Even if the electrode is forcibly produced, the electrode density is low, and the formed positive electrode active material layer is easy to peel off, and does not constitute a substantial electrode. With such a positive electrode active material, a battery having a high capacity, a high output, and a long life has not been obtained.
また、特許文献2に規定されているような、二次粒子の細孔径だけを規定した方法では、最適な二次粒子を精度良く合成することは不可能であり、細孔分布測定により得られる細孔容積を規定してもまだ不十分であることが分かった。具体的には、図1に示すように、正極活物質の細孔容積と、各細孔容積の正極活物質を用いて同条件で作製した正極における正極集電体と正極活物質層との剥離強度の相対値が大きくばらつく結果を得た。また、二次粒子の形成方法が不十分であり、この方法を再現することは困難であることが分かった。また、水銀圧入法を用いた細孔分布測定は、測定に時間を要するばかりでなく、水銀およびポロシメータが必要であり、容易な測定法とは言えない。 In addition, with the method that defines only the pore diameter of the secondary particles as defined in Patent Document 2, it is impossible to synthesize optimal secondary particles with high accuracy and can be obtained by measuring pore distribution. It was found that defining the pore volume is still insufficient. Specifically, as shown in FIG. 1, the pore volume of the positive electrode active material, and the positive electrode current collector and the positive electrode active material layer in the positive electrode produced under the same conditions using the positive electrode active material of each pore volume The result showed that the relative value of the peel strength varies greatly. Moreover, it was found that the method for forming secondary particles is insufficient and it is difficult to reproduce this method. In addition, the pore distribution measurement using the mercury intrusion method not only requires time for measurement but also requires mercury and a porosimeter, which is not an easy measurement method.
さらに、特許文献3〜特許文献5に記載されているような例えば炭素等の導電性を有する材料を用いて正極活物質の導電性を改善する方法の多くは導電剤と混合しているだけでありLiFePO4と導電性を有する材料との接着が悪い。また、正極活物質の粒子内部まで導電剤を均一に分散することができていない。また、導電剤として金属を用いる方法も考案されているが、この方法では金属の比重が重いため、LiFePO4に十分な導電性を与えるには導電剤として炭素を用いる場合よりも重量的には多量に添加しなければならない。よって、導電剤としては一般的には軽元素の炭素が最も好ましい。その観点から考えると特許文献4に示されているように、炭素と接着し複合化したLiFePO4が好ましい。しかし、この特許文献4の方法でも電池の出力を改善するには、LiFePO4の一次粒子を小さくする必要がある。 Furthermore, many of the methods for improving the conductivity of the positive electrode active material using a material having conductivity such as carbon as described in Patent Documents 3 to 5 are merely mixed with a conductive agent. There is poor adhesion between LiFePO 4 and a conductive material. Further, the conductive agent cannot be uniformly dispersed into the inside of the positive electrode active material particles. In addition, a method using a metal as a conductive agent has been devised. However, in this method, the specific gravity of the metal is heavy, so in order to give sufficient conductivity to LiFePO 4 , the weight is higher than when carbon is used as the conductive agent. Must be added in large amounts. Therefore, light elemental carbon is generally most preferable as the conductive agent. From this point of view, as shown in Patent Document 4, LiFePO 4 bonded to carbon and complexed is preferable. However, even in the method of Patent Document 4, it is necessary to reduce the primary particles of LiFePO 4 in order to improve the output of the battery.
特許文献6〜特許文献8に記載されているような異種元素により遷移金属の一部が置換された正極活物質を用いた場合は、それ単独では大きな導電性改善効果はなく、電極作製時に多量の導電剤の添加を必要としている。また、700〜900℃という高温、炭素が共存した極度の還元雰囲気下で処理したLiFexM1-xPO4炭素複合体を正極活物質として提案されたものはない。 When a positive electrode active material in which a part of the transition metal is substituted with a different element as described in Patent Document 6 to Patent Document 8 is not used alone, there is no significant effect of improving conductivity, and a large amount is required at the time of electrode preparation. It is necessary to add a conductive agent. Further, no LiFe x M 1-x PO 4 carbon composite treated at a high temperature of 700 to 900 ° C. in an extremely reducing atmosphere in which carbon coexists has been proposed as a positive electrode active material.
また、(5)については、LiFePO4は多孔質体であるために、LiFePO4と炭素とを複合化した場合、炭素はLiFePO4の孔に浸透することなくLiFePO4粒子を覆うように付着されるので、前述の報告において述べられている必要性に反し、LiFePO4と炭素との複合体は低い充填密度となる。また、LiFePO4を製造する原料(以下、LiFePO4原料と称す)に炭素前駆体を混合して焼成する場合も、原料および炭素前駆体からの揮発分が多く発生し、生成したLiFePO4炭素複合体は、多孔質で粒子自体の嵩密度が低く、粒子形状も球状ではない。そのため、LiFePO4原料と炭素前駆体とを混合焼成して得られる複合体の充填密度は、LiFePO4粒子を炭素で被覆付着した上記複合体よりも更に低いものになっている。 Also, the (5), LiFePO 4 in order to be porous, when complexed with a LiFePO 4 and the carbon, the carbon is deposited to cover the LiFePO 4 particles without penetration into the pores of the LiFePO 4 Thus, contrary to the need stated in the above report, the composite of LiFePO 4 and carbon has a low packing density. Also, when a carbon precursor is mixed with a raw material for producing LiFePO 4 (hereinafter referred to as a LiFePO 4 raw material) and baked, a large amount of volatile matter is generated from the raw material and the carbon precursor, and the generated LiFePO 4 carbon composite is produced. The body is porous, the particle itself has a low bulk density, and the particle shape is not spherical. Therefore, the packing density of the composite obtained by mixing and firing the LiFePO 4 raw material and the carbon precursor is much lower than that of the above composite in which LiFePO 4 particles are coated and attached with carbon.
このことに加えて、LiFePO4原料と炭素前駆体とを混合焼成して得られる複合体は、焼成後に再度粉砕処理されているために、炭素で被覆した正極活物質粒子が破壊されてLiFePO4の断面が露出し、そのうえ粒子が小さくなるので粒子間でブリッジングが起こって充填密度が低くなり、正極活物質としての導電性が極度に低下する。電極寿命に関しては、一般的にアセチレンブラックなどの導電剤を多量に使用すると、作製された電極は剥離しやすい。また、電極の表面積が増加して電解液と反応して電解液が枯渇し、サイクル性能が劣化する問題がある。 In addition to this, since the composite obtained by mixing and firing the LiFePO 4 raw material and the carbon precursor is pulverized again after firing, the positive electrode active material particles coated with carbon are destroyed and LiFePO 4 is destroyed. In addition, since the cross section is exposed and the particles become smaller, bridging occurs between the particles, the packing density is lowered, and the conductivity as the positive electrode active material is extremely lowered. Regarding the electrode life, generally, when a large amount of a conductive agent such as acetylene black is used, the produced electrode is easily peeled off. In addition, there is a problem that the surface area of the electrode increases, reacts with the electrolytic solution, the electrolytic solution is depleted, and the cycle performance deteriorates.
以上のように、従来のLiFePO4と炭素との複合体は、多孔質で充填密度が低く、更に導電性も低い。そのため、電極を作製する際に多量の導電剤と結着剤を必要としている。また、この従来の複合体では、高密度な電極、すなわち高容量、高出力、高寿命の電池が得られない問題がある。また、以上のような、オリビン型のリン酸鉄リチウム(LiFePO4)粒子を用いたスラリー特性、剥離強度を規定する方法も存在し得なかった。オリビン型リン酸鉄リチウム(LiFePO4)の粉体特性としては、細孔容積や比表面積、粒度分布、結晶性等があるが、いずれもリン酸鉄リチウム(LiFePO4)を用いたスラリーのスラリー特性、剥離強度を規定する方法しては、不十分である。 As described above, the conventional composite of LiFePO 4 and carbon is porous, has a low packing density, and has a low conductivity. For this reason, a large amount of a conductive agent and a binder are required when producing an electrode. In addition, this conventional composite has a problem that a high-density electrode, that is, a battery having a high capacity, a high output, and a long life cannot be obtained. In addition, there has been no method for regulating slurry characteristics and peel strength using olivine-type lithium iron phosphate (LiFePO 4 ) particles as described above. The powder characteristics of olivine-type lithium iron phosphate (LiFePO 4 ) include pore volume, specific surface area, particle size distribution, crystallinity, etc., all of which are slurry of slurry using lithium iron phosphate (LiFePO 4 ). It is insufficient as a method for defining characteristics and peel strength.
したがって、この発明は、上述の問題点を解消し、安価で資源的に豊富な元素を用い、安定した充放電サイクル性能を実現することが非水電解質電池用正極活物質、非水電解質電池用正極および非水電解質電池を提供することを目的とする。 Therefore, the present invention eliminates the above-mentioned problems, uses inexpensive and resource-rich elements, and realizes stable charge / discharge cycle performance, for a positive electrode active material for a non-aqueous electrolyte battery, and for a non-aqueous electrolyte battery An object is to provide a positive electrode and a non-aqueous electrolyte battery.
上述の課題を解決するために、本願の非水電解質電池用正極活物質は、電子導電性物質にて表面の少なくとも一部が被覆された、平均組成が(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子どうしが、電子導電性物質を介して接合してなる二次粒子を含み、
N−メチル−2−ピロリドン吸油量が25g/100g以上35g/100gであることを特徴とする。
(化1)
LixM11-sM2sPO4
(ただし、M1は鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群より選ばれる少なくとも1種を示す。M2は2族〜15族から選ばれる元素のうちM1を除く少なくとも一種を示す。x、sはそれぞれ0≦x≦1.2、0≦s≦1.0の範囲内の値である。)
In order to solve the above-mentioned problem, the positive electrode active material for a non-aqueous electrolyte battery of the present application has an olivine structure whose average composition is represented by (Chemical Formula 1), in which at least a part of the surface is coated with an electronic conductive material. The primary particles of the lithium phosphate compound having secondary particles formed by bonding via an electronically conductive substance,
The N-methyl-2-pyrrolidone oil absorption is 25 g / 100 g or more and 35 g / 100 g.
(Chemical formula 1)
Li x M1 1-s M2 s PO 4
(However, M1 represents at least one selected from the group consisting of iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), magnesium (Mg)). M2 represents at least one element other than M1 among elements selected from Groups 2 to 15. x and s are values in the range of 0 ≦ x ≦ 1.2 and 0 ≦ s ≦ 1.0, respectively. )
また、本願の非水電解質電池用正極は、正極集電体上に正極活物質層が形成され、
正極活物質層が、正極活物質と、導電剤と、結着剤とを含有し、
正極活物質が、
電子導電性物質にて表面の少なくとも一部が被覆された、平均組成が(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子どうしが、電子導電性物質を介して接合してなる二次粒子を含み、
正極活物質のN−メチル−2−ピロリドン吸油量が25g/100g以上35g/100gであることを特徴とする。
Moreover, the positive electrode for a nonaqueous electrolyte battery of the present application has a positive electrode active material layer formed on a positive electrode current collector,
The positive electrode active material layer contains a positive electrode active material, a conductive agent, and a binder,
The positive electrode active material
Primary particles of a lithium phosphate compound having an olivine structure whose average composition is represented by (Chemical Formula 1), the surface of which is at least partly coated with an electronic conductive material, are joined together via the electronic conductive material. Secondary particles comprising
The positive electrode active material has an N-methyl-2-pyrrolidone oil absorption of 25 g / 100 g or more and 35 g / 100 g.
さらに、本願の非水電解質電池は、正極と、負極と、非水電解質と
を備え、
正極が、正極集電体上に正極活物質層が形成されてなり、
正極活物質層が、正極活物質と、導電剤と、結着剤とを含有し、
正極活物質が、
電子導電性物質にて表面の少なくとも一部が被覆された、平均組成が(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子どうしが、電子導電性物質を介して接合してなる二次粒子を含み、
正極活物質のN−メチル−2−ピロリドン吸油量が25g/100g以上35g/100gであることを特徴とする。
Furthermore, the nonaqueous electrolyte battery of the present application includes a positive electrode, a negative electrode, and a nonaqueous electrolyte,
The positive electrode has a positive electrode active material layer formed on a positive electrode current collector,
The positive electrode active material layer contains a positive electrode active material, a conductive agent, and a binder,
The positive electrode active material
Primary particles of a lithium phosphate compound having an olivine structure whose average composition is represented by (Chemical Formula 1), the surface of which is at least partly coated with an electronic conductive material, are joined together via the electronic conductive material. Secondary particles comprising
The positive electrode active material has an N-methyl-2-pyrrolidone oil absorption of 25 g / 100 g or more and 35 g / 100 g.
なお、上述の「接合」とは、一次粒子同士が単なる凝集体の状態で二次粒子となっているのではなく、この電極材料を用いて電極を形成する際に、少なくとも二次粒子が1つの粒子として挙動する程度に強固に結びついていることをいう。 The above-mentioned “bonding” does not mean that the primary particles are merely aggregated secondary particles, but at least the secondary particles are 1 when the electrode is formed using this electrode material. It means that it is firmly connected to the extent that it behaves as one particle.
この発明では、正極集電体と正極活物質層との剥離を抑制することができる。 In this invention, peeling between the positive electrode current collector and the positive electrode active material layer can be suppressed.
この発明によれば、高い放電容量を有する正極活物質を用いると共に、充放電サイクルが進んだ場合の正極活物質層と正極集電体との高い結着性を実現し、高電池容量かつ高サイクル特性を得ることができる。 According to the present invention, a positive electrode active material having a high discharge capacity is used, and a high binding property between the positive electrode active material layer and the positive electrode current collector when the charge / discharge cycle progresses is realized, thereby achieving a high battery capacity and a high capacity. Cycle characteristics can be obtained.
以下、この発明の実施の形態について図面を参照して説明する。なお、説明は、以下の順序で行う。
1.第1の実施の形態(この発明の正極活物質について)
2.第2の実施の形態(円筒型非水電解質電池を用いる例)
3.第3の実施の形態(ラミネート型非水電解質電池を用いる例)
4.第4の実施の形態(ラミネート型非水電解質電池を用いる例)
5.第5の実施の形態(角型非水電解質電池を用いる例)
6.第6の実施の形態(積層型電極体を用いる非水電解質電池の例)
7.他の実施の形態
Embodiments of the present invention will be described below with reference to the drawings. The description will be given in the following order.
1. 1st Embodiment (About the positive electrode active material of this invention)
2. Second Embodiment (Example Using Cylindrical Nonaqueous Electrolyte Battery)
3. Third Embodiment (Example Using Laminated Nonaqueous Electrolyte Battery)
4). Fourth embodiment (example using a laminate-type nonaqueous electrolyte battery)
5. Fifth embodiment (example using a square nonaqueous electrolyte battery)
6). Sixth embodiment (an example of a nonaqueous electrolyte battery using a laminated electrode body)
7). Other embodiments
1.第1の実施の形態
この発明の第1の実施の形態による正極活物質について説明する。なお、以下の実施の形態において、特に記載のない場合、平均粒径は中位径(D50)を示すものとする。
1. First Embodiment A positive electrode active material according to a first embodiment of the present invention will be described. In the following embodiments, the average particle diameter indicates the median diameter (D50) unless otherwise specified.
(1−1)正極活物質の構成
[構成]
この発明の正極活物質には、平均組成が(化1)で示されるオリビン構造を有するリチウムリン酸化合物が用いられる。
(化1)
LixM11-sM2sPO4
(ただし、M1は鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群より選ばれる少なくとも1種を示す。M2は2族〜15族から選ばれる元素のうちM1を除く少なくとも一種を示す。x、sはそれぞれ0≦x≦1.2、0≦s≦1.0の範囲内の値である。)
(1-1) Configuration of positive electrode active material [configuration]
As the positive electrode active material of the present invention, a lithium phosphate compound having an olivine structure whose average composition is represented by (Chemical Formula 1) is used.
(Chemical formula 1)
Li x M1 1-s M2 s PO 4
(However, M1 represents at least one selected from the group consisting of iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), magnesium (Mg)). M2 represents at least one element other than M1 among elements selected from Groups 2 to 15. x and s are values in the range of 0 ≦ x ≦ 1.2 and 0 ≦ s ≦ 1.0, respectively. )
なお、(化1)中において、高い放電電位、豊富な資源量、安全性等の点から、M1については、マンガン(Mn)、鉄(Fe)が、また、M2については、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、チタン(Ti)、亜鉛(Zn)、アルミニウム(Al)が好ましい。(化1)のオリビン構造を有するリチウムリン酸化合物としては、リン酸鉄リチウム(LiFePO4)が特に好ましい。 In (Chemical Formula 1), from the viewpoint of high discharge potential, abundant resources, safety, etc., M1 is manganese (Mn), iron (Fe), and M2 is magnesium (Mg). , Calcium (Ca), strontium (Sr), titanium (Ti), zinc (Zn), and aluminum (Al) are preferable. As the lithium phosphate compound having the olivine structure of (Chemical Formula 1), lithium iron phosphate (LiFePO 4 ) is particularly preferable.
この正極活物質は、電子導電性物質にて表面の少なくとも一部が被覆されたオリビン構造を有するリチウムリン酸化合物の一次粒子が複数個集合して二次粒子となっていることが好ましく、二次粒子を構成する一次粒子のうち外側に表出している部分も電子導電性物質にて被覆されていることが好ましい。この二次粒子に含まれる電子導電性物質は、(化1)の一次粒子の表面に存在するものであり、(化1)の一次粒子と電子導電性物質とを単に混合させたものとは大きく異なる。この電子導電性物質は、二次粒子中に均一に存在することが好ましい。 The positive electrode active material is preferably a secondary particle formed by aggregating a plurality of primary particles of a lithium phosphate compound having an olivine structure whose surface is coated with an electronic conductive material. Of the primary particles constituting the secondary particles, the portion exposed to the outside is also preferably covered with an electron conductive substance. The electronic conductive material contained in the secondary particles is present on the surface of the primary particles of (Chemical Formula 1), and is simply a mixture of the primary particles of (Chemical Formula 1) and the electronic conductive material. to differ greatly. The electronic conductive material is preferably present uniformly in the secondary particles.
また、一次粒子同士は、電子導電性物質を介して接合していることが好ましい。なお、この実施形態において接合されているとは、一次粒子同士が単なる凝集体の状態で二次粒子となっているのではなく、この電極材料を用いて電極を形成する際に、少なくとも二次粒子が1つの粒子として挙動する程度に強固に結びついていることをいう。そして、この二次粒子においては、電子導電性物質が一次粒子同士の間に3次元網目状に存在していることが好ましい。 Moreover, it is preferable that primary particles are joined through an electronically conductive substance. In this embodiment, the term “joined” does not mean that the primary particles are merely agglomerated secondary particles, but at least when the electrode is formed using this electrode material. It means that the particles are firmly bound to the extent that they behave as one particle. And in this secondary particle, it is preferable that an electronically conductive substance exists in a three-dimensional network between primary particles.
電子導電性物質としては、化学的安定性、安全性およびコストの点から炭素が最も好ましい。また、炭素の他、金属、特に金(Au)、白金(Pt)、銀(Ag)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、イリジウム(Ir)等の貴金属が好適に用いられる。また、電子導電性物質の前駆体とは、加熱することにより電子導電性物質となるものであり、電子導電性物質の前駆体としては、有機化合物の他、金属塩、金属のアルコキシド、金属の錯体等が好適に用いられる。 As the electronic conductive material, carbon is most preferable from the viewpoint of chemical stability, safety and cost. In addition to carbon, metals such as gold (Au), platinum (Pt), silver (Ag), palladium (Pd), ruthenium (Ru), rhodium (Rh), iridium (Ir) and other precious metals are preferably used. It is done. The precursor of an electron conductive substance is an electron conductive substance when heated. The precursor of an electron conductive substance includes an organic compound, a metal salt, a metal alkoxide, a metal A complex or the like is preferably used.
この発明においてオリビン構造を有するリチウムリン酸化合物が正極活物質として用いられるのは、オリビン構造を有するリチウムリン酸化合物の吸油量と剥離強度との相関が高いためである。吸油量は、一次粒子径と、二次粒子における一次粒子の固まり方(二次粒子径と細孔径)とに関係して決定される。オリビン構造を有するリチウムリン酸化合物は、比表面積や平均粒径の値が剥離強度とは相関せず、例えば一次粒子径が大きくても、規定の吸油量を満たせば、活物質として好ましい特性を得ることができる。 The reason why the lithium phosphate compound having an olivine structure is used as the positive electrode active material in the present invention is that there is a high correlation between the oil absorption of the lithium phosphate compound having an olivine structure and the peel strength. The amount of oil absorption is determined in relation to the primary particle diameter and the way the primary particles in the secondary particles are solidified (secondary particle diameter and pore diameter). The lithium phosphate compound having an olivine structure does not correlate with the peel strength in terms of specific surface area or average particle size. Obtainable.
