JP2012188642A - Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body - Google Patents
Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body Download PDFInfo
- Publication number
- JP2012188642A JP2012188642A JP2011206315A JP2011206315A JP2012188642A JP 2012188642 A JP2012188642 A JP 2012188642A JP 2011206315 A JP2011206315 A JP 2011206315A JP 2011206315 A JP2011206315 A JP 2011206315A JP 2012188642 A JP2012188642 A JP 2012188642A
- Authority
- JP
- Japan
- Prior art keywords
- polypropylene resin
- particles
- resin particles
- weight
- foaming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002245 particle Substances 0.000 title claims abstract description 254
- 238000000465 moulding Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229920005673 polypropylene based resin Polymers 0.000 title abstract description 12
- 229920005989 resin Polymers 0.000 claims abstract description 257
- 239000011347 resin Substances 0.000 claims abstract description 257
- 238000005187 foaming Methods 0.000 claims abstract description 96
- 239000000178 monomer Substances 0.000 claims abstract description 58
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 53
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000004088 foaming agent Substances 0.000 claims abstract description 34
- -1 polypropylene Polymers 0.000 claims description 129
- 229920001155 polypropylene Polymers 0.000 claims description 127
- 239000004743 Polypropylene Substances 0.000 claims description 126
- 238000002844 melting Methods 0.000 claims description 37
- 230000008018 melting Effects 0.000 claims description 36
- 238000001938 differential scanning calorimetry curve Methods 0.000 claims description 22
- 238000010438 heat treatment Methods 0.000 claims description 15
- 239000000155 melt Substances 0.000 claims description 13
- 239000002952 polymeric resin Substances 0.000 claims description 5
- 229920003002 synthetic resin Polymers 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 41
- 238000006116 polymerization reaction Methods 0.000 abstract description 30
- 238000005470 impregnation Methods 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 6
- 239000002994 raw material Substances 0.000 description 25
- 229920005990 polystyrene resin Polymers 0.000 description 22
- 239000006260 foam Substances 0.000 description 20
- 238000005336 cracking Methods 0.000 description 19
- 238000004581 coalescence Methods 0.000 description 17
- 239000004604 Blowing Agent Substances 0.000 description 16
- 230000004927 fusion Effects 0.000 description 15
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 14
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 239000001273 butane Substances 0.000 description 13
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 12
- 239000003795 chemical substances by application Substances 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000012736 aqueous medium Substances 0.000 description 9
- 238000010097 foam moulding Methods 0.000 description 9
- 239000003505 polymerization initiator Substances 0.000 description 9
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 8
- 239000004793 Polystyrene Substances 0.000 description 8
- 238000002835 absorbance Methods 0.000 description 7
- 239000007900 aqueous suspension Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000000379 polymerizing effect Effects 0.000 description 7
- 229920002223 polystyrene Polymers 0.000 description 7
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 7
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 238000011088 calibration curve Methods 0.000 description 6
- 239000002270 dispersing agent Substances 0.000 description 6
- 239000003063 flame retardant Substances 0.000 description 6
- 239000011342 resin composition Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229920005672 polyolefin resin Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- XZTWHWHGBBCSMX-UHFFFAOYSA-J dimagnesium;phosphonato phosphate Chemical compound [Mg+2].[Mg+2].[O-]P([O-])(=O)OP([O-])([O-])=O XZTWHWHGBBCSMX-UHFFFAOYSA-J 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920013716 polyethylene resin Polymers 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- XMGQYMWWDOXHJM-JTQLQIEISA-N (+)-α-limonene Chemical compound CC(=C)[C@@H]1CCC(C)=CC1 XMGQYMWWDOXHJM-JTQLQIEISA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000004794 expanded polystyrene Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 239000007870 radical polymerization initiator Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 1
- KDGNCLDCOVTOCS-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OOC(C)(C)C KDGNCLDCOVTOCS-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- DDUBCYUFQLRWHL-UHFFFAOYSA-N 1-tert-butylperoxy-3,3,5-trimethylcyclohexane-1-carboxylic acid Chemical compound CC1CC(C)(C)CC(C(O)=O)(OOC(C)(C)C)C1 DDUBCYUFQLRWHL-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- RFSCGDQQLKVJEJ-UHFFFAOYSA-N 2-methylbutan-2-yl benzenecarboperoxoate Chemical compound CCC(C)(C)OOC(=O)C1=CC=CC=C1 RFSCGDQQLKVJEJ-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- RDOFJDLLWVCMRU-UHFFFAOYSA-N Diisobutyl adipate Chemical compound CC(C)COC(=O)CCCCC(=O)OCC(C)C RDOFJDLLWVCMRU-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- VBICKXHEKHSIBG-UHFFFAOYSA-N beta-monoglyceryl stearate Natural products CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940043256 calcium pyrophosphate Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 229940031769 diisobutyl adipate Drugs 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- CIKJANOSDPPCAU-UHFFFAOYSA-N ditert-butyl cyclohexane-1,4-dicarboperoxoate Chemical compound CC(C)(C)OOC(=O)C1CCC(C(=O)OOC(C)(C)C)CC1 CIKJANOSDPPCAU-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- QWTDNUCVQCZILF-UHFFFAOYSA-N iso-pentane Natural products CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920006113 non-polar polymer Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229920006112 polar polymer Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920006327 polystyrene foam Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 229920005653 propylene-ethylene copolymer Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- SWAXTRYEYUTSAP-UHFFFAOYSA-N tert-butyl ethaneperoxoate Chemical compound CC(=O)OOC(C)(C)C SWAXTRYEYUTSAP-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
Landscapes
- Graft Or Block Polymers (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Molding Of Porous Articles (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
本発明は、改質ポリプロピレン系樹脂の予備発泡粒子およびその発泡成形体の製造方法に関する。さらに詳しくは、本発明は、通常のポリプロピレン系樹脂の発泡方法ではなく、一般的なポリスチレン系樹脂の発泡方法による、改質ポリプロピレン系樹脂の予備発泡粒子およびその発泡成形体の製造方法に関する。 The present invention relates to pre-expanded particles of a modified polypropylene resin and a method for producing a foamed molded product thereof. More specifically, the present invention relates to a method for producing pre-expanded particles of a modified polypropylene resin and a foamed molded product thereof by a general polystyrene resin foaming method, rather than a normal polypropylene resin foaming method.
熱可塑性樹脂発泡体としては、主にスチレン系樹脂粒子、ポリエチレン系樹脂粒子およびポリプロピレン系樹脂粒子を用いたものが知られている。
これらの中でも、ポリプロピレン系樹脂粒子を用いた発泡体は、耐熱性が高いため、耐熱性を必要とする用途に広く使用されている。
しかしながら、ポリプロピレン系樹脂を予備発泡させるためには、耐圧容器を用いて揮発性発泡剤をポリプロピレン系樹脂粒子に含浸させ、揮発性発泡剤の蒸気圧以上の加圧下で容器内の温度、圧力を一定に保持しながら、ポリプロピレン系樹脂粒子と水との分散物を容器内よりも低圧の雰囲気下に放出するという特殊な方法を必要とする(以下「放出発泡」という)。
ポリプロピレン系樹脂は、ポリスチレン系樹脂と比較して耐熱性が高く、ガス保持性が低く、発泡性が低いという物性を有することから、その発泡方法として、放出発泡が広く用いられているが、その方法自体が複雑であり、単独の設備が必要になるという課題がある。
As thermoplastic resin foams, those using mainly styrene resin particles, polyethylene resin particles and polypropylene resin particles are known.
Among these, foams using polypropylene resin particles are widely used for applications requiring heat resistance because of their high heat resistance.
However, in order to pre-expand the polypropylene resin, a volatile foaming agent is impregnated into the polypropylene resin particles using a pressure resistant container, and the temperature and pressure in the container are adjusted under a pressure higher than the vapor pressure of the volatile foaming agent. A special method is required in which a dispersion of polypropylene resin particles and water is released under a lower pressure atmosphere than the inside of the container (hereinafter referred to as “release foaming”) while being kept constant.
Polypropylene resins have high heat resistance, low gas retention and low foaming properties compared to polystyrene resins, and as a foaming method, release foam is widely used. The method itself is complicated, and there is a problem that a single facility is required.
これに対して、ポリスチレン系樹脂発泡体は、ポリプロピレン系樹脂発泡体と比較して耐熱性に劣るものの、一般的にポリスチレン系樹脂粒子を予備発泡させるためには、予備発泡槽内に発泡性熱可塑性粒子を投入し、攪拌しながら蒸気を流通させ加熱発泡させる方法が用いられる(以下「蒸気発泡」という)。
そこで、ポリプロピレン系樹脂をポリスチレン系樹脂と同様に、蒸気発泡により発泡可能とする方法が望まれていた。
In contrast, polystyrene resin foams are inferior in heat resistance to polypropylene resin foams, but in general, in order to pre-expand polystyrene resin particles, foam heat A method is used in which plastic particles are introduced and steam is circulated and heated while stirring (hereinafter referred to as “steam foaming”).
Therefore, a method has been desired in which a polypropylene resin can be foamed by vapor foaming in the same manner as a polystyrene resin.
特開平7−133398号公報(特許文献1)には、加工性や無極性ポリマーと極性ポリマーとの相溶性の改良効果に優れた改質ポリオレフィン系樹脂組成物、加工性、耐衝撃性、剛性、表面性にすぐれたポリオレフィン系樹脂組成物ならびにそれらからなる発泡成形体を提供する、結晶性ポリオレフィン(a)100重量部に対してビニル系単量体成分(b)1〜500重量部および(b)100重量部に対してラジカル重合開始剤(c)0.01〜10重量部を含有した水性懸濁液を、場合により成分(b)がそれ単独では重合しない条件下で加熱したのち、成分(b)を成分(a)に含浸させ、水性懸濁液を成分(a)の結晶部分が融解を開始する温度以上に加熱し、成分(b)を重合させてなる樹脂組成物(d)100重量部に安定化剤(e)を0.01〜20重量部含有させた改質ポリオレフィン系樹脂組成物、それを含有してなるポリオレフィン系樹脂組成物、それらからなる発泡成形体が開示されている。 Japanese Patent Application Laid-Open No. 7-133398 (Patent Document 1) describes a modified polyolefin resin composition excellent in processability and the effect of improving the compatibility between a nonpolar polymer and a polar polymer, processability, impact resistance, and rigidity. And a polyolefin resin composition having excellent surface properties and a foamed molded article comprising the same, and vinyl monomer component (b) 1 to 500 parts by weight with respect to 100 parts by weight of crystalline polyolefin (a) and ( b) after heating an aqueous suspension containing 0.01 to 10 parts by weight of the radical polymerization initiator (c) with respect to 100 parts by weight under conditions where the component (b) is not polymerized by itself, A resin composition (d) obtained by impregnating component (b) into component (a), heating the aqueous suspension above the temperature at which the crystalline portion of component (a) starts melting, and polymerizing component (b) ) Stable to 100 parts by weight Agent (e) a modified polyolefin resin composition containing 0.01 to 20 parts by weight, the polyolefin resin composition comprising the same, foam molded body is disclosed consisting.
特開平9−194623号公報(特許文献2)には、優れた加工性を有するポリプロピレン系樹脂からなる予備発泡粒子およびそれを型内成形してなる発泡成形体を提供する、ポリプロピレン(a)100重量部に対してビニル系単量体成分(b)1〜500重量部および成分(b)100重量部に対してラジカル重合開始剤(c)0.01〜10重量部を含有した水性懸濁液を、場合により実質的に成分(b)がそれ単独では重合しない条件下で加熱したのち、成分(b)を成分(a)に含浸させ、さらに水性懸濁液を成分(a)の結晶部分が実質的に融解を開始する温度以上の高温に加熱し、成分(b)を重合させてなる改質ポリプロピレン系樹脂組成物からなる予備発泡粒子およびそれを型内成形してなる発泡成形体が開示されている。 Japanese Patent Laid-Open No. 9-194623 (Patent Document 2) discloses a polypropylene (a) 100 that provides pre-expanded particles made of a polypropylene-based resin having excellent processability and a foam-molded product obtained by molding the same in-mold. Aqueous suspension containing 1 to 500 parts by weight of vinyl monomer component (b) with respect to parts by weight and 0.01 to 10 parts by weight of radical polymerization initiator (c) with respect to 100 parts by weight of component (b) The liquid is optionally heated under conditions in which component (b) is not polymerized by itself, component (b) is impregnated in component (a), and the aqueous suspension is further crystallized in component (a). Pre-expanded particles comprising a modified polypropylene-based resin composition obtained by polymerizing component (b) by heating to a temperature higher than the temperature at which the part substantially starts to melt, and a foamed molded product obtained by molding the same in-mold Is disclosed
特許文献1および2では、ポリプロピレン系樹脂にビニル系単量体成分を含ませて加工性や耐衝撃性などを改良しようとしているが、ビニル系単量体成分が少ない場合に十分な加工性を得るためには、発泡成形法での成形は技術的課題が多く特殊な装置が必要となり、一方ビニル系成分を多くした場合には耐熱性が低くなるという課題がある。 In Patent Documents 1 and 2, an attempt is made to improve workability and impact resistance by adding a vinyl monomer component to a polypropylene resin, but sufficient workability is obtained when there are few vinyl monomer components. In order to obtain it, molding by the foam molding method has many technical problems and requires a special apparatus. On the other hand, when the vinyl component is increased, there is a problem that heat resistance is lowered.
