[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012102969A - Evaporator with cool storage function - Google Patents

Evaporator with cool storage function Download PDF

Info

Publication number
JP2012102969A
JP2012102969A JP2010253602A JP2010253602A JP2012102969A JP 2012102969 A JP2012102969 A JP 2012102969A JP 2010253602 A JP2010253602 A JP 2010253602A JP 2010253602 A JP2010253602 A JP 2010253602A JP 2012102969 A JP2012102969 A JP 2012102969A
Authority
JP
Japan
Prior art keywords
refrigerant flow
refrigerant
pipe
storage material
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010253602A
Other languages
Japanese (ja)
Other versions
JP2012102969A5 (en
Inventor
Takashi Hirayama
貴司 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2010253602A priority Critical patent/JP2012102969A/en
Priority to US13/214,298 priority patent/US20120042687A1/en
Priority to DE102011081379A priority patent/DE102011081379A1/en
Priority to CN2011203085319U priority patent/CN202274681U/en
Priority to CN201110242709.9A priority patent/CN102374705B/en
Publication of JP2012102969A publication Critical patent/JP2012102969A/en
Publication of JP2012102969A5 publication Critical patent/JP2012102969A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/147

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaporator with a cool storage function, excelling in both cool storage performance and radiational cooling performance.SOLUTION: The evaporator with the cool storage function includes: a plurality of flat refrigerant flow tubes 13 disposed in a parallel manner at intervals from each other and vertically extending with the width direction oriented to an air-passing direction; a cool storage material container 16 disposed in partial air-passing clearances 15 among all air-passing clearances 15 formed between adjacent refrigerant flow tubes 13; and outer fins 17 disposed in the air-passing clearances 15 on the opposite sides of the cool storage material container 16. In the refrigerant flow tube 13, a plurality of refrigerant flow channels 33 arranged in line in the width direction of the refrigerant flow tube 13 are provided via partitions 34. Representing the thickness of the partition 34 as t mm, the height of the partition 34 as h mm and the tube height which is the dimension of the refrigerant flow tube 13 in the thickness direction as H mm, a relation 0.1≤t≤0.4 and 0.64≤h/H≤0.86 is satisfied.

Description

この発明は、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンに用いられる蓄冷機能付きエバポレータに関する。   The present invention relates to an evaporator with a cold storage function used in a car air conditioner of a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

この明細書および特許請求の範囲において、図1の上下を上下というものとする。   In this specification and claims, the top and bottom of FIG.

近年、環境保護や自動車の燃費向上などを目的として、信号待ちなどの停車時にエンジンを自動的に停止させる自動車が提案されている。   In recent years, automobiles have been proposed that automatically stop the engine when the vehicle stops, such as when waiting for a signal, for the purpose of environmental protection or improvement in automobile fuel efficiency.

しかしながら、通常のカーエアコンにおいては、エンジンを停止させると、エンジンを駆動源とする圧縮機が停止するので、エバポレータに冷媒が供給されなくなり、冷房能力が急激に低下するという問題がある。   However, in a normal car air conditioner, when the engine is stopped, the compressor using the engine as a driving source stops, so that there is a problem that the refrigerant is not supplied to the evaporator and the cooling capacity is rapidly reduced.

そこで、このような問題を解決するために、エバポレータに蓄冷機能を付与し、エンジンが停止して圧縮機が停止した際に、エバポレータに蓄えられた冷熱を利用して車室内を冷却することが考えられている。   Therefore, in order to solve such a problem, the evaporator is provided with a cold storage function, and when the engine stops and the compressor stops, the interior of the vehicle can be cooled using the cold energy stored in the evaporator. It is considered.

蓄冷機能付きエバポレータとして、本出願人は、先に、上下方向にのびるとともに幅方向が通風方向を向いた複数の扁平状冷媒流通管が、互いに間隔をおいて並列状に配置されており、隣り合う冷媒流通管どうしの間に通風間隙が形成され、全通風間隙のうち一部の複数の通風間隙に、蓄冷材が封入された蓄冷材容器が配置され、残りの通風間隙にフィンが配置され、蓄冷材容器と、蓄冷材容器の両側に配置された冷媒流通管とがろう付され、すべての冷媒流通管に、冷媒流通管の幅方向に並んだ複数の冷媒流路が仕切りを介して設けられている蓄冷機能付きエバポレータを提案した(特許文献1参照)。   As an evaporator with a cold storage function, the present applicant has previously arranged a plurality of flat refrigerant flow pipes extending in the vertical direction and having the width direction facing the ventilation direction, arranged in parallel at intervals. Ventilation gaps are formed between the matching refrigerant flow pipes, a cool storage material container in which a cool storage material is sealed is arranged in some of the ventilation gaps, and fins are arranged in the remaining ventilation gaps. The regenerator container and the refrigerant distribution pipes arranged on both sides of the regenerator container are brazed, and a plurality of refrigerant flow paths arranged in the width direction of the refrigerant distribution pipe are connected to all the refrigerant distribution pipes through the partitions. The evaporator with the cool storage function provided was proposed (refer patent document 1).

特許文献1記載の蓄冷機能付きエバポレータによれば、圧縮機が作動している通常の冷房時には、冷媒流通管内を流れる冷媒の有する冷熱が、冷媒流通管の片面から蓄冷材容器中の蓄冷材に伝わって蓄冷材に冷熱が蓄えられ、圧縮機が停止した際には、蓄冷材容器中の蓄冷材に蓄えられた冷熱が、蓄冷材容器の両側に配置された冷媒流通管を通って、蓄冷材容器が配置された通風間隙に隣接する通風間隙に配置されたフィンに伝えられ、フィンから当該通風間隙を流れる空気に放冷されるようになっている。   According to the evaporator with a cool storage function described in Patent Document 1, during normal cooling when the compressor is operating, the cold heat of the coolant flowing in the coolant circulation pipe is transferred from one side of the coolant circulation pipe to the cool storage material in the cool storage material container. When cold energy is stored in the cold storage material and the compressor stops, the cold heat stored in the cold storage material in the cold storage material container passes through the refrigerant distribution pipes arranged on both sides of the cold storage material container to store the cold storage. It is transmitted to the fin arranged in the ventilation gap adjacent to the ventilation gap where the material container is arranged, and is cooled by the air flowing through the ventilation gap from the fin.

ところで、特許文献1記載の蓄冷機能付きエバポレータにおいては、圧縮機が作動している通常の冷房時の冷房性能を犠牲にすることなく、蓄冷材容器中の蓄冷材への蓄冷性能および蓄冷材容器中の蓄冷材からの放冷性能を向上させることが要求される。蓄冷性能を向上させるには、冷媒流通管の冷媒流路内を流れる冷媒から両側面に冷熱が効率良く伝わり、放冷性能を向上させるには、蓄冷材容器中の蓄冷材の有する冷熱が冷媒流通管を管高さ方向に効率良く通過することが効果的である。   By the way, in the evaporator with a cool storage function of patent document 1, the cool storage performance to the cool storage material in the cool storage material container and the cool storage material container without sacrificing the cooling performance at the time of normal cooling when the compressor is operating. It is required to improve the cooling performance from the inside cold storage material. In order to improve the cold storage performance, cold heat is efficiently transmitted from the refrigerant flowing in the refrigerant flow path of the refrigerant distribution pipe to both sides, and in order to improve the cooling performance, the cold heat of the cold storage material in the cold storage material container is the refrigerant. It is effective to pass through the flow pipe efficiently in the pipe height direction.

そして、特許文献1記載の蓄冷機能付きエバポレータにおいても、蓄冷性能および放冷性能の両者をさらに高めることが求められている。   And also in the evaporator with a cool storage function of patent document 1, it is calculated | required to further improve both cool storage performance and cool-down performance.

本発明者は、蓄冷時に冷媒流通管の冷媒流路内を流れる冷媒から両側面に冷熱が効率良く伝わるとともに、放冷時に蓄冷材容器中の蓄冷材の有する冷熱が冷媒流通管を管高さ方向に効率良く通過するようにするために、冷媒流通管の隣り合う冷媒流路どうしの間の仕切りの厚み、仕切りの高さ、および冷媒流通管の管高さに注目し、本発明の完成に至ったのである。   The inventor efficiently transmits cold heat to both sides from the refrigerant flowing in the refrigerant flow path of the refrigerant flow pipe during cold storage, and the cold heat of the cold storage material in the cold storage material container increases the pipe height of the refrigerant flow pipe during cooling. In order to efficiently pass in the direction, the thickness of the partition between the adjacent refrigerant flow paths of the refrigerant flow pipe, the height of the partition, and the pipe height of the refrigerant flow pipe are completed, and the present invention is completed. It came to.

特開2010−149814号公報JP 2010-149814 A

この発明の目的は、上記実情に鑑み、蓄冷性能および放冷性能のいずれもが優れた蓄冷機能付きエバポレータを提供することにある。   In view of the above circumstances, an object of the present invention is to provide an evaporator with a cold storage function that is excellent in both cold storage performance and cooling performance.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)上下方向にのびるとともに幅方向が通風方向を向いた複数の扁平状冷媒流通管が、互いに間隔をおいて並列状に配置されており、少なくとも1つの冷媒流通管の少なくともいずれか片面側に、蓄冷材が封入された蓄冷材容器が配置されて冷媒流通管に熱的に接触させられ、蓄冷材容器が熱的に接触させられている冷媒流通管に、冷媒流通管の幅方向に並んだ複数の冷媒流路が仕切りを介して設けられている蓄冷機能付きエバポレータであって、
仕切りの厚みをtmm、仕切りの高さをhmm、冷媒流通管の厚み方向の寸法である管高さをHmmとした場合、0.1≦t≦0.4、0.64≦h/H≦0.86という関係を満たす蓄冷機能付きエバポレータ。
1) A plurality of flat refrigerant flow pipes that extend in the vertical direction and whose width direction faces the ventilation direction are arranged in parallel with a space between each other, on at least one side of at least one refrigerant flow pipe The regenerator material container in which the regenerator material is sealed is arranged and brought into thermal contact with the refrigerant flow tube, and is aligned in the width direction of the refrigerant flow tube with the refrigerant flow tube in which the regenerator material container is thermally contacted It is an evaporator with a cold storage function in which a plurality of refrigerant flow paths are provided via a partition,
When the thickness of the partition is tmm, the height of the partition is hmm, and the tube height that is the dimension in the thickness direction of the refrigerant flow tube is Hmm, 0.1 ≦ t ≦ 0.4, 0.64 ≦ h / H ≦ An evaporator with a cold storage function that satisfies the relationship of 0.86.

