[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012199235A - Method of introducing nano-scale crystal defect into high temperature superconducting oxide thin film - Google Patents

Method of introducing nano-scale crystal defect into high temperature superconducting oxide thin film Download PDF

Info

Publication number
JP2012199235A
JP2012199235A JP2012051518A JP2012051518A JP2012199235A JP 2012199235 A JP2012199235 A JP 2012199235A JP 2012051518 A JP2012051518 A JP 2012051518A JP 2012051518 A JP2012051518 A JP 2012051518A JP 2012199235 A JP2012199235 A JP 2012199235A
Authority
JP
Japan
Prior art keywords
thin film
film
temperature superconducting
porous alumina
oxide thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012051518A
Other languages
Japanese (ja)
Other versions
JP5881107B2 (en
Inventor
Develos Bagarinao Katherine
カテリン デベロス バガリナオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012051518A priority Critical patent/JP5881107B2/en
Publication of JP2012199235A publication Critical patent/JP2012199235A/en
Application granted granted Critical
Publication of JP5881107B2 publication Critical patent/JP5881107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a simple method for introducing a controlled crystal defect in a (RE)BCO thin film.SOLUTION: On top of a high temperature superconducting oxide thin film, deposited on a substrate, which consists primarily of a rare earth oxide expressed by a general formula (RE)BaCuO(where, RE represents one kind of atom selected from Y, Nd, Sm, Eu, Gd, Dy, Ho, Er and Yb) is placed a porous alumina self-supporting film. And, by using the alumina film as a mask, argon ion milling is applied, whereby a nano-scale crystal defect is introduced into the high temperature superconducting oxide thin film.

Description

本発明は、高温超電導酸化物薄膜にナノスケールの結晶欠陥を導入する方法に関する。   The present invention relates to a method for introducing nanoscale crystal defects into a high-temperature superconducting oxide thin film.

超電導体は、超電導状態においては電気抵抗ゼロで大きな電流を流すことができるが、ある決まった電流値(臨界電流)より大きな電流を流すと電気抵抗が発生する。さらに電流を大きくして行くと、発生する熱のため超電導体の温度が上昇し、常電導状態になって、より大きな電気抵抗を生じる。このような超電導体の特徴を生かして、通常時は抵抗ゼロで、原理的には損失のない電力送電ケーブルや電力系統の短絡事故時に大きな抵抗を発生して事故電流の増大を抑制するような新しい電力機器(限流器)を作ることができる。そして、これらを実現する高温超電導酸化物薄膜が最も重要な材料として用いられている。   A superconductor can flow a large current with zero electric resistance in a superconducting state, but an electric resistance is generated when a current larger than a predetermined current value (critical current) flows. As the current is further increased, the temperature of the superconductor rises due to the generated heat and becomes a normal conducting state, resulting in a larger electrical resistance. Taking advantage of the characteristics of such superconductors, the resistance is normally zero, and in principle, a large resistance is generated in the event of a short circuit in a power transmission cable or power system with no loss to suppress an increase in accident current. New power equipment (current limiter) can be made. And the high temperature superconducting oxide thin film which implement | achieves these is used as the most important material.

超電導薄膜を用いた電力送電ケーブルや薄膜限流器などでは、できるだけ大きな電流を抵抗ゼロで流すことが求められ、そのためには、単位幅当りの臨界電流(臨界面電流)が高い高温超電導酸化物薄膜を作製する必要が有る。臨界面電流は、臨界電流密度(単位断面積当りの臨界電流、Jc)と膜厚の積であるので、その両者が大きい方が望ましい。 High-power superconducting oxides with high critical current per unit width (critical surface current) are required for power transmission cables and thin-film current limiters that use superconducting thin films. It is necessary to produce a thin film. Since the critical surface current is the product of the critical current density (critical current per unit cross section, J c ) and the film thickness, it is desirable that both are large.

近年、一般式(RE)Ba2Cu3x(式中、REは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Ybから選ばれる1種の原子を表す。)(以下、「(RE)BCO」ということもある。)で表される高温超電導酸化物からなる超電導体の製造プロセス技術は著しい進展を遂げている。この結果、臨界電流密度が高く結晶方位の配向した大型バルク体や、金属テープ基材上への蒸着などによる10mの長さを超えるテープ線材なども製造されている。 In recent years, the general formula (RE) Ba 2 Cu 3 O x (wherein RE represents one atom selected from Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, and Yb) (hereinafter referred to as “RE”). The manufacturing process technology of a superconductor composed of a high-temperature superconducting oxide represented by “(RE) BCO”) has made remarkable progress. As a result, large bulk bodies having a high critical current density and oriented crystal orientation, tape wires exceeding a length of 10 m by vapor deposition on a metal tape substrate, and the like are also manufactured.

(RE)BCO薄膜を基板上に成膜する方法としては、パルスレーザー蒸着法(PLD法)、真空蒸着法、各種のスパッタ法、化学蒸着法(CVD法)、MBE法、塗布熱分解法(MOD法)等の各種の方法が用いられる。
この(RE)BCO薄膜形成において自然に導入される薄膜中の欠陥、たとえば酸素欠損、微細な不純物などの点状欠陥、転位などの線状欠陥、結晶粒界などの面状欠陥は、前記量子化磁束の移動を制限するピン止めとして作用することが知られており、(RE)BCO膜では前記結晶欠陥が膜面に垂直に、すなわち、(RE)BCO結晶のc−軸に平行に入っているとき、磁場が膜面に垂直に印加された場合に臨界電流密度Jが向上する。
(RE) BCO thin films can be formed on a substrate by pulsed laser deposition (PLD), vacuum deposition, various sputtering methods, chemical vapor deposition (CVD), MBE, coating pyrolysis ( Various methods such as MOD method are used.
Defects in the thin film naturally introduced in the formation of this (RE) BCO thin film, for example, point defects such as oxygen vacancies, fine impurities, linear defects such as dislocations, and planar defects such as crystal grain boundaries It is known that it acts as a pinning to limit the movement of the magnetic flux, and in the (RE) BCO film, the crystal defects are perpendicular to the film surface, that is, parallel to the c-axis of the (RE) BCO crystal. When the magnetic field is applied perpendicularly to the film surface, the critical current density Jc is improved.

そこで、成膜時に導入されるピン止めを制御して、得られる(RE)BCO薄膜のJcを向上すべく、薄膜成長にナノ組織制御を施すことによって、YBCO薄膜に人工的な結晶欠陥を高密度に導入するプロセス開発がされ、パルスレーザー蒸着法(PLD法)による製膜用ターゲット交換法や混合ターゲット法が試みられている。
例えば、非特許文献1では、BaZrO3の混合ターゲット法では、BaZrO3がYBCO薄膜中で、直径5〜10nmの多数の柱状微粒子を形成することが示されており、また、非特許文献2では、YBCOとピン止め用Y2BaCuO5ターゲットを交互に蒸着して多層膜を作製ことによりJcの大幅な向上が得られることが報告されている。
Therefore, by controlling the pinning introduced during deposition, in order to improve the J c of the resulting (RE) BCO thin films, by applying a nanostructured control the film growth, the artificial crystal defects in YBCO films Process development to introduce a high density has been made, and a target exchange method for film formation by a pulse laser deposition method (PLD method) and a mixed target method have been tried.
For example, Non-Patent Document 1, the mixed target method BaZrO 3, BaZrO 3 is in YBCO thin film, has been shown to form a plurality of pillar-shaped particles having a diameter of 5 to 10 nm, also in non-patent document 2 significant improvement in J c has been reported to be obtained by producing a multi-layer film YBCO and pinning Y 2 BaCuO 5 targets by depositing alternately.