特許第4064811号公報(特許文献3)には、低温のスチームで発泡粒子相互の融着を達成することができ、かつ高剛性の(圧縮強度の高い)発泡粒子成形体を与え得る無架橋ポリプロピレン系樹脂発泡粒子を安定して製造できる方法および無架橋ポリプロピレン系樹脂発泡粒子を工業的に有利に製造する方法が開示されている。
特許文献3では、高融点のポリプロピレン粒子表面を有機過酸化物により実質的に無架橋の表面に改質して、発泡成形体の耐熱性を損なうことなく、低温のスチームでも成形可能な予備発泡粒子を得ているが、依然として、発泡に関しては放出発泡が必要であり、既存のEPS発泡機は使用できないという課題がある。
Japanese Patent No. 4064811 (Patent Document 3) discloses a non-crosslinked polypropylene that can achieve fusion between foamed particles with low-temperature steam and can provide a foamed molded article having high rigidity (high compressive strength). Disclosed are methods for stably producing resin-based expanded resin particles and methods for industrially advantageously producing non-crosslinked polypropylene-based resin expanded particles.
In Patent Document 3, a high-melting polypropylene particle surface is modified with an organic peroxide to a substantially non-crosslinked surface, and pre-foaming that can be molded even with low-temperature steam without impairing the heat resistance of the foam-molded product. Although the particles are obtained, there is still a problem that the foaming needs to be foamed and the existing EPS foaming machine cannot be used.
国際公開第2007/99833号(特許文献4)には、多量のポリスチレン系樹脂で改質した改質ポリプロピレン系樹脂発泡粒子が開示されている。この発泡粒子はスチレン系樹脂発泡粒子に比べて耐薬品性や耐熱性、耐穿孔衝撃性に優れるものであるが、ポリプロピレン系樹脂の割合が多くなると従来の予備発泡方法では高発泡倍率の発泡粒子が得られないという課題がある。 International Publication No. 2007/99833 (Patent Document 4) discloses modified polypropylene resin expanded particles modified with a large amount of polystyrene resin. These expanded particles are superior in chemical resistance, heat resistance, and perforation impact resistance compared to expanded polystyrene particles. However, if the proportion of polypropylene resin is increased, expanded foam particles with a high expansion ratio can be obtained by the conventional pre-expand method. There is a problem that cannot be obtained.
本発明は、通常のポリプロピレン系樹脂の発泡方法ではなく、一般的なポリスチレン系樹脂の発泡方法による、ポリスチレン系樹脂の発泡成形体とポリプロピレン系樹脂の発泡成形体の双方における欠点を改善し得る、機械特性、耐熱性、耐薬品性および成形性などに優れた高発泡倍率の改質ポリプロピレン系樹脂の予備発泡粒子およびその発泡成形体の製造方法を提供することを課題とする。 The present invention can improve the disadvantages of both the polystyrene resin foam molding and the polypropylene resin foam molding by the general polystyrene resin foaming method, rather than the usual polypropylene resin foaming method, It is an object of the present invention to provide a pre-expanded particle of a modified polypropylene resin having a high expansion ratio and excellent in mechanical properties, heat resistance, chemical resistance, moldability, and the like, and a method for producing the expanded molded body.
本発明者らは、上記の課題を実現するために鋭意研究を重ねた結果、ポリプロピレン系樹脂粒子として特定の融点をもつポリプロピレン系樹脂粒子を使用し、架橋性の芳香族系ビニル単量体を加えて、特定の温度範囲で重合させることによって、芳香族系ビニル樹脂が架橋され、粒子表面近傍ではポリプロピレン系樹脂が多くなり、粒子中心部に近づくと芳香族系ビニル樹脂が多くなり、またポリプロピレン系樹脂と芳香族系ビニル樹脂とが明瞭な海島構造を形成している改質ポリプロピレン系樹脂粒子が得られることを知見した。
さらに、このように製造した海島構造を有する改質ポリプロピレン系樹脂粒子は、発泡剤を含浸させて得られた発泡性樹脂粒子を予備発泡後、この発泡粒子を成形型に充填して型内発泡成形した場合に、ポリプロピレン系樹脂とポリスチレン系樹脂のそれぞれの長所が生かされ、剛性、発泡成形性、耐熱性、耐薬品性および耐衝撃性に優れた改質ポリプロピレン系発泡成形体が得られることを知見し、本発明を完成させた。
As a result of intensive research in order to achieve the above-mentioned problems, the present inventors have used polypropylene resin particles having a specific melting point as polypropylene resin particles, and obtained a crosslinkable aromatic vinyl monomer. In addition, by polymerizing in a specific temperature range, the aromatic vinyl resin is cross-linked, the amount of the polypropylene resin increases in the vicinity of the particle surface, the amount of the aromatic vinyl resin increases near the particle center, and the polypropylene. It was found that modified polypropylene resin particles in which a clear resin and an aromatic vinyl resin form a clear sea-island structure can be obtained.
Furthermore, the modified polypropylene resin particles having the sea-island structure manufactured in this way are pre-foamed with foamable resin particles obtained by impregnating a foaming agent, and then the foamed particles are filled into a mold and foamed in the mold. When molded, the advantages of each of polypropylene resin and polystyrene resin can be utilized to obtain a modified polypropylene foam molded article with excellent rigidity, foam moldability, heat resistance, chemical resistance and impact resistance. As a result, the present invention was completed.
かくして、本発明によれば、ポリプロピレン系樹脂100重量部を、多官能性単量体を0.1〜1重量%含む芳香族系ビニル単量体40〜100重量部に由来する重合樹脂で改質し、かつ測定1回目のDSC曲線において少なくとも2つのピークを有しかつ最も低い側のピークが110〜130℃の範囲に存在する改質ポリプロピレン系樹脂粒子を用い、前記改質ポリプロピレン系樹脂粒子100重量部に対して発泡剤20〜50重量部を用いて含浸処理して発泡性改質ポリプロピレン系樹脂粒子を得、得られた発泡性改質ポリプロピレン系樹脂粒子を0.1〜0.2MPaの圧力の加熱水蒸気で5〜60秒間加熱することで予備発泡させて、嵩密度が0.01〜0.07g/cm3である改質ポリプロピレン系樹脂の予備発泡粒子を得ることを特徴とする予備発泡粒子の製造方法が提供される。 Thus, according to the present invention, 100 parts by weight of a polypropylene resin is modified with a polymer resin derived from 40 to 100 parts by weight of an aromatic vinyl monomer containing 0.1 to 1% by weight of a polyfunctional monomer. And using the modified polypropylene resin particles having at least two peaks in the DSC curve of the first measurement and having the lowest peak in the range of 110 to 130 ° C. 100 parts by weight is impregnated with 20 to 50 parts by weight of a foaming agent to obtain foamable modified polypropylene resin particles, and the resulting foamable modified polypropylene resin particles are 0.1 to 0.2 MPa. and prefoamed by heating at a pressure of heating steam 5 to 60 seconds, this bulk density to obtain a pre-expanded particles of the modified polypropylene resin is 0.01~0.07g / cm 3 Method for producing pre-expanded particles, wherein is provided.
また、本発明によれば、上記の製造方法により得られた予備発泡粒子を型内に充填した後、型内体積に対して20〜50%増加のクラッキング条件下で水蒸気により型内成形することを特徴とする発泡成形体の製造方法が提供される。 Further, according to the present invention, the pre-expanded particles obtained by the above production method are filled in the mold, and then molded in the mold with steam under a cracking condition of 20 to 50% increase with respect to the volume in the mold. A method for producing a foamed molded product is provided.
本発明によれば、通常のポリプロピレン系樹脂の発泡方法ではなく、一般的なポリスチレン系樹脂の発泡方法による、ポリスチレン系樹脂の発泡成形体とポリプロピレン系樹脂の発泡成形体の双方における欠点を改善し得る、機械特性、耐熱性、耐薬品性および成形性などに優れた高発泡倍率の改質ポリプロピレン系樹脂の予備発泡粒子およびその発泡成形体の製造方法を提供することができる。
具体的には、放出発泡を用いずに、特殊な設備を必要としない、ポリスチレン系樹脂の発泡などで広く用いられている蒸気による加圧発泡により、改質ポリプロピレン系樹脂の予備発泡粒子およびその発泡成形体を製造することができる。
According to the present invention, it is possible to improve the disadvantages of both the polystyrene resin foam molding and the polypropylene resin foam molding by the general polystyrene resin foaming method instead of the usual polypropylene resin foaming method. It is possible to provide a pre-expanded particle of a modified polypropylene resin having a high expansion ratio and excellent in mechanical properties, heat resistance, chemical resistance, moldability, and the like, and a method for producing the foamed molded product.
Specifically, pre-expanded particles of modified polypropylene resin and its foam by pressure foaming with steam, which is widely used for polystyrene resin foaming, etc., without using release foaming and requiring no special equipment A foamed molded product can be produced.
発泡性改質ポリプロピレン系樹脂粒子100重量部に対し0.1〜2.0重量部の無機物成分をブレンドし予備発泡することにより、本発明の効果がさらに発揮される。 The effect of the present invention is further exhibited by blending 0.1 to 2.0 parts by weight of an inorganic component and prefoaming with respect to 100 parts by weight of the expandable modified polypropylene resin particles.
ポリプロピレン系樹脂が5〜10g/10分の230℃におけるメルトフローレートを有し、かつ改質ポリプロピレン系樹脂粒子がポリプロピレン系樹脂より1〜5g/10分低下した230℃におけるメルトフローレートを有することにより、またポリプロピレン系樹脂の2回目昇温時のDSC曲線による最初の融解ピーク温度が125〜145℃であることにより、本発明の効果がさらに発揮される。
また、予備発泡の時間が10〜30秒であることにより、より合着のない予備発泡樹脂粒子を得ることができる。
The polypropylene resin has a melt flow rate at 230 ° C. of 5 to 10 g / 10 min, and the modified polypropylene resin particles have a melt flow rate at 230 ° C. which is 1 to 5 g / 10 min lower than the polypropylene resin. In addition, the first melting peak temperature according to the DSC curve at the time of the second temperature increase of the polypropylene resin is 125 to 145 ° C., so that the effect of the present invention is further exhibited.
Moreover, when the pre-foaming time is 10 to 30 seconds, pre-foamed resin particles with less coalescence can be obtained.
また、本発明によれば、上記の製造方法により得られた予備発泡粒子を型内に充填した後、水蒸気により型内成形する際にクラッキングを型内体積に対して20〜50%とするので、2次発泡性の低さを補うことができ、ポリプロピレン系樹脂とポリスチレン系樹脂の優れた物性を併せもつ発泡成形体を製造することができる。
すなわち、通常のポリスチレン系樹脂の予備発泡粒子では、2次発泡力が高いために蒸気が内部まで行き届く前に2次発泡してしまうが、本発明で得られる改質ポリプロピレン系樹脂の予備発泡粒子は2次発泡性が低く、内部まで蒸気が流入し発泡成形が可能となる。
さらに、水蒸気の圧力が0.3〜0.4MPaであることにより、本発明の効果がさらに発揮される。
Further, according to the present invention, after filling the pre-expanded particles obtained by the above production method into the mold, when cracking is performed in the mold with water vapor, the cracking is 20 to 50% with respect to the volume in the mold. The low secondary foamability can be compensated for, and a foamed molded product having both excellent physical properties of polypropylene resin and polystyrene resin can be produced.
That is, in the pre-expanded particles of normal polystyrene resin, the secondary foaming power is high, so that the secondary foaming occurs before the vapor reaches the inside, but the pre-expanded particles of the modified polypropylene resin obtained in the present invention Has a low secondary foaming property, and steam flows into the inside to enable foam molding.
Furthermore, the effect of this invention is further exhibited because the water vapor pressure is 0.3 to 0.4 MPa.
本発明の予備発泡粒子の製造方法は、ポリプロピレン系樹脂100重量部を、多官能性単量体を0.1〜1重量%含む芳香族系ビニル単量体40〜100重量部に由来する重合樹脂で改質し、かつ測定1回目のDSC曲線において少なくとも2つのピークを有しかつ最も低い側のピークが110〜130℃の範囲に存在する改質ポリプロピレン系樹脂粒子(以下「改質樹脂粒子」ともいう)を用い、改質樹脂粒子100重量部に対して発泡剤20〜50重量部を用いて含浸処理して発泡性改質ポリプロピレン系樹脂粒子(以下「発泡性樹脂粒子」ともいう)を得、得られた発泡性樹脂粒子を0.1〜0.2MPaの圧力の加熱水蒸気で5〜60秒間加熱することで予備発泡させて、嵩密度が0.01〜0.07g/cm3である改質ポリプロピレン系樹脂(以下「改質樹脂」ともいう)の予備発泡粒子を得ることを特徴とする。 The method for producing pre-expanded particles of the present invention is a polymerization derived from 100 to 100 parts by weight of a polypropylene resin and 40 to 100 parts by weight of an aromatic vinyl monomer containing 0.1 to 1% by weight of a polyfunctional monomer. Modified polypropylene resin particles modified with resin and having at least two peaks in the first DSC curve and having the lowest peak in the range of 110 to 130 ° C. (hereinafter “modified resin particles”) )), And impregnating with 100 to 50 parts by weight of the modified resin particles using 20 to 50 parts by weight of a foaming agent to produce foamed modified polypropylene resin particles (hereinafter also referred to as “foamable resin particles”). The foamable resin particles obtained were prefoamed by heating with heated steam at a pressure of 0.1 to 0.2 MPa for 5 to 60 seconds, and the bulk density was 0.01 to 0.07 g / cm 3. Is a modified polypro Characterized in that to obtain pre-expanded particles of polyphenylene resin (hereinafter referred to as "modified resin").