2)仕切りの数をn、冷媒流通管の幅をWmmとした場合、0.07≦(n×t)/W≦0.31という関係を満たす上記1)記載の蓄冷機能付きエバポレータ。   2) The evaporator with a cold storage function according to the above 1) that satisfies the relationship of 0.07 ≦ (n × t) /W≦0.31, where n is the number of partitions and the width of the refrigerant flow pipe is Wmm.

3)冷媒流通管の管高さH=12〜25mm、冷媒流通管の幅W=1.3〜3.0mmである上記1)または2)記載の蓄冷機能付きエバポレータ。   3) The evaporator with a cold storage function according to the above 1) or 2), wherein the height H of the refrigerant flow pipe is 12 to 25 mm and the width W of the refrigerant flow pipe is 1.3 to 3.0 mm.

4)隣り合う冷媒流通管どうしの間に通風間隙が形成され、全通風間隙のうち一部の複数の通風間隙に、蓄冷材が封入された蓄冷材容器が配置されるとともに両側の冷媒流通管に熱的に接触させられ、残りの通風間隙にフィンが配置され、蓄冷材容器の両側に配置された冷媒流通管に、冷媒流通管の幅方向に並んだ複数の冷媒流路が仕切りを介して設けられている上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   4) Ventilation gaps are formed between adjacent refrigerant flow pipes, and a cool storage material container in which a cold storage material is sealed is disposed in some of the total ventilation gaps, and the refrigerant flow pipes on both sides are arranged. A plurality of refrigerant flow paths arranged in the width direction of the refrigerant distribution pipe are arranged on the refrigerant distribution pipes arranged on both sides of the cold storage material container through the partition. The evaporator with a cool storage function according to any one of the above 1) to 3) provided.

5)蓄冷材容器が、冷媒流通管に接合された容器本体部と、容器本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器が配置された通風間隙の隣の通風間隙に配置されたフィンが、冷媒流通管に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器の外方張り出し部の両側面に、フィンの外方張り出し部が接している上記4)記載の蓄冷機能付きエバポレータ。   5) The cool storage material container is connected to the refrigerant body pipe, and the outwardly projecting part is provided so as to extend outward from the refrigerant circulation pipe while continuing to the leeward side edge of the container main body part. And fins arranged in the ventilation gap adjacent to the ventilation gap where the cool storage material container is arranged are connected to the fin main body portion joined to the refrigerant flow pipe and the leeward side edge portion of the fin main body portion. And an outward projecting portion provided so as to project outward from the refrigerant flow pipe in the ventilation direction, and the outward projecting portion of the fin is in contact with both side surfaces of the outward projecting portion of the cold storage material container. 4) Evaporator with cool storage function.

6)幅方向を通風方向に向け、かつ通風方向に間隔をおいて配置された複数の扁平状冷媒流通管からなる組を備えており、当該組が、冷媒流通管の幅方向と直角をなす方向に間隔をおいて配置され、蓄冷材容器の容器本体部が、複数の冷媒流通管からなる組の全冷媒流通管に跨るように接合されている上記4)または5)記載の蓄冷機能付きエバポレータ。   6) It is provided with a set of a plurality of flat refrigerant flow pipes that are oriented in the width direction in the ventilation direction and spaced apart in the ventilation direction, and the set forms a right angle with the width direction of the refrigerant flow pipe. With the cold storage function according to the above 4) or 5), which is arranged at intervals in the direction, and the container body of the cold storage material container is joined so as to straddle all the refrigerant flow pipes of the set consisting of a plurality of refrigerant flow pipes Evaporator.

7)冷媒流通管の片面側のみに蓄冷材容器が配置されて冷媒流通管に熱的に接触させられ、蓄冷材容器が、冷媒流通管に接合された容器本体部と、容器本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えている上記1)〜3)のうちのいずれかに記載の蓄冷機能付きエバポレータ。   7) A regenerator container is disposed only on one side of the refrigerant flow pipe and is brought into thermal contact with the refrigerant flow pipe, and the cool storage container is connected to the refrigerant flow pipe, and the lee of the container main body The evaporator with a cold storage function according to any one of the above items 1) to 3), further comprising an outward projecting portion that is connected to the side edge portion and is disposed so as to project outward from the refrigerant circulation pipe in the ventilation direction.

8)冷媒流通管および冷媒流通管に接合された容器本体部を有する蓄冷材容器からなる組み合わせ体が、冷媒流通管の幅方向と直角をなす方向に間隔をおいて配置され、隣り合う組み合わせ体どうしの間が通風間隙とされ、通風間隙にフィンが配置され、1つの組み合わせ体の両側に配置された2つのフィンのうち一方のフィンが、冷媒流通管に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、同じく他方のフィンが、蓄冷材容器の容器本体部に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに容器本体部よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器の外方張り出し部の両側面に、両側のフィンの外方張り出し部が接している上記7)記載の蓄冷機能付きエバポレータ。   8) A combination body composed of a refrigerant circulation pipe and a cold storage material container having a container main body joined to the refrigerant circulation pipe is arranged at intervals in a direction perpendicular to the width direction of the refrigerant circulation pipe, and is adjacent to the combination body. A fin body portion in which a gap is defined as a ventilation gap, fins are arranged in the ventilation gap, and one of the two fins arranged on both sides of one combination is joined to the refrigerant flow pipe, and a fin And an outwardly extending portion that is connected to the leeward side edge portion of the main body portion and extends outwardly from the refrigerant flow pipe in the ventilation direction. Similarly, the other fin is connected to the container main body portion of the cold storage material container. A fin body portion that is joined, and an outward projecting portion that is connected to the leeward side edge portion of the fin body portion and that projects outward from the container body portion in the ventilation direction. Square on both sides of the projecting portion, the 7 outward projecting portions on both sides of the fin is in contact with) an evaporator with a cool storage function according.

9)上記各組み合わせ体の冷媒流通管が、通風方向に間隔をおいて複数配置され、当該組み合わせ体の蓄冷材容器の容器本体部が、当該組み合わせ体の全冷媒流通管に跨るように配置されて冷媒流通管に接合されている上記8)記載の蓄冷機能付きエバポレータ。   9) A plurality of the refrigerant circulation pipes of each combination are arranged at intervals in the ventilation direction, and the container main body portion of the regenerator container of the combination is arranged so as to straddle all the refrigerant circulation pipes of the combination. The evaporator with a cold storage function as described in 8) above, which is joined to the refrigerant flow pipe.

上記1)〜9)の蓄冷機能付きエバポレータによれば、仕切りの厚みをtmm、仕切りの高さをhmm、冷媒流通管の厚み方向の寸法である管高さをHmmとした場合、0.1≦t≦0.4、0.64≦h/H≦0.86という関係を満たしているので、蓄冷時には冷媒流通管の冷媒流路内を流れる冷媒から両側面に冷熱が効率良く伝わるとともに、放冷時には蓄冷材容器中の蓄冷材の有する冷熱が冷媒流通管を管高さ方向に効率良く通過することになり、蓄冷性能および放冷性能のいずれもが優れたものになる。しかも、圧縮機が作動している通常の冷房時の冷房性能を犠牲にすることもない。   According to the evaporator with a cold storage function of 1) to 9) above, when the partition thickness is tmm, the partition height is hmm, and the pipe height which is the dimension in the thickness direction of the refrigerant flow pipe is 0.1 mm, Since ≦ t ≦ 0.4 and 0.64 ≦ h / H ≦ 0.86 are satisfied, cold heat is efficiently transmitted from the refrigerant flowing in the refrigerant flow path of the refrigerant flow pipe to both side surfaces during cold storage, At the time of cooling, the cold heat of the cool storage material in the cool storage material container efficiently passes through the refrigerant flow pipe in the pipe height direction, and both the cool storage performance and the cool discharge performance are excellent. Moreover, the cooling performance during normal cooling when the compressor is operating is not sacrificed.

上記2)の蓄冷機能付きエバポレータによれば、仕切りの数をn、冷媒流通管の幅をWmmとした場合、0.07≦(n×t)/W≦0.31という関係を満たしているので、蓄冷性能および放冷性能のいずれもが一層優れたものになる。   According to the evaporator with a cold storage function of 2), when the number of partitions is n and the width of the refrigerant flow pipe is Wmm, the relationship of 0.07 ≦ (n × t) /W≦0.31 is satisfied. Therefore, both the cold storage performance and the cooling performance are more excellent.

上記5)の蓄冷機能付きエバポレータによれば、蓄冷材容器が、冷媒流通管に接合された容器本体部と、容器本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えているので、1つの蓄冷材容器内に封入しうる蓄冷材の量を、特許文献1記載の蓄冷機能付きエバポレータの蓄冷材容器に比べて、外方張り出し部の分だけ多くすることができる。したがって、熱交換コア部の寸法を変えることなく蓄冷材容器に封入される蓄冷材の量を多くした場合にも、蓄冷材容器の数を増やしたり、蓄冷材容器全体の容器高さを全体に高くしたりする必要はない。   According to the evaporator with a cool storage function of 5) above, the cool storage material container is connected to the container main body portion joined to the refrigerant circulation pipe and the leeward side edge of the container main body section, and extends outward from the refrigerant circulation pipe in the ventilation direction. Since it has an outward projecting portion provided to take out, the amount of the regenerator material that can be enclosed in one regenerator material container, compared to the regenerator material container of the evaporator with a regenerator function described in Patent Document 1, It can be increased by the amount of the outward projection. Therefore, even if the amount of cool storage material enclosed in the cool storage material container is increased without changing the dimensions of the heat exchange core, the number of cool storage material containers can be increased or the overall height of the cool storage material container can be increased. There is no need to raise it.