しかしながら、(RE)BCO成膜時の成膜条件を種々変えることにより自然に導入される転位の密度を制御することは極めて困難である。また、結晶粒界はピン止めとしても作用するが、一般には結晶粒界はランダムに存在するため結晶粒界の傾角を制御することによってJcを制御するのは極めて難しい。
このように、成膜時に自然に導入されるピン止めを制御することは困難であるので、得られた(RE)BCO薄膜のJcを向上すべく、人工的にピン止めすることが重要な課題となっている。
該課題を解決するために、例えば、非特許文献3では、YBCOへの重イオン照射によって柱状欠陥を導入することが報告されている。
However, it is extremely difficult to control the density of dislocations that are naturally introduced by variously changing the deposition conditions during the (RE) BCO deposition. In addition, although the crystal grain boundary also acts as pinning, in general, since the crystal grain boundary exists randomly, it is extremely difficult to control J c by controlling the tilt angle of the crystal grain boundary.
As described above, it is difficult to control the pinning that is naturally introduced during film formation. Therefore, it is important to artificially pin the film so as to improve J c of the obtained (RE) BCO thin film. It has become a challenge.
In order to solve this problem, for example, Non-Patent Document 3 reports that columnar defects are introduced by heavy ion irradiation to YBCO.

一方、Nb系低温超電導線材を利用し、該超電導線材により形成された超電導コイルを界磁巻線(界磁コイル)として使用した超電導モータが知られている。かかる超電導モータは、超電導界磁コイルを臨界温度以下に冷却して超電導化することで、大きな界磁電流を流し、界磁を強化することにより、大きな出力を達成可能とするものである。
非特許文献4では、ナノテクノロジーで開発され、様々なナノ組織の作製の研究が進めてきている多孔質アルミナ自立膜(下記非特許文献5参照)が、孔の寸法と分布が決まっているので、人工ピンを導入するために利用可能な材料と考え、Nb系低温超電導薄膜の上に、該多孔質アルミナ膜を直接に作製し、次いで、Arイオンミリングより人工ピンの柱状欠陥を作製する方法が試みられ、該方法で柱状欠陥を導入することよりJcを向上することに成功したと報告されている。
On the other hand, a superconducting motor using an Nb-based low-temperature superconducting wire and using a superconducting coil formed by the superconducting wire as a field winding (field coil) is known. In such a superconducting motor, a superconducting field coil is cooled to a temperature lower than the critical temperature to be superconducting so that a large field current flows and the field is strengthened to achieve a large output.
In Non-Patent Document 4, since the porous alumina self-supporting film (see Non-Patent Document 5 below), which has been developed by nanotechnology and has been researching the production of various nanostructures, has determined the size and distribution of the pores. , A material that can be used to introduce an artificial pin, a method of directly producing the porous alumina film on an Nb-based low-temperature superconducting thin film, and then producing columnar defects of the artificial pin by Ar ion milling is attempted, it has been reported to be successful in improving the J c than introducing columnar defects in the process.

J.L.MacManus-Driscoll, S.R.Foltyn, Q.X.Jia, H.Wang, A.Serquis, L.Civale, B.Maiorov,M.E.Hawley, M.P.Maley and D.E.Peterson, “Strongly enhanced current densities insuperconducting coated conductors of YBa2Cu3O7-x + BaZrO3,” Nat. Matls. 3, 439(2004).JLMacManus-Driscoll, SRFoltyn, QXJia, H.Wang, A.Serquis, L.Civale, B.Maiorov, MEHawley, MPMaley and DEPeterson, “Strongly enhanced current conductors in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3 Nat. Matls. 3, 439 (2004). T.Haugan, P.N.Barnes, R.Wheeler, F.Meisenkothenand M.Sumption, “Addition of nanoparticle dispersions to enhance flux pinningof the YBa2Cu3O7-x superconductor,” Nature 430, 867 (2004).T.Haugan, P.N.Barnes, R.Wheeler, F.Meisenkothenand M.Sumption, “Addition of nanoparticle dispersions to enhance flux pinningof the YBa2Cu3O7-x superconductor,” Nature 430, 867 (2004). L.Civale, “Vortex pinning and creepin high-temperature superconductors with columnar defects,” Supercond. Sci.Technol. 10, A11 (1997).L. Civale, “Vortex pinning and creepin high-temperature superconductors with columnar defects,” Supercond. Sci. Technol. 10, A11 (1997). R.B.Dinner, A.P.Robinson, S.L.Sahonta,J.H.Durrell, J.L.MacManus-Driscoll and M.G.Blamire, “High density magneticpinning centres via porous alumina templates,” Poster presentation at VortexMatter in Nanostructured Superconductors (Vortex VI), Rhodes, Greece, 17-24September 2010; R.B.Dinner, A.P.Robinson, S.C.Wimbush, J.L.MacManus-Driscolland M.G.Blamire, “Depairing critical current achieved in superconducting thinfilms with through-thickness arrays of artificial pinning centers,” Supercond.Sci. Technol. 24 (2011)055017.RBDinner, APRobinson, SLSahonta, JHDurrell, JLMacManus-Driscoll and MGBlamire, “High density magneticpinning centres via porous alumina templates,” Poster presentation at VortexMatter in Nanostructured Superconductors (Vortex VI), Rhodes, Greece, 17-24September 2010; RBDinner, APRobinson, SCWimbush, JLMacManus-Driscolland MGBlamire, “Depairing critical current achieved in superconducting thinfilms with through-thickness arrays of artificial pinning centers,” Supercond. Sci. Technol. 24 (2011) 055017. O.Rabin, P.R.Herz, Y.M.Lin, A.I.Akinwande,S.B.Cronin and M.S.Dresselhaus, “Formation of Thick Porous Anodic Alumina Filmsand Nanowire Arrays on Silicon Wafers and Glass,” Adv. Func. Matls. 13, 631(2003).O.Rabin, P.R.Herz, Y.M.Lin, A.I.Akinwande, S.B.Cronin and M.S.Dresselhaus, “Formation of Thick Porous Anodic Alumina Filmsand Nanowire Arrays on Silicon Wafers and Glass,” Adv. Func. Matls. 13, 631 (2003).

前述のとおり、製膜用ターゲット交換法や混合ターゲット法等の人工的なピン止め法は、最大のJcが得られるように、結晶欠陥の分布や密度を制御して薄膜中に導入することを可能にするものであるが、実際には、超電導マトリックス内部に導入された結晶欠陥の分布がランダムであり、かつ、その欠陥の寸法を制御するのが困難である。
また、(RE)BCO薄膜に柱状欠陥を簡便な方法で導入する研究に関しては、前記の重イオン照射以外の方法はまだ開発されていない。しかしながら、原理的に重イオン照射は複雑であり、かつ、製造にスケールアップが難しいという問題がある。
このように、(RE)BCO薄膜において、大面積であって、制御された結晶欠陥を簡便に導入する方法が無いのが現状である。
As mentioned above, artificial pinning methods such as the film-forming target exchange method and mixed target method should be introduced into the thin film by controlling the distribution and density of crystal defects so that the maximum J c can be obtained. In practice, however, the distribution of crystal defects introduced into the superconducting matrix is random, and the size of the defects is difficult to control.
In addition, with respect to research for introducing columnar defects into a (RE) BCO thin film by a simple method, methods other than the heavy ion irradiation have not been developed yet. However, in principle, heavy ion irradiation is complicated, and there is a problem that it is difficult to scale up in manufacturing.
As described above, in the (RE) BCO thin film, there is no method for easily introducing controlled crystal defects having a large area.