上記の物性を有する改質樹脂粒子は、例えば、ポリプロピレン系樹脂に、多官能性単量体を0.1〜1重量%含む芳香族系ビニル単量体混合物(以下、単に「芳香族系ビニル単量体」ともいう)を含浸させ、それを重合することにより製造することができる。 The modified resin particles having the above physical properties include, for example, an aromatic vinyl monomer mixture containing 0.1 to 1% by weight of a polyfunctional monomer in polypropylene resin (hereinafter simply referred to as “aromatic vinyl”). It can also be produced by impregnating a monomer)) and polymerizing it.
(ポリプロピレン系樹脂)
本発明において用いられるポリプロピレン系樹脂としては、特に限定されず、公知の重合方法で得られた樹脂が挙げられる。
本発明の好適な実施形態において、ポリプロピレン系樹脂として、プロピレン単独重合体やプロピレンとエチレンの共重合体を主成分とするプロピレン−エチレン共重合体が挙げられ、この重合体は、エチレンまたはプロピレンと共重合し得る他の単量体を分子内に含有するものであってもよい。そのような単量体としては、α−オレフィン、環状オレフィン、ジエン系単量体から選ばれる1種または2種以上のものが挙げられる。
ポリプロピレン系樹脂には、必要に応じて、着色剤、難燃剤、酸化防止剤、紫外線吸収剤、合着防止剤などの公知の添加物が含まれていてもよい。
(Polypropylene resin)
It does not specifically limit as a polypropylene resin used in this invention, The resin obtained by the well-known polymerization method is mentioned.
In a preferred embodiment of the present invention, examples of the polypropylene resin include a propylene homopolymer and a propylene-ethylene copolymer having a copolymer of propylene and ethylene as a main component. Another monomer that can be copolymerized may be contained in the molecule. Examples of such a monomer include one or more selected from α-olefins, cyclic olefins, and diene monomers.
The polypropylene resin may contain known additives such as a colorant, a flame retardant, an antioxidant, an ultraviolet absorber, and an anti-fusing agent as necessary.
ポリプロピレン系樹脂の2回目昇温時のDSC曲線による最初の融解ピーク温度が125〜145℃であるのが好ましい。2個のピーク温度を有する場合には、最初のピーク温度(低温側)を融解ピーク温度(本発明においては「融点(mp)」ともいう)とする。
ポリプロピレン系樹脂の融解ピーク温度が125℃未満では、耐熱性が乏しく、改質樹脂粒子を用いて製造される発泡成形体の耐熱性が低くなることがある。一方、ポリプロピレン系樹脂の融解ピーク温度が145℃を超えると、重合温度が高くなり、良好な重合ができなくなることがある。
It is preferable that the first melting peak temperature by the DSC curve at the time of the second temperature increase of the polypropylene resin is 125 to 145 ° C. In the case of having two peak temperatures, the first peak temperature (low temperature side) is defined as the melting peak temperature (also referred to as “melting point (mp)” in the present invention).
When the melting peak temperature of the polypropylene resin is less than 125 ° C., the heat resistance is poor, and the heat resistance of the foamed molded article produced using the modified resin particles may be low. On the other hand, when the melting peak temperature of the polypropylene resin exceeds 145 ° C., the polymerization temperature becomes high, and good polymerization may not be possible.
ポリプロピレン系樹脂は、5〜10g/10分の230℃におけるメルトフローレートを有するのが好ましい。より好ましくは6〜8g/10分である。
ポリプロピレン系樹脂のメルトフローレートが5g/10分未満では、十分な発泡性が得られないことがある。一方、メルトフローレートが10g/10分を超えると、十分な耐衝撃性を得られないことがある。
なお、メルトフローレート(MFR)の測定方法については、実施例において詳述する。
The polypropylene resin preferably has a melt flow rate at 230 ° C. of 5 to 10 g / 10 minutes. More preferably, it is 6-8 g / 10min.
If the melt flow rate of the polypropylene resin is less than 5 g / 10 minutes, sufficient foamability may not be obtained. On the other hand, if the melt flow rate exceeds 10 g / 10 min, sufficient impact resistance may not be obtained.
The method for measuring the melt flow rate (MFR) will be described in detail in Examples.
(芳香族系ビニル単量体)
本発明において用いられる芳香族系ビニル単量体は、多官能性単量体を0.1〜1重量%含む。
主成分の芳香族系ビニル単量体としては、特に限定されず、例えば、スチレン、α−メチルスチレン、p−メチルスチレン、t−ブチルスチレンなどが挙げられる。また、芳香族系ビニル単量体は、共重合可能な他の単量体と併用してもよい。他の単量体としては、(メタ)アクリル酸ブチルのような構造中にベンゼン環を含まない(メタ)アクリル酸アルキルエステルなどが挙げられる。これら他の単量体は、実質的に芳香族系ビニル単量体に対して5重量%を超えない範囲で使用してもよい。
(Aromatic vinyl monomer)
The aromatic vinyl monomer used in the present invention contains 0.1 to 1% by weight of a polyfunctional monomer.
The aromatic vinyl monomer as the main component is not particularly limited, and examples thereof include styrene, α-methylstyrene, p-methylstyrene, and t-butylstyrene. The aromatic vinyl monomer may be used in combination with another copolymerizable monomer. Examples of other monomers include (meth) acrylic acid alkyl esters that do not contain a benzene ring in the structure such as butyl (meth) acrylate. You may use these other monomers in the range which does not exceed 5 weight% substantially with respect to an aromatic vinyl monomer.
副成分の多官能性単量体としては、特に限定されないが、芳香族系多官能性単量体が好ましく、ジビニルベンゼンが特に好ましい。 The polyfunctional monomer as the accessory component is not particularly limited, but an aromatic polyfunctional monomer is preferable, and divinylbenzene is particularly preferable.
多官能性単量体が0.1重量%より少ないと、芳香族系ビニル単量体の重合樹脂の架橋度が低くなり、改質樹脂粒子のゲル分率が高まらず、発泡成形体の強度および耐熱性の向上が得られないことがある。一方、多官能性単量体が1重量%より多いと、芳香族系ビニル単量体の重合樹脂の架橋度が高くなり過ぎて、改質樹脂粒子の発泡性が大きく低下し、高発泡倍率の成形に優れた予備発泡粒子が得られないことがある。より好ましい多官能性単量体の含有量は0.2〜0.5重量%である。
上記単量体と重合樹脂との重量は、ほぼ同一とみなされる。
When the polyfunctional monomer is less than 0.1% by weight, the degree of crosslinking of the polymer resin of the aromatic vinyl monomer is lowered, the gel fraction of the modified resin particles is not increased, and the strength of the foamed molded product is increased. In addition, heat resistance may not be improved. On the other hand, if the polyfunctional monomer is more than 1% by weight, the degree of cross-linking of the polymer resin of the aromatic vinyl monomer becomes too high, and the foamability of the modified resin particles is greatly reduced, resulting in a high foaming ratio. In some cases, pre-expanded particles that are excellent for molding may not be obtained. A more preferred polyfunctional monomer content is 0.2 to 0.5% by weight.
The weights of the monomer and polymer resin are considered to be approximately the same.
本発明において芳香族系ビニル単量体は、ポリプロピレン系樹脂100重量部に対して40〜100重量部、好ましくは40〜60重量部、より好ましくは40〜50重量部用いられる。
芳香族系ビニル単量体の使用量が40重量部未満では、発泡粒子を型内発泡成形して得られる発泡成形体の剛性が低下することがある。
一方、芳香族系ビニル単量体の使用量が100重量部を超えると、発泡粒子を型内発泡成形して得られる発泡成形体の耐薬品性、耐熱性および耐衝撃性が低下することがある。
In the present invention, the aromatic vinyl monomer is used in an amount of 40 to 100 parts by weight, preferably 40 to 60 parts by weight, more preferably 40 to 50 parts by weight based on 100 parts by weight of the polypropylene resin.
If the amount of the aromatic vinyl monomer used is less than 40 parts by weight, the rigidity of the foamed molded article obtained by in-mold foam molding of the foamed particles may be lowered.
On the other hand, if the amount of the aromatic vinyl monomer used exceeds 100 parts by weight, the chemical resistance, heat resistance and impact resistance of the foam molded product obtained by in-mold foam molding of the foamed particles may decrease. is there.
(改質樹脂粒子およびその発泡性樹脂粒子)
本発明の改質樹脂粒子は、測定1回目のDSC曲線において少なくとも2つのピークを有しかつ最も低い側のピークが110〜130℃の範囲にあるのが好ましい。さらに好ましい温度範囲は118〜125℃である。
「測定1回目のDSC曲線」とは、改質樹脂粒子の製造工程以外において熱履歴を受けていない樹脂粒子の熱分析によるDSC曲線を意味する。
DSC曲線において最も低い側のピークが110℃未満では、耐熱性が低下することがある。一方、ピークが130℃を超えると、十分な発泡性が得られないことがある。
なお、DSC曲線の測定方法については、実施例において詳述する。
(Modified resin particles and their expandable resin particles)
The modified resin particles of the present invention preferably have at least two peaks in the first measurement DSC curve, and the lowest peak is in the range of 110 to 130 ° C. A more preferable temperature range is 118 to 125 ° C.
The “DSC curve for the first measurement” means a DSC curve obtained by thermal analysis of resin particles that have not undergone a thermal history other than the manufacturing process of the modified resin particles.
When the lowest peak in the DSC curve is less than 110 ° C., the heat resistance may be lowered. On the other hand, if the peak exceeds 130 ° C., sufficient foamability may not be obtained.
The DSC curve measurement method will be described in detail in Examples.
また、本発明の改質樹脂粒子は、ポリプロピレン系樹脂の230℃におけるメルトフローレートから1〜7g/10分低下したメルトフローレートを有するのが好ましい。
改質樹脂粒子のメルトフローレートの低下が1g/10分未満では、発泡成形体において十分な耐衝撃性を得られないことがある。一方、メルトフローレートの低下が7g/10分を超えると、発泡性が低下することがある。より好ましい低下幅は1〜5g/10分である。
The modified resin particles of the present invention preferably have a melt flow rate that is 1 to 7 g / 10 min lower than the melt flow rate at 230 ° C. of the polypropylene resin.
If the reduction in the melt flow rate of the modified resin particles is less than 1 g / 10 minutes, sufficient impact resistance may not be obtained in the foamed molded product. On the other hand, if the decrease in the melt flow rate exceeds 7 g / 10 minutes, the foaming property may decrease. A more preferable decrease width is 1 to 5 g / 10 minutes.
本発明の改質樹脂粒子は、特に限定されないが、例えば、次の(A)〜(C)の各工程により、またその発泡性樹脂粒子は、さらに次の工程(D)に付すことにより製造することができ、効率よく、また歩留まりよく製造することができる。
(A)分散剤を含む水性懸濁中に、ポリプロピレン系樹脂100重量部と、芳香族系ビニル単量体40〜100重量部と、重合開始剤とを分散させる工程
(B)得られた分散液を芳香族系ビニル単量体が実質的に重合しない温度に加熱して芳香族系ビニル単量体をポリプロピレン系樹脂粒子に含浸させる工程
(C)ポリプロピレン系樹脂粒子中のポリプロピレン系樹脂の融点をT℃としたとき、(T−20)℃〜(T+5)℃の温度で、芳香族系ビニル単量体の重合を行って、芳香族系ビニル樹脂を含む改質樹脂粒子を得る工程
(D)次いで、得られた改質樹脂粒子に発泡剤を含浸させて発泡性樹脂粒子を得る工程
The modified resin particles of the present invention are not particularly limited. For example, the modified resin particles are produced by the following steps (A) to (C) and the expandable resin particles are further subjected to the next step (D). Can be manufactured efficiently and with good yield.