一方、コバルト酸リチウム(LiCoO2)等の層状リチウム複合酸化物やマンガン酸リチウム(LiMn2O4)等のスピネル型リチウム複合酸化物の特性は、NMP吸油量よりも比表面積や平均粒径、化学組成や導電剤の量や種類等、様々な因子の影響を受けるため、NMP吸油量のみで単純に規定することはできない。オリビン型結晶構造を有するリチウム遷移金属酸化物粒子以外の正極活物質に対して、NMP吸油量を用いて剥離強度の高い正極活物質を得ようとすることは可能である。しかしながら、例えば層状構造を有するコバルト酸リチウム(LiCoO2)に対して比表面積を低下させて吸油量を下げると、充放電効率や負荷特性等が低下してしまう。 On the other hand, the characteristics of the layered lithium composite oxide such as lithium cobaltate (LiCoO 2 ) and the spinel type lithium composite oxide such as lithium manganate (LiMn 2 O 4 ) are more specific than the NMP oil absorption, the specific surface area, the average particle size, Since it is affected by various factors such as the chemical composition and the amount and type of the conductive agent, it cannot be simply defined only by the NMP oil absorption. It is possible to obtain a positive electrode active material having a high peel strength by using the NMP oil absorption amount for positive electrode active materials other than lithium transition metal oxide particles having an olivine type crystal structure. However, for example, when the specific surface area is reduced with respect to lithium cobaltate (LiCoO 2 ) having a layered structure to reduce the oil absorption, charge / discharge efficiency, load characteristics, and the like are reduced.
また、二次粒子を生成する層状化合物あるいは、二次粒子化したスピネル化合物についても、NMP吸油量を用いて剥離強度が高い正極活物質を合成することは可能である。しかしながら、コバルト酸リチウム(LiCoO2)等の層状のリチウム複合酸化物やマンガン酸リチウム(LiMn2O4)等のスピネル構造を有するリチウム複合酸化物の電子電動度は、それぞれ室温付近で10-2[Scm-1]、10-3[Scm-1]であり、リン酸鉄リチウム(LiFePO4)よりもはるかに大きい。前述したように、リン酸鉄リチウム(LiFePO4)はほぼ絶縁体であるため、効果的に微粒子化し、導電剤で被覆しないとリチウムイオン電池の正極活物質として用いることは不可能である。このように、層状およびスピネル型のリチウム複合酸化物と、オリビン型のリチウム複合酸化物とは性質が大きく異なり、オリビン型のリチウム複合酸化物と同様にNMP吸油量を規定することは難しい。 Moreover, it is also possible to synthesize a positive electrode active material having high peel strength by using the NMP oil absorption amount for a layered compound that generates secondary particles or a spinel compound that is converted into secondary particles. However, the electric power of the layered lithium composite oxide such as lithium cobaltate (LiCoO 2 ) and the lithium composite oxide having a spinel structure such as lithium manganate (LiMn 2 O 4 ) is about 10 −2 near room temperature. [Scm −1 ], 10 −3 [Scm −1 ], which is much larger than lithium iron phosphate (LiFePO 4 ). As described above, since lithium iron phosphate (LiFePO 4 ) is almost an insulator, it cannot be effectively used as a positive electrode active material of a lithium ion battery unless it is finely divided and coated with a conductive agent. Thus, the properties of the layered and spinel lithium composite oxide and the olivine-type lithium composite oxide are greatly different, and it is difficult to define the NMP oil absorption as in the case of the olivine-type lithium composite oxide.
図2は、層状構造を有するコバルト酸リチウム(LiCoO2)粉末のNMP吸油量と、コバルト酸リチウムを用いて作製した正極における正極集電体と正極活物質層との剥離強度との関係を示すグラフである。図2に示すように、層状構造を有する正極活物質では、NMP吸油量と正極活物質層および正極集電体間の剥離強度に全く相関が見られない。このため、正極活物質に対するNMP吸油量の規定は、オリビン型リチウム複合酸化物に適用した場合についてのみ剥離強度との相関性が得られる。 FIG. 2 shows the relationship between the NMP oil absorption amount of lithium cobaltate (LiCoO 2 ) powder having a layered structure and the peel strength between the positive electrode current collector and the positive electrode active material layer in the positive electrode prepared using lithium cobaltate. It is a graph. As shown in FIG. 2, in the positive electrode active material having a layered structure, there is no correlation between NMP oil absorption and peel strength between the positive electrode active material layer and the positive electrode current collector. For this reason, the regulation of the NMP oil absorption amount with respect to the positive electrode active material can be correlated with the peel strength only when applied to the olivine type lithium composite oxide.
図3は、この実施形態の正極活物質のSEM(走査型電子顕微鏡;Scanning Electron Microscope)像であり、(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子が複数個集合し、これら複数の一次粒子同士が電子導電性物質を介して接合され、全体形状が球状等の二次粒子とされている。 FIG. 3 is an SEM (Scanning Electron Microscope) image of the positive electrode active material of this embodiment, in which a plurality of primary particles of a lithium phosphate compound having an olivine structure represented by (Chemical Formula 1) are assembled. The plurality of primary particles are joined to each other through an electron conductive substance, and the overall shape is a secondary particle such as a spherical shape.
ここで、正極活物質の一次粒子の平均粒径は0.001μm以上1μm以下であることが好ましく、より好ましくは0.01μm以上0.3μm以下である。一次粒子の平均粒径が0.001μmより小さいと、充放電による体積変化で正極活物質の結晶構造が破壊されるおそれがある。また、一次粒子の平均粒径が1μmより大きいと、一次粒子が密に二次粒子を形成しないため、空隙を多数含んだ二次粒子を形成してしまう。このため、結着剤が正極活物質の二次粒子中に取り込まれ、正極活物質層と正極集電体との剥離強度が低下するとともに、一次粒子間の導電性を低下させる傾向がある。そして、正極活物質層と正極集電体との間に必要な剥離強度を実現するために結着剤の使用量が多くなり、電極全体に対する正極活物質量が少なくなるため、電池容量(体積効率)が低くなる。さらには、オリビン型正極活物質自体が元々電子伝導性が低いために、粒子内部への電子の供給量が不足し、利用効率が低下する。電池の負荷特性が悪化することによって、結果的にサイクル特性も悪化する。 Here, the average particle diameter of the primary particles of the positive electrode active material is preferably 0.001 μm to 1 μm, and more preferably 0.01 μm to 0.3 μm. If the average particle size of the primary particles is smaller than 0.001 μm, the crystal structure of the positive electrode active material may be destroyed due to the volume change due to charge / discharge. On the other hand, if the average particle size of the primary particles is larger than 1 μm, the primary particles do not form secondary particles densely, and therefore, secondary particles containing many voids are formed. For this reason, the binder is incorporated into the secondary particles of the positive electrode active material, and the peel strength between the positive electrode active material layer and the positive electrode current collector tends to decrease, and the conductivity between the primary particles tends to decrease. The amount of binder used is increased in order to achieve the required peel strength between the positive electrode active material layer and the positive electrode current collector, and the amount of positive electrode active material relative to the entire electrode is reduced. Efficiency). Furthermore, since the olivine-type positive electrode active material itself originally has low electron conductivity, the amount of electrons supplied to the inside of the particles is insufficient, and the utilization efficiency is lowered. As the load characteristic of the battery deteriorates, the cycle characteristic also deteriorates as a result.
また、二次粒子の平均粒径は0.01μm以上20μm以下であることが好ましい。二次粒子の平均粒径が0.01μmより小さいと、正極活物質層を形成する際に多くの結着剤を必要とし、その結果、正極活物質層中の正極活物質の割合が低下してしまう。また、二次粒子の平均粒径が20μmより大きいと、正極活物質層に空隙が生じ易いからである。 Moreover, it is preferable that the average particle diameter of a secondary particle is 0.01 micrometer or more and 20 micrometers or less. If the average particle size of the secondary particles is smaller than 0.01 μm, a large amount of binder is required to form the positive electrode active material layer, and as a result, the ratio of the positive electrode active material in the positive electrode active material layer is decreased. End up. Further, when the average particle diameter of the secondary particles is larger than 20 μm, voids are likely to be generated in the positive electrode active material layer.
さらに、二次粒子の形状は、球状であることが好ましい。球状であれば、最密充填し易く、単位体積当たりの正極活物質の充填量が多くなり、同じ容量でも電池体積を小さくすることができるからである。 Furthermore, the shape of the secondary particles is preferably spherical. This is because the spherical shape facilitates the closest packing, the amount of the positive electrode active material per unit volume increases, and the battery volume can be reduced even with the same capacity.
また、二次粒子内に含まれる電子導電性物質の含有量は、0.1重量%以上10重量%以下が好ましい。電子導電性物質の含有量が0.1重量%より少ないと、電子導電性が十分発現しないおそれがある。また、電子導電性物質の含有量が10重量%より多いと、必要な導電性を得る量以上に電子導電性物質が含有され、粒子中の正極活物質の重量および体積密度が低下するからである。 Further, the content of the electronic conductive material contained in the secondary particles is preferably 0.1% by weight or more and 10% by weight or less. If the content of the electronic conductive material is less than 0.1% by weight, the electronic conductivity may not be sufficiently exhibited. In addition, if the content of the electronic conductive material is more than 10% by weight, the electronic conductive material is contained in an amount more than necessary to obtain the necessary conductivity, and the weight and volume density of the positive electrode active material in the particles are reduced. is there.
[正極活物質の吸油量]
この発明の正極活物質の二次粒子は、N−メチル−2−ピロリドン(NMP)吸油量が25g/100g以上35g/100g以下である。これにより、正極活物質層と正極集電体との剥離強度を向上させることができる。
[Oil absorption amount of positive electrode active material]
The secondary particles of the positive electrode active material of the present invention have an N-methyl-2-pyrrolidone (NMP) oil absorption of 25 g / 100 g or more and 35 g / 100 g or less. Thereby, the peel strength between the positive electrode active material layer and the positive electrode current collector can be improved.
ここで、NMP吸油量とは、以下の操作によって算出された値であり、JIS K5101に準ずる。 Here, the NMP oil absorption is a value calculated by the following operation and conforms to JIS K5101.
(i)予想される吸油量に応じて、試料から下記の表1に示す適切なサンプル量を測り取る。
(iii)試料に対するN−メチル−2−ピロリドンの滴下および練り合わせを繰り返し、全体が硬いパテ状になった後、N−メチル−2−ピロリドンを1滴ごとに滴下および練り合わせる。最後の一滴で、ヘラを用いて練り合わせた試料をらせん形に巻くことができる状態になったときを終点とする。ただし、らせん状に巻くことが出来ない場合は、N−メチル−2−ピロリドンの一滴で練り合わせた試料が急激に柔らかくなる直前を終点とする。
(iV)終点に達した時のN−メチル−2−ピロリドン滴下量を読み取る。具体的には、ビュレット内のN−メチル−2−ピロリドンの残量と、最初にビュレットに取ったN−メチル−2−ピロリドンの量との差から滴下量を読み取る。
(V)下記の式(1)から、NMP吸油量を算出する。なお、NMP吸油量は試料100g当たりの吸油量で示す。
吸油量[g/100g]=(N−メチル−2−ピロリドン(NMP)の密度[g/ml]×NMP滴下量[ml]/サンプル量[g])×100 ・・・(1)
(I) The appropriate sample amount shown in Table 1 below is measured from the sample according to the expected oil absorption.
(Iii) The dropping and kneading of N-methyl-2-pyrrolidone on the sample is repeated, and after the whole becomes a hard putty, N-methyl-2-pyrrolidone is dropped and kneaded for each drop. The end point is when the last drop is ready to be spirally wound with the sample kneaded with a spatula. However, if the sample cannot be spirally wound, the end point is the point immediately before the sample kneaded with one drop of N-methyl-2-pyrrolidone suddenly softens.
(IV) Read the amount of N-methyl-2-pyrrolidone dropped when the end point is reached. Specifically, the dripping amount is read from the difference between the remaining amount of N-methyl-2-pyrrolidone in the burette and the amount of N-methyl-2-pyrrolidone initially taken in the burette.
(V) The NMP oil absorption is calculated from the following equation (1). The NMP oil absorption is indicated by the oil absorption per 100 g of the sample.
Oil absorption [g / 100 g] = (N-methyl-2-pyrrolidone (NMP) density [g / ml] × NMP drop amount [ml] / sample amount [g]) × 100 (1)
NMP吸油量が25g/100g以下の場合、同じ固形分量で正極合剤スラリーを調整する際に粘度が低下し過ぎるため、正極合剤スラリーを正極集電体に塗布する際に正極合剤スラリーの液飛びや液ダレ等が発生してしまう。また、NMP吸油量が35g/100g以上の場合、粘度は上昇傾向になるため、正極合剤スラリーを正極集電体に塗布する際に塗布ムラ、穴あき等が発生する。さらに粘度が高くなると、正極合剤スラリーの塗布を行うことができないおそれがある。 When the NMP oil absorption is 25 g / 100 g or less, the viscosity of the positive electrode mixture slurry is too low when adjusting the positive electrode mixture slurry with the same solid content. Therefore, when the positive electrode mixture slurry is applied to the positive electrode current collector, Liquid splashing or dripping occurs. Further, when the NMP oil absorption amount is 35 g / 100 g or more, the viscosity tends to increase, so that application unevenness, perforation, etc. occur when the positive electrode mixture slurry is applied to the positive electrode current collector. If the viscosity is further increased, the positive electrode mixture slurry may not be applied.
また、NMP吸油量が高いと結着剤粒子が正極活物質二次粒子中に取り込まれるため、電極の剥離強度が低下する。NMP吸油量の高い正極活物質を用いる際には、結着剤の含有量を高くしなければ、正極活物質層と正極集電体との接着に必要な結着剤が不足し、正規良く活物質層が剥離してしまう。結着剤の含有量を高くすれば、結果的に電極容量が低下してしまう。さらには、導電剤も正極活物質二次粒子中に取り込まれると共に、正極活物質中の一次粒子間に余分な空孔ができるため、電池の負荷特性が悪化してしまう。電池の負荷特性が悪化することによって、結果的にサイクル特性も悪化する。 Moreover, since binder particle | grains will be taken in in the positive electrode active material secondary particle when NMP oil absorption amount is high, the peeling strength of an electrode will fall. When using a positive electrode active material having a high NMP oil absorption amount, the binder necessary for bonding the positive electrode active material layer and the positive electrode current collector is insufficient unless the binder content is increased. The active material layer peels off. Increasing the binder content results in a decrease in electrode capacity. Furthermore, since the conductive agent is also taken into the positive electrode active material secondary particles and extra voids are formed between the primary particles in the positive electrode active material, the load characteristics of the battery are deteriorated. As the load characteristic of the battery deteriorates, the cycle characteristic also deteriorates as a result.
このように、正極活物質のNMP吸油量が負荷特性やサイクル特性に対して非常に感度が良いのは、リン酸鉄リチウム(LiFePO4)の電子伝導度が、室温付近で10-8〜10-9[Scm-1]であり、ほぼ絶縁体であるためである。リン酸鉄リチウム(LiFePO4)を効果的に微粒子化し、導電剤で被覆しないとリチウムイオン電池の正極活物質として用いることは不可能である。 As described above, the NMP oil absorption amount of the positive electrode active material is very sensitive to load characteristics and cycle characteristics. The electronic conductivity of lithium iron phosphate (LiFePO 4 ) is 10 −8 to 10 −10 near room temperature. -9 [Scm -1 ], which is almost an insulator. If lithium iron phosphate (LiFePO 4 ) is effectively finely divided and not coated with a conductive agent, it cannot be used as a positive electrode active material for a lithium ion battery.
また、図4に示すように、NMP吸油量で規定する場合、剥離強度との相関性が高いため好ましい。 Moreover, as shown in FIG. 4, when it prescribes | regulates by NMP oil absorption, since the correlation with peeling strength is high, it is preferable.
(1−2)正極活物質の製造方法
以下、正極活物質の製造方法について説明する。
(1-2) Method for Producing Positive Electrode Active Material Hereinafter, a method for producing a positive electrode active material will be described.
(化1)
LixM11-sM2sPO4
(ただし、M1は鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群より選ばれる1種以上である。M2は2族〜15族から選ばれる元素のうちM1を除く少なくとも一種を示す。x、sはそれぞれ0≦x≦1.2、0≦s≦1.0の範囲内の値である。)
(Chemical formula 1)
Li x M1 1-s M2 s PO 4
(However, M1 is at least one selected from the group consisting of iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), magnesium (Mg)). M2 represents at least one element other than M1 among elements selected from Groups 2 to 15. x and s are values in the range of 0 ≦ x ≦ 1.2 and 0 ≦ s ≦ 1.0, respectively. )
上述の(化1)で示されるオリビン構造を有するリチウムリン酸化合物は、リチウム(Li)源と、M1源と、必要に応じてM2源と、リン(P)源とを混合し、電子導電性物質または電子導電性物質の前駆体とを含む溶液または懸濁液を噴霧して加熱することにより得られる。 The lithium phosphate compound having the olivine structure represented by (Chemical Formula 1) described above is obtained by mixing a lithium (Li) source, an M1 source, an M2 source and, if necessary, a phosphorus (P) source. It is obtained by spraying and heating a solution or suspension containing a conductive material or a precursor of an electronically conductive material.
リチウム(Li)源としては、例えば、塩化リチウム(LiCl)、酢酸リチウム(LiCH3COO)、水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)等のリチウム塩を用いることができる。また、M1として鉄(Fe)を用いる場合には、鉄(Fe)源として例えば、塩化鉄(II)(FeCl2)、臭化鉄(II)(FeBr2)、硫酸鉄(III)(Fe2(SO4)3)、酢酸鉄(II)(Fe(CH3COO)2)等の鉄(Fe)塩を用いることができる。また、マンガン(Mn)源、コバルト(Co)源、ニッケル(Ni)源等としては、例えば、塩化マンガン(II)(MnCl2)、硫酸マンガン(III)(Mn2(SO4)3)、酢酸マンガン(II)(Mn(CH3COO)2)、塩化ニッケル(II)(NiCl2)等の塩を用いることができる。また、アルミニウム(Al)源としては、例えば、塩化アルミニウム(AlCl3)等のアルミニウム塩を用いることができる。また、リン(P)源としては、例えば、リン酸(H3PO4)、リン酸二水素アンモニウム(NH4H2PO4)、リン酸水素二アンモニウム((NH4)2HPO4)等を用いることができる。 As the lithium (Li) source, for example, lithium salts such as lithium chloride (LiCl), lithium acetate (LiCH 3 COO), lithium hydroxide (LiOH), and lithium carbonate (Li 2 CO 3 ) can be used. When iron (Fe) is used as M1, for example, iron (II) chloride (FeCl 2 ), iron bromide (II) (FeBr 2 ), iron sulfate (III) (Fe 2 (SO 4 ) 3 ) and iron (Fe) salts such as iron (II) acetate (Fe (CH 3 COO) 2 ) can be used. Further, as a manganese (Mn) source, a cobalt (Co) source, a nickel (Ni) source, etc., for example, manganese chloride (II) (MnCl 2 ), manganese sulfate (III) (Mn 2 (SO 4 ) 3 ), A salt such as manganese acetate (II) (Mn (CH 3 COO) 2 ) or nickel chloride (II) (NiCl 2 ) can be used. As the aluminum (Al) source, for example, an aluminum salt such as aluminum chloride (AlCl 3 ) can be used. Examples of the phosphorus (P) source include phosphoric acid (H 3 PO 4 ), ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ), and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ). Can be used.