本発明は、このような現状を鑑みてなされたものであって、(RE)BCO薄膜において、制御された結晶欠陥を導入する簡便な方法を提供することを目的とするものである。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a simple method for introducing controlled crystal defects in a (RE) BCO thin film.

本発明者らは、結晶欠陥の制御を可能とするために、非特許文献4に記載されたNb薄膜にナノ欠陥を導入する方法を、(RE)BCO超電導薄膜に適用することを考え、(RE)BCO超電導薄膜上に多孔質アルミナを直接作製することを試みた。
しかしながら、陽極酸化プロセスに使用する酸溶液は(RE)BCOを溶解するために実現することができなかった。
そこで、本発明者等は、さらに検討を重ね、(RE)BCO薄膜上に陽極酸化アルミニウムを直接作製することではなく、PMMA(ポリメタクリル酸メチル)からなる保護層を有する多孔質アルミナ自立膜を用いることにより達成できるという知見を得た。
In order to enable control of crystal defects, the present inventors considered applying the method of introducing nano defects to the Nb thin film described in Non-Patent Document 4 to a (RE) BCO superconducting thin film. An attempt was made to produce porous alumina directly on a RE) BCO superconducting thin film.
However, the acid solution used in the anodization process could not be realized to dissolve (RE) BCO.
Therefore, the present inventors have further studied, and instead of directly producing anodized aluminum on a (RE) BCO thin film, a porous alumina free-standing film having a protective layer made of PMMA (polymethyl methacrylate) is used. The knowledge that it can be achieved by using was obtained.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]基板上に成膜された一般式(RE)Ba2Cu37(式中、REは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Ybから選ばれる1種の原子を表す。)で表される希土類酸化物を主成分とする高温超電導酸化物薄膜の上に、多孔質アルミナ膜を載置し、該アルミナ膜をマスクとしてアルゴンイオンミリングを行うことにより、前記高温超電導薄膜にナノスケールの結晶欠陥を導入する方法。
[2]前記多孔質アルミナ膜の平均孔径が、60〜120nmであることを特徴とする上記[1]の方法。
[3]前記多孔質アルミナ膜の厚さが、1〜5μmであって、その上にポリメタクリル酸メチルの保護膜を有することを特徴とする上記[1]の方法。
[4]前記高温超電導酸化物薄膜を、大面積PLD法、フッ素フリーMOD法及び共蒸着法のいずれかの方法により形成することを特徴とする上記[1]〜[3]のいずれかの方法。
[5]上記[1]〜[4]のいずれかの方法により、前記高温超電導酸化物薄膜中にナノサイズの制御された結晶欠陥を生じさせて得られた、高い臨界電流密度を有する超電導体。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] General formula (RE) Ba 2 Cu 3 O 7 formed on a substrate (wherein RE is one selected from Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb) By placing a porous alumina film on a high-temperature superconducting oxide thin film mainly composed of a rare earth oxide represented by the following, and performing argon ion milling using the alumina film as a mask, A method of introducing nanoscale crystal defects into the high-temperature superconducting thin film.
[2] The method according to [1] above, wherein the porous alumina membrane has an average pore size of 60 to 120 nm.
[3] The method according to [1] above, wherein the porous alumina film has a thickness of 1 to 5 μm and has a polymethyl methacrylate protective film thereon.
[4] The method according to any one of [1] to [3], wherein the high-temperature superconducting oxide thin film is formed by any one of a large area PLD method, a fluorine-free MOD method, and a co-evaporation method. .
[5] A superconductor having a high critical current density obtained by causing nano-sized controlled crystal defects in the high-temperature superconducting oxide thin film by the method according to any one of [1] to [4] above .

本願発明によって、(RE)BCO薄膜中にピン止めを導入することに成功した。これにより、高い臨界面電流を有する(RE)BCO薄膜を作製することができる。従来の重イオン照射より簡略な方法であり、かつ、人工ピンの分布や密度を正確に制御して薄膜中に導入することを可能である。また、多孔質アルミナ自立膜が破壊されるまで何回も利用ができ、効率的な方法である。   The present invention has succeeded in introducing pinning into a (RE) BCO thin film. Thereby, a (RE) BCO thin film having a high critical surface current can be produced. This method is simpler than conventional heavy ion irradiation, and can be introduced into a thin film by accurately controlling the distribution and density of artificial pins. Moreover, it can be used many times until the porous alumina free-standing film is broken, and is an efficient method.

多孔質アルミナ自立膜と超電導酸化物薄膜の位置関係を示す模式図Schematic diagram showing the positional relationship between a porous alumina free-standing film and a superconducting oxide thin film PMMA膜が施されていない市販の多孔質アルミナ自立膜(Nanomaterials社)の(a)上面と(b)断面の走査電子顕微鏡写真Scanning electron micrographs of (a) upper surface and (b) cross section of a commercially available porous alumina free-standing film (Nanomaterials) without PMMA film 製膜後(As-grown)のYBCO薄膜とアルゴンイオンミリングで処理したYBCO薄膜の表面の走査電子顕微鏡写真であり、(a)、(b)は、サンプル(a)の写真、(c)、(d)は、サンプル(b)の写真、(e)、(f)は、アンプル(c)の写真、である。It is the scanning electron micrograph of the surface of the YBCO thin film processed by Ar-ion milling with the YBCO thin film after film formation (As-grown), (a), (b) is a photograph of a sample (a), (c), (d) is a photograph of sample (b), and (e) and (f) are photographs of ampoule (c). サンプル(a)、(b)及び(c)のYBCO薄膜の膜厚に対する、77.3Kにおいて、臨界電流密度Jの変化を示す図であり、□は、As-grownYBCO薄膜の臨界電流密度、●は、多孔質アルミナ自立膜を用いてアルゴンイオンミリングで処理した後のYBCO薄膜の臨界電流密度を示す。Samples (a), with respect to the film thickness of the YBCO thin film (b) and (c), in 77.3 K, is a graph showing changes in critical current density J c, □, the critical current density of the As-grownYBCO film, ● indicates the critical current density of the YBCO thin film after being processed by argon ion milling using a porous alumina free-standing film. as-grownサンプル(a)、及びアルゴンイオンミリング後のサンプル(b)の、表面の走査電子顕微鏡写真。Scanning electron micrographs of the surface of as-grown sample (a) and sample (b) after argon ion milling. as-grownサンプル(a)、及びアルゴンイオンミリング後のサンプル(b)のAFM写真であり、(c)及び(d)は、それぞれのエッチング後のAFM写真である。It is an AFM photograph of an as-grown sample (a) and a sample (b) after argon ion milling, and (c) and (d) are AFM photographs after each etching. サンプル(5×5mm2)の77.3KにおいてJ分布マッピングを示す図であり、◆は、As-grown、□は、アルゴンイオンミリング後、▲は、アニール処理後を示す。It is a diagram showing a J c distribution mapping in 77.3K samples (5 × 5mm 2), ◆ the As-grown, □ after argon ion milling, ▲ shows after annealing.