(A) Step (B) of dispersing a dispersion of 100 parts by weight of a polypropylene resin, 40 to 100 parts by weight of an aromatic vinyl monomer, and a polymerization initiator in an aqueous suspension containing a dispersant. Heating the liquid to a temperature at which the aromatic vinyl monomer does not substantially polymerize to impregnate the polypropylene resin particles with the aromatic vinyl monomer (C) melting point of the polypropylene resin in the polypropylene resin particles Is a process of obtaining modified resin particles containing an aromatic vinyl resin by polymerizing an aromatic vinyl monomer at a temperature of (T-20) ° C. to (T + 5) ° C. D) Next, a step of impregnating the obtained modified resin particles with a foaming agent to obtain expandable resin particles
(A)工程において、ポリプロピレン系樹脂は、例えば、ポリプロピレン系樹脂を押出機で溶融し、ストランドカット、水中カット、ホットカットなどにより造粒ペレット化したり、また粉砕機にて直接樹脂粒子を粉砕しペレット化することにより得られる。また、その形状は、真球状、楕円球状(卵状)、円柱状、角柱状などが挙げられる。このポリプロピレン系樹脂の好ましい樹脂粒径は、0.5〜1.5mmの範囲であり、0.6mm〜1mmの範囲がより好ましい。 In the step (A), for example, the polypropylene resin is melted with an extruder and granulated into pellets by strand cutting, underwater cutting, hot cutting, or directly pulverized resin particles with a pulverizer. It is obtained by pelletizing. In addition, examples of the shape include a true spherical shape, an elliptical spherical shape (egg shape), a cylindrical shape, and a prismatic shape. The preferable resin particle diameter of this polypropylene resin is in the range of 0.5 to 1.5 mm, and more preferably in the range of 0.6 mm to 1 mm.
(A)工程で用いられる分散剤としては、例えば、部分ケン化ポリビニルアルコール、ポリアクリル酸塩、ポリビニルピロリドン、カルボキシメチルセルロース、メチルセルロースなどの有機系分散剤、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、炭酸カルシウム、リン酸マグネシウム、炭酸マグネシウム、酸化マグネシウムなどの無機系分散剤が挙げられる。この内、無機系分散剤が好ましい。無機系分散剤を用いる場合、界面活性剤を併用することが好ましい。このような界面活性剤としては、例えば、ドデシルベンゼンスルホン酸ソーダ、α−オレフィンスルホン酸ソーダなどが挙げられる。 Examples of the dispersant used in step (A) include organic dispersants such as partially saponified polyvinyl alcohol, polyacrylate, polyvinyl pyrrolidone, carboxymethyl cellulose, and methyl cellulose, magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, and calcium carbonate. And inorganic dispersants such as magnesium phosphate, magnesium carbonate, and magnesium oxide. Of these, inorganic dispersants are preferred. When using an inorganic dispersant, it is preferable to use a surfactant in combination. Examples of such a surfactant include sodium dodecylbenzene sulfonate and α-olefin sulfonic acid sodium.
また、重合開始剤としては、芳香族系ビニル単量体の重合に汎用されている従来周知の重合開始剤を使用できる。例えば、ベンゾイルパーオキサイド、ラウロイルパーオキサイド、t−アミルパーオキシオクトエート、t−ブチルパーオキシベンゾエート、t−アミルパーオキシベンゾエート、t−ブチルパーオキシビバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート、t−ブチルパーオキシ−3,3,5−トリメチルシクロヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,2−ジ−t−ブチルパーオキシブタン、ジクミルパーオキサイドなどの有機過酸化物、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物が挙げられる。なお、重合開始剤は、単独で用いられても併用されてもよい。 Moreover, as a polymerization initiator, the conventionally well-known polymerization initiator currently used widely for superposition | polymerization of an aromatic vinyl monomer can be used. For example, benzoyl peroxide, lauroyl peroxide, t-amyl peroxy octoate, t-butyl peroxybenzoate, t-amyl peroxybenzoate, t-butyl peroxybivalate, t-butyl peroxyisopropyl carbonate, t- Butyl peroxyacetate, t-butylperoxy-3,3,5-trimethylcyclohexanoate, di-t-butylperoxyhexahydroterephthalate, 2,2-di-t-butylperoxybutane, dicumyl peroxide And azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. In addition, a polymerization initiator may be used independently or may be used together.
また、重合開始剤を添加する場合、その添加方法としては、例えば、重合開始剤をポリプロピレン系樹脂に直接添加する方法、溶剤、可塑剤または芳香族系ビニル単量体に重合開始剤を溶解させた上で添加する方法、重合開始剤を水に分散させた上で添加する方法などが挙げられる。この内、芳香族系ビニル単量体に重合開始剤を溶解させた上で添加する方法が好ましい。 In addition, when adding a polymerization initiator, examples of the addition method include a method of directly adding a polymerization initiator to a polypropylene resin, a method in which a polymerization initiator is dissolved in a solvent, a plasticizer or an aromatic vinyl monomer. And a method of adding after dispersing the polymerization initiator in water. Among these, the method of adding after dissolving a polymerization initiator in an aromatic vinyl monomer is preferable.
芳香族系ビニル単量体は、ポリプロピレン系樹脂粒子に含浸させるために、水性媒体に、連続的にあるいは断続的に添加できる。芳香族系ビニル単量体は、水性媒体中に徐々に添加していくのが好ましい。水性媒体としては、水、水と水溶性媒体(例えば、アルコール)との混合媒体が挙げられる。 The aromatic vinyl monomer can be continuously or intermittently added to the aqueous medium in order to impregnate the polypropylene resin particles. The aromatic vinyl monomer is preferably gradually added to the aqueous medium. Examples of the aqueous medium include water and a mixed medium of water and a water-soluble medium (for example, alcohol).
(B)工程において、(A)工程で得られた分散液を、芳香族系ビニル単量体が実質的に重合しない温度に加熱し、芳香族系ビニル単量体をポリプロピレン系樹脂粒子に含浸させる際の温度は、好ましくは45〜70℃の範囲であり、より好ましくは50〜65℃の範囲である。
この含浸温度が45℃未満では、芳香族系ビニル単量体の含浸が不十分となって芳香族系ビニル樹脂の重合粉末が生成されることがある。一方、含浸温度が70℃を超えると、芳香族系ビニル単量体がポリプロピレン系樹脂粒子に十分含浸される前に重合することがある。
In step (B), the dispersion obtained in step (A) is heated to a temperature at which the aromatic vinyl monomer does not substantially polymerize, and the polypropylene resin particles are impregnated with the aromatic vinyl monomer. The temperature at the time of making it, Preferably it is the range of 45-70 degreeC, More preferably, it is the range of 50-65 degreeC.
When the impregnation temperature is less than 45 ° C., the impregnation of the aromatic vinyl monomer is insufficient, and a polymer powder of the aromatic vinyl resin may be generated. On the other hand, when the impregnation temperature exceeds 70 ° C., polymerization may occur before the aromatic vinyl monomer is sufficiently impregnated into the polypropylene resin particles.
(C)工程において、重合温度は重要な要因であり、ポリプロピレン系樹脂粒子中のポリプロピレン系原料樹脂の融点をT℃としたとき、(C)工程では、(T−20)℃〜(T+5)℃の温度範囲とするのが好ましい。
このような温度範囲で重合を行うことにより、樹脂粒子中心部は、芳香族系ビニル樹脂の存在量が多く(つまり、表層にポリプロピレン系樹脂の存在量が多い)、その結果として、ポリプロピレン系樹脂と芳香族系ビニル樹脂のそれぞれの長所が生かされ、剛性、発泡成形性、耐薬品性および耐熱性に優れた改質樹脂粒子を提供することができる。
In the step (C), the polymerization temperature is an important factor, and when the melting point of the polypropylene raw material resin in the polypropylene resin particles is T ° C, in the step (C), (T-20) ° C to (T + 5) A temperature range of 0 ° C. is preferable.
By polymerizing in such a temperature range, the resin particle center part has a large amount of aromatic vinyl resin (that is, a large amount of polypropylene resin in the surface layer), and as a result, the polypropylene resin The modified resin particles having excellent rigidity, foam moldability, chemical resistance, and heat resistance can be provided by taking advantage of the advantages of each of the aromatic vinyl resin and the aromatic vinyl resin.
重合温度が上記の温度範囲より低くなると、得られる樹脂粒子中心部に芳香族系ビニル樹脂の存在量が少なく、良好な物性を示す樹脂粒子や発泡成形体が得られないことがある。また、重合温度が上記の温度範囲より高くなると、芳香族系ビニル単量体がポリプロピレン系樹脂粒子に十分含浸される前に重合が開始してしまうので、良好な物性を示す改質樹脂粒子や発泡成形体が得られないことがある。また高温度での重合に耐え得る耐熱性に優れた高価格の重合設備が必要になる。 If the polymerization temperature is lower than the above temperature range, the resin particles and the foamed molded article exhibiting good physical properties may not be obtained due to a small amount of the aromatic vinyl resin in the center of the obtained resin particles. In addition, when the polymerization temperature is higher than the above temperature range, polymerization starts before the aromatic vinyl monomer is sufficiently impregnated with the polypropylene resin particles, so modified resin particles exhibiting good physical properties and A foamed molded product may not be obtained. In addition, an expensive polymerization facility with excellent heat resistance that can withstand polymerization at high temperatures is required.
また、ポリプロピレン系樹脂粒子に含浸させた芳香族系ビニル単量体を重合する工程を、(C1)工程(第1の重合)と、(C2)工程(第2の重合)との二段階に分けてもよい。このように二段階に分ける理由は、一度に多くの芳香族系ビニル単量体をポリプロピレン系樹脂に含浸させようとすると、芳香族系ビニル単量体がポリプロピレン系樹脂に十分に含浸されず、ポリプロピレン系樹脂の表面に残るからである。そこで、二段階に分けることにより、(C1)工程において芳香族系ビニル単量体が確実にポリプロピレン系樹脂の中心部に含浸され、(C2)工程においても芳香族系ビニル単量体がポリプロピレン系樹脂の中心部に向かって含浸される。 In addition, the step of polymerizing the aromatic vinyl monomer impregnated with the polypropylene resin particles is divided into two steps, (C1) step (first polymerization) and (C2) step (second polymerization). It may be divided. The reason for dividing into two stages in this way is that when an aromatic vinyl monomer is impregnated in a polypropylene resin at once, the aromatic vinyl monomer is not sufficiently impregnated in the polypropylene resin, This is because it remains on the surface of the polypropylene resin. Therefore, by dividing into two stages, the aromatic vinyl monomer is surely impregnated in the center of the polypropylene resin in the step (C1), and the aromatic vinyl monomer is also polypropylene-based in the step (C2). Impregnation toward the center of the resin.
ポリプロピレン系樹脂粒子中のポリプロピレン系樹脂の融点をT℃としたとき、(C1)工程では、重合温度を(T−5)℃〜(T+5)℃の温度範囲とし、(C2)工程では、重合温度を(T−20)℃〜(T+5)℃の温度範囲とするのが好ましい。 When the melting point of the polypropylene resin in the polypropylene resin particles is T ° C, the polymerization temperature is set in the temperature range of (T-5) ° C to (T + 5) ° C in the (C1) step, and the polymerization is performed in the (C2) step. The temperature is preferably in the temperature range of (T−20) ° C. to (T + 5) ° C.
また、(C)工程において、重合終了後の樹脂粒子、もしくは二段階重合の場合の第2の重合中の樹脂粒子に、難燃剤を含浸させることが好ましい。難燃剤を投入する際の投入温度は、30℃〜90℃の範囲が好ましく、50℃〜70℃の範囲がより好ましい。投入した後、難燃剤を含浸させる際の含浸温度は、難燃剤の融点をt℃としたとき、t℃〜(t+20)℃の範囲が好ましい。t℃より低いと難燃剤がポリプロピレン系樹脂粒子に十分含浸されないおそれがあり、(t+20)℃より高いと耐熱性に優れた高価格の重合設備が必要となる。
(D)工程の重合を行った後、反応槽を冷却し、形成された改質樹脂粒子を水性媒体と分離することで、改質樹脂粒子が得られる。
In the step (C), it is preferable to impregnate the resin particles after the completion of polymerization or the resin particles in the second polymerization in the case of two-stage polymerization with a flame retardant. The input temperature when adding the flame retardant is preferably in the range of 30 ° C to 90 ° C, more preferably in the range of 50 ° C to 70 ° C. After the addition, the impregnation temperature when impregnating the flame retardant is preferably in the range of t ° C. to (t + 20) ° C. when the melting point of the flame retardant is t ° C. If the temperature is lower than t ° C, the polypropylene resin particles may not be sufficiently impregnated with the flame retardant. If the temperature is higher than (t + 20) ° C, an expensive polymerization facility excellent in heat resistance is required.
(D) After superposition | polymerization of a process, a reaction tank is cooled and a modified resin particle is obtained by isolate | separating the formed modified resin particle from an aqueous medium.
次に、(D)工程を行って発泡性樹脂粒子を得る。
(D)工程において、改質樹脂粒子に含浸させる発泡剤、好ましくは易揮発性発泡剤としては、沸点が重合体の軟化温度以下であり易揮発性を有するもの、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、シクロペンタン、炭酸ガス、窒素が挙げられ、これらの発泡剤は、単独もしくは2種以上を併用して用いることができる。
Next, (D) process is performed and an expandable resin particle is obtained.
In the step (D), the foaming agent impregnated into the modified resin particles, preferably a readily volatile foaming agent, has a boiling point lower than the softening temperature of the polymer and has a readily volatile property, such as propane and n-butane. , I-butane, n-pentane, i-pentane, cyclopentane, carbon dioxide gas, and nitrogen, and these blowing agents can be used alone or in combination of two or more.