まず、リチウム(Li)源と、M1源と、必要に応じてM2源と、リン(P)源とを溶媒中に溶解あるいは分散させて、均一な溶液あるいは懸濁液とした。溶媒としては、例えば、水、アルコール類、ケトン類等を用いることができるが、使い易さ、安全性の点から水が好ましい。この溶液あるいは懸濁液中の原料成分の濃度は、溶液あるいは懸濁液を噴霧できる濃度であればよく、特に限定されるものではないが、良好な噴霧状態を得るためには1重量%30重量%が好ましい。続いて、溶液あるいは懸濁液と共に、ステンレス(SUS)金属またはジルコニア(ZrO2)等のセラミック製のビーズを撹拌ポットに投入して、強い摩擦や衝撃を伴う撹拌を施すことによって、原料成分と溶媒との粉砕混合を行う。 First, a lithium (Li) source, an M1 source, an M2 source and a phosphorus (P) source as necessary were dissolved or dispersed in a solvent to obtain a uniform solution or suspension. As the solvent, for example, water, alcohols, ketones and the like can be used, but water is preferable from the viewpoint of ease of use and safety. The concentration of the raw material component in this solution or suspension is not particularly limited as long as it is a concentration at which the solution or suspension can be sprayed. % By weight is preferred. Subsequently, together with the solution or suspension, ceramic beads such as stainless steel (SUS) metal or zirconia (ZrO 2 ) are put into a stirring pot, and stirring with strong friction and impact is performed, whereby the raw material components and Grind and mix with solvent.
なお、原料成分と溶媒との粉砕混合時間については、撹拌装置の大きさ、攪拌条件によって適宜設定すればよいが、上述したNMP吸油量を低下させて、電極およびセル特性を十分に引き出させるためには、粉砕混合の時間を長くする方が良い。原料成分が十分に粉砕されているかについては、粒度分布測定によって確認することができる。 The pulverization and mixing time of the raw material component and the solvent may be set as appropriate depending on the size of the stirring device and the stirring conditions. However, in order to reduce the above-mentioned NMP oil absorption amount and sufficiently extract the electrode and cell characteristics. For this, it is better to lengthen the time for pulverization and mixing. Whether the raw material components are sufficiently pulverized can be confirmed by particle size distribution measurement.
この発明では、粉砕混合処理後の溶液あるいは懸濁液中の原料成分の平均粒径は0.001μm以上1μm以下とすることが好ましく、0.01μm以上0.3μm以下とすることがより好ましい。これにより、上述した平均粒径を有する(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子を形成することができる。ここで、粒度分布はより均一であることが好ましく、原料成分の粒径はより小さい方が好ましい。また、溶液あるいは懸濁液の噴霧時の液滴の粒径は、0.05μm以上500μm以下とすることが好ましい。 In the present invention, the average particle size of the raw material components in the solution or suspension after the pulverization and mixing treatment is preferably 0.001 μm to 1 μm, and more preferably 0.01 μm to 0.3 μm. Thereby, primary particles of a lithium phosphate compound having the above-described average particle diameter and having an olivine structure represented by (Chemical Formula 1) can be formed. Here, the particle size distribution is preferably more uniform, and the raw material component preferably has a smaller particle size. Moreover, it is preferable that the particle diameter of the droplets at the time of spraying the solution or suspension is 0.05 μm or more and 500 μm or less.
噴霧時の加熱温度は、使用する原料により異なるが、好ましくは500℃以上1000℃以下であることが好ましい。加熱温度が500℃より低いと、原料成分の各化合物の分解・反応が十分進行せず、結晶性も低くなってしまい、非晶質化してしまう可能性がある。また、加熱温度が1000℃より高いと、生成物が融解してガラス化するおそれがある。噴霧、加熱する際の雰囲気としては、特に、M1が鉄(Fe)の場合は、窒素(N2)、アルゴン(Ar)等の不活性雰囲気が好ましく、より酸化を抑えたい時は、水素(H2)等の還元性ガスを含むような還元性雰囲気が好ましい。 Although the heating temperature at the time of spraying varies depending on the raw material used, it is preferably 500 ° C or higher and 1000 ° C or lower. When the heating temperature is lower than 500 ° C., the decomposition and reaction of each compound of the raw material component does not proceed sufficiently, the crystallinity becomes low, and it may become amorphous. Moreover, when heating temperature is higher than 1000 degreeC, there exists a possibility that a product may melt | dissolve and vitrify. As the atmosphere at the time of spraying and heating, particularly when M1 is iron (Fe), an inert atmosphere such as nitrogen (N 2 ) or argon (Ar) is preferable, and hydrogen ( A reducing atmosphere containing a reducing gas such as H 2 ) is preferable.
第1の実施の形態における正極活物質の製造方法では、リチウム(Li)源、M1源、必要に応じてM2源、リン(P)源ならびに、電子導電性物質または電子導電性物質の前駆体等の各原料成分が溶液中あるいは懸濁液中に均一に分散された状態で、微小な液滴として噴霧され、加熱される。これによって、(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子間に電子導電性物質を介在させてなる二次粒子が形成される。この際、溶液中あるいは懸濁液中に均一に分散されていた電子導電性物質または電子導電性物質の前駆体も液滴中に均一に分散して存在する。このため、二次粒子が生成する際に、電子導電性物質が二次粒子中に均一に存在した状態で取り込まれ、一次粒子間に電子導電性物質が介在した二次粒子が得られる。また、一次粒子同士が電子導電性物質を介して接合されると共に、個々の一次粒子が電子導電性物質により被覆され、二次粒子の外部も電子導電性物質により被覆される。 In the method for producing a positive electrode active material in the first embodiment, a lithium (Li) source, an M1 source, an M2 source and a phosphorus (P) source as necessary, and an electron conductive material or an electron conductive material precursor In the state where each raw material component is uniformly dispersed in a solution or suspension, it is sprayed as fine droplets and heated. As a result, secondary particles are formed by interposing an electron conductive substance between primary particles of a lithium phosphate compound having an olivine structure represented by (Chemical Formula 1). At this time, the electron conductive material or the precursor of the electron conductive material that has been uniformly dispersed in the solution or suspension is also uniformly dispersed in the droplets. For this reason, when the secondary particles are generated, the electron conductive substance is taken in uniformly in the secondary particles, and secondary particles in which the electron conductive substance is interposed between the primary particles are obtained. Further, the primary particles are joined to each other through the electronic conductive material, the individual primary particles are covered with the electronic conductive material, and the outside of the secondary particles are also covered with the electronic conductive material.
<効果>
上述のオリビン型正極活物質をリチウムイオン電池の正極材料として用いることにより、正極活物質層と正極集電体とが高い電極剥離強度で結着される。このため、得られたリチウムイオン電池は、高い放電容量を有すると共に、充放電サイクルが進んでも充放電サイクル性能が安定し、高い充填性、高出力等を有するものとなる。
<Effect>
By using the above olivine-type positive electrode active material as a positive electrode material of a lithium ion battery, the positive electrode active material layer and the positive electrode current collector are bound with high electrode peel strength. For this reason, the obtained lithium ion battery has a high discharge capacity, a stable charge / discharge cycle performance even when the charge / discharge cycle proceeds, and a high filling property, a high output, and the like.
2.第2の実施の形態
第2の実施の形態では、第1の実施の形態の正極活物質を用いた非水電解質電池について説明する。
2. Second Embodiment In the second embodiment, a nonaqueous electrolyte battery using the positive electrode active material of the first embodiment will be described.
(2−1)非水電解質二次電池の構成
図5は、この発明の第2の実施の形態による非水電解質電池の断面構造を示す。この電池は、例えばリチウムイオン二次電池である。
(2-1) Configuration of Nonaqueous Electrolyte Secondary Battery FIG. 5 shows a cross-sectional structure of a nonaqueous electrolyte battery according to the second embodiment of the present invention. This battery is, for example, a lithium ion secondary battery.
図5示すように、この非水電解質電池は、いわゆる円筒型といわれるものであり、ほぼ中空円柱状の電池缶11の内部に、帯状の正極21と帯状の負極22とがセパレータ23を介して巻回された巻回電極体20を有している。電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、一端部が閉鎖され他端部が開放されている。電池缶11の内部には、巻回電極体20を挟むように巻回周面に対して垂直に一対の絶縁板12、13がそれぞれ配置されている。 As shown in FIG. 5, this nonaqueous electrolyte battery is a so-called cylindrical type, and a strip-shaped positive electrode 21 and a strip-shaped negative electrode 22 are interposed in a substantially hollow cylindrical battery can 11 via a separator 23. The wound electrode body 20 is wound. The battery can 11 is made of, for example, iron (Fe) plated with nickel (Ni), and has one end closed and the other end open. Inside the battery can 11, a pair of insulating plates 12 and 13 are arranged perpendicular to the winding peripheral surface so as to sandwich the winding electrode body 20.
電池缶11の開放端部には、電池蓋14と、この電池蓋14の内側に設けられた安全弁機構15および熱感抵抗素子(Positive Temperature Coefficient;PTC素子)16とが、ガスケット17を介してかしめられることにより取り付けられており、電池缶11の内部は密閉されている。電池蓋14は、例えば、電池缶11と同様の材料により構成されている。 At the open end of the battery can 11, a battery lid 14, a safety valve mechanism 15 provided inside the battery lid 14 and a heat sensitive resistance element (Positive Temperature Coefficient; PTC element) 16 are interposed via a gasket 17. It is attached by caulking, and the inside of the battery can 11 is sealed. The battery lid 14 is made of, for example, the same material as the battery can 11.
安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合にディスク板15Aが反転して電池蓋14と巻回電極体20との電気的接続を切断するようになっている。熱感抵抗素子16は、温度が上昇すると抵抗値の増大により電流を制限し、大電流による異常な発熱を防止するものである。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。 The safety valve mechanism 15 is electrically connected to the battery lid 14 via the heat sensitive resistance element 16, and the disk plate 15A is reversed when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating. Thus, the electrical connection between the battery lid 14 and the wound electrode body 20 is cut off. When the temperature rises, the heat sensitive resistance element 16 limits the current by increasing the resistance value and prevents abnormal heat generation due to a large current. The gasket 17 is made of, for example, an insulating material, and asphalt is applied to the surface.
巻回電極体20は、例えば、センターピン24を中心に巻回されている。巻回電極体20の正極21にはアルミニウム(Al)などよりなる正極リード25が接続されており、負極22にはニッケル(Ni)などよりなる負極リード26が接続されている。正極リード25は安全弁機構15に溶接されることにより電池蓋14と電気的に接続されており、負極リード26は電池缶11に溶接され電気的に接続されている。 The wound electrode body 20 is wound around a center pin 24, for example. A positive electrode lead 25 made of aluminum (Al) or the like is connected to the positive electrode 21 of the spirally wound electrode body 20, and a negative electrode lead 26 made of nickel (Ni) or the like is connected to the negative electrode 22. The positive electrode lead 25 is electrically connected to the battery lid 14 by being welded to the safety valve mechanism 15, and the negative electrode lead 26 is welded to and electrically connected to the battery can 11.
図6は図5に示した巻回電極体20の一部を拡大して表すものである。 FIG. 6 shows an enlarged part of the spirally wound electrode body 20 shown in FIG.
[正極]
正極21は、例えば、正極集電体21Aと、正極集電体21Aの両面に設けられた正極活物質層21Bとを有している。なお、正極集電体21Aの片面のみに正極活物質層21Bが存在する領域を有するようにしてもよい。正極集電体21Aは、例えば、アルミニウム(Al)箔などの金属箔により構成されている。
[Positive electrode]
The positive electrode 21 includes, for example, a positive electrode current collector 21A and a positive electrode active material layer 21B provided on both surfaces of the positive electrode current collector 21A. In addition, you may make it have the area | region where the positive electrode active material layer 21B exists only in the single side | surface of 21 A of positive electrode collectors. The positive electrode current collector 21A is made of, for example, a metal foil such as an aluminum (Al) foil.
正極活物質層21Bは、例えば、正極活物質と、繊維状炭素やカーボンブラック等の導電剤と、ポリフッ化ビニリデン(PVdF)等の結着剤とを含む。正極活物質としては、だい1の実施の形態の正極活物質が用いられる。 The positive electrode active material layer 21B includes, for example, a positive electrode active material, a conductive agent such as fibrous carbon or carbon black, and a binder such as polyvinylidene fluoride (PVdF). As the positive electrode active material, the positive electrode active material of the first embodiment is used.
正極活物質層に含まれる導電剤としては、炭素材料が好ましく、特に繊維状炭素が好ましい。繊維状炭素は、略球形を有する炭素材料と比べて長径が長いことから、導電剤として用いた場合に、略球形の炭素材料を用いた場合と比較して導電剤同士の接点を少なくすることができる。導電剤同士は結着剤によって接続されているため、接点数が少なくなることにより導電経路の結着剤量が減少し、抵抗の上昇を抑制することができる。このため、繊維状炭素を用いることによって正極活物質層の厚み方向における導電性を向上させることが可能となる。 As the conductive agent contained in the positive electrode active material layer, a carbon material is preferable, and fibrous carbon is particularly preferable. Since fibrous carbon has a longer major axis than carbon materials having a substantially spherical shape, when used as a conductive agent, the number of contacts between conductive agents should be reduced compared to the case of using a substantially spherical carbon material. Can do. Since the conductive agents are connected to each other by the binder, the amount of the binder in the conductive path is reduced by reducing the number of contacts, and an increase in resistance can be suppressed. For this reason, it becomes possible to improve the electroconductivity in the thickness direction of a positive electrode active material layer by using fibrous carbon.
繊維状炭素は、例えば気相法により形成されたいわゆる気相法炭素繊維を用いることができる。気相法炭素繊維は、例えば、高温雰囲気下に、触媒となる鉄と共に気化された有機化合物を吹き込む方法で製造することができる。気相法炭素繊維は、製造した状態のままのもの、800〜1500℃程度で熱処理したもの、2000〜3000℃程度で黒鉛化処理したもののいずれも使用可能であるが、熱処理さらには黒鉛化処理したものの方が炭素の結晶性が進んでおり、高導電性および高耐圧特性を有するため好ましい。 As the fibrous carbon, for example, a so-called vapor grown carbon fiber formed by a vapor phase method can be used. The vapor grown carbon fiber can be produced by, for example, a method in which an organic compound vaporized with iron serving as a catalyst is blown into a high temperature atmosphere. As the vapor grown carbon fiber, any of the as-produced carbon fiber, the one heat-treated at about 800 to 1500 ° C., and the one graphitized at about 2000 to 3000 ° C. can be used. This is preferable because the crystallinity of carbon is advanced and it has high conductivity and high withstand voltage characteristics.
繊維状炭素は、平均繊維径が1nm以上200nm以下が好ましく、10nm以上200nmがより好ましい。また、平均繊維径と平均繊維長を用いて(平均繊維長/平均繊維径)で算出されるアスペクト比は、平均20以上20000以下が好ましく、平均20以上4000以下がより好ましく、平均20以上2000以下がさらに好ましい。 The fibrous carbon has an average fiber diameter of preferably 1 nm to 200 nm, and more preferably 10 nm to 200 nm. Further, the aspect ratio calculated by (average fiber length / average fiber diameter) using the average fiber diameter and the average fiber length is preferably 20 or more and 20000 or less on average, more preferably 20 or more and 4000 or less, and more preferably 20 or more and 2000 on average. The following is more preferable.
さらに、例えば電池の体積効率を向上させるために正極活物質層の厚さを厚くした場合、正極活物質層に含まれる導電剤としては、二次粒子化したカーボンブラック等を用いることが好ましい。導電剤として二次粒子化した炭素材料の長径は繊維状炭素の長径より長く、導電剤同士の接点が減少するため、結着剤によって導電性が低下するのを防止することができる。 Furthermore, for example, when the thickness of the positive electrode active material layer is increased in order to improve the volume efficiency of the battery, it is preferable to use carbon black or the like as secondary particles as the conductive agent contained in the positive electrode active material layer. The major axis of the carbon material formed into secondary particles as the conductive agent is longer than the major axis of the fibrous carbon, and the number of contacts between the conductive agents is reduced. Therefore, it is possible to prevent the conductivity from being lowered by the binder.
[負極]
負極22は、例えば、負極集電体22Aと、負極集電体22Aの両面に設けられた負極活物質層22Bとを有している。なお、負極集電体22Aの片面のみに負極活物質層22Bが存在する領域を有するようにしてもよい。負極集電体22Aは、例えば銅(Cu)箔などの金属箔により構成されている。
[Negative electrode]
The negative electrode 22 includes, for example, a negative electrode current collector 22A and a negative electrode active material layer 22B provided on both surfaces of the negative electrode current collector 22A. In addition, you may make it have the area | region where the negative electrode active material layer 22B exists only in the single side | surface of 22 A of negative electrode collectors. The anode current collector 22A is made of a metal foil such as a copper (Cu) foil.
負極活物質層22Bは、例えば、負極活物質を含んでおり、必要に応じて導電剤、結着剤あるいは粘度調整剤などの充電に寄与しない他の材料を含んでいてもよい。導電剤としては、黒鉛繊維、金属繊維あるいは金属粉末などが挙げられる。結着剤としては、ポリフッ化ビニリデン(PVdF)などのフッ素系高分子化合物、またはスチレンブタジエンゴム(SBR)あるいはエチレンプロピレンジエンゴム(EPDR)などの合成ゴムなどが挙げられる。 The negative electrode active material layer 22B includes, for example, a negative electrode active material, and may include other materials that do not contribute to charging, such as a conductive agent, a binder, or a viscosity modifier, as necessary. Examples of the conductive agent include graphite fiber, metal fiber, and metal powder. Examples of the binder include a fluorine polymer compound such as polyvinylidene fluoride (PVdF), or a synthetic rubber such as styrene butadiene rubber (SBR) or ethylene propylene diene rubber (EPDR).
負極活物質としては、対リチウム金属2.0V以下の電位で電気化学的にリチウム(Li)を吸蔵および放出することが可能な負極材料のいずれか1種または2種以上を含んで構成されている。 The negative electrode active material includes one or more negative electrode materials capable of electrochemically inserting and extracting lithium (Li) at a potential of lithium metal of 2.0 V or less. Yes.
リチウム(Li)を吸蔵および放出することが可能な負極材料としては、例えば、炭素材料が挙げられる。 Examples of the negative electrode material capable of inserting and extracting lithium (Li) include a carbon material.
炭素材料としては、例えば、難黒鉛化性炭素、易黒鉛化性炭素、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維あるいは活性炭が挙げられる。このうち、コークス類には、ピッチコークス、ニードルコークスあるいは石油コークスなどがある。有機高分子化合物焼成体というのは、フェノール樹脂やフラン樹脂などの高分子材料を適当な温度で焼成して炭素化したものをいい、一部には難黒鉛化性炭素または易黒鉛化性炭素に分類されるものもある。また、高分子材料としてはポリアセチレンあるいはポリピロールなどが挙げられる。 Examples of the carbon material include non-graphitizable carbon, graphitizable carbon, graphite, pyrolytic carbons, cokes, glassy carbons, organic polymer compound fired bodies, carbon fibers, and activated carbon. Among these, examples of coke include pitch coke, needle coke, and petroleum coke. An organic polymer compound fired body refers to a carbonized material obtained by firing a polymer material such as phenol resin or furan resin at an appropriate temperature, and part of it is non-graphitizable carbon or graphitizable carbon. Some are classified as: In addition, examples of the polymer material include polyacetylene and polypyrrole.
このようなリチウム(Li)を吸蔵および離脱可能な負極材料のなかでも、充放電電位が比較的リチウム金属に近いものが好ましい。負極22の充放電電位が低いほど電池の高エネルギー密度化が容易となるからである。なかでも炭素材料は、充放電時に生じる結晶構造の変化が非常に少なく、高い充放電容量を得ることができると共に、良好なサイクル特性を得ることができるので好ましい。特に黒鉛は、電気化学当量が大きく、高いエネルギー密度を得ることができるので好ましい。また、難黒鉛化性炭素は、優れたサイクル特性を得ることができるので好ましい。 Among such negative electrode materials capable of inserting and extracting lithium (Li), those having a charge / discharge potential relatively close to lithium metal are preferable. This is because the lower the charge / discharge potential of the negative electrode 22, the easier it is to increase the energy density of the battery. Among these, a carbon material is preferable because a change in crystal structure that occurs during charge / discharge is very small, a high charge / discharge capacity can be obtained, and good cycle characteristics can be obtained. In particular, graphite is preferable because it has a high electrochemical equivalent and can provide a high energy density. Moreover, non-graphitizable carbon is preferable because excellent cycle characteristics can be obtained.