本発明の方法は、(RE)BCO薄膜の上に、陽極酸化アルミナを直接作製することではなく、別途作製多孔質アルミナ自立膜を、(RE)BCO薄膜上に載置し、次いで、Arイオンミリングでエッチングを行うものである。そして、Arイオンミリングにより、多孔質アルミナ自立膜の下の(RE)BCO薄膜に、多孔質アルミナ自立膜の孔のパターンと同様なパターンがエッチングされる。   The method of the present invention does not directly produce anodized alumina on a (RE) BCO thin film, but separately prepares a porous alumina free-standing film on the (RE) BCO thin film, and then Ar ions Etching is performed by milling. Then, by Ar ion milling, a pattern similar to the hole pattern of the porous alumina free-standing film is etched into the (RE) BCO thin film under the porous alumina free-standing film.

図1は、本発明の、高温超電導薄膜にナノスケールの結晶欠陥を導入する方法を説明するための図であって、基板上に形成された超電導薄膜の上に載置された多孔質アルミナ自膜は、Al膜を陽極酸化して得られた膜であって、その上に保護膜としてのPMMA(ポリメタクリル酸メチル)層が設けられており、該PMMA層を介して、Ar(アルゴン)イオンミリング処理されることを模式的に示している。   FIG. 1 is a diagram for explaining a method of introducing nanoscale crystal defects in a high-temperature superconducting thin film according to the present invention, and is a method for forming porous alumina on a superconducting thin film formed on a substrate. The film is a film obtained by anodizing an Al film, on which a PMMA (polymethyl methacrylate) layer as a protective film is provided, and through this PMMA layer, Ar (argon) The ion milling process is schematically shown.

本発明は、PLD法、フッ素フリーMOD法、及び共蒸着法で作製した(RE)BCO薄膜中に制御されたナノ欠陥を導入した初めての試みであって、この簡便な方法を用いることにより、(RE)BCO薄膜中に制御された結晶欠陥が導入され、薄膜の単位幅当りの臨界電流(臨界面電流)を大きく向上させることができるものである。
また、本発明の方法は、従来の重イオン照射より簡略な方法であり、かつ、人工ピンの分布や密度を正確に制御して薄膜中に導入することを可能である。また、多孔質アルミナ自立膜が破壊されるまで何回も利用ができ、効率的な方法である。
以下、更に、詳しく説明する。
The present invention is the first attempt to introduce controlled nano-defects into a (RE) BCO thin film prepared by PLD method, fluorine-free MOD method, and co-evaporation method, and by using this simple method, A controlled crystal defect is introduced into the (RE) BCO thin film, and the critical current (critical surface current) per unit width of the thin film can be greatly improved.
The method of the present invention is a simpler method than conventional heavy ion irradiation, and can be introduced into a thin film by accurately controlling the distribution and density of artificial pins. Moreover, it can be used many times until the porous alumina free-standing film is broken, and is an efficient method.
Further details will be described below.

本発明で用いる高温超電導酸化物薄膜は、一般式(RE)Ba2Cu37(RE=Y,Nd,Sm,Eu,Gd,Dy,Ho,Er,Yb)で表される希土類酸化物を主成分とするものである。
該薄膜を形成する基板としては、サファイア基板、SrTiO3(STO)基板、LaAlO(LAO)などが用いられる。
また、基板には、格子整合と拡散防止のために、CeO2、Y23、YSZ(イットリア安定化ジルコニア)などのバッファー層が設けられる。
The high-temperature superconducting oxide thin film used in the present invention is a rare earth oxide represented by the general formula (RE) Ba 2 Cu 3 O 7 (RE = Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb). Is the main component.
As the substrate for forming the thin film, a sapphire substrate, SrTiO 3 (STO) substrate, LaAlO 3 (LAO) or the like is used.
The substrate is also provided with a buffer layer such as CeO 2 , Y 2 O 3 , YSZ (yttria stabilized zirconia) for lattice matching and prevention of diffusion.

これらの基板に、本発明の(RE)BCO薄膜を形成する方法としては、パルスレーザー蒸着法(PLD法)、真空蒸着法、各種のスパッタ法、化学蒸着法(CVD法)、MBE法、塗布熱分解法(MOD法)等の各種の方法が用いられるが、中でも、パルスレーザー蒸着法(PLD法)、フッ素フリーMOD法、及び共蒸着法が好ましく用いられる。   As a method for forming the (RE) BCO thin film of the present invention on these substrates, pulse laser deposition (PLD), vacuum deposition, various sputtering methods, chemical vapor deposition (CVD), MBE, coating, etc. Various methods such as a thermal decomposition method (MOD method) are used, and among these, a pulse laser deposition method (PLD method), a fluorine-free MOD method, and a co-evaporation method are preferably used.

前記PLD(Pulsed Laser Deposition)法は、エネルギー密度の高いパルスレーザー光をターゲット(薄膜の材料となる物質)表面に照射することにより、ターゲット表面の材料を瞬間的に剥離し、放出されるプラズマ化された原子、分子をターゲットと対向して配置された基板上に堆積させて薄膜を作製する方法である。(「レーザ光照射を併用した超電導薄膜製造」、産総研 TODAY、独立行政法人産業技術総合研究所、2006年、Vol.6−11、P12〜15参照)
また、大面積PLD法は、通常のPLDに比べ、ターゲットと基板間距離が長いため(最大14cm;通常のPLDは3〜5cm程度)、意図的に組成を化学量論組成からYリッチにずらすことになり、サファイア基板上のYBCO薄膜に適当量の空孔を導入し、クラック生成の臨界膜厚を1,000nm以上に大きく向上させることができることが報告されている(K.Develos-Bagarinao,H.Yamasaki,Y.Nakagawa,H.Obara and H.Yamada,“Microcrack-free thick YBCO/CeO2/Al2O3 films prepared by a large-area pulsed laser deposition system,”Physica C 392-396,1229(2003)参照)。本発明においては、特に好ましく用いられる。
The PLD (Pulsed Laser Deposition) method irradiates the surface of the target (substance that becomes the material of the thin film) with a pulsed laser beam having a high energy density, thereby instantaneously peeling off the material on the target surface and generating plasma. This is a method of producing a thin film by depositing the atoms and molecules formed on a substrate arranged to face the target. (Refer to “Manufacturing superconducting thin film using laser light irradiation”, AIST TODAY, National Institute of Advanced Industrial Science and Technology, 2006, Vol. 6-11, P12-15)
The large area PLD method has a longer distance between the target and the substrate than the normal PLD (maximum 14 cm; the normal PLD is about 3 to 5 cm), so the composition is intentionally shifted from the stoichiometric composition to the Y-rich. Therefore, it has been reported that an appropriate amount of vacancies can be introduced into the YBCO thin film on the sapphire substrate to greatly improve the critical film thickness for crack generation to 1,000 nm or more (K. Develos-Bagarinao, H. Yamasaki, Y. Nakagawa, H. Obara and H. Yamada, “Microcrack-free thick YBCO / CeO 2 / Al 2 O 3 films prepared by a large-area pulsed laser deposition system,” Physica C 392-396, 1229 (2003)). In the present invention, it is particularly preferably used.