発泡剤の使用量は、改質樹脂粒子100重量部に対して20〜50重量部の範囲とする。
発泡剤の使用量を上記の範囲にすることにより、含浸工程から発泡工程の間に一次加圧状態を開放したとしても十分な発泡性を維持することができる。
発泡剤の使用量が20重量部未満では、樹脂粒子を十分に可塑化させることができず、発泡性が十分に得られないことがある。一方、発泡剤の使用量が50重量部を超えると、樹脂粒子に対して大過剰になり、コスト面で不利になり、可燃性ガスでは発泡時に危険になることがある。好ましい発泡剤の使用量は、改質樹脂粒子100重量部に対して20〜40重量部の範囲であり、より好ましくは25〜40重量部の範囲である。
The amount of the foaming agent used is in the range of 20 to 50 parts by weight with respect to 100 parts by weight of the modified resin particles.
By setting the amount of the foaming agent used within the above range, sufficient foamability can be maintained even if the primary pressure state is released between the impregnation step and the foaming step.
If the amount of the foaming agent used is less than 20 parts by weight, the resin particles cannot be sufficiently plasticized and foamability may not be sufficiently obtained. On the other hand, when the amount of the foaming agent used exceeds 50 parts by weight, the amount becomes excessive with respect to the resin particles, which is disadvantageous in terms of cost, and combustible gas may be dangerous when foaming. The amount of the foaming agent used is preferably in the range of 20 to 40 parts by weight, more preferably in the range of 25 to 40 parts by weight with respect to 100 parts by weight of the modified resin particles.
さらに、発泡助剤を発泡剤と共に用いてもよい。このような発泡助剤としては、例えば、トルエン、キシレン、エチルベンゼン、シクロヘキサン、D−リモネンなどの溶剤、ジイソブチルアジペート、ジアセチル化モノラウレート、やし油などの可塑剤(高沸点溶剤)が挙げられる。なお、発泡助剤の添加量としては、ポリプロピレン系樹脂粒子100重量部に対して0.1〜2.5重量部が好ましい。 Furthermore, you may use a foaming adjuvant with a foaming agent. Examples of such foaming aids include solvents such as toluene, xylene, ethylbenzene, cyclohexane, and D-limonene, and plasticizers (high-boiling solvents) such as diisobutyl adipate, diacetylated monolaurate, and palm oil. . In addition, as an addition amount of a foaming adjuvant, 0.1-2.5 weight part is preferable with respect to 100 weight part of polypropylene resin particles.
改質樹脂粒子中に発泡剤を含浸させる方法は、発泡剤の種類に応じて適宜変更可能である。例えば、改質樹脂粒子が分散している水性媒体中に発泡剤を圧入して、該樹脂中に発泡剤を含浸させる方法、改質樹脂粒子を回転混合機に供給し、この回転混合機内に発泡剤を圧入して該樹脂粒子に発泡剤を含浸させる方法などが挙げられる。なお、改質樹脂粒子に発泡剤を含浸させる温度は、通常、50℃〜140℃とすることが好ましい。 The method of impregnating the modified resin particles with the foaming agent can be appropriately changed according to the type of the foaming agent. For example, a foaming agent is pressed into an aqueous medium in which modified resin particles are dispersed, and the resin is impregnated with the foaming agent. The modified resin particles are supplied to a rotary mixer, Examples thereof include a method in which a foaming agent is injected and the resin particles are impregnated with the foaming agent. The temperature at which the modified resin particles are impregnated with the foaming agent is usually preferably 50 ° C to 140 ° C.
また、発泡性樹脂粒子には、結合防止剤、帯電防止剤、展着剤などの表面処理剤を添加してもよい。 Further, a surface treatment agent such as a binding inhibitor, an antistatic agent, or a spreading agent may be added to the expandable resin particles.
結合防止剤(合着防止剤)は、発泡性樹脂粒子を予備発泡させる際の予備発泡粒子同士の合着を防止する役割を果たす。ここで、合着とは、予備発泡粒子の複数個が合一して一体化することをいう。具体例としては、タルク、炭酸カルシウム、水酸化アルミニウムなどが挙げられる。 The anti-bonding agent (anti-binding agent) plays a role of preventing the pre-expanded particles from being bonded to each other when the expandable resin particles are pre-expanded. Here, coalescence means that a plurality of pre-expanded particles are united and integrated. Specific examples include talc, calcium carbonate, aluminum hydroxide and the like.
帯電防止剤としては、ポリオキシエチレンアルキルフェノールエーテル、ステアリン酸モノグリセリドなどが挙げられる。展着剤としては、ポリブテン、ポリエチレングリコール、シリコンオイルなどが挙げられる。 Examples of the antistatic agent include polyoxyethylene alkylphenol ether and stearic acid monoglyceride. Examples of the spreading agent include polybutene, polyethylene glycol, and silicone oil.
改質樹脂粒子の予備発泡の際に、改質樹脂粒子100重量部に対し0.1〜2.0重量部の無機物成分をブレンドし予備発泡するのが好ましい。
無機物成分としては、上記の結合防止剤に例示の炭酸カルシウム、水酸化アルミニウムなどの無機化合物粒子が挙げられる。
In the preliminary foaming of the modified resin particles, it is preferable that 0.1 to 2.0 parts by weight of an inorganic component is blended and prefoamed with respect to 100 parts by weight of the modified resin particles.
Examples of the inorganic component include inorganic compound particles such as calcium carbonate and aluminum hydroxide exemplified in the above binding inhibitor.
本発明の方法では、高圧蒸気下で予備発泡を行うことから有機系の合着防止剤では、発泡時に溶融してしまい十分な効果が得られ難い。一方、炭酸カルシウムのような無機系の合着防止剤は高圧蒸気加熱下でも十分な合着防止効果を有する。
また、無機物成分の粒子径の好ましい範囲は2μm以下である。無機物成分の粒子径が2μmを超えると、多くの添加量が必要になり、後の成型工程に悪影響(阻害)を与えることがある。
より好ましい無機物成分の使用量は、発泡性樹脂粒子100重量部に対し0.2〜0.7重量部である。
In the method of the present invention, since pre-foaming is performed under high-pressure steam, the organic anti-fusing agent melts during foaming, and it is difficult to obtain a sufficient effect. On the other hand, an inorganic anti-fusing agent such as calcium carbonate has a sufficient anti-fusing effect even under high-pressure steam heating.
Moreover, the preferable range of the particle diameter of an inorganic component is 2 micrometers or less. If the particle size of the inorganic component exceeds 2 μm, a large amount of addition is required, which may adversely affect (inhibit) the subsequent molding process.
The more preferable usage-amount of an inorganic component is 0.2-0.7 weight part with respect to 100 weight part of expandable resin particles.
(改質樹脂の予備発泡粒子)
本発明の改質樹脂の予備発泡粒子は、本発明の改質樹脂粒子に発泡剤を含浸することで得られる発泡性樹脂粒子を予備発泡することにより得ることができる。
(Pre-expanded particles of modified resin)
The pre-expanded particles of the modified resin of the present invention can be obtained by pre-expanding expandable resin particles obtained by impregnating the modified resin particles of the present invention with a foaming agent.
本発明の改質樹脂粒子は、ガス保持性が低いために、上記のガス含浸量(使用量)に設定し、発泡蒸気圧を改質樹脂粒子の融点以上とすることにより発泡させることができる。また、融点以上の温度帯で発泡しているため、発泡時間を短くすることで合着なく予備発泡することができる。
その他の予備発泡の条件は、取り扱う材料の種類や所望する発泡倍率などにより適宜設定すればよい。
Since the modified resin particles of the present invention have low gas retention, the modified resin particles can be foamed by setting the gas impregnation amount (usage amount) to be equal to or higher than the melting point of the modified resin particles. . In addition, since foaming is performed in a temperature range equal to or higher than the melting point, pre-foaming can be performed without coalescence by shortening the foaming time.
Other pre-foaming conditions may be set as appropriate depending on the type of material to be handled and the desired foaming ratio.
予備発泡槽内の蒸気圧力は、0.1〜0.2MPaであり、より好ましくは0.12〜0.17MPaである。
予備発泡槽内の蒸気圧力を上記の範囲にすることにより、改質樹脂粒子の予備発泡が可能になる。
予備発泡槽内の蒸気圧力が0.1MPa未満では、十分な発泡性を得られないことがある。一方、予備発泡槽内の蒸気圧力が0.2MPaを超えると、予備発泡工程において樹脂粒子が合着することがある。
The vapor pressure in the preliminary foaming tank is 0.1 to 0.2 MPa, more preferably 0.12 to 0.17 MPa.
By setting the vapor pressure in the pre-foaming tank to the above range, pre-foaming of the modified resin particles becomes possible.
If the vapor pressure in the preliminary foaming tank is less than 0.1 MPa, sufficient foamability may not be obtained. On the other hand, if the vapor pressure in the pre-foaming tank exceeds 0.2 MPa, the resin particles may coalesce in the pre-foaming step.
予備発泡温度は、(改質樹脂粒子の融点−10)℃以上でかつ(改質樹脂粒子の融点+5)℃以下が好ましく、(改質樹脂粒子の融点−5)℃以上でかつ(改質樹脂粒子の融点)℃以下がより好ましい。例えば、改質樹脂粒子の融点が120℃であれば、110〜125℃が好ましく、115〜120℃がより好ましい。
また、予備発泡時間は、5〜60秒であり、好ましくは10〜40秒であり、より好ましくは10〜30秒である。
The pre-foaming temperature is preferably (melting point of modified resin particles−10) ° C. or higher and (melting point of modified resin particles + 5) ° C. or lower, and (melting point of modified resin particles−5) ° C. or higher and (modified) The melting point of the resin particles is more preferably at most 0 ° C. For example, if the melting point of the modified resin particles is 120 ° C, 110 to 125 ° C is preferable, and 115 to 120 ° C is more preferable.
The pre-foaming time is 5 to 60 seconds, preferably 10 to 40 seconds, and more preferably 10 to 30 seconds.
本発明の予備発泡粒子は、その表層に40重量%以下の芳香族系ビニル樹脂比率を有するのが好ましい。その下限は5重量%程度である。すなわち、本発明の予備発泡粒子は、その表層に60重量%を超えるポリプロピレン系樹脂を有する。これにより、本発明の優れた効果が発揮される。 The pre-expanded particles of the present invention preferably have an aromatic vinyl resin ratio of 40% by weight or less on the surface layer. The lower limit is about 5% by weight. That is, the pre-expanded particles of the present invention have a polypropylene resin exceeding 60% by weight on the surface layer. Thereby, the outstanding effect of this invention is exhibited.
本発明の予備発泡粒子は、0.01〜0.07g/cm3の嵩密度(見掛け密度)を有する。より好ましくは0.04〜0.07g/cm3である。 The pre-expanded particles of the present invention have a bulk density (apparent density) of 0.01 to 0.07 g / cm 3 . More preferably, it is 0.04-0.07 g / cm < 3 >.
(改質樹脂の発泡成形体)
本発明の改質樹脂の発泡成形体は、本発明の改質樹脂の予備発泡粒子を型内に充填した後、型内体積に対して20〜50%増加のクラッキング条件下で水蒸気により型内成形することにより得ることができる。
クラッキング条件が20%未満では、発泡成形体内部に空隙が生じたり寸法精度に優れた発泡成形体が得られないことがある。一方、クラッキング条件が50%を超えると、発泡成形体の融着性が低下することがある。より好ましいクラッキング条件は、型内体積に対して20〜30%増加である。
(Modified resin foam)
The foamed molded product of the modified resin of the present invention is obtained by filling the mold with the pre-expanded particles of the modified resin of the present invention, and then in the mold by cracking under a cracking condition of 20 to 50% increase relative to the volume in the mold. It can be obtained by molding.
If the cracking condition is less than 20%, voids may be generated inside the foam molded article or a foam molded article having excellent dimensional accuracy may not be obtained. On the other hand, if the cracking condition exceeds 50%, the fusion-bonding property of the foamed molded product may be lowered. A more preferable cracking condition is an increase of 20 to 30% with respect to the volume in the mold.
発泡成形体の製造における水蒸気の圧力は、0.3〜0.4MPaであるのが好ましい。
ポリスチレン系発泡成形体の製造において、合着防止剤は一般的に使用されている。しかしながら、ポリスチレン系発泡成形体の製造においては、発泡時にブレンドした合着防止剤を成型工程前に洗浄処理を実施したり、成型時に融着を促進するブレンド剤であるステアリン酸などを添加することで成型を実施している。
それに対し、本発明におけるポリプロピレン系樹脂の成型工程においては成型時の加熱蒸気圧力をポリスチレン系発泡成形体の成型時圧力に比べ大きく高い上記の圧力で実施することで、予備発泡時に合着防止剤として添加した無機系ブレンド剤を除去等の操作を必要としないで成型することができる。より好ましい水蒸気の圧力は、0.35〜0.37MPaである。
The water vapor pressure in the production of the foamed molded product is preferably 0.3 to 0.4 MPa.
In the production of polystyrene-based foamed molded articles, anti-fusing agents are generally used. However, in the production of polystyrene-based foamed molded products, the anti-fusing agent blended at the time of foaming is washed before the molding process, or stearic acid, which is a blending agent that promotes fusion at the time of molding, is added. The molding is carried out.
On the other hand, in the molding step of the polypropylene resin in the present invention, the anti-adhesion agent at the time of preliminary foaming is carried out by carrying out the heating steam pressure at the time of molding at a pressure higher than the molding pressure of the polystyrene foam molding. The inorganic blending agent added as can be molded without requiring an operation such as removal. A more preferable water vapor pressure is 0.35 to 0.37 MPa.