さらに、蓄冷材容器が配置された通風間隙の隣の通風間隙に配置されたフィンが、冷媒流通管に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器の外方張り出し部の両側面に、フィンの外方張り出し部が接しているので、圧縮機が作動している際に、蓄冷材容器内の蓄冷材に冷熱を蓄える場合には、蓄冷材は、冷媒流通管内を流れる冷媒によって冷却されるとともに、通風間隙を流れてくる温度が低くなった空気によって冷却されることになり、蓄冷材を効率良く冷却することができ、蓄冷性能が向上する。一方、エンジンが停止して圧縮機が停止した際には、蓄冷材容器の容器本体部内の蓄冷材の有する冷熱が、その両側の冷媒流通管を経て隣の通風間隙を通過する空気に伝えられるとともに、蓄冷材容器の外方張り出し部内の蓄冷材の有する冷熱が、外方張り出し部の両側面から外方張り出し部の両側面に接しているフィンを介して通風間隙を通過する空気に伝えられるので、放冷性能が向上する。外方張り出し部からフィンを介して通風間隙を通過する空気に伝えられるので、放冷性能が向上する。   Furthermore, the fins arranged in the ventilation gap adjacent to the ventilation gap where the cool storage material container is arranged are connected to the fin body part joined to the refrigerant circulation pipe, and the leeward side edge of the fin body part, and from the refrigerant circulation pipe Also has an outwardly extending portion provided so as to protrude outward in the ventilation direction, and since the outwardly extending portion of the fin is in contact with both side surfaces of the outwardly extending portion of the cold storage material container, the compressor When cold energy is stored in the regenerator material in the regenerator container during operation, the regenerator material is cooled by the refrigerant flowing in the refrigerant distribution pipe, and the air flowing through the ventilation gap is lowered in temperature. Therefore, the cool storage material can be efficiently cooled, and the cool storage performance is improved. On the other hand, when the engine stops and the compressor stops, the cold heat of the cool storage material in the container main body of the cool storage material container is transmitted to the air passing through the adjacent ventilation gap via the refrigerant flow pipes on both sides thereof. At the same time, the cold heat of the cool storage material in the outwardly projecting portion of the cool storage material container is transmitted from the both side surfaces of the outwardly projecting portion to the air passing through the ventilation gap via the fins that are in contact with the both side surfaces of the outwardly projecting portion. Therefore, the cooling performance is improved. Since it is transmitted from the outward projecting part to the air passing through the ventilation gap via the fins, the cooling performance is improved.

上記7)の蓄冷機能付きエバポレータによれば、冷媒流通管の片面側のみに蓄冷材容器が配置されて冷媒流通管に熱的に接触させられ、蓄冷材容器が、冷媒流通管に接合された容器本体部と、容器本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えているので、冷媒流通管および蓄冷材容器の長さを長くしたり、蓄冷材容器の厚み方向の寸法である容器高さを全体に高くしたりすることなく、蓄冷材容器に封入される蓄冷材の量を多くすることができる。   According to the evaporator with a cold storage function of 7) above, the cold storage material container is disposed only on one side of the refrigerant flow tube and is brought into thermal contact with the refrigerant flow tube, and the cold storage material container is joined to the refrigerant flow tube. Since it is provided with a container body part and an outwardly extending part that is connected to the leeward side edge part of the container body part and projects outward from the refrigerant circulation pipe in the ventilation direction, the refrigerant circulation pipe and the cold storage material container are provided. The amount of the regenerator material enclosed in the regenerator material container can be increased without increasing the length of the regenerator material or increasing the overall container height, which is the dimension in the thickness direction of the regenerator material container.

また、外方張り出し部が、容器本体部の風下側縁部に連なるように設けられているので、上記8)の蓄冷機能付きエバポレータのように、冷媒流通管および冷媒流通管に接合された容器本体部を有する蓄冷材容器からなる組み合わせ体が、冷媒流通管の幅方向と直角をなす方向に間隔をおいて配置され、隣り合う組み合わせ体どうしの間が通風間隙とされた場合であっても、熱交換コア部の寸法を変えることなく蓄冷材容器に封入される蓄冷材の量を多くすることができる。   Further, since the outward projecting portion is provided so as to be connected to the leeward side edge portion of the container main body, the container joined to the refrigerant circulation pipe and the refrigerant circulation pipe like the evaporator with a cold storage function of the above 8) Even when the combined body composed of the cool storage material containers having the main body is arranged at intervals in the direction perpendicular to the width direction of the refrigerant flow pipe, and between the adjacent combined bodies is a ventilation gap And the quantity of the cool storage material enclosed with the cool storage material container can be increased, without changing the dimension of a heat exchange core part.

上記8)の蓄冷機能付きエバポレータによれば、冷媒流通管および冷媒流通管に接合された容器本体部を有する蓄冷材容器からなる組み合わせ体が、冷媒流通管の幅方向と直角をなす方向に間隔をおいて配置され、隣り合う組み合わせ体どうしの間が通風間隙とされ、通風間隙にフィンが配置され、1つの組み合わせ体の両側に配置された2つのフィンのうち一方のフィンが、冷媒流通管に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、同じく他方のフィンが、蓄冷材容器の容器本体部に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに容器本体部よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器の外方張り出し部の両側面に、両側のフィンの外方張り出し部が接しているので、エンジンが停止して圧縮機が停止した際に、蓄冷材容器の外方張り出し部内の蓄冷材の有する冷熱が、外方張り出し部の両側面から外方張り出し部の両側面に接しているフィンを介して通風間隙を通過する空気に伝えられることになり、放冷性能が向上する。   According to the evaporator with a cold storage function of 8) above, the combination of the refrigerant storage pipe and the cold storage material container having the container main body joined to the refrigerant distribution pipe is spaced in a direction perpendicular to the width direction of the refrigerant distribution pipe. Between the adjacent combination bodies, a ventilation gap is formed between the adjacent combination bodies, fins are arranged in the ventilation gap, and one of the two fins arranged on both sides of one combination body is a refrigerant flow pipe. And a fin body portion joined to the leeward side edge portion of the fin body portion and an outward projecting portion provided so as to project outward from the refrigerant flow pipe in the ventilation direction. Is connected to the container main body portion of the cold storage material container and the leeward side edge portion of the fin main body portion, and is provided so as to project outward from the container main body portion in the ventilation direction. Because the outward projecting parts of the fins on both sides are in contact with both sides of the outer projecting part of the cool storage material container, when the engine stops and the compressor stops, the cool storage material The cold heat of the regenerator material in the outwardly projecting part of the container will be transmitted to the air passing through the ventilation gap through the fins that are in contact with the both side surfaces of the outwardly projecting part from both side surfaces of the outwardly projecting part, Cooling performance is improved.

この発明の蓄冷機能付きエバポレータの全体構成を示す一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図1の蓄冷機能付きエバポレータの冷媒流通管を示す拡大横断面図である。FIG. 2 is an enlarged cross-sectional view showing a refrigerant flow pipe of the evaporator with a cold storage function in FIG. 1. 図1の蓄冷機能付きエバポレータの蓄冷材容器を示す分解斜視図である。It is a disassembled perspective view which shows the cool storage material container of the evaporator with a cool storage function of FIG. 冷媒流通管の仕切りの厚みを決めるために行ったコンピュータシミュレーション計算の結果を示すグラフである。It is a graph which shows the result of the computer simulation calculation performed in order to determine the thickness of the partition of a refrigerant | coolant distribution pipe. 冷媒流通管の仕切りの厚みを決めるために行った図5とは異なるコンピュータシミュレーション計算の結果を示すグラフである。It is a graph which shows the result of the computer simulation calculation different from FIG. 5 performed in order to determine the thickness of the partition of a refrigerant | coolant distribution pipe. 冷媒流通管の厚み方向の寸法である管高さに対する仕切りの高さの比率を決めるために行ったコンピュータシミュレーション計算の結果を示すグラフである。It is a graph which shows the result of the computer simulation calculation performed in order to determine the ratio of the height of the partition with respect to the pipe height which is the dimension of the thickness direction of a refrigerant | coolant flow pipe. 冷媒流通管の厚み方向の寸法である管高さに対する仕切りの高さの比率を決めるために行った図7とは異なるコンピュータシミュレーション計算の結果を示すグラフである。It is a graph which shows the result of the computer simulation calculation different from FIG. 7 performed in order to determine the ratio of the height of the partition with respect to the pipe height which is the dimension of the thickness direction of a refrigerant | coolant flow pipe. この発明の蓄冷機能付きエバポレータの他の実施形態を示す図2相当の断面図である。It is sectional drawing equivalent to FIG. 2 which shows other embodiment of the evaporator with a cool storage function of this invention.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、通風方向下流側(図1および図2に矢印Xで示す方向)を前、これと反対側を後というものとする。また、前方から後方を見た際の左右、すなわち図1の左右を左右というものとする。   In the following description, the downstream side in the ventilation direction (the direction indicated by the arrow X in FIGS. 1 and 2) is the front, and the opposite side is the rear. Further, the left and right when viewing the rear from the front, that is, the left and right in FIG.

さらに、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   Furthermore, in the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

図1はこの発明による蓄冷機能付きエバポレータの全体構成を示し、図2〜図4はその要部の構成を示す。   FIG. 1 shows the overall configuration of an evaporator with a cold storage function according to the present invention, and FIGS.

図1において、蓄冷機能付きエバポレータ(1)は、上下方向に間隔をおいて配置された左右方向にのびるアルミニウム製第1ヘッダタンク(2)およびアルミニウム製第2ヘッダタンク(3)と、両ヘッダタンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   In FIG. 1, an evaporator with a cold storage function (1) includes an aluminum first header tank (2) and an aluminum second header tank (3) extending in the horizontal direction and spaced apart in the vertical direction, and both headers. And a heat exchange core part (4) provided between the tanks (2) and (3).