また、MOD法(Metalorganic deposition、「塗布熱分解法」ともいう。)は、(RE)BCO超電導材の前躯体の溶液を線状基板、特にテープ状基板上に塗布した後、500℃付近で仮焼して熱分解させ、得られた熱分解物(MOD仮焼膜)をさらに高温(例えば800℃付近)で熱処理(本焼)することにより結晶化を行って超電導体とするものであり、主に真空中で製造される気相法(蒸着法、スパッタ法、パルスレーザー蒸着法等)に比較して製造設備が簡単で済み、この点からも低コスト化が期待される。また大面積や複雑な形状への対応が容易である等の特徴を有している。
該MOD法においては、超電導材前躯体溶液としてトリフルオロ酢酸等のフッ素含有有機酸の金属化合物溶液を用いる方法があるが、この方法では熱処理工程中で危険なフッ化水素ガスが発生する問題がある。そこで、超電導材前躯体としてフッ素を含まない金属有機化合物を用いる方法が、フッ素フリーMOD法である。(熊谷俊弥、他2名著「塗布熱分解法による超伝導膜の作製」、表面技術、社団法人表面技術協会、1991年、Vol.42、No.5、P500〜507参照)。
In addition, the MOD method (Metalorganic deposition, also referred to as “coating pyrolysis method”) is a method in which a precursor solution of (RE) BCO superconducting material is applied on a linear substrate, particularly a tape-like substrate, and then at about 500 ° C. It is calcined and thermally decomposed, and the resulting pyrolyzed product (MOD calcined film) is crystallized by heat treatment (main firing) at a higher temperature (for example, around 800 ° C.) to obtain a superconductor. Compared with the vapor phase method (evaporation method, sputtering method, pulsed laser deposition method, etc.) that is mainly manufactured in vacuum, the manufacturing equipment is simple, and in this respect, cost reduction is expected. In addition, it has features such as easy handling of large areas and complex shapes.
In the MOD method, there is a method of using a metal compound solution of a fluorine-containing organic acid such as trifluoroacetic acid as a precursor solution for a superconducting material. However, this method has a problem that dangerous hydrogen fluoride gas is generated during the heat treatment process. is there. Therefore, a method using a metal organic compound containing no fluorine as a superconductor precursor is a fluorine-free MOD method. (See Toshiya Kumagai and two other authors, “Preparation of Superconducting Films by Coating Pyrolysis,” Surface Technology, Japan Surface Technology Association, 1991, Vol. 42, No. 5, P500-507).

共蒸着法とは、MBE法(分子線エピタキシー法)を改良した成膜方法であり、基板近傍に反応ガスを導入して、蒸発源からの分子線と反応ガスとを基板表面近傍で反応させて基板上に薄膜を成長させる方法である。
現在市販されているYBCO膜は、該方法によるものである。
The co-evaporation method is a film-forming method improved from the MBE method (molecular beam epitaxy method), in which a reactive gas is introduced in the vicinity of the substrate, and the molecular beam from the evaporation source reacts with the reactive gas in the vicinity of the substrate surface. This is a method for growing a thin film on a substrate.
The YBCO membrane currently on the market is based on this method.

イオンミリングは、イオンビームを用いた加工法を意味するが、本発明では、アルゴンイオンミリングにより、(RE)BCO薄膜をエッチングするものであって、アルゴンイオンミリング装置としては、半導体製造装置などで汎用されているものを、そのまま用いることができる。   Ion milling means a processing method using an ion beam. In the present invention, the (RE) BCO thin film is etched by argon ion milling. An argon ion milling apparatus is a semiconductor manufacturing apparatus or the like. What is generally used can be used as it is.

本発明において、該エッチングのマスクとして用いる多孔質アルミナは、細孔径がナノメーターサイズで、しかも、基板に対して垂直方向にナノサイズの細孔を有するナノ構造体であって、アルミニウムの陽極酸化により得られるものである(特公平6−37291号公報)。アルミニウムの陽極酸化で作製された膜は、その作製条件によって細孔径が数ナノメーターから数十ナノメーターの範囲で制御でき、また膜の組成がアルミナであるため、相当の耐熱性と耐食性が期待できるという利点がある。
一例として、表面にPMMA膜が施されていない、市販の多孔質アルミナ自立膜(Nanomaterials社)の(a)上面と(b)断面の走査電子顕微鏡写真を図2に示す。
In the present invention, the porous alumina used as the etching mask is a nanostructure having a pore size of nanometer size and nano-sized pores in a direction perpendicular to the substrate, and anodizing aluminum (Japanese Patent Publication No. 6-37291). Films made by anodizing aluminum can be controlled in the pore size range from several nanometers to several tens of nanometers depending on the production conditions, and since the film composition is alumina, considerable heat resistance and corrosion resistance are expected. There is an advantage that you can.
As an example, FIG. 2 shows scanning electron micrographs of a (a) upper surface and (b) cross section of a commercially available porous alumina free-standing film (Nanomaterials), which is not provided with a PMMA film on the surface.

本発明において、マスクとして用いる多孔質アルミナ自立膜の厚みは、1〜5μm、好ましくは、1〜2μmである。
上記厚みでは多孔質アルミナ自立膜は非常に壊れやすいので、機械的に支えるため、膜の上にPMMA(ポリメタクリル酸メチル)を、2〜4μmの厚さにコーティングして用いるのが好ましい。
In the present invention, the thickness of the porous alumina free-standing film used as a mask is 1 to 5 μm, preferably 1 to 2 μm.
Since the porous alumina free-standing film is very fragile at the above thickness, it is preferably used by coating PMMA (polymethyl methacrylate) on the film to a thickness of 2 to 4 μm in order to support it mechanically.

また、本発明において用いる多孔質アルミナ自立膜の孔のパターンは、Arイオンミリングにより、その下の(RE)BCO薄膜に同様なエッチングパターンを形成するものである。したがって、用いる多孔質アルミナ自立膜の孔の大きさは、(RE)BCO薄膜にナノスケールの結晶欠陥を形成するのに必要な大きさであって、60〜120nm、好ましくは、100nmのものが用いられる。
また、その形状は柱状であり、Arイオンが支障なく通すために、多孔質アルミナ自立膜の厚さに沿って連続している孔が用いられる。
In addition, the porous alumina free-standing film used in the present invention has a pattern of holes formed on the underlying (RE) BCO thin film by Ar ion milling. Therefore, the pore size of the porous alumina free-standing film to be used is a size necessary for forming nanoscale crystal defects in the (RE) BCO thin film, and is 60 to 120 nm, preferably 100 nm. Used.
Moreover, the shape is columnar, and in order to allow Ar ions to pass through without hindrance, a continuous hole along the thickness of the porous alumina free-standing film is used.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
(試料の準備)
試料として、以下の、3つを用意した。
サンプル(a):大面積PLD法により作製したYBCO膜
R面(102)が表面になるようにカット・研磨したサファイア基板の上に、拡散防止と格子整合のためのCeO2バッファ層(膜厚:30nm)を大面積PLD法で成膜し、CeO層の表面平坦化のため、酸素中における高温度(1050℃)における短時間アニールを施した。このCeO2バッファ層上にYBCO薄膜を大面積PLD法により500nmの厚さで成膜した。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
(Sample preparation)
The following three samples were prepared.
Sample (a): Large YBCO film R surface produced by the area PLD method (1 1 02) is CeO 2 buffer layer for on the sapphire substrate was cut and polished so that the surface of the diffusion preventing lattice-matched ( Film thickness: 30 nm) was formed by a large area PLD method, and was annealed for a short time at a high temperature (1050 ° C.) in oxygen in order to planarize the surface of the CeO 2 layer. On this CeO 2 buffer layer, a YBCO thin film was formed to a thickness of 500 nm by the large area PLD method.