以下、実施例によって本発明の具体例を示すが、以下の実施例は本発明の例示にすぎず、本発明は以下の実施例のみに限定されない。
なお、以下の実施例におけるゲル分率(ビニル系成分架橋度)、測定1回目のDSC曲線の低温側ピーク温度、融点、発泡剤の含浸量、表層のポリスチレン成分比率、予備発泡時間、嵩密度および嵩発泡倍率、合着の有無、蒸気発泡の可否、成形性、融着率ならびにMFRの測定方法、評価方法について下記する。
Hereinafter, specific examples of the present invention will be described by way of examples. However, the following examples are merely illustrative of the present invention, and the present invention is not limited to the following examples.
In addition, the gel fraction (vinyl-based component crosslinking degree) in the following examples, the low temperature side peak temperature of the DSC curve of the first measurement, the melting point, the amount of impregnation of the blowing agent, the ratio of the polystyrene component of the surface layer, the pre-foaming time, the bulk density The measurement method and evaluation method for bulk foaming ratio, presence / absence of coalescence, possibility of vapor foaming, moldability, fusion rate, MFR are described below.
(ゲル分率:重量%)
次の方法により、ゲル分率(ビニル系成分架橋度)を測定する。
改質樹脂粒子または発泡成形体を1cm角程度にカットした試料0.8mgを精秤し、ソックスレー抽出装置を用いて、試料をキシレン80mL中で3時間沸騰加熱後、試料液が冷めないうちに80メッシュ金網で濾過する。その後、金網上の樹脂不溶物をドラフト内で自然乾燥してキシレンを蒸発させる。次いで、金網にキシレン臭がないことを確認後、金網を120℃の恒温乾燥器内で2時間乾燥させデシケーター内で放冷後、金網の重量を測定し、次式によりゲル含有量(重量%)を算出する。
金網上の不溶樹脂重量(g)=濾過後の金網重量(g)−濾過前の金網重量(g)
ゲル含有率(重量%)=金網上の不溶樹脂重量(g)/試料重量(g)×100
(Gel fraction: wt%)
The gel fraction (vinyl component crosslinking degree) is measured by the following method.
0.8 mg of a sample obtained by cutting the modified resin particles or the foamed molded article into a 1 cm square is precisely weighed, and the sample is boiled and heated in 80 mL of xylene for 3 hours using a Soxhlet extraction apparatus. Filter through 80 mesh wire mesh. Thereafter, the insoluble resin on the wire mesh is naturally dried in a draft to evaporate xylene. Next, after confirming that the wire mesh had no xylene odor, the wire mesh was dried in a constant temperature dryer at 120 ° C. for 2 hours, allowed to cool in a desiccator, the weight of the wire mesh was measured, and the gel content (wt% ) Is calculated.
Insoluble resin weight (g) on wire mesh = wire mesh weight after filtration (g) −wire mesh weight before filtration (g)
Gel content (% by weight) = weight of insoluble resin on wire mesh (g) / sample weight (g) × 100
(測定1回目のDSC曲線の低温側ピーク温度:℃)
次の方法により、DSC曲線から低温側ピーク温度(℃)を測定する。
走査型示差熱量測定機(SEIKO社製、型式:DSC200型)を用いて、樹脂粒子3〜7mgを30℃から220℃まで昇温速度10℃/分で昇温したときに得られるDSC曲線から低温側ピーク温度(℃)を求める。低温側とは、図2のようにDSCチャートで最初に下に凸になる点の温度を意味する。
(Low-temperature side peak temperature of the first measurement DSC curve: ° C)
The low temperature side peak temperature (° C.) is measured from the DSC curve by the following method.
From a DSC curve obtained by heating 3 to 7 mg of resin particles from 30 ° C. to 220 ° C. at a heating rate of 10 ° C./min using a scanning differential calorimeter (manufactured by SEIKO, model: DSC200 type) The low temperature side peak temperature (° C) is obtained. The low temperature side means a temperature at a point that first protrudes downward in the DSC chart as shown in FIG.
(融点:2回目昇温時のDSC曲線による最初の融解ピーク温度:℃)
融点は、JIS K7122:1987「プラスチックの転移熱測定方法」記載の方法により測定する。すなわち、走査型示差熱量測定機(SEIKO社製、型式:DSC200型)を用い、測定容器に試料を7mg充填して、窒素ガス流量30ml/minのもと、室温から220℃の間で10℃/minの昇・降温スピードにより昇温、降温、昇温を繰り返し、2回目の昇温時のDSC曲線の融解ピーク温度を融点とする。また、融解ピークが2つ以上ある場合は、低い側のピーク温度を融点とする。
(Melting point: first melting peak temperature according to DSC curve at second temperature increase: ° C.)
The melting point is measured by the method described in JIS K7122: 1987 “Method of measuring the transition heat of plastic”. That is, using a scanning differential calorimeter (Model: DSC200, manufactured by SEIKO), 7 mg of a sample was filled in a measurement container, and the temperature was 10 ° C. between room temperature and 220 ° C. under a nitrogen gas flow rate of 30 ml / min. The temperature is raised, lowered, and raised repeatedly at an ascending / falling speed of / min, and the melting peak temperature of the DSC curve at the second raising temperature is defined as the melting point. Further, when there are two or more melting peaks, the lower peak temperature is taken as the melting point.
(発泡剤の含浸量(発泡剤量):重量部)
発泡剤の含浸量は、発泡剤の注入量(cc)を基に下式により算出する。
発泡剤量(重量部)
=発泡剤の注入量(cc)×発泡剤の比重×100/原料の量(g)
(Foaming agent impregnation amount (foaming agent amount): parts by weight)
The impregnation amount of the foaming agent is calculated by the following formula based on the injection amount (cc) of the foaming agent.
Amount of foaming agent (parts by weight)
= Injection amount of blowing agent (cc) x specific gravity of blowing agent x 100 / amount of raw material (g)
(表層のポリスチレン成分比率:重量%)
次の方法により、ATR法赤外分光分析により粒子表面分析を行い、赤外吸収スペクトルの吸光度比からポリスチレン系樹脂とポリプロピレン系樹脂の組成割合を求める。すなわち、既知のポリスチレン成分を含有する標準試料を用いて作成した検量線に基づいて、樹脂発泡粒子試料の赤外線吸収スペクトルの吸光度比からポリスチレン成分比率を求める。
具体的には、ポリプロピレン系樹脂がサンアロマー社製、商品名「PC540R」、ポリスチレン系樹脂が積水化成品工業社製、商品名「SS142」である場合、図1に示す検量線を用いて、それらの組成割合を知ることができる。例えば、吸光度比(D698/D1376)が10.0である場合には、ポリプロピレン系樹脂が20.2重量%、ポリスチレン系樹脂が79.8重量%であり、吸光度比が15.0である場合には、ポリプロピレン系樹脂が9.1重量%、ポリスチレン系樹脂が90.9重量%である。
なお、吸光度は、Nicolet社から商品名「フーリエ変換赤外分光光度計 MAGNA560」で販売されている測定装置を用いて測定する。
(Surface component polystyrene component ratio: wt%)
The particle surface analysis is performed by ATR infrared spectroscopy by the following method, and the composition ratio of the polystyrene resin and the polypropylene resin is determined from the absorbance ratio of the infrared absorption spectrum. That is, based on a calibration curve prepared using a standard sample containing a known polystyrene component, the polystyrene component ratio is determined from the absorbance ratio of the infrared absorption spectrum of the resin foam particle sample.
Specifically, when the polypropylene resin is a product name “PC540R” manufactured by Sun Allomer Co., Ltd., and the polystyrene resin is a product name “SS142” manufactured by Sekisui Plastics Co., Ltd., the calibration curve shown in FIG. The composition ratio can be known. For example, when the absorbance ratio (D698 / D1376) is 10.0, the polypropylene resin is 20.2% by weight, the polystyrene resin is 79.8% by weight, and the absorbance ratio is 15.0. In this case, the polypropylene resin is 9.1% by weight and the polystyrene resin is 90.9% by weight.
The absorbance is measured using a measuring device sold by Nicolet under the trade name “Fourier transform infrared spectrophotometer MAGNA 560”.
次の方法により、標準試料を得る。
まず、組成割合(ポリスチレン系樹脂/ポリエチレン系樹脂)が下記比率になるようにポリスチレン系樹脂およびポリエチレン系樹脂を合計2g精秤し、均一に混合する。
組成割合(PS/PE;重量比):0/10、1/9、2/8、3/7、4/6、5/5、6/4、7/3、8/2、10/0
これを小型射出成形機にて下記条件に加熱混練して、直径が25mmでかつ高さが2mmの円柱状に成形することによって標準試料を得る。
なお、小型射出成形機としては、例えば、CSI社から商品名「CS−183」で販売されているものを用い、例えば、下記の条件で成形できる。
射出成形条件:加熱温度200〜250℃、混練時間10分
A standard sample is obtained by the following method.
First, a total of 2 g of a polystyrene resin and a polyethylene resin are precisely weighed so that the composition ratio (polystyrene resin / polyethylene resin) becomes the following ratio, and mixed uniformly.
Composition ratio (PS / PE; weight ratio): 0/10, 1/9, 2/8, 3/7, 4/6, 5/5, 6/4, 7/3, 8/2, 10/0
This is heated and kneaded under the following conditions in a small injection molding machine and molded into a cylindrical shape having a diameter of 25 mm and a height of 2 mm to obtain a standard sample.
In addition, as a small-sized injection molding machine, it can shape | mold on the following conditions, for example using the thing sold by CSI with the brand name "CS-183".
Injection molding conditions: heating temperature 200 to 250 ° C., kneading time 10 minutes
次の方法により、検量線を得る。
上記比率の標準試料の吸光度比を前記測定装置で測定し、縦軸にポリスチレン系樹脂比率(重量%)、横軸に吸光度比(D698/D1376)のプロットし、グラフ化することで図1の検量線を得る。
図1において、ポリスチレン系樹脂比率が40重量%未満および40重量%以上の場合には、検量線はそれぞれ下式(1)および(2)で近似される。
Y=−2.5119X2+22.966X (1)
Y=27.591Ln(X)+16.225 (2)
A calibration curve is obtained by the following method.
The absorbance ratio of the standard sample having the above ratio was measured with the above-mentioned measuring apparatus, and the vertical axis represents the polystyrene resin ratio (% by weight), and the horizontal axis represents the absorbance ratio (D698 / D1376). Obtain a calibration curve.
In FIG. 1, when the polystyrene resin ratio is less than 40 wt% and 40 wt% or more, the calibration curves are approximated by the following equations (1) and (2), respectively.
Y = −2.5119X 2 + 22.966X (1)
Y = 27.591Ln (X) +16.225 (2)
(予備発泡時間:秒)
予備発泡時間は、樹脂粒子に対して易揮発性発泡剤を含浸させ加圧発泡を行った際の、発泡性樹脂粒子を予備発泡機に投入してから取り出すまでの時間(秒)を意味する。
より具体的には、予備発泡槽の投入口を開き、発泡性樹脂粒子を予備発泡槽内に投入し、予備発泡槽の投入口を閉じ、加圧蒸気の流入を開始した時間を0秒とし、その後指定の発泡倍率に発泡性樹脂粒子が到達した後、蒸気加熱を終了し予備発泡槽内から予備発泡粒子を取り出すまでの時間を意味する。
(Pre-foaming time: seconds)
The pre-foaming time means the time (seconds) from when the foamable resin particles are put into the pre-foaming machine to when the resin particles are impregnated with a readily volatile foaming agent and subjected to pressure foaming. .
More specifically, the inlet of the preliminary foaming tank is opened, the foamable resin particles are introduced into the preliminary foaming tank, the inlet of the preliminary foaming tank is closed, and the time when the pressurized steam starts to flow is set to 0 second. Then, after the expandable resin particles reach the specified expansion ratio, it means the time from the end of steam heating to the extraction of the prefoamed particles from the prefoaming tank.
(嵩密度および嵩発泡倍率:g/cm3)
次の方法により、嵩発泡倍率を測定する。
500cm3のメスシリンダ内に500cm3の目盛りまで予備発泡粒子を充填する。メスシリンダを水平方向から目視し、予備発泡粒子が一粒でも500cm3の目盛りに達しているものがあれば、その時点でメスシリンダ内への予備発泡粒子の充填を終了する。
次に、メスシリンダ内に充填した予備発泡粒子の重量を少数点以下2位の有効数字で秤量し、その重量をW(g)とし、次式により予備発泡粒子の嵩密度(見掛け密度)を算出し、さらに樹脂密度を嵩密度で除すことで、嵩発泡倍率を算出する。
嵩密度(g/cm3)=W/500
(Bulk density and bulk foaming ratio: g / cm 3 )
The bulk foaming ratio is measured by the following method.
Filling the pre-expanded particles to the scale of 500 cm 3 into the female cylinder of 500 cm 3. The graduated cylinder is visually observed from the horizontal direction, and if any pre-expanded particles reach a scale of 500 cm 3 , the filling of the pre-expanded particles into the graduated cylinder is terminated at that point.