第1ヘッダタンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ部(5)と、後側(通風方向上流側)に位置しかつ冷媒入口ヘッダ部(5)に一体化された冷媒出口ヘッダ部(6)とを備えている。冷媒入口ヘッダ部(5)の右端部に冷媒入口(7)が設けられ、冷媒出口ヘッダ部(6)の右端部に冷媒出口(8)が設けられている。第2ヘッダタンク(3)は、前側に位置する第1中間ヘッダ部(9)と、後側に位置しかつ第1中間ヘッダ部(9)に一体化された第2中間ヘッダ部(11)とを備えている。第2ヘッダタンク(3)の第1中間ヘッダ部(9)内と第2中間ヘッダ部(11)内とは、両中間ヘッダ部(9)(11)の右端部に跨って接合され、かつ内部が通路となった連通部材(12)を介して通じさせられている。   The first header tank (2) is integrated with the refrigerant inlet header (5) located on the front side (downstream in the ventilation direction) and the refrigerant inlet header (5) located on the rear side (upstream in the ventilation direction). And a refrigerant outlet header portion (6). A refrigerant inlet (7) is provided at the right end of the refrigerant inlet header (5), and a refrigerant outlet (8) is provided at the right end of the refrigerant outlet header (6). The second header tank (3) includes a first intermediate header portion (9) located on the front side and a second intermediate header portion (11) located on the rear side and integrated with the first intermediate header portion (9). And. The first intermediate header portion (9) and the second intermediate header portion (11) of the second header tank (3) are joined across the right end portions of the intermediate header portions (9) and (11), and The inside is communicated via a communication member (12) that forms a passage.

図1および図2に示すように、熱交換コア部(4)には、上下方向にのびるとともに幅方向が通風方向(前後方向)を向いた複数のアルミニウム押出形材製扁平状冷媒流通管(13)が、左右方向に間隔をおいて並列状に配置されている。すなわち、前後方向に間隔をおいて配置された複数、ここでは2つの冷媒流通管(13)からなる複数の組(14)が左右方向に間隔をおいて配置されており、前後の冷媒流通管(13)よりなる組(14)の隣り合うものどうしの間に通風間隙(15)が形成されている。前側の冷媒流通管(13)の上端部は冷媒入口ヘッダ部(5)に接続されるとともに、同下端部は第1中間ヘッダ部(9)に接続されている。また、後側の冷媒流通管(13)の上端部は冷媒出口ヘッダ部(6)に接続されるとともに、同下端部は第2中間ヘッダ部(11)に接続されている。   As shown in FIG. 1 and FIG. 2, the heat exchange core (4) has a plurality of extruded aluminum flat refrigerant flow pipes that extend in the vertical direction and whose width direction faces the ventilation direction (front-rear direction). 13) are arranged in parallel at intervals in the left-right direction. That is, a plurality of sets (14) composed of a plurality of refrigerant distribution pipes (13) arranged at intervals in the front-rear direction, here two refrigerant distribution pipes (13), are arranged at intervals in the left-right direction. A ventilation gap (15) is formed between adjacent ones of the group (14) consisting of (13). The upper end of the front refrigerant flow pipe (13) is connected to the refrigerant inlet header (5), and the lower end is connected to the first intermediate header (9). The upper end of the rear refrigerant flow pipe (13) is connected to the refrigerant outlet header (6), and the lower end is connected to the second intermediate header (11).

冷媒流通管(13)には、冷媒流通管(13)の幅方向(前後方向)に並んだ複数の冷媒流路(33)が仕切り(34)を介して設けられている。ここで、図3に示すように、仕切り(34)の厚みをtmm、仕切りの高さをhmm、冷媒流通管(13)の厚み方向の寸法である管高さをHmmとした場合、0.1≦t≦0.4、0.64≦h/H≦0.86という関係を満たしている。また、冷媒流通管(13)の仕切り(34)の数をn、冷媒流通管(13)の幅をWmmとした場合、0.07≦(n×t)/W≦0.31という関係を満たしていることが好ましい。なお、冷媒流通管(13)の管高さH=12〜25mm、冷媒流通管(13)の幅W=1.3〜3.0mmであることが好ましい。   The refrigerant flow pipe (13) is provided with a plurality of refrigerant flow paths (33) arranged in the width direction (front-rear direction) of the refrigerant flow pipe (13) via a partition (34). Here, as shown in FIG. 3, when the thickness of the partition (34) is tmm, the height of the partition is hmm, and the pipe height, which is the dimension in the thickness direction of the refrigerant flow pipe (13), is Hmm. The relations 1 ≦ t ≦ 0.4 and 0.64 ≦ h / H ≦ 0.86 are satisfied. Further, when the number of partitions (34) of the refrigerant flow pipe (13) is n and the width of the refrigerant flow pipe (13) is Wmm, the relationship of 0.07 ≦ (n × t) /W≦0.31 is established. It is preferable to satisfy. Note that the pipe height H of the refrigerant flow pipe (13) is preferably 12 to 25 mm, and the width W of the refrigerant flow pipe (13) is preferably 1.3 to 3.0 mm.

全通風間隙(15)のうち一部の複数の通風間隙(15)でかつ隣接していない通風間隙(15)において、蓄冷材(図示略)が封入されたアルミニウム製蓄冷材容器(16)が、前後両冷媒流通管(13)に跨るように配置されている。また、残りの通風間隙(15)に、両面にろう材層を有するアルミニウムブレージングシートからなるコルゲート状のアウターフィン(17)が、前後両冷媒流通管(13)に跨るように配置されて通風間隙(15)を形成する左右両側の組(14)を構成する前後両冷媒流通管(13)にろう付されている。すなわち、蓄冷材容器(16)が配置された通風間隙(15)の両側の通風間隙(15)にそれぞれアウターフィン(17)が配置されている。また、左右両端の冷媒流通管(13)の組(14)の外側にも両面にろう材層を有するアルミニウムブレージングシートからなるアウターフィン(17)が配置されて前後両冷媒流通管(13)にろう付され、さらに左右両端のアウターフィン(17)の外側にアルミニウム製サイドプレート(18)が配置されてアウターフィン(17)にろう付されている。   An aluminum regenerator container (16) in which a regenerator material (not shown) is sealed in a part of a plurality of air gaps (15) and not adjacent to each other among all the air gaps (15). Further, it is arranged so as to straddle both the front and rear refrigerant flow pipes (13). Further, in the remaining ventilation gap (15), corrugated outer fins (17) made of an aluminum brazing sheet having a brazing filler metal layer on both sides are disposed so as to straddle both the front and rear refrigerant flow pipes (13). The front and rear refrigerant flow pipes (13) constituting the pair (14) on both the left and right sides forming (15) are brazed. That is, the outer fins (17) are arranged in the ventilation gaps (15) on both sides of the ventilation gap (15) in which the cool storage material container (16) is arranged. In addition, outer fins (17) made of an aluminum brazing sheet having a brazing filler metal layer on both sides are also arranged outside the set (14) of the refrigerant flow pipes (13) at the left and right ends, and the front and rear refrigerant flow pipes (13) are arranged. An aluminum side plate (18) is disposed outside the outer fins (17) at both the left and right ends and brazed to the outer fins (17).

蓄冷材容器(16)は、前側冷媒流通管(13)の前側縁よりも後方に位置し、かつ各組(14)の前後2つの冷媒流通管(13)にろう付された容器本体部(21)と、容器本体部(21)の前側縁部(風下側縁部)に連なるとともに前側冷媒流通管(13)の前側縁よりも前方(通風方向外側)に張り出すように設けられた外方張り出し部(22)とを備えている。蓄冷材容器(16)の容器本体部(21)の厚み方向(左右方向)の寸法は全体に等しくなっている。蓄冷材容器(16)の外方張り出し部(22)は、上下方向の寸法が容器本体部(21)の上下方向の寸法と等しく、かつ左右方向の寸法が容器本体部(21)の左右方向の寸法よりも大きくなっており、容器本体部(21)に対して左右方向外方に膨出している。外方張り出し部(22)の左右方向の寸法は、冷媒流通管(13)の管高さHに、蓄冷材容器(16)の容器本体部(21)の左右方向の寸法を加えた高さと等しくなっている。蓄冷材容器(16)内へ充填される蓄冷材としては、たとえば水系、パラフィン系などの凝固点が3〜10℃程度に調整されたものが用いられる。また、蓄冷材容器(16)内への蓄冷材の充填量は、全蓄冷材容器(16)内を上端部まで満たすような量とするのがよい。   The cool storage material container (16) is located behind the front edge of the front refrigerant flow pipe (13) and is brazed to the two refrigerant flow pipes (13) before and after each pair (14) ( 21) and the outside of the container body (21) connected to the front side edge (leeward side edge) and extending forward (outward in the ventilation direction) from the front side edge of the front refrigerant flow pipe (13) And a projecting portion (22). The thickness direction (left-right direction) dimension of the container main-body part (21) of the cool storage material container (16) is equal to the whole. The outwardly projecting portion (22) of the cold storage material container (16) has the vertical dimension equal to the vertical dimension of the container main body (21) and the horizontal dimension of the container main body (21) in the horizontal direction. And is bulged outwardly in the left-right direction with respect to the container main body (21). The lateral dimension of the outward projecting part (22) is the height obtained by adding the lateral dimension of the container body (21) of the cold storage container (16) to the pipe height H of the refrigerant flow pipe (13). Are equal. As the cool storage material filled in the cool storage material container (16), for example, a water-based, paraffin-based or the like whose freezing point is adjusted to about 3 to 10 ° C is used. Further, the amount of the cold storage material filled in the cold storage material container (16) is preferably set to an amount that fills the entire cold storage material container (16) up to the upper end.

図4に示すように、蓄冷材容器(16)は、両面にろう材層を有するアルミニウムブレージングシートにプレス加工が施されることにより形成され、かつ周縁部どうしが互いにろう付された2枚の略縦長方形状アルミニウム板(24)(25)よりなる。蓄冷材容器(16)を構成する右側のアルミニウム板(24)における容器本体部(21)を形成する部分、すなわち前側部分を除いた大部分には、右方に膨出した第1膨出部(26)が設けられ、同じく外方張り出し部(22)を形成する部分、すなわち前側部分には、第1膨出部(26)の前側に連なるとともに右方に膨出し、かつ第1膨出部(26)よりも膨出高さの高い第2膨出部(27)が、上下方向の全長にわたって設けられている。また、右側アルミニウム板(24)の容器本体部(21)を形成する部分の外面における冷媒流通管(13)がろう付される部分には、格子状の溝(28)が形成されている。蓄冷材容器(16)を構成する左側のアルミニウム板(25)は、右側アルミニウム板(24)を左右逆向きにしたものであり、同一部分には同一符号を付す。   As shown in FIG. 4, the cold storage material container (16) is formed by pressing an aluminum brazing sheet having a brazing material layer on both sides, and the peripheral portions are brazed to each other. It consists of substantially vertical rectangular aluminum plates (24) and (25). A portion of the right aluminum plate (24) constituting the cool storage material container (16) forming the container main body portion (21), that is, most of the portion excluding the front side portion, is bulged to the right. (26) is provided, and the portion that also forms the outwardly projecting portion (22), that is, the front side portion, is connected to the front side of the first bulging portion (26) and bulges to the right, and the first bulging portion A second bulge portion (27) having a bulge height higher than that of the portion (26) is provided over the entire length in the vertical direction. In addition, lattice-shaped grooves (28) are formed in the portion where the refrigerant flow pipe (13) is brazed on the outer surface of the portion of the right aluminum plate (24) that forms the container body (21). The left aluminum plate (25) constituting the cold storage material container (16) is the right aluminum plate (24) reversed in the left-right direction, and the same parts are denoted by the same reference numerals.