また、リチウム(Li)を吸蔵および離脱可能な負極材料としては、リチウム金属単体、リチウム(Li)と合金を形成可能な金属元素あるいは半金属元素の単体、合金または化合物が挙げられる。これらは高いエネルギー密度を得ることができるので好ましく、特に、炭素材料と共に用いるようにすれば、高エネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるのでより好ましい。なお、本明細書において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とからなるものも含める。その組織には固溶体、共晶(共融混合物)、金属間化合物あるいはそれらのうち2種以上が共存するものがある。 Examples of the negative electrode material capable of inserting and extracting lithium (Li) include lithium metal alone, metal elements or metalloid elements capable of forming an alloy with lithium (Li), alloys, or compounds. These are preferable because a high energy density can be obtained, and in particular, when used together with a carbon material, a high energy density can be obtained and excellent cycle characteristics can be obtained, and therefore, it is more preferable. Note that in this specification, alloys include those composed of one or more metal elements and one or more metalloid elements in addition to those composed of two or more metal elements. The structures include solid solutions, eutectics (eutectic mixtures), intermetallic compounds, or those in which two or more of them coexist.
このような金属元素あるいは半金属元素としては、例えば、スズ(Sn)、鉛(Pb)、アルミニウム(Al)、インジウム(In)、ケイ素(Si)、亜鉛(Zn)、アンチモン(Sb)、ビスマス(Bi)、カドミウム(Cd)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、ヒ素(As)、銀(Ag)、ジルコニウム(Zr)、イットリウム(Y)またはハフニウム(Hf)が挙げられる。これらの合金あるいは化合物としては、例えば、化学式MafMbgLih、あるいは化学式MasMctMduで表されるものが挙げられる。これら化学式において、Maはリチウムと合金を形成可能な金属元素および半金属元素のうちの少なくとも1種を表し、MbはリチウムおよびMa以外の金属元素および半金属元素のうちの少なくとも1種を表し、Mcは非金属元素の少なくとも1種を表し、MdはMa以外の金属元素および半金属元素のうちの少なくとも1種を表す。また、f、g、h、s、tおよびuの値はそれぞれf>0、g≧0、h≧0、s>0、t>0、u≧0である。 Examples of such metal elements or metalloid elements include tin (Sn), lead (Pb), aluminum (Al), indium (In), silicon (Si), zinc (Zn), antimony (Sb), and bismuth. (Bi), cadmium (Cd), magnesium (Mg), boron (B), gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), zirconium (Zr), yttrium (Y) or hafnium (Hf). Examples of these alloys or compounds include those represented by the chemical formula MafMbgLih or the chemical formula MasMctMdu. In these chemical formulas, Ma represents at least one of a metal element and a metalloid element capable of forming an alloy with lithium, Mb represents at least one of a metal element and a metalloid element other than lithium and Ma, Mc represents at least one of nonmetallic elements, and Md represents at least one of metallic elements and metalloid elements other than Ma. The values of f, g, h, s, t, and u are f> 0, g ≧ 0, h ≧ 0, s> 0, t> 0, and u ≧ 0, respectively.
なかでも、短周期型周期表における4B族の金属元素あるいは半金属元素の単体、合金または化合物が好ましく、特に好ましいのはケイ素(Si)あるいはスズ(Sn)、またはこれらの合金あるいは化合物である。これらは結晶質のものでもアモルファスのものでもよい。 Among these, a simple substance, alloy or compound of Group 4B metal element or semimetal element in the short-period type periodic table is preferable, and silicon (Si) or tin (Sn), or an alloy or compound thereof is particularly preferable. These may be crystalline or amorphous.
リチウムを吸蔵・放出可能な負極材料としては、さらに、酸化物、硫化物、あるいはLi3Nなどのリチウム窒化物などの他の金属化合物が挙げられる。酸化物としては、MnO2、V2O5、V6O13等が挙げられる。その他、比較的電位が卑でリチウムを吸蔵および放出することが可能な酸化物として、例えば酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズなどが挙げられる。硫化物としてはNiS、MoSなどが挙げられる。 Examples of the anode material capable of inserting and extracting lithium further include other metal compounds such as oxide, sulfide, or lithium nitride such as Li 3 N. Examples of the oxide include MnO 2 , V 2 O 5 , V 6 O 13 and the like. In addition, examples of oxides that have a relatively low potential and can occlude and release lithium include iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide. Examples of the sulfide include NiS and MoS.
[セパレータ]
セパレータ23としては、例えば、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルム、合成樹脂製不織布などを用いることができる。セパレータ23には、液状の電解質である非水電解液が含浸されている。
[Separator]
As the separator 23, for example, a polyethylene porous film, a polypropylene porous film, a synthetic resin nonwoven fabric, or the like can be used. The separator 23 is impregnated with a non-aqueous electrolyte that is a liquid electrolyte.
[非水電解液]
非水電解液は、液状の溶媒、例えば有機溶媒などの非水溶媒と、この非水溶媒に溶解された電解質塩とを含むものである。
[Non-aqueous electrolyte]
The nonaqueous electrolytic solution includes a liquid solvent, for example, a nonaqueous solvent such as an organic solvent, and an electrolyte salt dissolved in the nonaqueous solvent.
非水溶媒は、例えば、エチレンカーボネート(EC)およびプロピレンカーボネート(PC)などの環状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。サイクル特性を向上させることができるからである。特に、エチレンカーボネート(EC)と、プロピレンカーボネート(PC)とを混合して含むようにすれば、よりサイクル特性を向上させることができるので好ましい。 The non-aqueous solvent preferably contains at least one of cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC). This is because the cycle characteristics can be improved. In particular, it is preferable to mix and contain ethylene carbonate (EC) and propylene carbonate (PC) because cycle characteristics can be further improved.
非水溶媒は、また、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)あるいはメチルプロピルカーボネート(MPC)などの鎖状炭酸エステルのうちの少なくとも1種を含んでいることが好ましい。サイクル特性をより向上させることができるからである。 The non-aqueous solvent may also contain at least one of chain carbonates such as diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and methyl propyl carbonate (MPC). preferable. This is because the cycle characteristics can be further improved.
非水溶媒は、さらに、2,4−ジフルオロアニソールおよびビニレンカーボネート(VC)のうちの少なくとも一方を含んでいることが好ましい。2,4−ジフルオロアニソールは放電容量を改善することができ、ビニレンカーボネート(VC)はサイクル特性をより向上させることができるからである。特に、これらを混合して含んでいれば、放電容量およびサイクル特性を共に向上させることができるのでより好ましい。 It is preferable that the nonaqueous solvent further contains at least one of 2,4-difluoroanisole and vinylene carbonate (VC). This is because 2,4-difluoroanisole can improve the discharge capacity, and vinylene carbonate (VC) can further improve the cycle characteristics. In particular, it is more preferable that they are mixed and contained because both the discharge capacity and the cycle characteristics can be improved.
非水溶媒は、さらに、ブチレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、これら化合物の水素基の一部または全部をフッ素基で置換したもの、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、酢酸メチル、プロピオン酸メチル、アセトニトリル、グルタロニトリル、アジポニトリル、メトキシアセトニトリル、3−メトキシプロピロニトリル、N,N−ジメチルフォルムアミド、N−メチルピロリジノン、N−メチルオキサゾリジノン、N,N−ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、ジメチルスルフォキシドあるいはリン酸トリメチルなどのいずれか1種または2種以上を含んでいてもよい。 Nonaqueous solvents further include butylene carbonate, γ-butyrolactone, γ-valerolactone, those in which part or all of the hydrogen groups of these compounds are substituted with fluorine groups, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran. 1,3-dioxolane, 4-methyl-1,3-dioxolane, methyl acetate, methyl propionate, acetonitrile, glutaronitrile, adiponitrile, methoxyacetonitrile, 3-methoxypropyronitrile, N, N-dimethylformamide, N-methylpyrrolidinone, N-methyloxazolidinone, N, N-dimethylimidazolidinone, nitromethane, nitroethane, sulfolane, dimethyl sulfoxide, or trimethyl phosphate may be included.
組み合わせる電極によっては、上記非水溶媒群に含まれる物質の水素原子の一部または全部をフッ素原子で置換したものを用いることにより、電極反応の可逆性が向上する場合がある。したがって、これらの物質を適宜用いることも可能である。 Depending on the electrode to be combined, the reversibility of the electrode reaction may be improved by using a material in which part or all of the hydrogen atoms of the substance contained in the non-aqueous solvent group are substituted with fluorine atoms. Therefore, these substances can be used as appropriate.
電解質塩としては、リチウム塩を用いることができる。リチウム塩としては、例えば、リチウム塩としては、例えば六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化ヒ酸リチウム(LiAsF6)、六フッ化アンチモン酸リチウム(LiSbF6)、過塩素酸リチウム(LiClO4)、四塩化アルミニウム酸リチウム(LiAlCl4)などの無機リチウム塩や、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(CF3SO2)2)、リチウムビス(ペンタフルオロエタンスルホニル)イミド(LiN(C2F5SO2)2)、およびリチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3SO2)3)などのパーフルオロアルカンスルホン酸誘導体などが挙げられ、これらを1種単独でまたは2種以上を組み合わせて使用することも可能である。中でも、六フッ化リン酸リチウム(LiPF6)は、高いイオン伝導性を得ることができると共に、サイクル特性を向上させることができるので好ましい。 A lithium salt can be used as the electrolyte salt. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and antimony hexafluoride. Inorganic lithium salts such as lithium oxalate (LiSbF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrachloroaluminate (LiAlCl 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis (trifluoromethanesulfonyl) ) Imide (LiN (CF 3 SO 2 ) 2 ), lithium bis (pentafluoroethanesulfonyl) imide (LiN (C 2 F 5 SO 2 ) 2 ), and lithium tris (trifluoromethanesulfonyl) methide (LiC (CF 3 SO 2) 3) perfluoroalkane sulfonic acids derived such And the like, it is also possible to use them in combination of at least one kind alone or in combination. Among these, lithium hexafluorophosphate (LiPF 6 ) is preferable because high ion conductivity can be obtained and cycle characteristics can be improved.
[非水電解質二次電池の作製方法]
この非水電解質電池は、例えば以下に説明するようにして、製造することができる。まず、例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチルピロリドンなどの溶剤に分散させて正極合剤スラリーとする。続いて、この正極合剤スラリーを正極集電体21Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して正極活物質層21Bを形成し、正極21を作製する。
[Method of manufacturing non-aqueous electrolyte secondary battery]
This nonaqueous electrolyte battery can be manufactured as described below, for example. First, for example, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a positive electrode mixture slurry. . Subsequently, the positive electrode mixture slurry is applied to the positive electrode current collector 21A and the solvent is dried. Then, the positive electrode active material layer 21B is formed by compression molding using a roll press or the like, and the positive electrode 21 is manufactured.
また、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチルピロリドンなどの溶剤に分散させて負極合剤スラリーとする。続いて、この負極合剤スラリーを負極集電体22Aに塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して負極活物質層22Bを形成し、負極22を作製する。 Further, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a negative electrode mixture slurry. Subsequently, the negative electrode mixture slurry is applied to the negative electrode current collector 22A, and the solvent is dried. Then, the negative electrode active material layer 22B is formed by compression molding using a roll press or the like, and the negative electrode 22 is manufactured.
次いで、正極集電体21に正極リード25を溶接などにより取り付けるとともに、負極集電体22に負極リード26を溶接などにより取り付ける。そののち、正極21と負極22とをセパレータ23を介して巻回し、正極リード25の先端部を安全弁機構15に溶接すると共に、負極リード26の先端部を電池缶11に溶接して、巻回した正極21および負極22を一対の絶縁板12、13で挟み電池缶11の内部に収納する。 Next, the positive electrode lead 25 is attached to the positive electrode current collector 21 by welding or the like, and the negative electrode lead 26 is attached to the negative electrode current collector 22 by welding or the like. After that, the positive electrode 21 and the negative electrode 22 are wound through the separator 23, and the tip of the positive electrode lead 25 is welded to the safety valve mechanism 15, and the tip of the negative electrode lead 26 is welded to the battery can 11. The positive electrode 21 and the negative electrode 22 are sandwiched between a pair of insulating plates 12 and 13 and stored in the battery can 11.
正極21および負極22を電池缶11の内部に収納したのち、上述した電解液を電池缶11の内部に注入し、セパレータ23に含浸させる。そののち、電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16を、ガスケット17を介してかしめることにより固定する。以上により、図5に示した非水電解質電池を製造できる。 After the positive electrode 21 and the negative electrode 22 are accommodated in the battery can 11, the electrolyte solution described above is injected into the battery can 11 and impregnated in the separator 23. After that, the battery lid 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are fixed to the opening end of the battery can 11 by caulking through the gasket 17. As described above, the nonaqueous electrolyte battery shown in FIG. 5 can be manufactured.
この非水電解質電池では、充電を行うと、例えば、正極21からリチウムイオンが離脱し、電解液を介して負極22に吸蔵される。放電を行うと、例えば、負極22からリチウムイオンが離脱し、電解液を介して正極21に吸蔵される。 In this non-aqueous electrolyte battery, when charged, for example, lithium ions are released from the positive electrode 21 and inserted into the negative electrode 22 through the electrolytic solution. When discharging is performed, for example, lithium ions are released from the negative electrode 22 and are inserted in the positive electrode 21 through the electrolytic solution.
上述のような正極活物質を用いることにより、二次粒子内における一次粒子同士の導電性と、二次粒子同士もしくは正極活物質層と正極集電体との結着性とを両立し、高容量、高出力特性に優れる正極活物質および非水電解質二次電池を得ることができる。 By using the positive electrode active material as described above, both the conductivity between the primary particles in the secondary particles and the binding property between the secondary particles or between the positive electrode active material layer and the positive electrode current collector are achieved. A positive electrode active material and a nonaqueous electrolyte secondary battery excellent in capacity and high output characteristics can be obtained.
<効果>
上述のオリビン型正極活物質を用いた非水電解質電池では、高い放電容量を有すると共に、充放電サイクルが進んでも充放電サイクル性能が安定し、高い充填性、高出力等を有するものとなる。
<Effect>
The non-aqueous electrolyte battery using the above-described olivine-type positive electrode active material has a high discharge capacity, stable charge / discharge cycle performance even when the charge / discharge cycle proceeds, and has high filling ability, high output, and the like.
3.第3の実施の形態
この発明の第3の実施の形態による非水電解質電池について説明する。第3の実施の形態における非水電解質電池は、ラミネートフィルムで外装されたラミネートフィルム型非水電解質電池である。
3. Third Embodiment A nonaqueous electrolyte battery according to a third embodiment of the present invention will be described. The nonaqueous electrolyte battery in the third embodiment is a laminate film type nonaqueous electrolyte battery that is covered with a laminate film.
(3−1)非水電解質電池の構成
この発明の第3の実施の形態による非水電解質電池について説明する。図7はこの発明の第3の実施の形態による非水電解質電池の分解斜視構成を表しており、図8は図7に示した巻回電極体30のI−I線に沿った断面を拡大して示している。
(3-1) Configuration of Nonaqueous Electrolyte Battery A nonaqueous electrolyte battery according to the third embodiment of the present invention will be described. FIG. 7 shows an exploded perspective view of a nonaqueous electrolyte battery according to a third embodiment of the present invention, and FIG. 8 is an enlarged cross section taken along line II of the spirally wound electrode body 30 shown in FIG. As shown.
この非水電解質電池は、主に、フィルム状の外装部材40の内部に、正極リード31および負極リード32が取り付けられた巻回電極体30が収納されたものである。このフィルム状の外装部材40を用いた電池構造は、ラミネート型と呼ばれている。 In this nonaqueous electrolyte battery, a wound electrode body 30 to which a positive electrode lead 31 and a negative electrode lead 32 are attached is mainly housed in a film-like exterior member 40. The battery structure using the film-shaped exterior member 40 is called a laminate type.
正極リード31および負極リード32は、例えば、外装部材40の内部から外部に向かって同一方向に導出されている。正極リード31は、例えば、アルミニウムなどの金属材料によって構成されており、負極リード32は、例えば、銅、ニッケルまたはステンレスなどの金属材料によって構成されている。これらの金属材料は、例えば、薄板状または網目状になっている。 For example, the positive electrode lead 31 and the negative electrode lead 32 are led out in the same direction from the inside of the exterior member 40 toward the outside. The positive electrode lead 31 is made of, for example, a metal material such as aluminum, and the negative electrode lead 32 is made of, for example, a metal material such as copper, nickel, or stainless steel. These metal materials are, for example, in a thin plate shape or a mesh shape.
外装部材40は、例えば、ナイロンフィルム、アルミニウム箔およびポリエチレンフィルムがこの順に貼り合わされたアルミラミネートフィルムによって構成されている。この外装部材40は、例えば、ポリエチレンフィルムが巻回電極体30と対向するように、2枚の矩形型のアルミラミネートフィルムの外縁部同士が融着または接着剤によって互いに接着された構造を有している。 The exterior member 40 is made of, for example, an aluminum laminated film in which a nylon film, an aluminum foil, and a polyethylene film are bonded together in this order. The exterior member 40 has, for example, a structure in which outer edges of two rectangular aluminum laminate films are bonded to each other by fusion or an adhesive so that the polyethylene film faces the wound electrode body 30. ing.
外装部材40と正極リード31および負極リード32との間には、外気の侵入を防止するための密着フィルム41が挿入されている。この密着フィルム41は、正極リード31および負極リード32に対して密着性を有する材料によって構成されている。このような材料としては、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンまたは変性ポリプロピレンなどのポリオレフィン樹脂が挙げられる。 An adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 and the negative electrode lead 32 to prevent intrusion of outside air. The adhesion film 41 is made of a material having adhesion to the positive electrode lead 31 and the negative electrode lead 32. Examples of such a material include polyolefin resins such as polyethylene, polypropylene, modified polyethylene, and modified polypropylene.
なお、外装部材40は、上記したアルミラミネートフィルムに代えて、他の積層構造を有するラミネートフィルムによって構成されていてもよいし、ポリプロピレンなどの高分子フィルムまたは金属フィルムによって構成されていてもよい。 In addition, the exterior member 40 may be comprised with the laminated film which has another laminated structure instead of the above-mentioned aluminum laminated film, and may be comprised with polymer films or metal films, such as a polypropylene.
図8は、図7に示した巻回電極体30のI−I線に沿った断面構成を表している。この巻回電極体30は、セパレータ35および電解質36を介して正極33と負極34とが積層および巻回されたものであり、その最外周部は、保護テープ37によって保護されている。 FIG. 8 shows a cross-sectional configuration along the line II of the spirally wound electrode body 30 shown in FIG. The wound electrode body 30 is obtained by laminating and winding a positive electrode 33 and a negative electrode 34 via a separator 35 and an electrolyte 36, and an outermost peripheral portion thereof is protected by a protective tape 37.
正極33は、例えば、正極集電体33Aの両面に正極活物質層33Bが設けられたものであり、第2の実施の形態の正極21と同様の構成を有している。正極活物質としては、第1の実施の形態の(化1)で示されるオリビン構造を有するリチウムリン酸化合物と電子導電性物質からなる二次粒子が用いられる。 The positive electrode 33 is, for example, provided with a positive electrode active material layer 33B on both surfaces of a positive electrode current collector 33A, and has the same configuration as the positive electrode 21 of the second embodiment. As the positive electrode active material, secondary particles composed of a lithium phosphate compound having an olivine structure represented by (Chemical Formula 1) of the first embodiment and an electron conductive material are used.
負極34は、例えば、負極集電体34Aの両面に負極活物質層34Bが設けられたものであり、第2の実施の形態の負極22と同様の構成を有している。 The negative electrode 34 is, for example, provided with a negative electrode active material layer 34B on both surfaces of a negative electrode current collector 34A, and has the same configuration as the negative electrode 22 of the second embodiment.
正極33と負極34は、負極活物質層34Bと正極活物質層33Bとが対向するように配置されている。正極集電体33A、正極活物質層33B、負極集電体34A、負極活物質層34Bおよびセパレータ35の構成は、夫々第2の実施の形態の正極集電体21A、正極活物質層21B、負極集電体22A、負極活物質層22Bおよびセパレータ23の構成と同様である。 The positive electrode 33 and the negative electrode 34 are disposed so that the negative electrode active material layer 34B and the positive electrode active material layer 33B face each other. The configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A, the negative electrode active material layer 34B, and the separator 35 are respectively the positive electrode current collector 21A, the positive electrode active material layer 21B, and the second embodiment. The configurations of the negative electrode current collector 22A, the negative electrode active material layer 22B, and the separator 23 are the same.
電解質36は、上述した第1の実施の形態による非水電解液と、それを保持する高分子化合物とを含んでおり、いわゆるゲル状の電解質である。ゲル状の電解質は、高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に漏液が防止されるので好ましい。 The electrolyte 36 is a so-called gel electrolyte that includes the nonaqueous electrolytic solution according to the first embodiment described above and a polymer compound that holds the nonaqueous electrolytic solution. A gel electrolyte is preferable because high ion conductivity (for example, 1 mS / cm or more at room temperature) is obtained and liquid leakage is prevented.
(3−2)非水電解質電池の製造方法
この非水電解質電池は、例えば、以下の3種類の製造方法(第1〜第3の製造方法)によって製造される。
(3-2) Manufacturing Method of Nonaqueous Electrolyte Battery This nonaqueous electrolyte battery is manufactured by, for example, the following three types of manufacturing methods (first to third manufacturing methods).
(3−2−1)第1の製造方法
第1の製造方法では、最初に、例えば、上記した第2の実施の形態の正極21および負極22の作製手順と同様の手順により、正極集電体33Aの両面に正極活物質層33Bを形成して正極33を作製する。また、負極集電体34Aの両面に負極活物質層34Bを形成して負極34を作製する。
(3-2-1) First Manufacturing Method In the first manufacturing method, first, for example, by collecting the positive electrode current by the same procedure as the manufacturing procedure of the positive electrode 21 and the negative electrode 22 of the second embodiment described above. The positive electrode active material layer 33B is formed on both surfaces of the body 33A to produce the positive electrode 33. Further, the negative electrode active material layer 34B is formed on both surfaces of the negative electrode current collector 34A to produce the negative electrode 34.
続いて、第1の実施の形態による非水電解液と、高分子化合物と、溶剤とを含む前駆溶液を調製して正極33および負極34に塗布したのち、溶剤を揮発させてゲル状の電解質36を形成する。続いて、正極集電体33Aに正極リード31を取り付けると共に、負極集電体34Aに負極リード32を取り付ける。 Subsequently, a precursor solution containing the non-aqueous electrolyte according to the first embodiment, a polymer compound, and a solvent is prepared and applied to the positive electrode 33 and the negative electrode 34, and then the solvent is volatilized to form a gel electrolyte. 36 is formed. Subsequently, the positive electrode lead 31 is attached to the positive electrode current collector 33A, and the negative electrode lead 32 is attached to the negative electrode current collector 34A.
続いて、電解質36が形成された正極33と負極34とをセパレータ35を介して積層させてから長手方向に巻回し、その最外周部に保護テープ37を接着させて巻回電極体30を作製する。最後に、例えば、2枚のフィルム状の外装部材40の間に巻回電極体30を挟み込んだのち、その外装部材40の外縁部同士を熱融着などで接着させて巻回電極体30を封入する。この際、正極リード31および負極リード32と外装部材40との間に、密着フィルム41を挿入する。これにより、非水電解質電池が完成する。 Subsequently, the positive electrode 33 and the negative electrode 34 on which the electrolyte 36 is formed are stacked via the separator 35 and then wound in the longitudinal direction, and a protective tape 37 is adhered to the outermost peripheral portion to produce the wound electrode body 30. To do. Finally, for example, after the wound electrode body 30 is sandwiched between two film-shaped exterior members 40, the outer edge portions of the exterior member 40 are bonded to each other by heat fusion or the like, so that the wound electrode body 30 is Encapsulate. At this time, the adhesion film 41 is inserted between the positive electrode lead 31 and the negative electrode lead 32 and the exterior member 40. Thereby, a nonaqueous electrolyte battery is completed.
(3−2−2)第2の製造方法
第2の製造方法では、最初に、正極33に正極リード31を取り付けると共に、負極34に負極リード32を取り付ける。続いて、セパレータ35を介して正極33と負極34とを積層して巻回させたのち、その最外周部に保護テープ37を接着させて、巻回電極体30の前駆体である巻回体を作製する。
(3-2-2) Second Manufacturing Method In the second manufacturing method, first, the positive electrode lead 31 is attached to the positive electrode 33 and the negative electrode lead 32 is attached to the negative electrode 34. Subsequently, after the positive electrode 33 and the negative electrode 34 are laminated and wound via the separator 35, a protective tape 37 is adhered to the outermost peripheral portion thereof, and a wound body that is a precursor of the wound electrode body 30. Is made.
続いて、2枚のフィルム状の外装部材40の間に巻回体を挟み込んだのち、一辺の外周縁部を除いた残りの外周縁部を熱融着などで接着させて、袋状の外装部材40の内部に巻回体を収納する。続いて、第1の実施の形態による非水電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを含む電解質用組成物を調製して袋状の外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着などで密封する。最後に、モノマーを熱重合させて高分子化合物とすることにより、ゲル状の電解質36を形成する。これにより、非水電解質電池が完成する。 Subsequently, after sandwiching the wound body between the two film-shaped exterior members 40, the remaining outer peripheral edge except for the outer peripheral edge on one side is adhered by heat fusion or the like, thereby forming a bag-shaped exterior The wound body is accommodated in the member 40. Subsequently, a composition for an electrolyte comprising the nonaqueous electrolytic solution according to the first embodiment, a monomer that is a raw material for the polymer compound, a polymerization initiator, and, if necessary, other materials such as a polymerization inhibitor. Is prepared and injected into the inside of the bag-shaped exterior member 40, and then the opening of the exterior member 40 is sealed by heat fusion or the like. Finally, the gel electrolyte 36 is formed by thermally polymerizing the monomer to obtain a polymer compound. Thereby, a nonaqueous electrolyte battery is completed.
(3−2−3)第3の製造方法
第3の製造方法では、最初に、高分子化合物が両面に塗布されたセパレータ35を用いることを除き、上記した第2の製造方法と同様に、巻回体を形成して袋状の外装部材40の内部に収納する。
(3-2-3) Third production method In the third production method, first, except that the separator 35 coated with the polymer compound on both sides is used, the same as the second production method described above, A wound body is formed and stored in the bag-shaped exterior member 40.
このセパレータ35に塗布する高分子化合物としては、例えば、フッ化ビニリデンを成分とする重合体、すなわち単独重合体、共重合体または多元共重合体などが挙げられる。具体的には、ポリフッ化ビニリデンや、フッ化ビニリデンおよびヘキサフルオロプロピレンを成分とする二元系共重合体や、フッ化ビニリデン、ヘキサフルオロプロピレンおよびクロロトリフルオロエチレンを成分とする三元系共重合体などである。 Examples of the polymer compound applied to the separator 35 include a polymer containing vinylidene fluoride as a component, that is, a homopolymer, a copolymer, or a multi-component copolymer. Specifically, polyvinylidene fluoride, binary copolymers containing vinylidene fluoride and hexafluoropropylene as components, and ternary copolymers containing vinylidene fluoride, hexafluoropropylene and chlorotrifluoroethylene as components. Such as coalescence.
なお、高分子化合物は、上記したフッ化ビニリデンを成分とする重合体と共に、他の1種または2種以上の高分子化合物を含んでいてもよい。続いて、第1の実施の形態による非水電解液を調製して外装部材40の内部に注入したのち、その外装部材40の開口部を熱融着などで密封する。最後に、外装部材40に加重をかけながら加熱し、高分子化合物を介してセパレータ35を正極33および負極34に密着させる。これにより、非水電解液が高分子化合物に含浸し、その高分子化合物がゲル化して電解質36が形成されるため、非水電解質電池が完成する。 The polymer compound may contain one or more other polymer compounds together with the polymer containing vinylidene fluoride as a component. Subsequently, after the non-aqueous electrolyte according to the first embodiment is prepared and injected into the exterior member 40, the opening of the exterior member 40 is sealed by heat sealing or the like. Finally, the exterior member 40 is heated while applying a load, and the separator 35 is brought into close contact with the positive electrode 33 and the negative electrode 34 through the polymer compound. As a result, the non-aqueous electrolyte is impregnated into the polymer compound, and the polymer compound is gelled to form the electrolyte 36, thereby completing the non-aqueous electrolyte battery.
<効果>
第3の実施の形態では、第2の実施の形態と同様の効果を有する。
<Effect>
The third embodiment has the same effect as the second embodiment.
4.第4の実施の形態
この発明の第4の実施の形態による非水電解質電池について説明する。第4の実施の形態における非水電解質電池は、ラミネートフィルムで外装されたラミネートフィルム型非水電解質電池であり、かつ第1の実施の形態の非水電解液をそのまま用いた点以外は、第3の実施の形態による非水電解質電池と同様である。したがって、以下では、第3の実施の形態と異なる点を中心にその構成を詳細に説明する。
4). Fourth Embodiment A nonaqueous electrolyte battery according to a fourth embodiment of the present invention will be described. The nonaqueous electrolyte battery in the fourth embodiment is a laminated film type nonaqueous electrolyte battery that is covered with a laminate film, and the nonaqueous electrolyte battery in the fourth embodiment is the same as the first embodiment except that the nonaqueous electrolyte solution in the first embodiment is used as it is. This is similar to the nonaqueous electrolyte battery according to the third embodiment. Therefore, hereinafter, the configuration will be described in detail with a focus on differences from the third embodiment.
(4−1)非水電解質電池の構成
この発明の第4の実施の形態による非水電解質電池では、ゲル状の電解質36の代わりに、非水電解液を用いている。したがって、巻回電極体30は、電解質36が省略された構成を有し、非水電解液がセパレータ35に含浸されている。
(4-1) Configuration of Nonaqueous Electrolyte Battery In the nonaqueous electrolyte battery according to the fourth embodiment of the present invention, a nonaqueous electrolyte is used instead of the gel electrolyte 36. Therefore, the wound electrode body 30 has a configuration in which the electrolyte 36 is omitted, and the separator 35 is impregnated with the nonaqueous electrolytic solution.
(4−2)非水電解質電池の製造方法
この非水電解質電池は、例えば、以下のように製造する。
(4-2) Manufacturing Method of Nonaqueous Electrolyte Battery This nonaqueous electrolyte battery is manufactured as follows, for example.
まず、例えば正極活物質と結着剤と導電剤とを混合して正極合剤を調製し、N−メチル−2−ピロリドンなどの溶剤に分散させることにより正極合剤スラリーを作製する。次に、この正極合剤スラリーを両面に塗布し、乾燥させ圧縮成型して正極活物質層33Bを形成し正極33を作製する。次に、例えば正極集電体33Aに正極リード31を、例えば超音波溶接、スポット溶接などにより接合する。 First, for example, a positive electrode active material, a binder, and a conductive agent are mixed to prepare a positive electrode mixture, and dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a positive electrode mixture slurry. Next, this positive electrode mixture slurry is applied to both sides, dried and compression molded to form the positive electrode active material layer 33B, and the positive electrode 33 is produced. Next, for example, the positive electrode lead 31 is joined to the positive electrode current collector 33A by, for example, ultrasonic welding or spot welding.
また、例えば負極材料と結着剤とを混合して負極合剤を調製し、N−メチル−2−ピロリドンなどの溶剤に分散させることにより負極合剤スラリーを作製する。次に、この負極合剤スラリーを負極集電体34Aの両面に塗布し乾燥させ、圧縮成型して負極活物質層34Bを形成し、負極34を作製する。次に、例えば負極集電体34Aに負極リード32を例えば超音波溶接、スポット溶接などにより接合する。 Further, for example, a negative electrode material and a binder are mixed to prepare a negative electrode mixture, and dispersed in a solvent such as N-methyl-2-pyrrolidone to prepare a negative electrode mixture slurry. Next, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 34A, dried, and compression molded to form the negative electrode active material layer 34B, whereby the negative electrode 34 is produced. Next, for example, the negative electrode lead 32 is joined to the negative electrode current collector 34A by, for example, ultrasonic welding or spot welding.
続いて、正極33と負極34とをセパレータ35を介して巻回して外装部材40の内部に挟み込んだのち、外装部材40の内部に、第1の実施の形態による非水電解液を注入し、外装部材40を密閉する。これにより、図7および図8に示す非水電解質電池が得られる。 Subsequently, after winding the positive electrode 33 and the negative electrode 34 through the separator 35 and sandwiching them inside the exterior member 40, the nonaqueous electrolyte according to the first embodiment is injected into the exterior member 40, The exterior member 40 is sealed. Thereby, the nonaqueous electrolyte battery shown in FIGS. 7 and 8 is obtained.
<効果>
第4の実施の形態では、第2の実施の形態と同様の効果を有する。
<Effect>
The fourth embodiment has the same effect as that of the second embodiment.
5.第5の実施の形態
この発明の第5の実施の形態による非水電解質電池50の構成例について説明する。この発明の第5の実施の形態による非水電解質電池50は、図9に示すように、角型の形状を有する。
5. Fifth Embodiment A configuration example of a nonaqueous electrolyte battery 50 according to a fifth embodiment of the present invention will be described. The nonaqueous electrolyte battery 50 according to the fifth embodiment of the present invention has a square shape as shown in FIG.
この非水電解質電池50は、以下のようにして作製する。図9に示すように、まず、巻回電極体53を例えばアルミニウム(Al)、鉄(Fe)などの金属よりなる角型缶である外装缶51内に収容する。 The nonaqueous electrolyte battery 50 is manufactured as follows. As shown in FIG. 9, first, the wound electrode body 53 is accommodated in an outer can 51 that is a rectangular can made of a metal such as aluminum (Al) or iron (Fe).
そして、電池蓋52に設けられた電極ピン54と、巻回電極体53から導出された電極端子55とを接続した後、電池蓋52にて封口する。その後、非水電解液注入口56から非水電解液を注入して封止部材57にて封止する。これにより、この発明の第5の実施の形態の非水電解質電池50が完成する。 Then, after the electrode pins 54 provided on the battery lid 52 and the electrode terminals 55 led out from the wound electrode body 53 are connected, the battery lid 52 is sealed. Thereafter, the nonaqueous electrolyte solution is injected from the nonaqueous electrolyte solution inlet 56 and sealed with the sealing member 57. Thereby, the nonaqueous electrolyte battery 50 according to the fifth embodiment of the present invention is completed.
なお、巻回電極体53は、正極および負極をセパレータを介して積層し、巻回することによって得られる。正極、負極、セパレータおよび非水電解液は、第1の実施の形態と同様であるので、詳細な説明を省略する。 The wound electrode body 53 is obtained by laminating and winding a positive electrode and a negative electrode with a separator interposed therebetween. Since the positive electrode, the negative electrode, the separator, and the nonaqueous electrolytic solution are the same as those in the first embodiment, detailed description thereof is omitted.
<効果>
この発明の第5の実施の形態による非水電解質電池50では、第2の実施の形態と同様の効果を得ることができる。
<Effect>
In the nonaqueous electrolyte battery 50 according to the fifth embodiment of the present invention, the same effects as those of the second embodiment can be obtained.
6.第6の実施の形態
この発明の第6の実施の形態による非水電解質電池について説明する。第6の実施の形態における非水電解質電池は、電極体が正極および負極が積層されてラミネートフィルムで外装されたラミネートフィルム型非水電解質電池であり、電極体の構成以外は第3の実施の形態と同様である。このため、以下では、第6の実施の形態の電極体についてのみ説明する。
6). Sixth Embodiment A nonaqueous electrolyte battery according to a sixth embodiment of the present invention will be described. The non-aqueous electrolyte battery in the sixth embodiment is a laminated film type non-aqueous electrolyte battery in which the electrode body is laminated with a positive electrode and a negative electrode and is covered with a laminate film. It is the same as the form. For this reason, below, only the electrode body of 6th Embodiment is demonstrated.
[正極および負極]
図10に示すように、正極61は、矩形状の正極集電体の両面に正極活物質層を形成することにより得られる。正極61の正極集電体は、正極端子と一体に形成されていることが好ましい。また負極62も同様に、矩形状の負極集電体上に負極活物質層が形成されてなる。
[Positive electrode and negative electrode]
As shown in FIG. 10, the positive electrode 61 is obtained by forming a positive electrode active material layer on both surfaces of a rectangular positive electrode current collector. The positive electrode current collector of the positive electrode 61 is preferably formed integrally with the positive electrode terminal. Similarly, the negative electrode 62 has a negative electrode active material layer formed on a rectangular negative electrode current collector.
正極61および負極62は、正極61、セパレータ63、負極62およびセパレータ63の順に積層され、積層電極体60とされる。積層電極体60は、絶縁テープ等を貼着することにより電極の積層状態を維持するようにしても良い。積層電極体60は、ラミネートフィルム等に外装され、非水電解液と共に電池内に密封される。また、非水電解液の代わりにゲル電解質を用いてもよい。 The positive electrode 61 and the negative electrode 62 are laminated in the order of the positive electrode 61, the separator 63, the negative electrode 62, and the separator 63 to form a laminated electrode body 60. The laminated electrode body 60 may maintain the laminated state of the electrodes by attaching an insulating tape or the like. The laminated electrode body 60 is packaged with a laminate film or the like and sealed in a battery together with a non-aqueous electrolyte. Moreover, you may use a gel electrolyte instead of a non-aqueous electrolyte.
<効果>
この発明の第6の実施の形態の積層電極体60を用いた非水電解質電池20では、第2の実施の形態と同様の効果を得ることができる。
<Effect>
In the nonaqueous electrolyte battery 20 using the laminated electrode body 60 of the sixth embodiment of the present invention, the same effects as those of the second embodiment can be obtained.
この発明の具体的な実施例について詳細に説明する。なお、本発明はこれに限定されるものではない。 Specific embodiments of the present invention will be described in detail. Note that the present invention is not limited to this.
<実施例1>
[正極]
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05FePO4になるように秤量した。また、炭素(C)源として酢酸(CH3COOH)を用い、焼成後の正極活物質に置いて、炭素(C)の含有量が3重量%となるように秤量した。以上の原料を撹拌ポットに導入し、ジルコニア(ZrO2)ビーズおよび水を加えて原料懸濁液とした。この際の固形分濃度を20%とした。
<Example 1>
[Positive electrode]
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, iron (III) sulfate (Fe 2 (SO 4 ) 3 ) as the iron (Fe) source, diammonium hydrogen phosphate ((NH) as the phosphorus (P) source 4 ) Weighed using 2 HPO 4 ) so that the average composition was Li 1.05 FePO 4 . In addition, acetic acid (CH 3 COOH) was used as a carbon (C) source, placed on the fired positive electrode active material, and weighed so that the carbon (C) content was 3% by weight. The above raw materials were introduced into a stirring pot, and zirconia (ZrO 2 ) beads and water were added to form a raw material suspension. The solid content concentration at this time was 20%.
原料懸濁液を投入した撹拌ポットを13時間撹拌して粉砕混合を行った。原材料の粒度分布を測定したところ平均粒径は0.07μmであった。粉砕混合後の懸濁液を窒素(N2)の不活性雰囲気下に噴霧するとともに650℃で加熱して、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。このようにして得られたオリビン型構造を有するリチウムリン酸鉄の平均組成は、Li1.05FePO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は6.0μm、正極活物質二次粒子の比表面積は11.0m2/gであった。 The stirring pot charged with the raw material suspension was stirred and mixed for 13 hours. When the particle size distribution of the raw materials was measured, the average particle size was 0.07 μm. The suspension after pulverization and mixing is sprayed under an inert atmosphere of nitrogen (N 2 ) and heated at 650 ° C. to form secondary particles in which carbon, which is an electronically conductive substance, is interposed between primary particles. did. The average composition of lithium iron phosphate having the olivine structure thus obtained is Li 1.05 FePO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained, and other impurities are It was not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by the laser scattering method was 6.0 μm, and the specific surface area of the positive electrode active material secondary particles was 11.0 m 2 / g.
以上の正極活物質について、23℃、絶対湿度0.45%の環境下で吸油量測定を行ったところ、NMP吸油量は27g/100gとなった。ここで、吸油量測定に用いたN−メチル−2−ピロリドン(NMP)の密度は1.028g/ccであった。 When the oil absorption amount of the above positive electrode active material was measured in an environment of 23 ° C. and an absolute humidity of 0.45%, the NMP oil absorption amount was 27 g / 100 g. Here, the density of N-methyl-2-pyrrolidone (NMP) used for the oil absorption measurement was 1.028 g / cc.
なお、正極活物質のNMP吸油量は、第1の実施の形態で説明した方法で測定した。なお、NMP吸油量測定方法について、再度下記に示す。 The NMP oil absorption amount of the positive electrode active material was measured by the method described in the first embodiment. In addition, it shows below again about the NMP oil absorption measuring method.
予想されるNMP吸油量に応じて、試料から適切なサンプル量を測り取った後、測り取った試料をビュレット台の中央部に取り、N−メチル−2−ピロリドンをビュレットから1回に4、5滴ずつ、徐々に試料の中央に滴下し、その都度全体をヘラで十分に練り合わせた。ヘラを用いて練り合わせた試料をらせん形に巻くことができる状態までN−メチル−2−ピロリドンを滴下したときを終点とし、終点に達した時のN−メチル−2−ピロリドン滴下量を読み取った。そして、下記の式(1)から、NMP吸油量を算出した。
NMP吸油量[g/100g]=(N−メチル−2−ピロリドン(NMP)の密度[g/ml]×NMP滴下量[ml]/サンプル量[g])×100 ・・・(1)
After measuring the appropriate amount of sample from the sample according to the expected amount of NMP oil absorption, take the measured sample at the center of the burette table and remove N-methyl-2-pyrrolidone from the burette at a time, 4, Five drops were gradually dropped onto the center of the sample, and each time, the whole was thoroughly kneaded with a spatula. The end point was when N-methyl-2-pyrrolidone was dropped until the sample kneaded with a spatula could be wound into a spiral shape, and the amount of N-methyl-2-pyrrolidone dropped when the end point was reached was read. . And NMP oil absorption amount was computed from the following formula (1).
NMP oil absorption [g / 100 g] = (N-methyl-2-pyrrolidone (NMP) density [g / ml] × NMP drop amount [ml] / sample amount [g]) × 100 (1)
上述の正極活物質であるリン酸鉄リチウム(Li1.05FePO4)90重量部、導電剤としてグラファイト6重量部、結着剤としてポリフッ化ビニリデン(PVdF)4重量部を混錬して正極合剤とした。この後、正極合剤をN―メチル−2−ピロリドン(NMP)100重量部に対して分散させて正極合剤スラリーとした。続いて、この正極合剤スラリーを、正極集電体である厚さ15μmの帯状アルミニウム(Al)箔の両面に均一に塗布し、乾燥した後、ローラープレス機で圧縮して正極シートとした。最後に、正極シートを所定の形状に切断し、正極集電体の一端にアルミニウム(Al)製の正極リードを溶接して取り付けて帯状正極を得た。 90 parts by weight of the above-described positive electrode active material lithium iron phosphate (Li 1.05 FePO 4 ), 6 parts by weight of graphite as a conductive agent, and 4 parts by weight of polyvinylidene fluoride (PVdF) as a binder are mixed to form a positive electrode mixture It was. Thereafter, the positive electrode mixture was dispersed in 100 parts by weight of N-methyl-2-pyrrolidone (NMP) to obtain a positive electrode mixture slurry. Subsequently, the positive electrode mixture slurry was uniformly applied to both surfaces of a 15 μm-thick strip-like aluminum (Al) foil serving as a positive electrode current collector, dried, and then compressed with a roller press to obtain a positive electrode sheet. Finally, the positive electrode sheet was cut into a predetermined shape, and a positive electrode lead made of aluminum (Al) was welded and attached to one end of the positive electrode current collector to obtain a belt-like positive electrode.
[負極]
負極活物質として粉末状の人造黒鉛90重量部と、結着剤としてポリフッ化ビニリデン(PVdF)を10重量部を混合して負極合剤とした。この後、負極合剤をN−メチル−2−ピロリドン(NMP)100重量部に対して分散させて負極合剤スラリーとした。この負極合剤スラリーを、負極集電体である厚さ10μmの帯状銅(Cu)箔の両面に均一に塗布、乾燥した後、ローラープレス機で圧縮して負極シートとした。最後に、負極シートを所定の形状に切断し、負極集電体の一端にニッケル(Ni)製の負極リードを溶接して取り付けて帯状負極を得た。
[Negative electrode]
90 parts by weight of powdered artificial graphite as a negative electrode active material and 10 parts by weight of polyvinylidene fluoride (PVdF) as a binder were mixed to prepare a negative electrode mixture. Thereafter, the negative electrode mixture was dispersed in 100 parts by weight of N-methyl-2-pyrrolidone (NMP) to obtain a negative electrode mixture slurry. The negative electrode mixture slurry was uniformly applied to both sides of a 10 μm thick strip-shaped copper (Cu) foil as a negative electrode current collector, dried, and then compressed by a roller press to obtain a negative electrode sheet. Finally, the negative electrode sheet was cut into a predetermined shape, and a negative electrode lead made of nickel (Ni) was welded and attached to one end of the negative electrode current collector to obtain a strip-shaped negative electrode.
[非水電解液]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積混合比が1:1である混合溶液に、1mol/dm3の濃度になるように六フッ化リン酸リチウム(LiPF6)を溶解して非水電解液を調製した。
[Non-aqueous electrolyte]
Lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solution in which the volume mixing ratio of ethylene carbonate (EC) and diethyl carbonate (DEC) is 1: 1 so that the concentration becomes 1 mol / dm 3. A non-aqueous electrolyte was prepared.
[電池の組み立て]
以上のように作製された帯状正極、帯状負極を、セパレータである多孔性ポリオレフィンフィルムを介して積層した後多数回巻回し、渦巻き型の巻回電極体を作製した。この巻回電極体をニッケルめっきを施した鉄製電池缶に収納し、巻回電極体の上下両面に絶縁板を配置した。次いで、アルミニウム製正極リードを正極集電体から導出して、電池蓋と電気的な導通が確保された安全弁の突起部に溶接し、負極集電体と接続したニッケル製負極リードを電池缶の底部に溶接した。
[Battery assembly]
The belt-like positive electrode and the belt-like negative electrode produced as described above were laminated via a porous polyolefin film as a separator and then wound many times to produce a spiral wound electrode body. The wound electrode body was housed in a nickel-plated iron battery can, and insulating plates were disposed on both the upper and lower surfaces of the wound electrode body. Next, the aluminum positive electrode lead is led out from the positive electrode current collector, welded to the protrusion of the safety valve that is electrically connected to the battery lid, and the nickel negative electrode lead connected to the negative electrode current collector is connected to the battery can. Welded to the bottom.
最後に、巻回電極体が収容された電池缶内に非水電解液を注入した後、絶縁封口ガスケットを介して電池缶をかしめることにより、安全弁、PTC素子ならびに電池蓋を固定し、外径が18mmで高さが65mmの円筒型電池を作製した。 Finally, after injecting the non-aqueous electrolyte into the battery can containing the wound electrode body, the safety can, the PTC element and the battery lid are fixed by caulking the battery can through an insulating sealing gasket. A cylindrical battery having a diameter of 18 mm and a height of 65 mm was produced.
<実施例2>
実施例1と同様の原料懸濁液を投入した撹拌ポットを11時間撹拌して粉砕混合を行った。原材料の粒度分布を測定したところ平均粒径は0.11μmとなった。粉砕混合後の懸濁液を用いて、実施例1と同様の方法により、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。このようにして得られたオリビン型構造を有するリチウムリン酸鉄の平均組成は、Li1.05FePO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.4μm、正極活物質二次粒子の比表面積は12.0m2/gであった。
<Example 2>
The stirring pot charged with the same raw material suspension as in Example 1 was stirred for 11 hours for pulverization and mixing. When the particle size distribution of the raw materials was measured, the average particle size was 0.11 μm. By using the suspension after pulverization and mixing, secondary particles were formed in the same manner as in Example 1 with carbon as an electronically conductive substance interposed between primary particles. The average composition of lithium iron phosphate having the olivine structure thus obtained is Li 1.05 FePO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained, and other impurities are It was not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.4 μm, and the specific surface area of the positive electrode active material secondary particles was 12.0 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は30g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 30 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例3>
実施例1と同様の原料懸濁液を投入した撹拌ポットを9時間撹拌して粉砕混合を行った。原材料の粒度分布を測定したところ平均粒径は0.23μmとなった。粉砕混合後の懸濁液を用いて、実施例1と同様の方法により、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。このようにして得られたオリビン型構造を有するリチウムリン酸鉄の平均組成は、Li1.05FePO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.3μm、正極活物質二次粒子の比表面積は12.2m2/gであった。
<Example 3>
The stirring pot charged with the same raw material suspension as in Example 1 was stirred and mixed for 9 hours. When the particle size distribution of the raw materials was measured, the average particle size was 0.23 μm. By using the suspension after pulverization and mixing, secondary particles were formed in the same manner as in Example 1 with carbon as an electronically conductive substance interposed between primary particles. The average composition of lithium iron phosphate having the olivine structure thus obtained is Li 1.05 FePO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained, and other impurities are It was not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.3 μm, and the specific surface area of the positive electrode active material secondary particles was 12.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は34g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 34 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例4>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3、)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.2Fe0.8PO4になるように秤量した。それ以外は実施例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.04μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.2Fe0.8PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.9μm、正極活物質二次粒子の比表面積は12.0m2/gであった。
<Example 4>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, iron (III) sulfate (Fe) as the iron (Fe) source 2 (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.2 Fe 0.8 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 1 by interposing carbon as an electron conductive substance between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.04 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.2 Fe 0.8 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.9 μm, and the specific surface area of the positive electrode active material secondary particles was 12.0 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は26g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 26 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例5>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.2Fe0.8PO4になるように秤量した。それ以外は実施例2と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.09μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.2Fe0.8PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.5μm、正極活物質二次粒子の比表面積は12.5m2/gであった。
<Example 5>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.2 Fe 0.8 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 2 with carbon as an electron conductive substance interposed between the primary particles. When the particle size distribution of the raw materials was measured, the average particle size was 0.09 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.2 Fe 0.8 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material secondary particles measured by the laser scattering method was 5.5 μm, and the specific surface area of the positive electrode active material secondary particles was 12.5 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は30g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 30 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例6>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.2Fe0.8PO4になるように秤量した。それ以外は実施例3と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.18μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.2Fe0.8PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.2μm、正極活物質二次粒子の比表面積は13.1m2/gであった。
<Example 6>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.2 Fe 0.8 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 3 by interposing carbon as an electron conductive substance between the primary particles. When the particle size distribution of the raw materials was measured, the average particle size was 0.18 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.2 Fe 0.8 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.2 μm, and the specific surface area of the positive electrode active material secondary particles was 13.1 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は33g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 33 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例7>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.4Fe0.6PO4になるように秤量した。それ以外は実施例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.02μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.4Fe0.6PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.8μm、正極活物質二次粒子の比表面積は12.2m2/gであった。
<Example 7>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.4 Fe 0.6 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 1 by interposing carbon as an electron conductive substance between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.02 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.4 Fe 0.6 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.8 μm, and the specific surface area of the positive electrode active material secondary particles was 12.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は28g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 28 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例8>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.4Fe0.6PO4になるように秤量した。それ以外は実施例2と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.08μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.4Fe0.6PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.4μm、正極活物質二次粒子の比表面積は13.3m2/gであった。
<Example 8>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.4 Fe 0.6 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 2 with carbon as an electron conductive substance interposed between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.08 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.4 Fe 0.6 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Further, the average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.4 μm, and the specific surface area of the positive electrode active material secondary particles was 13.3 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は31g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 31 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例9>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.4Fe0.6PO4になるように秤量した。それ以外は実施例3と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.15μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.4Fe0.6PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.1μm、正極活物質二次粒子の比表面積は13.5m2/gであった。
<Example 9>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.4 Fe 0.6 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 3 by interposing carbon as an electron conductive substance between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.15 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.4 Fe 0.6 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.1 μm, and the specific surface area of the positive electrode active material secondary particles was 13.5 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は35g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 35 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例10>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.6Fe0.4PO4になるように秤量した。それ以外は実施例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.02μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.6Fe0.4PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.8μm、正極活物質二次粒子の比表面積は12.2m2/gであった。
<Example 10>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.6 Fe 0.4 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 1 by interposing carbon as an electron conductive substance between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.02 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.6 Fe 0.4 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.8 μm, and the specific surface area of the positive electrode active material secondary particles was 12.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は25g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 25 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例11>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.6Fe0.4PO4になるように秤量した。それ以外は実施例2と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.08μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.6Fe0.4PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.4μm、正極活物質二次粒子の比表面積は12.7m2/gであった。
<Example 11>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.6 Fe 0.4 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 2 with carbon as an electron conductive substance interposed between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.08 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.6 Fe 0.4 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.4 μm, and the specific surface area of the positive electrode active material secondary particles was 12.7 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は29g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 29 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例12>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.6Fe0.4PO4になるように秤量した。それ以外は実施例3と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.15μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.6Fe0.4PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.1μm、正極活物質二次粒子の比表面積は13.2m2/gであった。
<Example 12>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.6 Fe 0.4 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 3 by interposing carbon as an electron conductive substance between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.15 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.6 Fe 0.4 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material secondary particles measured by a laser scattering method was 5.1 μm, and the specific surface area of the positive electrode active material secondary particles was 13.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は33g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 33 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例13>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.8Fe0.2PO4になるように秤量した。それ以外は実施例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.02μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.8Fe0.2PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は5.6μm、正極活物質二次粒子の比表面積は13.5m2/gであった。
<Example 13>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.8 Fe 0.2 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 1 by interposing carbon as an electron conductive substance between the primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.02 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.8 Fe 0.2 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material secondary particles measured by the laser scattering method was 5.6 μm, and the specific surface area of the positive electrode active material secondary particles was 13.5 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は26g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 26 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例14>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.8Fe0.2PO4になるように秤量した。それ以外は実施例2と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.07μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.8Fe0.2PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は5.2μm、正極活物質粒子の比表面積は13.8m2/gであった。
<Example 14>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.8 Fe 0.2 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 2 with carbon as an electron conductive substance interposed between the primary particles. When the particle size distribution of the raw materials was measured, the average particle size was 0.07 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.8 Fe 0.2 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Further, the average particle diameter of the positive electrode active material particles measured by a laser scattering method was 5.2 μm, and the specific surface area of the positive electrode active material particles was 13.8 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は30g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 30 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<実施例15>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.8Fe0.2PO4になるように秤量した。それ以外は実施例3と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.13μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.8Fe0.2PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質二次粒子の平均粒径は4.9μm、正極活物質二次粒子の比表面積は14.2m2/gであった。
<Example 15>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.8 Fe 0.2 PO 4 . Other than that, secondary particles were formed in the same manner as in Example 3 by interposing carbon as an electron conductive substance between the primary particles. When the particle size distribution of the raw materials was measured, the average particle size was 0.13 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.8 Fe 0.2 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material secondary particles measured by the laser scattering method was 4.9 μm, and the specific surface area of the positive electrode active material secondary particles was 14.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は35g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 35 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例1>
実施例1と同様の原料懸濁液を投入した撹拌ポットを5時間撹拌して、粉砕混合を行った。原材料の粒度分布を測定したところ平均粒径は、0.35μmとなった。そして、粉砕混合後の懸濁液を窒素(N2)の不活性雰囲気下に噴霧するとともに600℃で加熱させた以外は実施例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。このようにして得られたオリビン型構造を有するリチウムリン酸鉄の平均組成は、Li1.05FePO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は5.6μm、正極活物質粒子の比表面積は13.5m2/gであった。
<Comparative Example 1>
The stirring pot charged with the same raw material suspension as in Example 1 was stirred for 5 hours, and pulverized and mixed. When the particle size distribution of the raw materials was measured, the average particle size was 0.35 μm. The pulverized and mixed suspension was sprayed under an inert atmosphere of nitrogen (N 2 ) and heated at 600 ° C. In the same manner as in Example 1, carbon which is an electronically conductive substance between primary particles was used. Secondary particles were formed by interposing. The average composition of lithium iron phosphate having the olivine structure thus obtained is Li 1.05 FePO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained, and other impurities are It was not confirmed. The average particle diameter of the positive electrode active material particles measured by a laser scattering method was 5.6 μm, and the specific surface area of the positive electrode active material particles was 13.5 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は38g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount of the positive electrode active material was measured under the same conditions as in Example 1, the NMP oil absorption amount was 38 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例2>
実施例1と同様の原料懸濁液を投入した撹拌ポットを9時間撹拌して、粉砕混合を行った。原材料の粒度分布を測定したところ平均粒径は、0.23μmとなった。そして、粉砕混合後の懸濁液を濾過後、水洗し、650℃で加熱して、1次粒子を形成した。このようにして得られたオリビン型構造を有するリチウムリン酸鉄の平均組成は、Li1.05FePO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は0.6μm、正極活物質粒子の比表面積は14.0m2/gであった。
<Comparative example 2>
The stirring pot charged with the same raw material suspension as in Example 1 was stirred for 9 hours, and pulverized and mixed. When the particle size distribution of the raw materials was measured, the average particle size was 0.23 μm. Then, the suspension after pulverization and mixing was filtered, washed with water, and heated at 650 ° C. to form primary particles. The average composition of lithium iron phosphate having the olivine structure thus obtained is Li 1.05 FePO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained, and other impurities are It was not confirmed. Further, the average particle diameter of the positive electrode active material particles measured by a laser scattering method was 0.6 μm, and the specific surface area of the positive electrode active material particles was 14.0 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は78g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製しようとしたが、正極活物質がほとんど剥離してしまい、円筒型電池を作製することができなかった。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 78 g / 100 g. Except for using such a positive electrode active material, an attempt was made to produce a cylindrical battery in the same manner as in Example 1. However, the positive electrode active material was almost peeled off, and a cylindrical battery could not be produced. .
<比較例3>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.2Fe0.8PO4になるように秤量した。それ以外は比較例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.52μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.2Fe0.8PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は5.5μm、正極活物質粒子の比表面積は12.0m2/gであった。
<Comparative Example 3>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.2 Fe 0.8 PO 4 . Otherwise, in the same manner as in Comparative Example 1, secondary particles were formed by interposing carbon, which is an electron conductive substance, between primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.52 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.2 Fe 0.8 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material particles measured by the laser scattering method was 5.5 μm, and the specific surface area of the positive electrode active material particles was 12.0 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は40g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 40 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例4>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.2Fe0.8PO4になるように秤量した。それ以外は比較例2と同様にして一次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.18μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.2Fe0.8PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は0.7μm、正極活物質粒子の比表面積は13.5m2/gであった。
<Comparative example 4>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.2 Fe 0.8 PO 4 . Otherwise, primary particles were formed in the same manner as in Comparative Example 2. When the particle size distribution of the raw materials was measured, the average particle size was 0.18 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.2 Fe 0.8 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material particles measured by a laser scattering method was 0.7 μm, and the specific surface area of the positive electrode active material particles was 13.5 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は81g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製しようとしたが、正極活物質がほとんど剥離してしまい、円筒型電池を作製することができなかった。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 81 g / 100 g. Except for using such a positive electrode active material, an attempt was made to produce a cylindrical battery in the same manner as in Example 1. However, the positive electrode active material was almost peeled off, and a cylindrical battery could not be produced. .
<比較例5>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.4Fe0.6PO4になるように秤量した。それ以外は比較例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.45μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.4Fe0.6PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は5.4μm、正極活物質粒子の比表面積は13.5m2/gであった。
<Comparative Example 5>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.4 Fe 0.6 PO 4 . Otherwise, in the same manner as in Comparative Example 1, secondary particles were formed by interposing carbon, which is an electron conductive substance, between primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.45 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.4 Fe 0.6 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material particles measured by a laser scattering method was 5.4 μm, and the specific surface area of the positive electrode active material particles was 13.5 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は43g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption amount was 43 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例6>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.4Fe0.6PO4になるように秤量した。それ以外は比較例2と同様にして一次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.15μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.4Fe0.6PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は0.6μm、正極活物質粒子の比表面積は15.2m2/gであった。
<Comparative Example 6>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.4 Fe 0.6 PO 4 . Otherwise, primary particles were formed in the same manner as in Comparative Example 2. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.15 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.4 Fe 0.6 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. Moreover, the average particle diameter of the positive electrode active material particles measured by a laser scattering method was 0.6 μm, and the specific surface area of the positive electrode active material particles was 15.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は75g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製しようとしたが、正極活物質がほとんど剥離してしまい、円筒型電池を作製することができなかった。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 75 g / 100 g. Except for using such a positive electrode active material, an attempt was made to produce a cylindrical battery in the same manner as in Example 1. However, the positive electrode active material was almost peeled off, and a cylindrical battery could not be produced. .