Next, the weight of the pre-expanded particles filled in the graduated cylinder is weighed with two significant figures after the decimal point, the weight is defined as W (g), and the bulk density (apparent density) of the pre-expanded particles is expressed by the following formula. The bulk foaming ratio is calculated by calculating and further dividing the resin density by the bulk density.
Bulk density (g / cm 3 ) = W / 500
(合着の有無)
樹脂粒子に対して易揮発性発泡剤を含浸させ加圧発泡を行った際の、予備発泡後の予備発泡粒子を1cmメッシュの篩機で分級したのち、分級後メッシュ上部に残った予備発泡粒子の重量が予備発泡粒子全量の25%を超える場合を「合着有」とする。
(With or without fusing)
Pre-foamed particles remaining on top of the mesh after classification after pre-foamed particles are classified with a 1 cm mesh sieve when the resin particles are impregnated with a readily volatile foaming agent and subjected to pressure foaming The case where the weight exceeds 25% of the total amount of the pre-expanded particles is regarded as “attached”.
(蒸気発泡の可否)
樹脂粒子に対して40重量%の易揮発性発泡剤を含浸させ、0.15MPaの蒸気圧のスチームを用いて10秒間加圧発泡した際に、合着なく15倍以上の予備発泡粒子が得られた場合を「○」とし、得られなかった場合を「×」とする。
(Availability of steam foaming)
When the resin particles are impregnated with 40% by weight of a readily volatile foaming agent and foamed under pressure for 10 seconds using steam with a vapor pressure of 0.15 MPa, 15 times or more pre-expanded particles are obtained without coalescence. The case where it is obtained is “◯”, and the case where it is not obtained is “x”.
(成形性)
予備発泡粒子を24時間程度保持して熟成させ、その後、予備発泡粒子を成形型のキャビティ内に充填し、蒸気圧0.35MPaの水蒸気を成形型内に導入することにより加熱して型内発泡成形させ、予備発泡粒子同士を融着一体化させることによって所望形状を有する発泡成形体を作成する。その際の発泡成形体の融着率が5%以上である場合を「○」とし、5%未満の場合を「×」とする。
(Formability)
Pre-expanded particles are aged for about 24 hours, then pre-expanded particles are filled into the mold cavity and steam is introduced into the mold by introducing steam with a vapor pressure of 0.35 MPa into the mold. A foamed molded article having a desired shape is formed by molding and pre-expanded particles by fusing and integrating them. In this case, the case where the fusion rate of the foamed molded product is 5% or more is “◯”, and the case where it is less than 5% is “x”.
(融着率:%)
縦400mm×横300mm×高さ50mmの直方体形状の発泡成形体の表面にカッターで横方向に長さ300mm、深さ5mmの切り込み線を入れ、この切り込み線に沿って発泡成形体を二分割する。そして、発泡成形体の分割面において、発泡粒子内で破断している発泡粒子数(a)と、発泡粒子間の界面で破断している発泡粒子数(b)を測定し、次式により融着率を算出する。
融着率(%)=100×(a)/〔(a)+(b)〕
(Fusion rate:%)
A 300 mm long and 5 mm deep score line is placed on the surface of a rectangular parallelepiped foam molded body having a length of 400 mm × width of 300 mm × height of 50 mm with a cutter, and the foam molded body is divided into two along the score line. . Then, on the divided surface of the foamed molded product, the number of expanded particles (a) broken in the expanded particles and the number of expanded particles (b) broken at the interface between the expanded particles were measured. The arrival rate is calculated.
Fusing rate (%) = 100 × (a) / [(a) + (b)]
(MFR)
MFRは、JIS K7210に準拠し、230℃、2.16kg荷重の条件で測定する。
(MFR)
MFR is measured under the conditions of 230 ° C. and 2.16 kg load according to JIS K7210.
(原料Aの作製)
ポリプロピレン樹脂(プライムポリマー社製、商品名「F−744NP」、MFR:7、融点:140℃)100重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリプロピレン樹脂粒子を得た。このときのポリプロピレン樹脂粒子の平均重量を100粒あたり74mgに調整した。
次に、攪拌機付5Lオートクレーブに、得られたポリプロピレン樹脂粒子1190gを入れ、水性媒体として純水2.3kg、ピロリン酸マグネシウム30g、ドデシルベンゼンスルホン酸ソーダ0.7gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水性懸濁液とした。
次に、得られた懸濁液中にジクミルパーオキサイド(dicumyl peroxide)0.6gおよびジビニルベンゼン(DVB)0.9gを溶解させたスチレン単量体0.300kgを30分で滴下した。滴下後30分保持し、ポリプロピレン樹脂粒子にスチレン単量体を吸収させた。
(Preparation of raw material A)
100 parts by weight of a polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, MFR: 7, melting point: 140 ° C.) is supplied to an extruder, melt-kneaded, granulated by an underwater cutting method, and elliptically spherical ( Egg-shaped) polypropylene resin particles were obtained. The average weight of the polypropylene resin particles at this time was adjusted to 74 mg per 100 grains.
Next, 1190 g of the obtained polypropylene resin particles are put into a 5 L autoclave with a stirrer, and 2.3 kg of pure water, 30 g of magnesium pyrophosphate, and 0.7 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and mixed in an aqueous medium. The suspension was held for 10 minutes and then heated to 60 ° C. to obtain an aqueous suspension.
Next, 0.300 kg of a styrene monomer in which 0.6 g of dicumyl peroxide and 0.9 g of divinylbenzene (DVB) were dissolved in the obtained suspension was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
次に、反応系の温度をポリプロピレン樹脂の融点と同じ140℃に昇温させて2時間保持し、スチレン単量体をポリプロピレン樹脂粒子中で重合(第1の重合)させた。
次に、第1の重合の反応液をポリプロピレン樹脂の融点より20℃低い120℃に降温させて、この懸濁液中にドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド1.5gおよびジビニルベンゼン0.65gを溶解したスチレン単量体0.2kgを1時間掛けて滴下し、ポリプロピレン樹脂粒子に吸収させながら重合(第2の重合)させた。滴下終了後、120℃で1時間保持した後に140℃に昇温させて3時間保持して重合を完結し、改質樹脂粒子を得た。
得られた改質樹脂粒子(原料A)のゲル分率、測定1回目のDSC曲線の低温側ピーク温度を表1に示す。また、得られた改質樹脂粒子のMFRは2であった。
Next, the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polypropylene resin, and held for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
Next, the temperature of the first polymerization reaction solution is lowered to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin, 1.5 g of sodium dodecylbenzenesulfonate is added to the suspension, and then dicumyl peroxide 1 is added. 0.2 kg of styrene monomer in which 0.5 g and 0.65 g of divinylbenzene were dissolved was added dropwise over 1 hour and polymerized (second polymerization) while being absorbed by the polypropylene resin particles. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, and modified resin particles were obtained.
Table 1 shows the gel fraction of the obtained modified resin particles (raw material A) and the low-temperature-side peak temperature of the first measurement DSC curve. The obtained modified resin particles had an MFR of 2.
(原料Bの作製)
ポリプロピレン樹脂(住友化学社製、商品名「ノーブレンS−131」、MFR:1.5、融点:133℃)を用いたこと以外は、原料Aと同様にして改質樹脂粒子を得た。
得られた改質樹脂粒子(原料B)のゲル分率、測定1回目のDSC曲線の低温側ピーク温度を表1に示す。また、得られた改質樹脂粒子のMFRは1であった。
(Preparation of raw material B)
Modified resin particles were obtained in the same manner as in the raw material A, except that a polypropylene resin (manufactured by Sumitomo Chemical Co., Ltd., trade name “Nobrene S-131”, MFR: 1.5, melting point: 133 ° C.) was used.
Table 1 shows the gel fraction of the obtained modified resin particles (raw material B) and the low temperature side peak temperature of the DSC curve of the first measurement. The obtained modified resin particles had an MFR of 1.
(原料Cの作製)
ポリプロピレン樹脂(プライムポリマー社製、商品名「F−744NP」、MFR:7、融点:140℃)100重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリプロピレン樹脂粒子を得た。このときのポリプロピレン樹脂粒子の平均重量を100粒あたり74mgに調整した。
次に、攪拌機付5Lオートクレーブに、得られたポリプロピレン樹脂粒子850gを入れ、水性媒体として純水2.3kg、ピロリン酸マグネシウム30g、ドデシルベンゼンスルホン酸ソーダ0.7gを加え、攪拌して水性媒体中に懸濁させ、10分間保持し、その後60℃に昇温して水性懸濁液とした。
次に、得られた懸濁液中にジクミルパーオキサイド(dicumyl peroxide)0.4gおよびジビニルベンゼン(DVB)0.65gを溶解させたスチレン単量体0.210kgを30分で滴下した。滴下後30分保持し、ポリプロピレン樹脂粒子にスチレン単量体を吸収させた。
(Preparation of raw material C)
100 parts by weight of a polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, MFR: 7, melting point: 140 ° C.) is supplied to an extruder, melt-kneaded, granulated by an underwater cutting method, and elliptically spherical ( Egg-shaped) polypropylene resin particles were obtained. The average weight of the polypropylene resin particles at this time was adjusted to 74 mg per 100 grains.
Next, 850 g of the obtained polypropylene resin particles are put into a 5 L autoclave with a stirrer, and 2.3 kg of pure water, 30 g of magnesium pyrophosphate, and 0.7 g of sodium dodecylbenzenesulfonate are added as an aqueous medium, and the mixture is stirred and mixed in an aqueous medium. The suspension was held for 10 minutes and then heated to 60 ° C. to obtain an aqueous suspension.
Next, 0.210 kg of styrene monomer in which 0.4 g of dicumyl peroxide and 0.65 g of divinylbenzene (DVB) were dissolved in the obtained suspension was dropped in 30 minutes. After dropping, the mixture was held for 30 minutes to allow the polypropylene resin particles to absorb the styrene monomer.
次に、反応系の温度をポリプロピレン樹脂の融点と同じ140℃に昇温させて2時間保持し、スチレン単量体をポリプロピレン樹脂粒子中で重合(第1の重合)させた。
次に、第1の重合の反応液をポリプロピレン樹脂の融点より20℃低い120℃に降温させて、この懸濁液中にドデシルベンゼンスルホン酸ソーダ1.5gを加えた後、ジクミルパーオキサイド2.5gおよびジビニルベンゼン2.0gを溶解したスチレン単量体0.64kgを3時間かけて滴下し、ポリプロピレン樹脂粒子に吸収させながら重合(第2の重合)させた。滴下終了後、120℃で1時間保持した後に140℃に昇温し3時間保持して重合を完結し、改質樹脂粒子を得た。
得られた改質樹脂粒子(原料C)のゲル分率、測定1回目のDSC曲線の低温側ピーク温度を表1に示す。また、得られた改質樹脂粒子のMFRは1.5であった。
Next, the temperature of the reaction system was raised to 140 ° C., the same as the melting point of the polypropylene resin, and held for 2 hours, and the styrene monomer was polymerized (first polymerization) in the polypropylene resin particles.
Next, the temperature of the first polymerization reaction solution is lowered to 120 ° C., which is 20 ° C. lower than the melting point of the polypropylene resin, and 1.5 g of sodium dodecylbenzenesulfonate is added to the suspension, and then dicumyl peroxide 2 is added. 0.64 kg of a styrene monomer in which 0.5 g and 2.0 g of divinylbenzene were dissolved was dropped over 3 hours and polymerized (second polymerization) while being absorbed by polypropylene resin particles. After completion of dropping, the mixture was held at 120 ° C. for 1 hour, then heated to 140 ° C. and held for 3 hours to complete the polymerization, and modified resin particles were obtained.
Table 1 shows the gel fraction of the obtained modified resin particles (raw material C) and the low-temperature-side peak temperature of the first measurement DSC curve. Moreover, MFR of the obtained modified resin particle was 1.5.
(原料Dの作製)
ポリプロピレン樹脂(プライムポリマー社製、商品名「F−744NP」、MFR:7、融点:140℃)100重量部を押出機に供給して溶融混練して水中カット方式により造粒して楕円球状(卵状)のポリプロピレン樹脂粒子を得た。このときのポリプロピレン樹脂粒子の平均重量を100粒あたり74mgに調整した。
得られたポリプロピレン樹脂粒子(原料D)のゲル分率、測定1回目のDSC曲線の低温側ピーク温度を表1に示す。また、得られたポリプロピレン樹脂粒子のMFRは7であった。
原料A〜Dについて表1にまとめる。但し、原料Dは未改質のポリプロピレン樹脂粒子である。
(Preparation of raw material D)
100 parts by weight of a polypropylene resin (manufactured by Prime Polymer Co., Ltd., trade name “F-744NP”, MFR: 7, melting point: 140 ° C.) is supplied to an extruder, melt-kneaded, granulated by an underwater cutting method, and elliptically spherical ( Egg-shaped) polypropylene resin particles were obtained. The average weight of the polypropylene resin particles at this time was adjusted to 74 mg per 100 grains.
Table 1 shows the gel fraction of the obtained polypropylene resin particles (raw material D) and the low-temperature-side peak temperature of the first measurement DSC curve. Further, the MFR of the obtained polypropylene resin particles was 7.