そして、2枚のアルミニウム板(24)(25)を、第1および第2膨出部(26)(27)の開口どうしが対向するように組み合わせてろう付することによって、蓄冷材容器(16)が形成されている。ここで、両アルミニウム板(24)(25)の第1膨出部(26)により容器本体部(21)が形成され、第2膨出部(27)により外方張り出し部(22)が形成されている。   The two aluminum plates (24) and (25) are brazed in combination so that the openings of the first and second bulge portions (26) and (27) face each other, thereby the cold storage material container (16 ) Is formed. Here, the container body part (21) is formed by the first bulge part (26) of both aluminum plates (24) and (25), and the outwardly projecting part (22) is formed by the second bulge part (27). Has been.

蓄冷材容器(16)内には、容器本体部(21)の後端部から外方張り出し部(22)の前端部に至るアルミニウム製インナーフィン(29)が、上下方向のほぼ全体にわたって配置されている。インナーフィン(29)は、前後方向にのびる波頂部、前後方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状である。インナーフィン(29)のフィン高さは全体に等しく、蓄冷材容器(16)の容器本体部(21)の左右両側壁内面にろう付されている。   Inside the cool storage material container (16), aluminum inner fins (29) extending from the rear end of the container main body (21) to the front end of the outwardly projecting portion (22) are arranged over substantially the entire vertical direction. ing. The inner fin (29) has a corrugated shape including a wave crest extending in the front-rear direction, a wave bottom extending in the front-rear direction, and a connecting portion connecting the wave crest and the wave bottom. The fins of the inner fins (29) have the same height, and are brazed to the inner surfaces of the left and right side walls of the container main body (21) of the cold storage material container (16).

アウターフィン(17)は、前後方向にのびる波頂部、前後方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状である。アウターフィン(17)は、前側冷媒流通管(13)の前側縁よりも後方に位置し、かつ各組(14)の前後の冷媒流通管(13)にろう付されたフィン本体部(31)と、フィン本体部(31)の前側縁に連なるとともに後側冷媒流通管(13)の前側縁よりも前方に張り出すように設けられた外方張り出し部(32)とを備えている。そして、蓄冷材容器(16)が配置された通風間隙(15)の両隣の通風間隙(15)に配置されたアウターフィン(17)の外方張り出し部(32)が、蓄冷材容器(16)の外方張り出し部(22)の左右両側面にろう付されている。また、隣接するアウターフィン(17)の外方張り出し部(32)間にはアルミニウム製スペーサ(36)が配置されており、外方張り出し部(32)にろう付されている。   The outer fin (17) has a corrugated shape including a wave crest extending in the front-rear direction, a wave bottom extending in the front-rear direction, and a connecting portion connecting the wave crest and the wave bottom. The outer fin (17) is located behind the front edge of the front refrigerant flow pipe (13) and is finned to the refrigerant flow pipe (13) before and after each set (14) by the fin main body (31) And an outwardly projecting portion (32) provided so as to extend forward of the front side edge of the rear refrigerant flow pipe (13) while continuing to the front side edge of the fin body portion (31). Then, the outwardly projecting portion (32) of the outer fin (17) disposed in the ventilation gap (15) on both sides of the ventilation gap (15) where the cold storage material container (16) is arranged, the cold storage material container (16) Are brazed to the left and right side surfaces of the outwardly projecting portion (22). An aluminum spacer (36) is disposed between the outwardly projecting portions (32) of the adjacent outer fins (17), and is brazed to the outwardly projecting portion (32).

上述した蓄冷機能付きエバポレータ(1)は、車両のエンジンを駆動源とする圧縮機、圧縮機から吐出された冷媒を冷却するコンデンサ(冷媒冷却器)、コンデンサを通過した冷媒を減圧する膨張弁(減圧器)とともに冷凍サイクルを構成し、カーエアコンとして、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両、たとえば自動車に搭載される。そして、圧縮機が作動している場合には、圧縮機で圧縮されてコンデンサおよび膨張弁を通過した低圧の気液混相の2相冷媒が、冷媒入口(7)を通って蓄冷機能付きエバポレータ(1)の冷媒入口ヘッダ部(5)内に入り、前側の全冷媒流通管(13)を通って第1中間ヘッダ部(9)内に流入する。第1中間ヘッダ部(9)内に入った冷媒は、連通部材(12)を通って第2中間ヘッダ部(11)内に入った後、後側の全冷媒流通管(13)を通って出口ヘッダ部(6)内に流入し、冷媒出口(8)から流出する。そして、冷媒が冷媒流通管(13)内を流れる間に、通風間隙(15)を通過する空気と熱交換をし、冷媒は気相となって流出する。   The evaporator with a cold storage function (1) described above includes a compressor that uses a vehicle engine as a drive source, a condenser that cools the refrigerant discharged from the compressor (refrigerant cooler), and an expansion valve that depressurizes the refrigerant that has passed through the condenser ( A refrigeration cycle is configured together with a decompressor, and is mounted as a car air conditioner on a vehicle, such as an automobile, that temporarily stops an engine that is a drive source of a compressor when the vehicle stops. When the compressor is operating, the low-pressure gas-liquid mixed-phase two-phase refrigerant compressed by the compressor and passed through the condenser and the expansion valve passes through the refrigerant inlet (7) and has an evaporator with a cold storage function ( The refrigerant enters the refrigerant inlet header part (5) of 1) and flows into the first intermediate header part (9) through the front all refrigerant circulation pipe (13). The refrigerant that has entered the first intermediate header portion (9) passes through the communication member (12), enters the second intermediate header portion (11), and then passes through the rear refrigerant flow pipe (13). It flows into the outlet header (6) and flows out from the refrigerant outlet (8). While the refrigerant flows in the refrigerant flow pipe (13), heat exchange is performed with the air passing through the ventilation gap (15), and the refrigerant flows out in a gas phase.

このとき、冷媒流通管(13)内を流れる冷媒によって蓄冷材容器(16)の容器本体部(21)内の蓄冷材が冷却されるとともに、容器本体部(21)内の冷却された蓄冷材の有する冷熱がインナーフィン(29)を介して蓄冷材容器(16)の外方張り出し部(22)内の蓄冷材に伝えられ、さらに通風間隙(15)を通って冷媒により冷やされた空気によって蓄冷材容器(16)の外方張り出し部(22)内の蓄冷材が冷却され、その結果蓄冷材容器(16)内全体の蓄冷材に冷熱が蓄えられる。   At this time, the cool storage material in the container main body (21) of the cool storage material container (16) is cooled by the refrigerant flowing in the refrigerant flow pipe (13), and the cooled cool storage material in the container main body (21) Is transferred to the cold storage material in the outwardly projecting portion (22) of the cold storage material container (16) through the inner fin (29), and is further cooled by the air cooled by the refrigerant through the ventilation gap (15). The cold storage material in the outward projecting portion (22) of the cold storage material container (16) is cooled, and as a result, cold heat is stored in the entire cold storage material in the cold storage material container (16).

圧縮機が停止した場合には、蓄冷材容器(16)の容器本体部(21)および外方張り出し部(22)内の蓄冷材の有する冷熱が、インナーフィン(29)を介して容器本体部(21)および外方張り出し部(22)の左右両側壁に伝えられる。容器本体部(21)の左右両側壁に伝えられた冷熱は、冷媒流通管(13)を通過し、当該冷媒流通管(13)にろう付されているアウターフィン(17)のフィン本体部(31)を介して蓄冷材容器(16)が配置されている通風間隙(15)の両隣の通風間隙(15)を通過する空気に伝えられる。外方張り出し部(22)の左右両側壁に伝えられた冷熱は、外方張り出し部(22)の左右両側面にろう付されたアウターフィン(17)の外方張り出し部(32)を介して通風間隙(15)を通過する空気に伝えられる。したがって、エバポレータ(1)を通過した風の温度が上昇したとしても、当該風は冷却されるので、冷房能力の急激な低下が防止される。   When the compressor is stopped, the cold heat of the cold storage material in the container main body portion (21) and the outward projecting portion (22) of the cold storage material container (16) is transferred to the container main body portion via the inner fin (29). (21) and the left and right side walls of the outward projection (22). The cold heat transmitted to the left and right side walls of the container body (21) passes through the refrigerant flow pipe (13), and the fin main body (17) of the outer fin (17) brazed to the refrigerant flow pipe (13) ( It is transmitted to the air passing through the ventilation gap (15) adjacent to the ventilation gap (15) where the cool storage material container (16) is arranged via 31). The cold heat transmitted to the left and right side walls of the outward projecting part (22) passes through the outer projecting part (32) of the outer fin (17) brazed to the left and right side surfaces of the outer projecting part (22). It is transmitted to the air passing through the ventilation gap (15). Therefore, even if the temperature of the wind that has passed through the evaporator (1) rises, the wind is cooled, so that a rapid decrease in the cooling capacity is prevented.