<比較例7>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.6Fe0.4PO4になるように秤量した。それ以外は比較例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.42μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.6Fe0.4PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は5.1μm、正極活物質粒子の比表面積は14.7m2/gであった。
<Comparative Example 7>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.6 Fe 0.4 PO 4 . Otherwise, in the same manner as in Comparative Example 1, secondary particles were formed by interposing carbon, which is an electron conductive substance, between primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.42 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.6 Fe 0.4 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material particles measured by the laser scattering method was 5.1 μm, and the specific surface area of the positive electrode active material particles was 14.7 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は48g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 48 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例8>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.6Fe0.4PO4になるように秤量した。それ以外は比較例2と同様にして一次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.15μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.6Fe0.4PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は0.5μm、正極活物質粒子の比表面積は15.2m2/gであった。
<Comparative Example 8>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.6 Fe 0.4 PO 4 . Otherwise, primary particles were formed in the same manner as in Comparative Example 2. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.15 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.6 Fe 0.4 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material particles measured by a laser scattering method was 0.5 μm, and the specific surface area of the positive electrode active material particles was 15.2 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は85g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製しようとしたが、正極活物質がほとんど剥離してしまい、円筒型電池を作製することができなかった。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 85 g / 100 g. Except for using such a positive electrode active material, an attempt was made to produce a cylindrical battery in the same manner as in Example 1. However, the positive electrode active material was almost peeled off, and a cylindrical battery could not be produced. .
<比較例9>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.8Fe0.2PO4になるように秤量した。それ以外は比較例1と同様にして一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.37μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.8Fe0.2PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は5.3μm、正極活物質粒子の比表面積は16.0m2/gであった。
<Comparative Example 9>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.8 Fe 0.2 PO 4 . Otherwise, in the same manner as in Comparative Example 1, secondary particles were formed by interposing carbon, which is an electron conductive substance, between primary particles. In addition, when the particle size distribution of the raw material was measured, the average particle size was 0.37 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.8 Fe 0.2 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material particles measured by a laser scattering method was 5.3 μm, and the specific surface area of the positive electrode active material particles was 16.0 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は52g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption amount of the positive electrode active material was measured under the same conditions as in Example 1, the NMP oil absorption amount was 52 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例10>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.8Fe0.2PO4になるように秤量した。それ以外は比較例2と同様にして一次粒子を形成した。なお、原材料の粒度分布を測定したところ平均粒径は0.13μmであった。このようにして得られたオリビン型構造を有するリチウムリン酸マンガン鉄の平均組成は、Li1.05Mn0.8Fe0.2PO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した正極活物質粒子の平均粒径は0.5μm、正極活物質粒子の比表面積は16.3m2/gであった。
<Comparative Example 10>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.8 Fe 0.2 PO 4 . Otherwise, primary particles were formed in the same manner as in Comparative Example 2. When the particle size distribution of the raw materials was measured, the average particle size was 0.13 μm. The average composition of lithium manganese iron phosphate having the olivine structure thus obtained is Li 1.05 Mn 0.8 Fe 0.2 PO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained. Other impurities were not confirmed. The average particle diameter of the positive electrode active material particles measured by a laser scattering method was 0.5 μm, and the specific surface area of the positive electrode active material particles was 16.3 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は83g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製しようとしたが、正極活物質がほとんど剥離してしまい、円筒型電池を作製することができなかった。 When the NMP oil absorption amount of the positive electrode active material was measured under the same conditions as in Example 1, the NMP oil absorption amount was 83 g / 100 g. Except for using such a positive electrode active material, an attempt was made to produce a cylindrical battery in the same manner as in Example 1. However, the positive electrode active material was almost peeled off, and a cylindrical battery could not be produced. .
<比較例11>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05FePO4になるように秤量した。また、炭素(C)源として酢酸(CH3COOH)を用い、焼成後の重量%が1重量%となるように秤量した。以上の原料に水を加えて原料懸濁液とした。この際の固形分濃度を20%とした。
<Comparative Example 11>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, iron (III) sulfate (Fe 2 (SO 4 ) 3 ) as the iron (Fe) source, diammonium hydrogen phosphate ((NH) as the phosphorus (P) source 4 ) Weighed using 2 HPO 4 ) so that the average composition was Li 1.05 FePO 4 . In addition, acetic acid (CH 3 COOH) was used as a carbon (C) source and weighed so that the weight percentage after firing was 1 wt%. Water was added to the above raw materials to form a raw material suspension. The solid content concentration at this time was 20%.
原材料の粒度分布を測定したところ平均粒径は、0.6μmであった。軽く混合した後の懸濁液を窒素(N2)の不活性雰囲気下に噴霧するとともに700℃で加熱して、一次粒子間に電子導電性物質を介在させてなる二次粒子を形成した。このようにして得られたオリビン型構造を有するリチウムリン酸鉄の平均組成は、Li1.05FePO4であり、X線回折構造解析の結果、オリビン構造を持つ結晶のみが得られ、他の不純物は確認されなかった。また、レーザー散乱法により測定した平均粒子径は6.0μm、正極活物質二次粒子の比表面積は2.1m2/gであった。 When the particle size distribution of the raw materials was measured, the average particle size was 0.6 μm. The suspension after lightly mixing was sprayed under an inert atmosphere of nitrogen (N 2 ) and heated at 700 ° C. to form secondary particles having an electron conductive substance interposed between the primary particles. The average composition of lithium iron phosphate having the olivine structure thus obtained is Li 1.05 FePO 4. As a result of X-ray diffraction structural analysis, only crystals having an olivine structure are obtained, and other impurities are It was not confirmed. Moreover, the average particle diameter measured by the laser scattering method was 6.0 μm, and the specific surface area of the positive electrode active material secondary particles was 2.1 m 2 / g.
以上の正極活物質について、実施例1と同様の条件でNMP吸油量測定を行ったところ、NMP吸油量は20g/100gとなった。このような正極活物質を用いた以外は、実施例1と同様にして円筒型電池を作製した。 When the NMP oil absorption was measured for the positive electrode active material under the same conditions as in Example 1, the NMP oil absorption was 20 g / 100 g. A cylindrical battery was produced in the same manner as in Example 1 except that such a positive electrode active material was used.
<比較例12>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.2Fe0.8PO4になるように秤量した。それ以外は、比較例1と同様にして、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。
<Comparative Example 12>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.2 Fe 0.8 PO 4 . Other than that, it carried out similarly to the comparative example 1, and formed the secondary particle which interposes carbon which is an electronic conductive substance between primary particles.
<比較例13>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.4Fe0.6PO4になるように秤量した。それ以外は、比較例1と同様にして、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。
<Comparative Example 13>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.4 Fe 0.6 PO 4 . Other than that, it carried out similarly to the comparative example 1, and formed the secondary particle which interposes carbon which is an electronic conductive substance between primary particles.
<比較例14>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.6Fe0.4PO4になるように秤量した。それ以外は、比較例1と同様にして、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。
<Comparative example 14>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.6 Fe 0.4 PO 4 . Other than that, it carried out similarly to the comparative example 1, and formed the secondary particle which interposes carbon which is an electronic conductive substance between primary particles.
<比較例15>
正極活物質を次のようにして作製した。リチウム(Li)源として炭酸リチウム(Li2CO3)、マンガン(Mn)源として硫酸マンガン(III)(Mn2(SO4)3)、鉄(Fe)源として硫酸鉄(III)(Fe2(SO4)3)、リン(P)源としてリン酸水素二アンモニウム((NH4)2HPO4)を用いて、平均組成がLi1.05Mn0.8Fe0.2PO4になるように秤量した。それ以外は、比較例1と同様にして、一次粒子間に電子導電性物質である炭素を介在させてなる二次粒子を形成した。
<Comparative Example 15>
A positive electrode active material was prepared as follows. Lithium carbonate (Li 2 CO 3 ) as the lithium (Li) source, manganese (III) sulfate (Mn 2 (SO 4 ) 3 ) as the manganese (Mn) source, and iron (III) sulfate (Fe 2 as the iron (Fe) source (SO 4 ) 3 ) and diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ) as a phosphorus (P) source were weighed so that the average composition was Li 1.05 Mn 0.8 Fe 0.2 PO 4 . Other than that, it carried out similarly to the comparative example 1, and formed the secondary particle which interposes carbon which is an electronic conductive substance between primary particles.
[電池の評価]
(a)剥離強度相対値の測定
上述の様に、正極合剤スラリーを、正極集電体である厚さ15μmの帯状アルミニウム(Al)箔の両面に均一に塗布・乾燥して作製した正極シートを用いて、剥離強度試験を行った。
[Battery evaluation]
(A) Measurement of Peel Strength Relative Value As described above, the positive electrode sheet was prepared by uniformly applying and drying the positive electrode mixture slurry on both surfaces of a 15 μm-thick aluminum strip (Al) foil that is a positive electrode current collector. The peel strength test was conducted using
剥離強度試験には、引張試験機として島津オートグラフAGS-50B((株)島津製作所製)を用い、下記の手順で測定を行った。
(1)正極シートの測定面側の電極塗布方向に、幅25mm、長さ約20cmの両面テープをロール圧着で均一に貼り付けた。この時、両面テープの先を1cm程度折り返した状態で貼り付けた。
(2)カッターナイフと定規を用いて両面テープを貼り付けた部分を切り取った。
(3)電極面を上にして正極シートを専用ステンレス板上にのせ、正極シートに貼り付けた両面テープの折り返していない一端をテープで固定した。
(4)両面テープの折り返し部分を押さえながら、電極をゆっくり半分位まで引き剥がした。
(5)剥がした電極をステンレス板上部(テープ固定部分)に、両面テープをステンレス板下部の裏に折り返した。
(6)ステンレス板を折り返した両面テープと一緒に下側チャックに固定した。
(7)剥がした電極を上側チャックに固定した。
(8)下側チャックを固定した状態で上側チャックを上昇させ、180度剥離強度を測定した。
(9)チャート上から、平均値を読み取り、1mm当たりの強度に換算した。このとき、2個以上の円筒型電池で180度剥離強度の測定を行い、測定値のバラツキが大きい場合は更に測定を繰り返した。
In the peel strength test, Shimadzu Autograph AGS-50B (manufactured by Shimadzu Corporation) was used as a tensile tester, and the measurement was performed according to the following procedure.
(1) A double-sided tape having a width of 25 mm and a length of about 20 cm was uniformly applied by roll pressing in the electrode application direction on the measurement surface side of the positive electrode sheet. At this time, the double-sided tape was pasted with the tip folded back about 1 cm.
(2) The portion where the double-sided tape was attached was cut out using a cutter knife and a ruler.
(3) The positive electrode sheet was placed on a dedicated stainless steel plate with the electrode surface facing up, and one end of the double-sided tape attached to the positive electrode sheet was not folded back and fixed with tape.
(4) The electrode was slowly peeled off to about half while pressing the folded part of the double-sided tape.
(5) The peeled electrode was folded back to the upper part of the stainless steel plate (tape fixing part) and the double-sided tape was folded to the back of the lower part of the stainless steel plate.
(6) The stainless steel plate was fixed to the lower chuck together with the folded double-sided tape.
(7) The peeled electrode was fixed to the upper chuck.
(8) The upper chuck was raised with the lower chuck fixed, and the 180-degree peel strength was measured.
(9) From the chart, the average value was read and converted to intensity per mm. At this time, the 180 degree peel strength was measured with two or more cylindrical batteries, and the measurement was further repeated when the variation in the measured values was large.
剥離強度は、正極合剤の混合量および結着剤の種類、混練条件、正極合剤スラリーの塗布条件および乾燥条件、また正極集電体であるアルミニウム(Al)箔の種類によって、容易に変わり得る。今回、実施例および比較例の条件は、このような剥離強度が変わり得る条件を全て統一して正極シートを作製し、180度剥離強度を測定した。剥離強度の絶対値は、[mN/mm]を単位として表されるが、以上の要因を鑑みて、実施例1の剥離強度の値[mN/mm]を基準に、実施例1の剥離強度を100とし、得られた絶対値[mN/mm]を相対値に換算して表した。 Peel strength easily changes depending on the amount of the positive electrode mixture and the type of binder, kneading conditions, application conditions and drying conditions of the positive electrode mixture slurry, and the type of aluminum (Al) foil that is the positive electrode current collector obtain. In this example, the conditions of the example and the comparative example were obtained by unifying all the conditions under which such peel strength can be changed to produce a positive electrode sheet, and measured the 180-degree peel strength. The absolute value of the peel strength is expressed in units of [mN / mm]. In view of the above factors, the peel strength of Example 1 is based on the peel strength value of Example 1 [mN / mm]. The absolute value [mN / mm] obtained was converted into a relative value.
(b)アルミニウム箔との密着度合いの確認
上述の各実施例および比較例において、厚さ15μmの帯状のアルミニウム箔の両面に正極合剤スラリーを塗布・乾燥後、ローラープレス機で圧縮して帯状正極を得た後、帯状正極を机の端に当てて15回擦り、正極粉末とアルミニウム箔との密着度合いを目視にて観察した。
(B) Confirmation of degree of adhesion with aluminum foil In each of the above Examples and Comparative Examples, the positive electrode mixture slurry was applied to both surfaces of a 15 μm-thick strip-shaped aluminum foil, dried, and then compressed with a roller press machine. After obtaining the positive electrode, the belt-like positive electrode was applied to the end of the desk and rubbed 15 times, and the degree of adhesion between the positive electrode powder and the aluminum foil was visually observed.
(c)初期容量
上述の各実施例および比較例の円筒型電池について、環境温度23度で1000mAの定電流で電池電圧が3.8Vに達するまで定電流充電を行ったのち、3.8Vの定電圧で充電時間の合計が2.5時間となるまで定電圧充電を行った。次に、1000mAの定電流で電池電圧が2.0Vに達するまで定電流放電を行い、このときの放電容量を初期容量として測定した。
(C) Initial capacity For the cylindrical batteries of the above-described examples and comparative examples, after performing constant current charging at a constant current of 1000 mA at an environmental temperature of 23 degrees until the battery voltage reaches 3.8 V, 3.8 V Constant voltage charging was performed until the total charging time at constant voltage was 2.5 hours. Next, constant current discharge was performed at a constant current of 1000 mA until the battery voltage reached 2.0 V, and the discharge capacity at this time was measured as the initial capacity.
続いて、上述の充電条件および放電条件で1000サイクルまで充放電を繰り返し、1000サイクル目の放電容量を測定した。下記の式から、初期容量に対する1000サイクル目の放電容量維持率を求めた。
放電容量維持率[%]=(1000サイクル目の放電容量/初回容量)×100
Subsequently, charging / discharging was repeated up to 1000 cycles under the above charging conditions and discharging conditions, and the discharge capacity at the 1000th cycle was measured. From the following formula, the discharge capacity retention ratio at the 1000th cycle relative to the initial capacity was determined.
Discharge capacity maintenance rate [%] = (discharge capacity at 1000th cycle / initial capacity) × 100
以下の表2および表3に、評価結果を示す。 Tables 2 and 3 below show the evaluation results.
表2および表3から分かるように、NMP吸油量が25g/100g以上35g/100gの範囲にない各比較例の非水電解質電池では、正極集電体として用いるアルミニウム箔と正極活物質層との剥離強度相対値が低くなった。このため、アルミニウム箔との密着度合いが低く、上述の試験により正極活物質層の一部もしくは全部が剥離してしまった。 As can be seen from Table 2 and Table 3, in the nonaqueous electrolyte battery of each comparative example in which the NMP oil absorption is not in the range of 25 g / 100 g or more and 35 g / 100 g, the aluminum foil used as the positive electrode current collector and the positive electrode active material layer The peel strength relative value became low. For this reason, the adhesion degree with the aluminum foil was low, and part or all of the positive electrode active material layer was peeled off by the above test.
特に、粉砕混合後の懸濁液を窒素(N2)の不活性雰囲気下に噴霧する造粒工程を行っていない、平均粒径の小さい正極活物質を用いた比較例2、比較例4、比較例6、比較例8および比較例10では、正極活物質のNMP吸油量が顕著に大きくなり、正極活物質層が全て剥離してしまった。このため、円筒型電池の作製を行うことができなかった。また、炭素(C)源の混合量が1重量%と少なく、一次粒子径が大きく粒子成長した比較例11〜比較例15では、NMP吸油量が小さくなり、剥離強度は大きいものの、容量維持率が数サイクルで劣化してほぼ0となった。 In particular, Comparative Example 2 and Comparative Example 4 using a positive electrode active material having a small average particle diameter, in which the granulation step of spraying the pulverized and mixed suspension in an inert atmosphere of nitrogen (N 2 ) was not performed. In Comparative Example 6, Comparative Example 8, and Comparative Example 10, the NMP oil absorption amount of the positive electrode active material was significantly increased, and the positive electrode active material layer was all peeled off. For this reason, it was not possible to produce a cylindrical battery. Further, in Comparative Examples 11 to 15 in which the amount of carbon (C) source mixed was as small as 1% by weight and the primary particle diameter was large and the particle was grown, the NMP oil absorption amount was small and the peel strength was large, but the capacity retention rate Deteriorated in several cycles and became almost zero.
また、例えば一次粒子の組成が同じ実施例1〜実施例3および比較例1を比較すると、NMP吸油量吸油量がこの発明の範囲内にある実施例1〜実施例3は、比較例1に対して1000サイクルの充放電を行った後の放電容量維持率が顕著に向上した。また、他の組成の一次粒子が含まれる正極活物質を用いた各実施例及び比較例についても同様であった。 Further, for example, when Examples 1 to 3 and Comparative Example 1 having the same primary particle composition are compared, Examples 1 to 3 in which the NMP oil absorption amount is within the scope of the present invention are compared with Comparative Example 1. On the other hand, the discharge capacity retention rate after 1000 cycles of charge / discharge was significantly improved. The same was true for the examples and comparative examples using positive electrode active materials containing primary particles of other compositions.
このように、安価で資源的に豊富な元素を用いたオリビン構造を有するリチウムリン酸化合物を用いた正極活物質を使用した電池において、1000サイクルと充放電が進んだ場合でも安定した充放電サイクル性能を実現することができた。 Thus, in a battery using a positive electrode active material using a lithium phosphate compound having an olivine structure using cheap and resource-rich elements, a stable charge / discharge cycle even when charge / discharge progresses as 1000 cycles The performance could be realized.
7.他の実施の形態
この発明は、上述したこの発明の実施形態に限定されるものでは無く、この発明の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
7). Other Embodiments The present invention is not limited to the above-described embodiments of the present invention, and various modifications and applications are possible without departing from the spirit of the present invention.
例えば、上述の実施の形態および実施例では、ラミネートフィルム型、円筒型の電池構造を有する電池、角形の電池構造を有する電池について説明したが、これらに限定されるものではない。例えば、コイン型、またはボタン型などの他の電池構造を有する電池、電極を積層した積層構造を有する電池についても同様に、この発明を適用することができ、同様の効果を得ることができる。また、電極体の構造についても、巻回型のみならず、積層型、つづら折り型等の各種構成を適用することができる。 For example, in the above-described embodiments and examples, a battery having a laminate film type, a cylindrical battery structure, and a battery having a square battery structure have been described, but the present invention is not limited thereto. For example, the present invention can be similarly applied to a battery having another battery structure such as a coin type or a button type, or a battery having a laminated structure in which electrodes are laminated, and the same effects can be obtained. Also, regarding the structure of the electrode body, various configurations such as a laminated type and a zigzag folded type can be applied as well as a wound type.
11・・・電池缶
12,13・・・絶縁板
14,52・・・電池蓋
15・・・安全弁機構
16・・・熱抵抗素子
17・・・ガスケット
20,53・・・巻回電極体
21,33・・・正極
21A,33A・・・正極集電体
21B,33B・・・正極活物質層
22,34・・・負極
22A,34A・・・負極集電体
22B,34B・・・負極活物質層
23,35・・・セパレータ
24・・・センターピン
25・・・正極リード
26・・・負極リード
30・・・電池素子
31a・・・正極集電体露出部
32a・・・負極集電体露出部
36・・・電解質
37・・・保護テープ
51・・・外装缶
54・・・電極ピン
55・・・電池端子
56・・・電解液注入口
57・・・封止部材
DESCRIPTION OF SYMBOLS 11 ... Battery can 12, 13 ... Insulating plate 14, 52 ... Battery cover 15 ... Safety valve mechanism 16 ... Thermal resistance element 17 ... Gasket 20, 53 ... Winding electrode body 21, 33 ... Positive electrode 21A, 33A ... Positive electrode current collector 21B, 33B ... Positive electrode active material layer 22, 34 ... Negative electrode 22A, 34A ... Negative electrode current collector 22B, 34B ... Negative electrode active material layer 23, 35 ... Separator 24 ... Center pin 25 ... Positive electrode lead 26 ... Negative electrode lead 30 ... Battery element 31a ... Positive electrode current collector exposed portion 32a ... Negative electrode Current collector exposed portion 36 ... electrolyte 37 ... protective tape 51 ... exterior can 54 ... electrode pin 55 ... battery terminal 56 ... electrolyte injection port 57 ... sealing member
Claims (8)
N−メチル−2−ピロリドン吸油量が25g/100g以上35g/100gである
非水電解質電池用正極活物質。
(化1)
LixM11-sM2sPO4
(ただし、M1は鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群より選ばれる少なくとも1種を示す。M2は2族〜15族から選ばれる元素のうちM1を除く少なくとも一種を示す。x、sはそれぞれ0≦x≦1.2、0≦s≦1.0の範囲内の値である。) Primary particles of a lithium phosphate compound having an olivine structure whose average composition is represented by (Chemical Formula 1), the surface of which is at least partly coated with an electronic conductive material, are bonded via the electronic conductive material. Secondary particles comprising
A positive electrode active material for a non-aqueous electrolyte battery having an N-methyl-2-pyrrolidone oil absorption of 25 g / 100 g or more and 35 g / 100 g.
(Chemical formula 1)
Li x M1 1-s M2 s PO 4
(However, M1 represents at least one selected from the group consisting of iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), magnesium (Mg)). M2 represents at least one element other than M1 among elements selected from Groups 2 to 15. x and s are values in the range of 0 ≦ x ≦ 1.2 and 0 ≦ s ≦ 1.0, respectively. )
請求項1に記載の非水電解質電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte battery according to claim 1, wherein the primary particles constituting the secondary particles are lithium iron phosphate mainly composed of iron (Fe).
請求項2に記載の非水電解質電池用正極活物質。 The positive electrode active material for a nonaqueous electrolyte battery according to claim 2, wherein the electronically conductive material constituting the secondary particles contains at least carbon.
請求項3に記載の非水電解質電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte battery according to claim 3, wherein a carbon content in the secondary particles is 0.1 wt% or more and 10 wt% or less.
請求項4に記載の非水電解質電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte battery according to claim 4, wherein the secondary particles have an average particle size of 0.01 μm or more and 20 μm or less.
請求項5に記載の非水電解質電池用正極活物質。 The positive electrode active material for a non-aqueous electrolyte battery according to claim 5, wherein an average particle size of the primary particles constituting the secondary particles is 0.001 µm or more and 1 µm or less.
上記正極活物質層が、正極活物質と、導電剤と、結着剤とを含有し、
上記正極活物質が、
電子導電性物質にて表面の少なくとも一部が被覆された、平均組成が(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子どうしが、該電子導電性物質を介して接合してなる二次粒子を含み、
該正極活物質のN−メチル−2−ピロリドン吸油量が25g/100g以上35g/100gである
非水電解質電池用正極。
(化1)
LixM11-sM2sPO4
(ただし、M1は鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群より選ばれる少なくとも1種を示す。M2は2族〜15族から選ばれる元素のうちM1を除く少なくとも一種を示す。x、sはそれぞれ0≦x≦1.2、0≦s≦1.0の範囲内の値である。) A positive electrode active material layer is formed on the positive electrode current collector,
The positive electrode active material layer contains a positive electrode active material, a conductive agent, and a binder,
The positive electrode active material is
Primary particles of a lithium phosphate compound having an olivine structure whose average composition is represented by (Chemical Formula 1), the surface of which is at least partly coated with an electronic conductive material, are bonded via the electronic conductive material. Secondary particles comprising
A positive electrode for a non-aqueous electrolyte battery, wherein the positive electrode active material has an N-methyl-2-pyrrolidone oil absorption of 25 g / 100 g or more and 35 g / 100 g.
(Chemical formula 1)
Li x M1 1-s M2 s PO 4
(However, M1 represents at least one selected from the group consisting of iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), magnesium (Mg)). M2 represents at least one element other than M1 among elements selected from Groups 2 to 15. x and s are values in the range of 0 ≦ x ≦ 1.2 and 0 ≦ s ≦ 1.0, respectively. )
を備え、
上記正極が、正極集電体上に正極活物質層が形成されてなり、
上記正極活物質層が、正極活物質と、導電剤と、結着剤とを含有し、
上記正極活物質が、
電子導電性物質にて表面の少なくとも一部が被覆された、平均組成が(化1)で示されるオリビン構造を有するリチウムリン酸化合物の一次粒子どうしが、該電子導電性物質を介して接合してなる二次粒子を含み、
該正極活物質のN−メチル−2−ピロリドン吸油量が25g/100g以上35g/100gである
非水電解質電池。
(化1)
LixM11-sM2sPO4
(ただし、M1は鉄(Fe)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、マグネシウム(Mg)からなる群より選ばれる少なくとも1種を示す。M2は2族〜15族から選ばれる元素のうちM1を除く少なくとも一種を示す。x、sはそれぞれ0≦x≦1.2、0≦s≦1.0の範囲内の値である。) A positive electrode, a negative electrode, and a non-aqueous electrolyte;
The positive electrode has a positive electrode active material layer formed on a positive electrode current collector,
The positive electrode active material layer contains a positive electrode active material, a conductive agent, and a binder,
The positive electrode active material is
Primary particles of a lithium phosphate compound having an olivine structure whose average composition is represented by (Chemical Formula 1), the surface of which is at least partly coated with an electronic conductive material, are bonded via the electronic conductive material. Secondary particles comprising
A non-aqueous electrolyte battery in which the positive electrode active material has an N-methyl-2-pyrrolidone oil absorption of 25 g / 100 g or more and 35 g / 100 g.
(Chemical formula 1)
Li x M1 1-s M2 s PO 4
(However, M1 represents at least one selected from the group consisting of iron (Fe), manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), magnesium (Mg)). M2 represents at least one element other than M1 among elements selected from Groups 2 to 15. x and s are values in the range of 0 ≦ x ≦ 1.2 and 0 ≦ s ≦ 1.0, respectively. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010250210A JP2012104290A (en) | 2010-11-08 | 2010-11-08 | Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010250210A JP2012104290A (en) | 2010-11-08 | 2010-11-08 | Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012104290A true JP2012104290A (en) | 2012-05-31 |
Family
ID=46394463
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010250210A Pending JP2012104290A (en) | 2010-11-08 | 2010-11-08 | Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012104290A (en) |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202013101861U1 (en) | 2012-04-30 | 2013-06-27 | Hitachi Koki Co., Ltd. | performance tool |
WO2014141960A1 (en) * | 2013-03-12 | 2014-09-18 | ソニー株式会社 | Active material for secondary battery, electrodes for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device |
JP2014232725A (en) * | 2013-04-30 | 2014-12-11 | 住友大阪セメント株式会社 | Electrode material, paste, electrode plate, and lithium ion battery |
US9172087B2 (en) | 2013-03-15 | 2015-10-27 | Sumitomo Osaka Cement Co., Ltd. | Electrode material, electrode and lithium ion battery |
JPWO2015170561A1 (en) * | 2014-05-07 | 2017-04-20 | エリーパワー株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery |
JP6132062B1 (en) * | 2016-09-30 | 2017-05-24 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, method for producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery |
US9698425B2 (en) | 2010-12-17 | 2017-07-04 | Sumitomo Osaka Cement Co., Ltd. | Electrode material and method for producing the same |
JP2017157548A (en) * | 2016-02-29 | 2017-09-07 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
EP3301741A1 (en) | 2016-09-30 | 2018-04-04 | Sumitomo Osaka Cement Co., Ltd | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
EP3301740A1 (en) | 2016-09-30 | 2018-04-04 | Sumitomo Osaka Cement Co., Ltd | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
JP2018056051A (en) * | 2016-09-30 | 2018-04-05 | 住友大阪セメント株式会社 | Lithium ion secondary battery and positive electrode material for lithium ion secondary battery |
JP6332540B1 (en) * | 2017-09-29 | 2018-05-30 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery |
EP3379616A1 (en) | 2017-03-24 | 2018-09-26 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
JP2018163763A (en) * | 2017-03-24 | 2018-10-18 | 住友大阪セメント株式会社 | Electrode material for lithium ion secondary battery and lithium ion secondary battery |
JP2018163764A (en) * | 2017-03-24 | 2018-10-18 | 住友大阪セメント株式会社 | Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery and lithium ion secondary battery |
EP3462522A1 (en) | 2017-09-28 | 2019-04-03 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
KR20190038250A (en) * | 2017-09-29 | 2019-04-08 | 스미토모 오사카 세멘토 가부시키가이샤 | Electrode material for lithium ion battery and lithium ion battery |
JP2019067541A (en) * | 2017-09-29 | 2019-04-25 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery |
US10290856B2 (en) | 2014-10-20 | 2019-05-14 | Sumitomo Osaka Cement Co., Ltd. | Cathode material and lithium ion battery |
JP2019160550A (en) * | 2018-03-13 | 2019-09-19 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, method of producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery |
US10566622B2 (en) | 2017-09-28 | 2020-02-18 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
WO2020065833A1 (en) | 2018-09-27 | 2020-04-02 | 株式会社村田製作所 | Secondary battery |
US10693138B2 (en) | 2017-04-24 | 2020-06-23 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
EP3799158A1 (en) | 2019-09-26 | 2021-03-31 | Sumitomo Osaka Cement Co., Ltd. | Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery |
WO2022196831A1 (en) | 2021-03-19 | 2022-09-22 | Sekisui Chemical Co., Ltd. | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same |
CN115632120A (en) * | 2022-11-01 | 2023-01-20 | 湖南东舟能源有限公司 | A preparation method of fast conductive modified lithium manganese iron phosphate, battery positive plate and battery |
JP7532906B2 (en) | 2019-06-28 | 2024-08-14 | 東レ株式会社 | Positive electrodes for lithium-ion secondary batteries |
JP7619008B2 (en) | 2019-11-26 | 2025-01-22 | 東レ株式会社 | Positive electrodes for lithium-ion secondary batteries |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004014340A (en) * | 2002-06-07 | 2004-01-15 | Sumitomo Osaka Cement Co Ltd | Electrode material, lithium ion battery using it and manufacturing method of electrode material |
JP2005285606A (en) * | 2004-03-30 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Positive electrode active material, evaluation method thereof, and nonaqueous electrolyte secondary battery |
JP2009129587A (en) * | 2007-11-20 | 2009-06-11 | Agc Seimi Chemical Co Ltd | Electrode active material for battery and its manufacturing method |
JP2009152188A (en) * | 2007-11-30 | 2009-07-09 | Sony Corp | Cathode active material, cathode and nonaqueous electrolyte secondary battery |
-
2010
- 2010-11-08 JP JP2010250210A patent/JP2012104290A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004014340A (en) * | 2002-06-07 | 2004-01-15 | Sumitomo Osaka Cement Co Ltd | Electrode material, lithium ion battery using it and manufacturing method of electrode material |
JP2005285606A (en) * | 2004-03-30 | 2005-10-13 | Matsushita Electric Ind Co Ltd | Positive electrode active material, evaluation method thereof, and nonaqueous electrolyte secondary battery |
JP2009129587A (en) * | 2007-11-20 | 2009-06-11 | Agc Seimi Chemical Co Ltd | Electrode active material for battery and its manufacturing method |
JP2009152188A (en) * | 2007-11-30 | 2009-07-09 | Sony Corp | Cathode active material, cathode and nonaqueous electrolyte secondary battery |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9698425B2 (en) | 2010-12-17 | 2017-07-04 | Sumitomo Osaka Cement Co., Ltd. | Electrode material and method for producing the same |
DE202013101861U1 (en) | 2012-04-30 | 2013-06-27 | Hitachi Koki Co., Ltd. | performance tool |
US9825296B2 (en) | 2013-03-12 | 2017-11-21 | Sony Corporation | Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus |
CN105027337A (en) * | 2013-03-12 | 2015-11-04 | 索尼公司 | Active material for secondary battery, electrodes for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device |
JP2014175238A (en) * | 2013-03-12 | 2014-09-22 | Sony Corp | Active material for secondary batteries, electrode for secondary batteries, secondary battery, battery pack, electric vehicle, electric power storage system, electric motor-driven tool, and electronic device |
WO2014141960A1 (en) * | 2013-03-12 | 2014-09-18 | ソニー株式会社 | Active material for secondary battery, electrodes for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device |
US9172087B2 (en) | 2013-03-15 | 2015-10-27 | Sumitomo Osaka Cement Co., Ltd. | Electrode material, electrode and lithium ion battery |
US9979013B2 (en) | 2013-04-30 | 2018-05-22 | Sumitomo Osaka Cement Co., Ltd. | Electrode material, paste, electrode plate, and lithium ion battery |
JP2014232725A (en) * | 2013-04-30 | 2014-12-11 | 住友大阪セメント株式会社 | Electrode material, paste, electrode plate, and lithium ion battery |
JPWO2015170561A1 (en) * | 2014-05-07 | 2017-04-20 | エリーパワー株式会社 | Positive electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery |
US10290856B2 (en) | 2014-10-20 | 2019-05-14 | Sumitomo Osaka Cement Co., Ltd. | Cathode material and lithium ion battery |
JP2017157548A (en) * | 2016-02-29 | 2017-09-07 | パナソニック株式会社 | Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery and method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
JP6132062B1 (en) * | 2016-09-30 | 2017-05-24 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, method for producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery |
JP2018056051A (en) * | 2016-09-30 | 2018-04-05 | 住友大阪セメント株式会社 | Lithium ion secondary battery and positive electrode material for lithium ion secondary battery |
US20180097225A1 (en) * | 2016-09-30 | 2018-04-05 | Sumitomo Osaka Cement Co., Ltd. | Lithium-ion secondary battery and cathode material for lithium-ion secondary battery |
EP3301740A1 (en) | 2016-09-30 | 2018-04-04 | Sumitomo Osaka Cement Co., Ltd | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
EP3301741A1 (en) | 2016-09-30 | 2018-04-04 | Sumitomo Osaka Cement Co., Ltd | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
US10008715B2 (en) | 2016-09-30 | 2018-06-26 | Sumitomo Osaka Cement Co., Ltd | Cathode material for lithium-ion secondary battery, method for manufacturing same, electrode for lithium-ion secondary battery, and lithium-ion secondary battery |
US10818923B2 (en) | 2016-09-30 | 2020-10-27 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
US10109861B2 (en) | 2016-09-30 | 2018-10-23 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
US10897044B2 (en) | 2017-03-24 | 2021-01-19 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
EP3379616A1 (en) | 2017-03-24 | 2018-09-26 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
JP2018163764A (en) * | 2017-03-24 | 2018-10-18 | 住友大阪セメント株式会社 | Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery and lithium ion secondary battery |
JP2018163763A (en) * | 2017-03-24 | 2018-10-18 | 住友大阪セメント株式会社 | Electrode material for lithium ion secondary battery and lithium ion secondary battery |
US10693138B2 (en) | 2017-04-24 | 2020-06-23 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
US10566622B2 (en) | 2017-09-28 | 2020-02-18 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery and method for manufacturing the same, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
EP3462522A1 (en) | 2017-09-28 | 2019-04-03 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
KR20190037060A (en) | 2017-09-28 | 2019-04-05 | 스미토모 오사카 세멘토 가부시키가이샤 | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery |
US10593939B2 (en) | 2017-09-28 | 2020-03-17 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
US10629908B2 (en) | 2017-09-29 | 2020-04-21 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
KR102643519B1 (en) | 2017-09-29 | 2024-03-06 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Electrode material for lithium ion battery and lithium ion battery |
JP2019067541A (en) * | 2017-09-29 | 2019-04-25 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery |
JP2019067594A (en) * | 2017-09-29 | 2019-04-25 | 住友大阪セメント株式会社 | Electrode material for lithium ion battery and lithium ion battery |
KR20190038250A (en) * | 2017-09-29 | 2019-04-08 | 스미토모 오사카 세멘토 가부시키가이샤 | Electrode material for lithium ion battery and lithium ion battery |
JP6332540B1 (en) * | 2017-09-29 | 2018-05-30 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, lithium ion secondary battery |
US10573890B2 (en) | 2017-09-29 | 2020-02-25 | Sumitomo Osaka Cement Co., Ltd. | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, and lithium-ion secondary battery |
JP2019160550A (en) * | 2018-03-13 | 2019-09-19 | 住友大阪セメント株式会社 | Positive electrode material for lithium ion secondary battery, method of producing the same, electrode for lithium ion secondary battery, and lithium ion secondary battery |
WO2020065833A1 (en) | 2018-09-27 | 2020-04-02 | 株式会社村田製作所 | Secondary battery |
KR20210046765A (en) | 2018-09-27 | 2021-04-28 | 가부시키가이샤 무라타 세이사쿠쇼 | Secondary battery |
JP7532906B2 (en) | 2019-06-28 | 2024-08-14 | 東レ株式会社 | Positive electrodes for lithium-ion secondary batteries |
KR20210036777A (en) | 2019-09-26 | 2021-04-05 | 스미토모 오사카 세멘토 가부시키가이샤 | Positive electrode material for lithium-ion polymer battery, positive electrode for lithium-ion polymer battery and lithium-ion polymer battery |
US11245110B2 (en) | 2019-09-26 | 2022-02-08 | Sumitomo Osaka Cement Co., Ltd. | Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery |
EP3799158A1 (en) | 2019-09-26 | 2021-03-31 | Sumitomo Osaka Cement Co., Ltd. | Positive electrode material for lithium ion polymer battery, positive electrode for lithium ion polymer battery, and lithium ion polymer battery |
JP7619008B2 (en) | 2019-11-26 | 2025-01-22 | 東レ株式会社 | Positive electrodes for lithium-ion secondary batteries |
WO2022196831A1 (en) | 2021-03-19 | 2022-09-22 | Sekisui Chemical Co., Ltd. | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same |
US12278368B2 (en) | 2021-03-19 | 2025-04-15 | Sekisui Chemical Co., Ltd. | Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery, battery module and battery system using the same |
CN115632120A (en) * | 2022-11-01 | 2023-01-20 | 湖南东舟能源有限公司 | A preparation method of fast conductive modified lithium manganese iron phosphate, battery positive plate and battery |
CN115632120B (en) * | 2022-11-01 | 2023-07-04 | 湖南东舟能源有限公司 | Preparation method of quick conductive modified lithium manganese iron phosphate, battery positive plate and battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012104290A (en) | Positive electrode active material for nonaqueous electrolyte battery, positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery | |
KR101730762B1 (en) | Cathode active material, cathode, and nonaqueous electrolyte secondary battery | |
JP4061586B2 (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
JP4213687B2 (en) | Nonaqueous electrolyte battery and battery pack | |
JP4245532B2 (en) | Nonaqueous electrolyte secondary battery | |
US8298707B2 (en) | Positive active material and nonaqueous electrolyte secondary battery | |
JP3726958B2 (en) | battery | |
US8586246B2 (en) | Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery | |
US20110281165A1 (en) | Non-aqueous electrolyte secondary battery | |
US20030134200A1 (en) | Positive electrode active material and nonaqueous electrolyte secondary cell | |
JP4905267B2 (en) | Positive electrode mixture and non-aqueous electrolyte battery | |
JP2007194202A (en) | Lithium ion secondary battery | |
KR20140072872A (en) | Lithium secondary battery | |
JP5245201B2 (en) | Negative electrode, secondary battery | |
US20140011083A1 (en) | Electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery including the same | |
JP2010123331A (en) | Nonaqueous electrolyte secondary battery | |
JP2009164013A (en) | Negative electrode, and battery | |
JP7458033B2 (en) | Nonaqueous electrolyte secondary battery and electrolyte used therein | |
JP4876495B2 (en) | Electrolyte for lithium ion secondary battery and lithium ion secondary battery | |
JP2006134758A (en) | Secondary battery | |
JP2009054469A (en) | Nonaqueous secondary battery | |
JP4839671B2 (en) | battery | |
WO2020158223A1 (en) | Nonaqueous electrolyte secondary battery and electrolyte solution used in same | |
JP4867218B2 (en) | Lithium ion secondary battery | |
JP2007335175A (en) | Method of manufacturing coating composition for electrode mixture layer of nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131002 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140515 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141209 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150203 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20150818 |