サンプル(b):フッ素フリーMOD法により作製したYBCO膜
SrTiO(STO)基板上に、CeO2バッファ層(30nm)を電子ビーム蒸着法で作製した。このCeO2バッファ層上にYBCO薄膜をフッ素フリーMOD法により780nmの厚さで成膜形成した。
Sample (b): A CeO 2 buffer layer (30 nm) was produced by electron beam evaporation on a YBCO film SrTiO 3 (STO) substrate produced by a fluorine-free MOD method . A YBCO thin film having a thickness of 780 nm was formed on the CeO 2 buffer layer by a fluorine-free MOD method.

サンプル(c):市販のYBCO膜
市販の、共蒸着法を用いて、サファイア基板上に、CeO2バッファ層(30nm)及びYBCO薄膜(300nm)が形成されたもの(THEVA社(独)製)を用いた。
Sample (c): Commercially available YBCO film A commercially available co-evaporation method is used to form a CeO 2 buffer layer (30 nm) and a YBCO thin film (300 nm) on a sapphire substrate (manufactured by THEVA (Germany)). Was used.

(実施例1)
サンプル(a)〜(c)のそれぞれについて、製膜した後(as-grown)、すなわちアルゴンイオンミリング前の表面形態を走査電子顕微鏡観察(SEM)や原子間力顕微鏡(AFM)などで観測した。
図3の左側に、as-grownの走査電子顕微鏡観察の結果を示す。
(a)、(c)及び(e)は、それぞれサンプル(a)、(b)及び(c)の写真である。
Example 1
For each of samples (a) to (c), the surface morphology after film formation (as-grown), that is, before argon ion milling, was observed with a scanning electron microscope (SEM), an atomic force microscope (AFM), or the like. .
On the left side of FIG. 3, the results of as-grown scanning electron microscope observation are shown.
(a), (c) and (e) are photographs of samples (a), (b) and (c), respectively.

次いで、上記の各サンプルの上に、多孔質アルミナ自立膜を載せ、アルゴンイオンミリングを行った。
用いた多孔質アルミナ自立膜は、面積は5mm角で、周囲を取り巻くAl膜は約2.5mmである。六角形で配置した孔は90−100nm程度で、厚みは1−2μmである。
また、アルゴンミリング装置は、伯東株式会社製(型式:3-IBE、試料室の真空度:大気圧〜6×10-4Pa、ビーム直径:3cm、ビーム加速電圧:300V、イオン電流密度:1cm2あたり1mA(入射角度0°の時)を用いた。なお、アルゴンガス流量は5.0sccmで、試料室の圧力は4×10-2Paと指定した。ビームの電圧は300V、入射角度は0°で、ビームが安定するまで2分でウォーミングアップさせ、エッチングは15〜60分間に行った。サンプルステージの面内回転速度は4.0rpmと指定した。
Next, a porous alumina free-standing film was placed on each of the above samples, and argon ion milling was performed.
The used porous alumina free-standing film has an area of 5 mm square, and the surrounding Al film is about 2.5 mm. The hexagonal holes are about 90-100 nm and the thickness is 1-2 μm.
Argon milling equipment is manufactured by Hakuto Co., Ltd. (model: 3-IBE, sample chamber vacuum: atmospheric pressure to 6 × 10 −4 Pa, beam diameter: 3 cm, beam acceleration voltage: 300 V, ion current density: 1 cm 1 mA per 2 (at an incident angle of 0 °) was used, the argon gas flow rate was 5.0 sccm, and the pressure in the sample chamber was specified as 4 × 10 −2 Pa. The beam voltage was 300 V, and the incident angle was Warming up was performed in 2 minutes until the beam was stabilized at 0 °, and etching was performed for 15 to 60 minutes, and the in-plane rotation speed of the sample stage was specified as 4.0 rpm.

アルゴンイオンミリングで処理したサンプルについて、再び、それぞれの表面形態をSEM及びAFMで観測し、as-grownの表面形態と比較した。
図3の右側に、アルゴンイオンミリング後の走査電子顕微鏡観察の結果を示す。
(b)、(d)及び(f)は、それぞれサンプル(a)を30分間ミリングした後の写真、(b)を15分間ミリングした後の写真、及び(c)を30分間ミリングした後の写真であり、いずれも、白い矢印はダメージを受けた領域を示している。
図3に示すように、アルゴンイオンミリングしたサンプルの表面における、イオンによるミリングのダメージ領域が確認された。尚、ダメージの領域の範囲は、ミリングの時間に依存した。
With respect to the sample treated by argon ion milling, the surface morphology was again observed with SEM and AFM and compared with the as-grown surface morphology.
The right side of FIG. 3 shows the result of scanning electron microscope observation after argon ion milling.
(b), (d) and (f) are photographs after milling sample (a) for 30 minutes, photographs after milling (b) for 15 minutes, and (c) after milling for 30 minutes, respectively. In each case, the white arrows indicate the damaged areas.
As shown in FIG. 3, a damaged area of milling due to ions on the surface of the sample subjected to argon ion milling was confirmed. The range of the damage area depends on the milling time.

(実施例2)
サンプル(a)〜(c)について、第3高調波誘導法の方法で臨界電流密度Jcを測定した。第3高調波誘導法では、試料面にピックアップコイルを載せ、そのコイルに交流電流を流して、コイルに誘導される第3高調波電圧(V3)を測定した。それから、V3の生じ始める時の電流値(Ith)から超電導薄膜での平均電界(Eav)とJcを求めた。この(Jc,av)対を交流電流の周波数を変えながら3回測定し、E−J特性曲線を得て、ベキ乗法則関係式 E=Ec(J/Jc)nから電界基準(Ec=1μV/cm)を用いて最終的にJを求めた。ピックアップコイルは内径0.8mm、外径2.2mmのコイルを用いた。(誘導法の詳細は文献に記載されている:H.Yamasaki,Y.Mawatari,Y.Nakagawa,T.Manabe,M.Sohma,“Automatic Measurement of the Distribution of Jc and n-Values in Large-Area Superconducting Films Using Third-Harmonic Voltages,”IEEE Trans.Appl.Supercond.vol.17 no.2,p.3487-3490,2007参照)
その結果を図4に示す。
図4に示すように、イオンミリングの効果によって、単位幅当りの臨界電流(臨界面電流)が向上した。77.3Kにおいて、大面積PLD法で形成したサンプル(a)は約5〜9%、共蒸着法で形成したサンプル(b)は約13〜18%、フッ素フリーMOD法で形成したサンプル(c)は約21〜71%というJcの向上が得られた。
(Example 2)
With respect to samples (a) to (c), the critical current density J c was measured by the third harmonic induction method. In the third harmonic induction method, a pickup coil was placed on the sample surface, an alternating current was passed through the coil, and the third harmonic voltage (V 3 ) induced in the coil was measured. Then, the average electric field (E av ) and J c in the superconducting thin film were obtained from the current value (I th ) when V 3 began to occur. This (J c, E av ) pair is measured three times while changing the frequency of the alternating current, an EJ characteristic curve is obtained, and the electric field reference is calculated from the power law relation E = E c (J / J c ) n finally sought J c using (E c = 1μV / cm) . A pickup coil having an inner diameter of 0.8 mm and an outer diameter of 2.2 mm was used. (Details of the induction method are described in the literature: H. Yamasaki, Y. Mawatari, Y. Nakagawa, T. Manabe, M. Sohma, “Automatic Measurement of the Distribution of Jc and n-Values in Large-Area Superconducting. Films Using Third-Harmonic Voltages, "IEEE Trans.Appl.Supercond.vol.17 no.2, p.3487-3490, 2007)
The result is shown in FIG.
As shown in FIG. 4, the critical current (critical surface current) per unit width was improved by the effect of ion milling. At 77.3K, the sample (a) formed by the large area PLD method is about 5 to 9%, the sample (b) formed by the co-evaporation method is about 13 to 18%, the sample formed by the fluorine-free MOD method (c ) improvement of J c was obtained of approximately 21 to 71%.