冷媒流通管(13)の仕切り(34)の厚みをtmmとした場合、0.1≦t≦0.4を満たしていることとしたのは、コンピュータシミュレーション計算をしたところ、図5および図6に示すような結果が得られたからである。このコンピュータシミュレーション計算は、冷媒流通管(13)の幅W=16.95mm、同じく管高さH=1.4mm、仕切り(34)の数n=13とし、仕切り(34)の厚みtを変化させて行った。   When the thickness of the partition (34) of the refrigerant flow pipe (13) is tmm, it is assumed that 0.1 ≦ t ≦ 0.4 is satisfied. This is because the results shown in FIG. In this computer simulation calculation, the width W of the refrigerant flow pipe (13) is 16.95 mm, the pipe height is H = 1.4 mm, the number of partitions (34) is n = 13, and the thickness t of the partition (34) is changed. I went.

図5に示すグラフの左側の縦軸は、圧縮機が停止して蓄冷材容器(16)中の蓄冷材から冷熱が放冷される放冷時における熱交換コア部(4)を通過してきた風の平均温度を示す。図6に示すグラフの左側の縦軸は、圧縮機が作動して蓄冷材容器(16)中の蓄冷材に冷熱を蓄える蓄冷時において、蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)から冷媒流通管(13)を通過して蓄冷材容器(16)に伝わる移動冷熱量を示す。また、図5および図6に示すグラフの右側の縦軸は、圧縮機が停止して蓄冷材容器(16)中の蓄冷材から冷熱が放冷される放冷時において、蓄冷材容器(16)から冷媒流通管(13)を通過して蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)に伝わる移動冷熱量を示す。図5に示すグラフから、放冷時における熱交換コア部(4)を通過してきた風の平均温度が効率良く低下している範囲は、仕切り(34)の厚みが0.1〜0.4mmであることが分かる。仕切り(34)の厚みが0.4mmを超えると、上記平均温度の低下の度合が緩やかになる。また、図6に示すグラフから、蓄冷時において、蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)から冷媒流通管(13)を通過して蓄冷材容器(16)に伝わる移動冷熱量が多くて蓄冷性能が優れているとともに、放冷時において、蓄冷材容器(16)から冷媒流通管(13)を通過して蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)に伝わる移動冷熱量が多くて放冷性能が優れている範囲は、仕切り(34)の厚みが0.1〜0.4mmであることが分かる。なお、仕切り(34)の厚みtの下限を0.1mmとしたのは、これよりも薄いと製造上困難であることも大きな理由である。   The vertical axis on the left side of the graph shown in FIG. 5 has passed through the heat exchange core section (4) when the compressor is stopped and the cool storage material in the cool storage material container (16) is cooled. Indicates the average temperature of the wind. The vertical axis on the left side of the graph shown in FIG. 6 indicates the ventilation gap (15) in which the cool storage material container (16) is disposed during cold storage in which the compressor is operated to store cold heat in the cool storage material in the cool storage material container (16). ) Shows the amount of moving cold heat transferred from the outer fin (17) disposed in the ventilation gap (15) next to the refrigerant flow pipe (13) to the cool storage material container (16). Further, the vertical axis on the right side of the graphs shown in FIGS. 5 and 6 represents the cold storage container (16) when the compressor is stopped and the cold storage is cooled from the cold storage material in the cold storage container (16). ) From the refrigerant flow pipe (13) to the outer fin (17) arranged in the ventilation gap (15) adjacent to the ventilation gap (15) where the cool storage material container (16) is arranged. Show. From the graph shown in FIG. 5, the range in which the average temperature of the wind that has passed through the heat exchange core portion (4) during cooling is effectively reduced is that the thickness of the partition (34) is 0.1 to 0.4 mm. It turns out that it is. When the thickness of the partition (34) exceeds 0.4 mm, the degree of decrease in the average temperature becomes gradual. Further, from the graph shown in FIG. 6, during the cold storage, the refrigerant circulation pipe (from the outer fin (17) arranged in the ventilation gap (15) adjacent to the ventilation gap (15) in which the cold storage material container (16) is arranged. 13) Passes through the refrigerant storage pipe (13) from the cold storage container (16) through the refrigerant storage pipe (13) when it is allowed to cool, and the amount of mobile cold energy transmitted to the cold storage container (16) is large and has excellent cold storage performance. The range in which the amount of moving cold heat transmitted to the outer fin (17) arranged in the ventilation gap (15) adjacent to the ventilation gap (15) where the cold storage material container (16) is arranged is large and the cooling performance is excellent is It can be seen that the thickness of the partition (34) is 0.1 to 0.4 mm. The reason why the lower limit of the thickness t of the partition (34) is set to 0.1 mm is that if it is thinner than this, it is difficult to manufacture.

また、冷媒流通管(13)の厚み方向の寸法である管高さをHmm、仕切りの高さをhmmとした場合、0.64≦h/H≦0.86を満たしていることとしたのは、コンピュータシミュレーション計算をしたところ、図7および図8に示すような結果が得られたからである。このコンピュータシミュレーション計算は、冷媒流通管(13)の幅W=16.95mm、同じく管高さH=1.4mm、仕切り(34)の数n=13、仕切り(34)の厚みt=0.2mmとし、管高さHに対する仕切り(34)の高さhの比率を変化させて行った。   Also, when the pipe height, which is the dimension in the thickness direction of the refrigerant flow pipe (13), is Hmm and the height of the partition is hmm, 0.64 ≦ h / H ≦ 0.86 is satisfied. This is because the results shown in FIGS. 7 and 8 were obtained by computer simulation calculation. This computer simulation calculation shows that the width W of the refrigerant flow pipe (13) is 16.95 mm, the pipe height is H = 1.4 mm, the number of partitions (34) is n = 13, the thickness of the partition (34) is t = 0. It was set to 2 mm, and the ratio of the height h of the partition (34) to the tube height H was changed.

図7に示すグラフの左側の縦軸は、圧縮機が停止して蓄冷材容器(16)中の蓄冷材から冷熱が放冷される放冷時における熱交換コア部(4)を通過してきた風の平均温度を示す。図8に示すグラフの左側の縦軸は、圧縮機が作動して蓄冷材容器(16)中の蓄冷材に冷熱を蓄える蓄冷時において、蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)から冷媒流通管(13)を通過して蓄冷材容器(16)に伝わる移動冷熱量を示す。また、図7および図8に示すグラフの右側の縦軸は、圧縮機が停止して蓄冷材容器(16)中の蓄冷材から冷熱が放冷される放冷時において、蓄冷材容器(16)から冷媒流通管(13)を通過して蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)に伝わる移動冷熱量を示す。図7に示すグラフから、放冷時における熱交換コア部(4)を通過してきた風の平均温度が効率良く低下している範囲は、上記比率h/Hが0.64〜0.86であることが分かる。上記比率が0.64未満であると、上記平均温度の低下の度合が緩やかになる。また、図8に示すグラフから、蓄冷時において、蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)から冷媒流通管(13)を通過して蓄冷材容器(16)に伝わる移動冷熱量が多くて蓄冷性能が優れているとともに、放冷時において、蓄冷材容器(16)から冷媒流通管(13)を通過して蓄冷材容器(16)が配置された通風間隙(15)の隣の通風間隙(15)に配置されたアウターフィン(17)に伝わる移動冷熱量が多くて放冷性能が優れている範囲は、上記比率h/Hが0.64〜0.86であることが分かる。なお、上記比率h/Hの上限を0.86としたのは、これを超えると製造上困難であることも大きな理由である。   The vertical axis on the left side of the graph shown in FIG. 7 has passed through the heat exchange core section (4) when the compressor is stopped and the cool storage material in the cool storage material container (16) is cooled. Indicates the average temperature of the wind. The vertical axis on the left side of the graph shown in FIG. 8 indicates the ventilation gap (15) in which the cool storage material container (16) is disposed during cold storage in which the compressor is operated to store cold heat in the cool storage material in the cool storage material container (16). ) Shows the amount of moving cold heat transferred from the outer fin (17) disposed in the ventilation gap (15) next to the refrigerant flow pipe (13) to the cool storage material container (16). The vertical axis on the right side of the graphs shown in FIGS. 7 and 8 indicates the cold storage container (16) when the compressor is stopped and the cold storage is cooled from the cold storage material in the cold storage container (16). ) From the refrigerant flow pipe (13) to the outer fin (17) arranged in the ventilation gap (15) adjacent to the ventilation gap (15) where the cool storage material container (16) is arranged. Show. From the graph shown in FIG. 7, the range in which the average temperature of the wind that has passed through the heat exchange core (4) at the time of cooling is efficiently reduced is the ratio h / H of 0.64 to 0.86. I understand that there is. When the ratio is less than 0.64, the degree of decrease in the average temperature becomes moderate. Further, from the graph shown in FIG. 8, during the cold storage, the refrigerant circulation pipe (from the outer fin (17) arranged in the ventilation gap (15) adjacent to the ventilation gap (15) in which the cold storage material container (16) is arranged. 13) Passes through the refrigerant storage pipe (13) from the cold storage container (16) through the refrigerant storage pipe (13) when it is allowed to cool, and the amount of mobile cold energy transmitted to the cold storage container (16) is large and has excellent cold storage performance. The range in which the amount of moving cold heat transmitted to the outer fin (17) arranged in the ventilation gap (15) adjacent to the ventilation gap (15) where the cold storage material container (16) is arranged is large and the cooling performance is excellent is It can be seen that the ratio h / H is 0.64 to 0.86. The reason why the upper limit of the ratio h / H is set to 0.86 is that it is difficult to manufacture when the ratio h / H is exceeded.

図9はこの発明による蓄冷機能付きエバポレータの他の実施形態を示す。   FIG. 9 shows another embodiment of an evaporator with a cold storage function according to the present invention.