The raw materials A to D are summarized in Table 1. However, the raw material D is unmodified polypropylene resin particles.
(実施例1)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン350ml(200g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.12MPaのスチームを用いて15秒間加熱発泡したところ、合着のない、嵩発泡倍率22倍(嵩密度0.044g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
Example 1
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 350 ml (200 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 15 seconds using 0.12 MPa steam in a pressure foaming machine, there was no coalescence, and a bulk foaming magnification of 22 times (bulk density 0.044 g / cm 3 ) Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
(実施例2)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(400g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.17MPaのスチームを用いて10秒間加熱発泡したところ。合着のない、嵩発泡倍率26倍(嵩密度0.037g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった
(Example 2)
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (400 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the obtained expandable resin particles are heated and foamed for 10 seconds using 0.17 MPa steam in a pressure foaming machine. Pre-expanded particles having a bulk expansion ratio of 26 times (bulk density of 0.037 g / cm 3 ) without coalescence were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
。
(実施例3)
原料B1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン350ml(200g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.12MPaのスチームを用いて15秒間加熱発泡したところ、合着のない、嵩発泡倍率18倍(嵩密度0.054g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は10%であった。
.
(Example 3)
1 kg of raw material B and 3 L of water were put into a 5 L autoclave with a stirrer, and 350 ml (200 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 15 seconds using 0.12 MPa steam in a pressure foaming machine, there was no coalescence and a bulk foaming magnification of 18 times (bulk density 0.054 g / cm 3 ) Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 10%.
(実施例4)
原料C1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン350ml(200g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.10MPaのスチームを用いて13秒間加熱発泡したところ、合着のない、嵩発泡倍率32倍(嵩密度0.031g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は90%であった。
Example 4
C1 kg of raw material and 3 L of water were put into a 5 L autoclave with a stirrer, and 350 ml (200 g) of butane as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the obtained expandable resin particles were heated and foamed for 13 seconds using 0.10 MPa steam in a pressure foaming machine, there was no coalescence and a bulk expansion ratio of 32 times (bulk density 0.031 g / cm 3 ) Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 90%.
(実施例5)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(400g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.10MPaのスチームを用いて10秒間加熱発泡したところ、合着のない、嵩発泡倍率19倍(嵩密度0.051g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
(Example 5)
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (400 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 10 seconds using 0.10 MPa steam in a pressure foaming machine, a preliminarily 19-fold bulk density (bulk density 0.051 g / cm 3 ) without coalescence was obtained. Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
(実施例6)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(400g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.15MPaのスチームを用いて12秒間加熱発泡したところ、合着のない、発泡倍率32倍(嵩密度0.030g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
(Example 6)
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (400 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 12 seconds using 0.15 MPa steam in a pressure foaming machine, pre-foaming with a foaming ratio of 32 times (bulk density 0.030 g / cm 3 ) without coalescence was achieved. Particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
(実施例7)
原料A1kgと、添加剤Aとしての炭酸カルシウム(粒子径0.05μm)10gと、水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(200g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.20MPaのスチームを用いて30秒間加熱発泡したところ、合着のない、嵩発泡倍率25倍(嵩密度0.039g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
(Example 7)
1 kg of raw material A, 10 g of calcium carbonate (particle diameter 0.05 μm) as additive A, and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (200 g) of butane as a blowing agent was injected into a 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
The obtained expandable resin particles were heated and foamed in a pressure foaming machine using steam of 0.20 MPa for 30 seconds, and had a bulk expansion ratio of 25 times (bulk density 0.039 g / cm 3 ) without coalescence. Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
(実施例8)
原料A1kgと、添加剤Bとしての炭酸カルシウム(粒子径2μm)20gと、水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(200g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.20MPaのスチームを用いて30秒間加熱発泡したところ、合着のない、嵩発泡倍率24倍(嵩密度0.040g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
(Example 8)
1 kg of raw material A, 20 g of calcium carbonate (particle diameter 2 μm) as additive B, and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (200 g) of butane as a blowing agent was injected into a 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
The obtained expandable resin particles were heated and foamed for 30 seconds using 0.20 MPa steam in a pressure foaming machine. As a result, a reserve with a bulk foaming ratio of 24 times (bulk density 0.040 g / cm 3 ) without coalescence was obtained. Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
(比較例1)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン175ml(100g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.19MPaのスチームを用いて10秒間加熱発泡したところ、合着のない、嵩発泡倍率12倍(嵩密度0.081g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
結果として、発泡倍率が15倍に到達しなかった。
(Comparative Example 1)
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 175 ml (100 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 10 seconds using 0.19 MPa steam in a pressure foaming machine, a preliminary foaming ratio of 12 times (bulk density 0.081 g / cm 3 ) without coalescence was obtained. Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
As a result, the expansion ratio did not reach 15 times.
(比較例2)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン350ml(200g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.22MPaのスチームを用いて10秒間加熱発泡したところ、合着が多発したため、その後の成型評価等を中止した。
(Comparative Example 2)
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 350 ml (200 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 10 seconds using 0.22 MPa steam in a pressure foaming machine, coalescence occurred frequently, and subsequent molding evaluation and the like were stopped.
(比較例3)
原料A1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(400g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.07MPaのスチームを用いて120秒間加熱発泡したところ、合着のない、嵩発泡倍率9倍(嵩密度0.107g/cm3)の予備発泡粒子が得られた。
また、得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、得られた発泡成形体の融着率は80%であった。
結果として、発泡倍率が15倍に到達しなかった。
(Comparative Example 3)
1 kg of raw material A and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (400 g) of butane as a blowing agent was poured into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
The obtained expandable resin particles were heated and foamed in a pressure foaming machine using 0.07 MPa steam for 120 seconds. As a result, there was no coalescence and a bulk expansion ratio of 9 times (bulk density of 0.107 g / cm 3 ) Expanded particles were obtained.
Further, when the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the in-mold volume. The fusion molding rate of the obtained foamed molded product was 80%.
As a result, the expansion ratio did not reach 15 times.
(比較例4)
原料D1kgと水3Lを攪拌機付5Lオートクレーブに投入し、発泡剤としてブタン700ml(400g)を攪拌機付5Lオートクレーブに注入した。注入後、60℃に昇温させ、4時間攪拌を続けた。その後、常温まで冷却して5Lオートクレーブから取り出し、脱水乾燥した後に発泡性樹脂粒子を得た。
得られた発泡性樹脂粒子を加圧発泡機内において0.20MPaのスチームを用いて15秒間加熱発泡したところ、合着のない、嵩発泡倍率8倍(嵩密度0.091g/cm3)の予備発泡粒子が得られた。
得られた予備発泡粒子を型内体積に対して20%増加のクラッキング条件下で、蒸気圧0.35MPaの水蒸気を成形型内に導入することによって型内成形発泡を行ったところ、成形後大きく収縮してしまい、発泡成形体を得ることができなかった。
実施例1〜8および比較例1〜4の発泡成形体について表2にまとめる。
(Comparative Example 4)
D1 kg of raw material and 3 L of water were put into a 5 L autoclave with a stirrer, and 700 ml (400 g) of butane as a blowing agent was injected into the 5 L autoclave with a stirrer. After the injection, the temperature was raised to 60 ° C. and stirring was continued for 4 hours. Then, it cooled to normal temperature, took out from the 5L autoclave, dehydrated and dried, and obtained expandable resin particles.
When the foamable resin particles obtained were heated and foamed for 15 seconds using 0.20 MPa steam in a pressure foaming machine, there was no coalescence, and the bulk foaming magnification was 8 times (bulk density 0.091 g / cm 3 ). Expanded particles were obtained.
When the obtained pre-expanded particles were subjected to in-mold foaming by introducing water vapor with a vapor pressure of 0.35 MPa into the mold under cracking conditions with an increase of 20% with respect to the volume in the mold, It contracted and a foaming molding could not be obtained.
The foam molded articles of Examples 1 to 8 and Comparative Examples 1 to 4 are summarized in Table 2.
表2の結果から、改質樹脂粒子100重量部を発泡剤20〜50重量部と共に予備発泡槽内に投入して、発泡剤を改質樹脂粒子に含浸させ、10〜30秒間、0.12〜0.20MPaの加圧水蒸気で加熱することで優れた物性を有する予備発泡粒子が得られることが分かる。 From the results of Table 2, 100 parts by weight of the modified resin particles are put into a pre-foaming tank together with 20 to 50 parts by weight of the foaming agent, and the foaming agent is impregnated into the modified resin particles. It turns out that the pre-expanded particle | grains which have the outstanding physical property are obtained by heating with pressurized steam of -0.20MPa.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011206315A JP2012188642A (en) | 2011-02-25 | 2011-09-21 | Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011040571 | 2011-02-25 | ||
JP2011040571 | 2011-02-25 | ||
JP2011206315A JP2012188642A (en) | 2011-02-25 | 2011-09-21 | Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012188642A true JP2012188642A (en) | 2012-10-04 |
Family
ID=47082152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011206315A Withdrawn JP2012188642A (en) | 2011-02-25 | 2011-09-21 | Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012188642A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170481A1 (en) * | 2016-03-29 | 2017-10-05 | 積水化成品工業株式会社 | Modified polypropylene-based resin and process for producing modified polypropylene-based resin |
EP4279539A4 (en) * | 2021-01-15 | 2024-11-27 | Kaneka Corporation | Polypropylene resin extruded foam particles, method for producing same, and foam molded body |
-
2011
- 2011-09-21 JP JP2011206315A patent/JP2012188642A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017170481A1 (en) * | 2016-03-29 | 2017-10-05 | 積水化成品工業株式会社 | Modified polypropylene-based resin and process for producing modified polypropylene-based resin |
JPWO2017170481A1 (en) * | 2016-03-29 | 2018-11-08 | 積水化成品工業株式会社 | Modified polypropylene resin and method for producing modified polypropylene resin |
EP4279539A4 (en) * | 2021-01-15 | 2024-11-27 | Kaneka Corporation | Polypropylene resin extruded foam particles, method for producing same, and foam molded body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4718645B2 (en) | Styrene modified polypropylene resin particles, expandable styrene modified polypropylene resin particles, styrene modified polypropylene resin foam particles, and method for producing styrene modified polypropylene resin foam molded article | |
JP5138254B2 (en) | Modified polystyrene resin particles containing self-extinguishing carbon, Modified polystyrene resin particles containing foam, self-extinguishing carbon, Modified polystyrene resin foam particles containing self-extinguishing carbon, Modified polystyrene resin foam containing self-extinguishing carbon Molded body and method for producing the same | |
JP5232397B2 (en) | Method for producing modified polystyrene resin particles, expandable modified polystyrene resin particles, modified polystyrene resin foam particles, modified polystyrene resin foam molding | |
JP2012214691A (en) | Polyethylene-based resin particle for seed polymerization, composite resin particle, method for producing these, foamable composite resin particle, and preliminary foaming particle, and foamed article | |
JP5699018B2 (en) | Method for producing polypropylene resin particles for seed polymerization and method for producing composite resin particles | |
JP6322148B2 (en) | Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings | |
JP2012188642A (en) | Preliminary foamed particle of modified polypropylene-based resin and method of manufacturing expansion molding body | |
JP2011068776A (en) | Foam-molded article | |
WO2013147040A1 (en) | Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper | |
JP2009263639A (en) | Foamable styrene-modified polyolefin-based resin particle, its production method, prefoamed particle, and foam molded body | |
WO2014157538A1 (en) | Molded body of composite resin foam | |
JP5809902B2 (en) | MODIFIED POLYPROPYLENE RESIN PARTICLE, ITS PREFOAMED PARTICLE, PROCESS FOR PRODUCING THE SAME, AND METHOD FOR PRODUCING FOAM MOLD | |
JP5690632B2 (en) | Polypropylene resin particles for seed polymerization, process for producing the same, composite resin particles, expandable composite resin particles, pre-expanded particles, and expanded molded body | |
JP5422970B2 (en) | Method for producing pre-expanded particles of styrene-modified polyethylene resin | |
JP6404164B2 (en) | Seed polymerization seed particles, composite resin particles, expandable particles, expanded particles, and composite resin foam moldings | |
JP2012167148A (en) | Composite resin particle, foamable resin particle, method for producing them, foamed particle and foamed molding | |
JP5731368B2 (en) | Seed particles, composite resin particles, methods for producing the same, composite resin particles, expandable particles, pre-expanded particles, and foam molded article | |
JP2010083971A (en) | Foam molding body and method for producing the same | |
JP5642003B2 (en) | Method for producing pre-expanded resin particles containing polypropylene resin | |
JP6228610B2 (en) | Polystyrene-based composite resin particles, expandable composite resin particles, pre-expanded particles, and method for producing expanded molded body | |
JP5732299B2 (en) | Composite resin particles, expandable composite resin particles, pre-expanded particles and foamed molded body | |
JP6209116B2 (en) | Composite resin particles and production method thereof, expandable composite resin particles, pre-expanded composite resin particles, and composite resin foam molded article | |
JP2018141087A (en) | Method for producing foamed particle and method for producing foam molded body | |
JP7078849B2 (en) | Effervescent composite resin particles | |
JP2017066359A (en) | Styrene-modified polyolefin resin particles and method for producing the same, expandable particles, expanded particles and expanded molded article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20141202 |