(実施例3)
アルゴンイオンミリング時間を30分に変更した以外は、実施例1と同様にして、サンプル(b)の、アルゴンイオンミリングによるダメージの領域の依存を、走査電子顕微鏡、及び原子間力顕微鏡(AFM)(スキャンエリア:5μmx5μm)により確認した。
図5は、走査電子顕微鏡観察の結果を示すものであり、(a)及び(b)は、それぞれ、as-grownサンプル、及びアルゴンイオンミリング後のサンプルを示す。
また、図6は、AFM画像(スキャンエリア:5μm×5μm)であり、(a)及び(b)は、それぞれ、as-grownのサンプル、及びアルゴンイオンミリング後のサンプルを示す。
図6のAFM画像に示すように、微細構造について、as-grownサンプルと比較して、アルゴンイオンミリングしたサンプルの表面形態は基本的に同様に見えるが、白い矢印が示しているように、スパッタの残骸が観察される。
(Example 3)
Except that the argon ion milling time was changed to 30 minutes, in the same manner as in Example 1, the dependence of the damage area caused by argon ion milling on the sample (b) was determined by using a scanning electron microscope and an atomic force microscope (AFM). (Scan area: 5 μm × 5 μm).
FIG. 5 shows the results of scanning electron microscope observation. (A) and (b) show an as-grown sample and a sample after argon ion milling, respectively.
FIG. 6 is an AFM image (scan area: 5 μm × 5 μm), and (a) and (b) show an as-grown sample and a sample after argon ion milling, respectively.
As shown in the AFM image of FIG. 6, the surface morphology of the sample subjected to argon ion milling basically looks similar to the as-grown sample for the fine structure, but as shown by the white arrow, the sputter The remains of are observed.

(実施例4)
次に、実施例3におけるサンプルを、0.15vol%Br−ethanol溶液で2−3秒にエッチングを行い、欠陥の存在を、AFM観察で確認した。
図6(c)及び(d)に、それぞれ、as-grownのサンプル、及びアルゴンイオンミリング後のサンプルの結果を示す。
図6(c)、(d)では、自然の欠陥またはミリングで導入された欠陥は、AFMで観測されるエッチピットとして現れている(白い矢印で示す)。As-grownと比較して、アルゴンイオンミリングしたサンプルのエッチピットの密度が3倍ぐらい増加したことが分かった。
Example 4
Next, the sample in Example 3 was etched with a 0.15 vol% Br-ethanol solution for 2-3 seconds, and the presence of defects was confirmed by AFM observation.
FIGS. 6C and 6D show the results of the as-grown sample and the sample after argon ion milling, respectively.
6C and 6D, natural defects or defects introduced by milling appear as etch pits observed by AFM (indicated by white arrows). Compared with As-grown, it was found that the density of etch pits in the argon ion milled sample increased by about 3 times.

(実施例5)
フッ素フリーMOD法により作製したYBCO膜(膜厚700nm)の、As-grown(◆)と、アルゴンイオンミリング後(□)の、77.3Kにおいて臨界電流密度(Jc)の分布を測定した。
図7は、Jc分布マッピングを示す図であり、横軸のグリッド位置1〜9は、図中に示す、サンプル(5×5mm2)の上段の左から順に「1〜3」、中段の左から順に「4〜6」、下段の左から順に「7〜9」とした位置に対応している。
図7に示すように、より高いJc値(1.7MA/cm2以上)を持つMODサンプルについて、アルゴンイオンミリングした後に、Jcの変化がない、又は劣化が見られた。これは、イオン照射による膜へのダメージが発生したものと考えられる。
超電導薄膜において、酸素熱処理アニールを行うと、超電導特性及び結晶性を回復できることが知られている(Yijie Li,S.Linzen,F.Machalett,F.Schmidl,P.Seidel,“Recovery of superconductivity and recrystallization of ion-damaged YBa2Cu307-x films after thermal annealing treatment,”Physica C vol.243,pp.294-302,1995 参照)。
そこで、イオンミリング後のサンプルに、450℃で酸素熱処理アニールを行った後、同様にして、臨界電流密度(Jc)の分布を測定した。
アニール処理後のサンプルの臨界電流密度(Jc)の分布を、図7に、▲で示した。
その結果からわかるように、約5×5mm2のサンプルにおいて、前記のアニール処理を施すことにより、自己磁界中のJcの値と均一性を向上させることができた。
(Example 5)
The distribution of critical current density (J c ) at 77.3 K of As-grown (♦) and after argon ion milling (□) of a YBCO film (film thickness 700 nm) produced by the fluorine-free MOD method was measured.
FIG. 7 is a diagram showing Jc distribution mapping. Grid positions 1 to 9 on the horizontal axis are “1 to 3” in order from the left of the upper stage of the sample (5 × 5 mm 2 ) shown in the figure, The positions correspond to “4 to 6” in order from the left and “7 to 9” in order from the left in the lower row.
As shown in FIG. 7, the MOD sample having a higher J c value (1.7 MA / cm 2 or more) showed no change in J c or deterioration after argon ion milling. This is considered that the film | membrane was damaged by ion irradiation.
It is known that superconducting thin film can recover superconducting properties and crystallinity by annealing with oxygen heat treatment in superconducting thin films (Yijie Li, S. Linzen, F. Machalett, F. Schmidl, P. Seidel, “Recovery of superconductivity and recrystallization. of ion-damaged YBa 2 Cu 3 0 7-x films after thermal annealing treatment, “Physica C vol. 243, pp. 294-302, 1995).
Thus, after the ion milled sample was subjected to oxygen heat treatment annealing at 450 ° C., the distribution of critical current density (J c ) was measured in the same manner.
The distribution of critical current density (J c ) of the sample after the annealing treatment is shown by ▲ in FIG.
As can be seen from the results, it was possible to improve the value and uniformity of J c in the self-magnetic field by applying the annealing treatment to a sample of about 5 × 5 mm 2 .