図9に示す蓄冷機能付きエバポレータにおいて、アルミニウム製蓄冷材容器(40)は、内部に蓄冷材(図示略)が封入されているとともに幅方向を前後方向に向けた扁平状であり、前後2つの冷媒流通管(13)からなる各組(14)の片面、ここでは左側面側に、各組(14)の2つの冷媒流通管(13)に跨るように配置されている。そして、前後方向に並んだ2つの冷媒流通管(13)からなる各組(14)および各組(14)の2つの冷媒流通管(13)に跨って配置された蓄冷材容器(40)によって、複数の組み合わせ体(41)が構成されている。当該組み合わせ体(41)は左右方向に間隔をおいて配置されており、隣り合う組み合わせ体(41)どうしの間が通風間隙(15)となるとともに、当該通風間隙(15)にアルミニウム製アウターフィン(17)が配置されて冷媒流通管(13)および蓄冷材容器(40)にろう付されている。各組(14)の冷媒流通管(13)および蓄冷材容器(40)からなる組み合わせ体(41)の右側に位置するアウターフィン(17)のフィン本体部(31)は各組(14)の前後の冷媒流通管(13)にろう付され、同じく外方張り出し部(32)は蓄冷材容器(16)の外方張り出し部(22)にろう付されている。また、各組(14)の冷媒流通管(13)および蓄冷材容器(40)からなる組み合わせ体(41)の左側に位置するアウターフィン(17)のフィン本体部(31)は蓄冷材容器(16)の容器本体部(21)にろう付され、同じく外方張り出し部(32)は蓄冷材容器(16)の外方張り出し部(22)にろう付されている。   In the evaporator with a cold storage function shown in FIG. 9, the aluminum cold storage material container (40) has a flat shape in which the cold storage material (not shown) is enclosed and the width direction is directed in the front-rear direction. It is arranged on one side of each set (14) composed of the refrigerant flow pipe (13), here on the left side, so as to straddle the two refrigerant flow pipes (13) of each set (14). Each set (14) composed of two refrigerant flow pipes (13) arranged in the front-rear direction and the regenerator container (40) arranged across the two refrigerant flow pipes (13) of each set (14) A plurality of combinations (41) are configured. The combination body (41) is arranged in the left-right direction with an interval between adjacent combination bodies (41) serving as a ventilation gap (15), and an aluminum outer fin in the ventilation gap (15). (17) is arranged and brazed to the refrigerant flow pipe (13) and the cool storage material container (40). The fin body portion (31) of the outer fin (17) located on the right side of the combination body (41) comprising the refrigerant flow pipe (13) and the cold storage container (40) of each pair (14) The outer projecting portion (32) is brazed to the outer projecting portion (22) of the cool storage material container (16). Further, the fin body portion (31) of the outer fin (17) located on the left side of the combination body (41) composed of the refrigerant flow pipe (13) and the cold storage material container (40) of each set (14) is a cold storage material container ( The container body part (21) of 16) is brazed, and the outwardly projecting part (32) is also brazed to the outwardly projecting part (22) of the cold storage material container (16).

蓄冷材容器(40)は、前側冷媒流通管(13)の前側縁よりも後方に位置し、かつ各組(14)の前後の冷媒流通管(13)にろう付された容器本体部(42)と、容器本体部(42)の前側縁に連なるとともに前側冷媒流通管(13)よりも前方に張り出すように設けられ、かつ厚み方向(左右方向)の寸法が容器本体部(42)の厚み方向(左右方向)の寸法よりも高くなった外方張り出し部(43)とよりなる。容器本体部(42)の左右方向の寸法は全体に等しくなっている。外方張り出し部(43)の左右方向の寸法は、冷媒流通管(13)の厚み方向(左右方向)の寸法である管高さに、蓄冷材容器(40)の容器本体部(42)の厚み方向の寸法を加えた高さと等しくなっている。外方張り出し部(43)は、容器本体部(42)対して右方のみに膨出しており、容器本体部(42)および外方張り出し部(43)の左側面は面一である。蓄冷材容器(40)内へ充填される蓄冷材としては、たとえば水系、パラフィン系などの凝固点が3〜10℃程度に調整されたものが用いられる。また、蓄冷材容器(40)内への蓄冷材の充填量は、全蓄冷材容器(16)内を上端部まで満たすような量とするのがよい。   The cold storage material container (40) is positioned behind the front edge of the front refrigerant flow pipe (13) and is brazed to the refrigerant flow pipe (13) before and after each set (14). ) And the front side edge of the container main body (42), and is provided so as to protrude forward from the front refrigerant flow pipe (13), and the thickness direction (left-right direction) of the container main body (42) It consists of an outward projecting part (43) which became higher than the dimension of the thickness direction (left-right direction). The dimensions of the container main body (42) in the left-right direction are the same as the whole. The dimension of the laterally extending portion (43) in the left-right direction is equal to the height of the refrigerant flow pipe (13) in the thickness direction (left-right direction) of the container body (42) of the regenerator container (40). It is equal to the height with the dimension in the thickness direction added. The outward projecting portion (43) bulges only to the right with respect to the container body portion (42), and the left side surfaces of the container body portion (42) and the outward projecting portion (43) are flush with each other. As the cool storage material filled in the cool storage material container (40), for example, a water-based, paraffin-based or the like whose freezing point is adjusted to about 3 to 10 ° C is used. Further, the amount of the cold storage material filled in the cold storage material container (40) is preferably set so as to fill the entire cold storage material container (16) up to the upper end.

蓄冷材容器(40)内には、容器本体部(42)の後側縁部から外方張り出し部(43)の前端部に至るアルミニウム製インナーフィン(44)が、上下方向のほぼ全体にわたって配置されている。インナーフィン(44)は、前後方向にのびる波頂部、前後方向にのびる波底部、および波頂部と波底部とを連結する連結部よりなるコルゲート状である。インナーフィン(44)のフィン高さは全体に等しく、蓄冷材容器(40)の容器本体部(42)および外方張り出し部(43)の左側壁内面と、容器本体部(42)の右側壁内面とにろう付されている。   Inside the cool storage material container (40), an aluminum inner fin (44) extending from the rear edge of the container main body (42) to the front end of the outwardly projecting part (43) is disposed over substantially the entire vertical direction. Has been. The inner fin (44) has a corrugated shape including a wave crest extending in the front-rear direction, a wave bottom extending in the front-rear direction, and a connecting portion connecting the wave crest and the wave bottom. The fin height of the inner fin (44) is the same as the whole, the inner surface of the left side wall of the container body (42) and the outwardly projecting part (43) of the cold storage material container (40), and the right side wall of the container body (42) It is brazed to the inner surface.

蓄冷材容器(40)は、周縁部どうしが互いにろう付された2枚の略縦長方形状アルミニウム板(45)(46)よりなる。   The cool storage material container (40) is composed of two substantially vertical rectangular aluminum plates (45) and (46) in which peripheral portions are brazed to each other.

この発明による蓄冷機能付きエバポレータは、停車時に圧縮機の駆動源であるエンジンを一時的に停止させる車両のカーエアコンを構成する冷凍サイクルに好適に用いられる。   The evaporator with a cold storage function according to the present invention is suitably used in a refrigeration cycle constituting a car air conditioner for a vehicle that temporarily stops an engine that is a drive source of a compressor when the vehicle is stopped.

(1):蓄冷機能付きエバポレータ
(13):冷媒流通管
(14):前後の冷媒流通管よりなる組
(15):通風間隙
(16)(40):蓄冷材容器
(17):アウターフィン
(21)(42):容器本体部
(22)(43):外方張り出し部
(31):フィン本体部
(32):外方張り出し部
(33):冷媒流路
(34):仕切り
(41):組み合わせ体
(1): Evaporator with cool storage function
(13): Refrigerant distribution pipe
(14): A set consisting of front and rear refrigerant distribution pipes
(15): Ventilation gap
(16) (40): Cold storage container
(17): Outer fin
(21) (42): Container body
(22) (43): Outward projecting part
(31): Fin body
(32): Outward projecting part
(33): Refrigerant flow path
(34): Partition
(41): Combination

Claims (9)

上下方向にのびるとともに幅方向が通風方向を向いた複数の扁平状冷媒流通管が、互いに間隔をおいて並列状に配置されており、少なくとも1つの冷媒流通管の少なくともいずれか片面側に、蓄冷材が封入された蓄冷材容器が配置されて冷媒流通管に熱的に接触させられ、蓄冷材容器が熱的に接触させられている冷媒流通管に、冷媒流通管の幅方向に並んだ複数の冷媒流路が仕切りを介して設けられている蓄冷機能付きエバポレータであって、
仕切りの厚みをtmm、仕切りの高さをhmm、冷媒流通管の厚み方向の寸法である管高さをHmmとした場合、0.1≦t≦0.4、0.64≦h/H≦0.86という関係を満たす蓄冷機能付きエバポレータ。
A plurality of flat refrigerant flow pipes extending in the vertical direction and having a width direction facing the ventilation direction are arranged in parallel with a space between each other, and at least one side of at least one refrigerant flow pipe has a cold storage A plurality of cold storage tubes arranged in the width direction of the refrigerant circulation pipe are arranged in the refrigerant circulation pipe in which the cold storage container filled with the material is placed and brought into thermal contact with the refrigerant circulation pipe An evaporator with a cold storage function in which the refrigerant flow path is provided via a partition,
When the thickness of the partition is tmm, the height of the partition is hmm, and the tube height that is the dimension in the thickness direction of the refrigerant flow tube is Hmm, 0.1 ≦ t ≦ 0.4, 0.64 ≦ h / H ≦ An evaporator with a cold storage function that satisfies the relationship of 0.86.
仕切りの数をn、冷媒流通管の幅をWmmとした場合、0.07≦(n×t)/W≦0.31という関係を満たす請求項1記載の蓄冷機能付きエバポレータ。 The evaporator with a cool storage function according to claim 1, wherein the number of partitions is n and the width of the refrigerant flow pipe is Wmm, and satisfies the relationship of 0.07 ≦ (n × t) /W≦0.31. 冷媒流通管の管高さH=12〜25mm、冷媒流通管の幅W=1.3〜3.0mmである請求項1または2記載の蓄冷機能付きエバポレータ。 The evaporator with a cold storage function according to claim 1 or 2, wherein a pipe height H of the refrigerant flow pipe is 12 to 25 mm and a width W of the refrigerant flow pipe is 1.3 to 3.0 mm. 隣り合う冷媒流通管どうしの間に通風間隙が形成され、全通風間隙のうち一部の複数の通風間隙に、蓄冷材が封入された蓄冷材容器が配置されるとともに両側の冷媒流通管に熱的に接触させられ、残りの通風間隙にフィンが配置され、蓄冷材容器の両側に配置された冷媒流通管に、冷媒流通管の幅方向に並んだ複数の冷媒流路が仕切りを介して設けられている請求項1〜3のうちのいずれかに記載の蓄冷機能付きエバポレータ。 Ventilation gaps are formed between adjacent refrigerant flow pipes, and a cool storage material container filled with a cool storage material is disposed in some of the ventilation gaps of all the ventilation gaps, and heat is supplied to the refrigerant flow pipes on both sides. A plurality of refrigerant flow paths arranged in the width direction of the refrigerant distribution pipe are provided via a partition in the refrigerant distribution pipes arranged on both sides of the cold storage material container. The evaporator with a cool storage function according to any one of claims 1 to 3. 蓄冷材容器が、冷媒流通管に接合された容器本体部と、容器本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器が配置された通風間隙の隣の通風間隙に配置されたフィンが、冷媒流通管に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器の外方張り出し部の両側面に、フィンの外方張り出し部が接している請求項4記載の蓄冷機能付きエバポレータ。 A cold storage material container is connected to a refrigerant body pipe, and a container main body part, and an outward projecting part provided so as to extend outward from the refrigerant circulation pipe to the leeward side edge of the container main body part. The fins arranged in the ventilation gap adjacent to the ventilation gap where the cool storage material container is provided are connected to the fin body part joined to the refrigerant circulation pipe and the leeward side edge part of the fin body part and the refrigerant circulation 5. An outward projecting portion provided so as to project outward from the pipe in the ventilation direction, and the outward projecting portion of the fin is in contact with both side surfaces of the outward projecting portion of the cold storage material container. Evaporator with cold storage function described. 幅方向を通風方向に向け、かつ通風方向に間隔をおいて配置された複数の扁平状冷媒流通管からなる組を備えており、当該組が、冷媒流通管の幅方向と直角をなす方向に間隔をおいて配置され、蓄冷材容器の容器本体部が、複数の冷媒流通管からなる組の全冷媒流通管に跨るように接合されている請求項4または5記載の蓄冷機能付きエバポレータ。 It is provided with a set of a plurality of flat refrigerant flow pipes that are oriented in the width direction in the ventilation direction and spaced apart in the ventilation direction, and the set is in a direction perpendicular to the width direction of the refrigerant flow pipe The evaporator with a cool storage function according to claim 4 or 5, wherein the evaporator main body portion of the cool storage material container is joined so as to straddle all the coolant circulation pipes of a set including a plurality of refrigerant circulation pipes. 冷媒流通管の片面側のみに蓄冷材容器が配置されて冷媒流通管に熱的に接触させられ、蓄冷材容器が、冷媒流通管に接合された容器本体部と、容器本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えている請求項1〜3のうちのいずれかに記載の蓄冷機能付きエバポレータ。 The cool storage material container is disposed only on one side of the refrigerant flow pipe and is brought into thermal contact with the refrigerant flow pipe, and the cool storage material container is joined to the refrigerant flow pipe, and the leeward side edge of the container main body part The evaporator with a cool storage function according to any one of claims 1 to 3, further comprising an outward projecting portion provided so as to project to the outside in the ventilation direction from the refrigerant circulation pipe. 冷媒流通管および冷媒流通管に接合された容器本体部を有する蓄冷材容器からなる組み合わせ体が、冷媒流通管の幅方向と直角をなす方向に間隔をおいて配置され、隣り合う組み合わせ体どうしの間が通風間隙とされ、通風間隙にフィンが配置され、1つの組み合わせ体の両側に配置された2つのフィンのうち一方のフィンが、冷媒流通管に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに冷媒流通管よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、同じく他方のフィンが、蓄冷材容器の容器本体部に接合されたフィン本体部と、フィン本体部の風下側縁部に連なるとともに容器本体部よりも通風方向外側に張り出すように設けられた外方張り出し部とを備えており、蓄冷材容器の外方張り出し部の両側面に、両側のフィンの外方張り出し部が接している請求項7記載の蓄冷機能付きエバポレータ。 A combination body composed of a refrigerant storage pipe and a cold storage material container having a container main body joined to the refrigerant distribution pipe is arranged at intervals in a direction perpendicular to the width direction of the refrigerant distribution pipe, and the adjacent combination bodies A fin body portion in which a gap is formed between the fins, fins are disposed in the ventilation gap, and one of the two fins disposed on both sides of one combination is joined to the refrigerant flow pipe, and a fin body portion And an outward projecting portion provided so as to project outward from the refrigerant flow pipe in the ventilation direction. Similarly, the other fin is joined to the container body of the regenerator container. A fin body portion and an outwardly extending portion that is connected to the leeward side edge portion of the fin body portion and extends outward from the container body portion in the ventilation direction. On both sides of the projecting portion, the both sides of the outer evaporator with a cool storage function according to claim 7, wherein the projecting portion is in contact fins. 上記各組み合わせ体の冷媒流通管が、通風方向に間隔をおいて複数配置され、当該組み合わせ体の蓄冷材容器の容器本体部が、当該組み合わせ体の全冷媒流通管に跨るように配置されて冷媒流通管に接合されている請求項8記載の蓄冷機能付きエバポレータ。 A plurality of the refrigerant circulation pipes of each combination are arranged at intervals in the ventilation direction, and the container main body of the cold storage material container of the combination is arranged so as to straddle all the refrigerant circulation pipes of the combination. The evaporator with a cool storage function according to claim 8, which is joined to the flow pipe.
JP2010253602A 2010-08-23 2010-11-12 Evaporator with cool storage function Pending JP2012102969A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010253602A JP2012102969A (en) 2010-11-12 2010-11-12 Evaporator with cool storage function
US13/214,298 US20120042687A1 (en) 2010-08-23 2011-08-22 Evaporator with cool storage function
DE102011081379A DE102011081379A1 (en) 2010-08-23 2011-08-23 Evaporator with cold storage function
CN2011203085319U CN202274681U (en) 2010-08-23 2011-08-23 Evaporator with cool storage function
CN201110242709.9A CN102374705B (en) 2010-08-23 2011-08-23 Evaporator with cool storage function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253602A JP2012102969A (en) 2010-11-12 2010-11-12 Evaporator with cool storage function

Publications (2)

Publication Number Publication Date
JP2012102969A true JP2012102969A (en) 2012-05-31
JP2012102969A5 JP2012102969A5 (en) 2013-12-26

Family

ID=46393570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253602A Pending JP2012102969A (en) 2010-08-23 2010-11-12 Evaporator with cool storage function

Country Status (1)

Country Link
JP (1) JP2012102969A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103437A1 (en) * 2014-12-26 2016-06-30 三菱電機株式会社 Refrigeration cycle apparatus
JP2017030391A (en) * 2015-07-29 2017-02-09 株式会社ケーヒン・サーマル・テクノロジー Air conditioner for vehicle
US9989315B2 (en) 2012-08-07 2018-06-05 Denso Corporation Cold storage heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281373A (en) * 1993-03-26 1994-10-07 Showa Alum Corp Refrigerant flow tube for heat exchanger
JP2002274165A (en) * 2001-01-05 2002-09-25 Behr Gmbh & Co Air conditioner for automobile
EP1407905A1 (en) * 2002-10-10 2004-04-14 Behr GmbH & Co. Air conditioner for a vehicle and corresponding method
JP2006336873A (en) * 2002-10-02 2006-12-14 Showa Denko Kk Heat exchanging tube and heat exchanger
JP2010149814A (en) * 2008-12-26 2010-07-08 Showa Denko Kk Evaporator with cold storage function
JP2010185660A (en) * 2002-10-02 2010-08-26 Showa Denko Kk Heat exchanging tube and condenser
JP2010203748A (en) * 2009-03-06 2010-09-16 Showa Denko Kk Evaporator with cold storage function

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281373A (en) * 1993-03-26 1994-10-07 Showa Alum Corp Refrigerant flow tube for heat exchanger
JP2002274165A (en) * 2001-01-05 2002-09-25 Behr Gmbh & Co Air conditioner for automobile
JP2006336873A (en) * 2002-10-02 2006-12-14 Showa Denko Kk Heat exchanging tube and heat exchanger
JP2010185660A (en) * 2002-10-02 2010-08-26 Showa Denko Kk Heat exchanging tube and condenser
EP1407905A1 (en) * 2002-10-10 2004-04-14 Behr GmbH & Co. Air conditioner for a vehicle and corresponding method
JP2010149814A (en) * 2008-12-26 2010-07-08 Showa Denko Kk Evaporator with cold storage function
JP2010203748A (en) * 2009-03-06 2010-09-16 Showa Denko Kk Evaporator with cold storage function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9989315B2 (en) 2012-08-07 2018-06-05 Denso Corporation Cold storage heat exchanger
WO2016103437A1 (en) * 2014-12-26 2016-06-30 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2016103437A1 (en) * 2014-12-26 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
JP2017030391A (en) * 2015-07-29 2017-02-09 株式会社ケーヒン・サーマル・テクノロジー Air conditioner for vehicle

Similar Documents

Publication Publication Date Title
JP5923262B2 (en) Evaporator with cool storage function
JP5674388B2 (en) Evaporator with cool storage function
JP5470385B2 (en) Evaporator with cool storage function
JP6427636B2 (en) Evaporator with cold storage function
JP5525726B2 (en) Evaporator with cool storage function
JP5542576B2 (en) Evaporator with cool storage function
JP5276954B2 (en) Evaporator with cool storage function
JP5486837B2 (en) Evaporator with cool storage function
JP5764335B2 (en) Evaporator with cool storage function
JP5624761B2 (en) Evaporator with cool storage function
JP2011006058A (en) Evaporator with cold storage function
JP2013061136A5 (en)
JP2011133127A (en) Evaporator with cold storage function
JP5717436B2 (en) Evaporator with cool storage function
JP5315094B2 (en) Evaporator with cool storage function
JP5552309B2 (en) Evaporator with cool storage function
JP2012126149A (en) Evaporator with cool storage function
JP2010139201A (en) Cold storage device and vehicle air conditioner using the same
JP2010234974A (en) Evaporator with cold storage function
JP2012102969A (en) Evaporator with cool storage function
JP2010175167A (en) Cold storage heat exchanger
JP6220692B2 (en) Heat exchanger
JP6410660B2 (en) Evaporator with cool storage function
JP2010243066A (en) Cold storage heat exchanger
JP6097520B2 (en) Evaporator with cool storage function

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141028