Claims (5)

基板上に成膜された一般式(RE)Ba2Cu37(式中、REは、Y、Nd、Sm、Eu、Gd、Dy、Ho、Er、Ybから選ばれる1種の原子を表す。)で表される希土類酸化物を主成分とする高温超電導酸化物薄膜の上に、多孔質アルミナ膜を載置し、該アルミナ膜をマスクとしてアルゴンイオンミリングを行うことにより、前記高温超電導薄膜にナノスケールの結晶欠陥を導入する方法。 A general formula (RE) Ba 2 Cu 3 O 7 formed on a substrate (wherein RE is an atom selected from Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, and Yb) A porous alumina film is placed on the high-temperature superconducting oxide thin film mainly composed of the rare earth oxide represented by the following formula, and argon ion milling is performed using the alumina film as a mask. A method of introducing nanoscale crystal defects into a thin film. 前記多孔質アルミナ膜の平均孔径が、60〜120nmであることを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein an average pore diameter of the porous alumina membrane is 60 to 120 nm. 前記多孔質アルミナ膜の厚さが、1〜5μmであって、その上にポリメタクリル酸メチルの保護膜を有することを特徴とする請求項1に記載の方法。   The method according to claim 1, wherein the porous alumina film has a thickness of 1 to 5 μm and has a polymethyl methacrylate protective film thereon. 前記高温超電導酸化物薄膜を、大面積PLD法、フッ素フリーMOD法及び共蒸着法のいずれかの方法により形成することを特徴とする請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the high-temperature superconducting oxide thin film is formed by any one of a large area PLD method, a fluorine-free MOD method, and a co-evaporation method. 請求項1〜4のいずれかの方法により、前記高温超電導酸化物薄膜中にナノサイズの制御された結晶欠陥を生じさせて得られた、高い臨界電流密度を有する超電導体。   A superconductor having a high critical current density obtained by causing nanosized controlled crystal defects in the high-temperature superconducting oxide thin film by the method according to any one of claims 1 to 4.
JP2012051518A 2011-03-08 2012-03-08 Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films Expired - Fee Related JP5881107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012051518A JP5881107B2 (en) 2011-03-08 2012-03-08 Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011050340 2011-03-08
JP2011050340 2011-03-08
JP2012051518A JP5881107B2 (en) 2011-03-08 2012-03-08 Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films

Publications (2)

Publication Number Publication Date
JP2012199235A true JP2012199235A (en) 2012-10-18
JP5881107B2 JP5881107B2 (en) 2016-03-09

Family

ID=47181217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051518A Expired - Fee Related JP5881107B2 (en) 2011-03-08 2012-03-08 Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films

Country Status (1)

Country Link
JP (1) JP5881107B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209363A (en) * 2014-04-28 2015-11-24 国立大学法人島根大学 Re123 crystal film forming method
DE102017006894A1 (en) 2016-07-20 2018-01-25 Jeol Ltd. Method for producing a detection coil for magnetic resonance measurements
CN113387388A (en) * 2021-06-15 2021-09-14 中国科学院近代物理研究所 Nano porous tungsten trioxide material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494179A (en) * 1990-08-10 1992-03-26 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film device
JPH04192217A (en) * 1990-11-26 1992-07-10 Toshiba Corp Superconductive member
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP2008140789A (en) * 2006-11-29 2008-06-19 National Institute Of Advanced Industrial & Technology Superconducting oxide multilayer thin film on sapphire substrate and its production process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0494179A (en) * 1990-08-10 1992-03-26 Nippon Telegr & Teleph Corp <Ntt> Production of oxide superconducting thin film device
JPH04192217A (en) * 1990-11-26 1992-07-10 Toshiba Corp Superconductive member
JP2005078939A (en) * 2003-08-29 2005-03-24 Japan Science & Technology Agency Superconducting film and its manufacturing method
JP2008140789A (en) * 2006-11-29 2008-06-19 National Institute Of Advanced Industrial & Technology Superconducting oxide multilayer thin film on sapphire substrate and its production process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209363A (en) * 2014-04-28 2015-11-24 国立大学法人島根大学 Re123 crystal film forming method
DE102017006894A1 (en) 2016-07-20 2018-01-25 Jeol Ltd. Method for producing a detection coil for magnetic resonance measurements
US10571533B2 (en) 2016-07-20 2020-02-25 Jeol Ltd. Method for manufacturing detection coil for magnetic resonance measurement
CN113387388A (en) * 2021-06-15 2021-09-14 中国科学院近代物理研究所 Nano porous tungsten trioxide material and preparation method thereof

Also Published As

Publication number Publication date
JP5881107B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
US10446294B2 (en) Coated conductor high temperature superconductor carrying high critical current under magnetic field by intrinsic pinning centers, and methods of manufacture of same
JP5858912B2 (en) Superconducting material with prefabricated nanostructures to improve flux pinning
US20110034336A1 (en) CRITICAL CURRENT DENSITY ENHANCEMENT VIA INCORPORATION OF NANOSCALE Ba2(Y,RE)NbO6 IN REBCO FILMS
JP2022508690A (en) Superconductor magnetic flux pinning without columnar defects
JPH04305016A (en) Alligned superconductive film and epitaxial method of growing said film
JP5881107B2 (en) Method for introducing nanoscale crystal defects into high temperature superconducting oxide thin films
US9362025B1 (en) Coated conductor high temperature superconductor carrying high critical current under magnetic field by intrinsic pinning centers, and methods of manufacture of same
Zhou et al. Flux pinning in MOD YBCO films by chemical doping
JP2003300726A (en) Tape-like oxide superconductor and manufacturing method therefor
Zhou et al. Strontium titanate buffer layers deposited on rolled Ni substrates with metal organic deposition
Holesinger et al. Liquid mediated growth and the bimodal microstructure of YBa2Cu3O7− δ films made by the ex situ conversion of physical vapor deposited BaF2 precursors
Solovyov et al. Nature of Y1Ba2Cu3O7 nucleation centers on ceria buffers
US20110045984A1 (en) Superconductive Compositions with Enhanced Flux Pinning
JP5096422B2 (en) Substrate and superconducting wire manufacturing method
JP4852693B2 (en) Preparation method of superconducting oxide thin film with high critical current density
Develos-Bagarinao et al. Enhanced flux pinning in MOD YBa2Cu3O7− δ films by ion milling through anodic alumina templates
Li et al. Microstructures and enhancement of critical current density in YBa/sub 2/Cu/sub 3/O/sub 7/thin films grown by pulsed laser deposition on various single crystal substrates modified by Ag nano-dots
JP2005001935A (en) Method for producing thin oxide film
JP2011253768A (en) Method of manufacturing oxide superconductor thin film
WO2013153651A1 (en) Oxide superconductor thin-film wiring material, and production method therefor
JP2011253766A (en) Method of manufacturing oxide superconductor thin film
WO2017060968A1 (en) Oxide superconducting wire
Kai et al. Influence of Growth Temperature on Microstructure and Superconducting Properties of ${\rm ErBa} _ {2}{\rm Cu} _ {3}{\rm O} _ {7-\delta} $ Films With ${\rm Ba}({\rm Er} _ {0.5}{\rm Nb} _ {0.5}){\rm O} _ {3} $ Nanorods
Mancini et al. MgO/TiN buffer layer structures for coated conductor development on Cu-based substrates
Wang et al. Pulsed Laser Deposition of a Single Buffer Layer of LaMnO 3 for YBa 2 Cu 3 O 7− x Coated Conductors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160127

R150 Certificate of patent or registration of utility model

Ref document number: 5881107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees