JP2012188405A - Inactivation method of adhesive microorganism - Google Patents
Inactivation method of adhesive microorganism Download PDFInfo
- Publication number
- JP2012188405A JP2012188405A JP2011054655A JP2011054655A JP2012188405A JP 2012188405 A JP2012188405 A JP 2012188405A JP 2011054655 A JP2011054655 A JP 2011054655A JP 2011054655 A JP2011054655 A JP 2011054655A JP 2012188405 A JP2012188405 A JP 2012188405A
- Authority
- JP
- Japan
- Prior art keywords
- virus
- chlorine dioxide
- dioxide gas
- ppm
- article
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Apparatus For Disinfection Or Sterilisation (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
本発明は付着微生物の不活化方法に関し、詳しくはヒトを含む動物(以下、単に「動物」ともいう)の生活環境に存在する全ての物品の外表面に付着した細菌、真菌またはウイルスなどの微生物(すなわち付着微生物)を、当該動物をその生活空間より待避させることなく不活化(殺菌)する方法に関する。 The present invention relates to a method for inactivating attached microorganisms, and in particular, microorganisms such as bacteria, fungi or viruses attached to the outer surface of all articles existing in the living environment of animals including humans (hereinafter also simply referred to as “animals”). The present invention relates to a method for inactivating (sterilizing) (that is, adhering microorganisms) without evacuating the animal from its living space.
病原性微生物の中には、環境表面を介して動物に感染する可能性のあるものが存在する。感染を阻止するためには、当然のことながら環境表面への除菌や殺菌が必要となるが、これまで数多くの環境表面の殺菌方法が考案されており、二酸化塩素ガスを用いて殺菌する方法も提案されている(例えば、特許文献1参照)。 Some pathogenic microorganisms can infect animals through environmental surfaces. In order to prevent infection, of course, sterilization and sterilization of the environmental surface is necessary. However, many environmental surface sterilization methods have been devised so far, and a method of sterilization using chlorine dioxide gas. Has also been proposed (see, for example, Patent Document 1).
しかしながら、従来の殺菌方法は、その方法を用いて殺菌を行う場合、毒性作用が強いため当該環境(生活空間)に居る(生活する)動物を待避させなければならなかった。また、高濃度の二酸化塩素ガスを用いる場合、そのガスが保有する強い酸化作用のため、金属物品の種類によっては表面を錆びさせたり、合成樹脂製の物品の種類によっては劣化させたりすることが知られており、問題となっていた。現在のところ、動物を待避させることなく、広範囲に適用可能であり、かつ手間の掛からない方法は見当たらず、世界的に新興感染症や再興感染症が問題となる中で、これら感染症に対して動物の生活空間で使用可能な新しい殺菌方法が切望されている。 However, in the conventional sterilization method, when sterilization is performed using the method, the toxic effect is strong, and therefore an animal in (living) the environment (living space) has to be saved. Also, when using high-concentration chlorine dioxide gas, due to the strong oxidizing action of the gas, the surface may rust depending on the type of metal article or may deteriorate depending on the type of article made of synthetic resin. Known and was a problem. At present, there is no method that can be applied in a wide range without evacuating animals, and there are no troublesome methods. In the world, emerging and re-emerging infectious diseases are a problem. Therefore, a new sterilization method that can be used in the living space of animals is eagerly desired.
[発明の目的]
本発明者は、動物の生活空間において広範囲で利用可能な環境表面殺菌の方法について研究を重ね、鋭意検討した結果、ついに、動物の待避が不要な低濃度二酸化塩素ガスにより、環境表面に存在する微生物の不活化(殺菌)が可能であることを発見し、そして本発明に至った。
[Object of invention]
The present inventor has conducted extensive research on methods for environmental surface sterilization that can be used in a wide range of animal living spaces. It was discovered that inactivation (sterilization) of microorganisms was possible and led to the present invention.
本発明に係る付着微生物の不活化方法の特徴構成は、物品の外表面に付着する微生物を不活化する方法であって、当該物品を、濃度0.1ppm以下の低濃度二酸化塩素ガスに曝露する点にある。 A characteristic configuration of the method for inactivating attached microorganisms according to the present invention is a method for inactivating microorganisms attached to the outer surface of an article, wherein the article is exposed to low-concentration chlorine dioxide gas having a concentration of 0.1 ppm or less. In the point.
本構成によれば、動物に対して害のない低濃度(0.1ppm以下)の二酸化塩素ガスを動物の生活空間(居住空間)に供給するので、動物を待避させることなく環境表面に存在する病原性微生物(微生物)を殺菌することができる。特に食品や医療分野など特定環境下における付着微生物に対する制御が容易となる。 According to this configuration, chlorine dioxide gas having a low concentration (0.1 ppm or less) that is not harmful to animals is supplied to the living space (living space) of the animals, and therefore exists on the surface of the environment without evacuating the animals. Pathogenic microorganisms (microorganisms) can be sterilized. In particular, it is easy to control attached microorganisms in a specific environment such as the food and medical fields.
本発明に係る付着微生物不活化方法において、前記微生物は、大腸菌(Escherichia coli)、黄色ブドウ球菌(Staphylococcus aureus)、インフルエンザウイルス(Influenzavirus)、およびネコカリシウイルス(Feline calicivirus)からなる群より選ばれる少なくとも1種であることが好ましい。 In the method for inactivating an attached microorganism according to the present invention, the microorganism is at least selected from the group consisting of Escherichia coli, Staphylococcus aureus, influenza virus, and feline calicivirus. One type is preferable.
本構成によれば、感染率の高い感染症や日常的によく発生している食中毒などといった広範囲の疾患の予防が、動物に対する有害リスクを最小限に抑えながら可能となる。 According to this configuration, it is possible to prevent a wide range of diseases such as infectious diseases with a high infection rate and food poisoning that occurs frequently on a daily basis, while minimizing harmful risks to animals.
二酸化塩素ガス
本発明で用いる二酸化塩素ガスは、低濃度二酸化塩素ガスであり、具体的には濃度0.1ppm以下の二酸化塩素ガスであり、好ましくは濃度0.1ppm〜0.01ppmの二酸化塩素ガスである。0.1ppmを超えると、動物への影響が懸念され、使用時に待避させる必要が生じる。また、二酸化塩素ガスの酸化力が無視できなくなり、金属物品の表面を錆びさせたり、合成樹脂物品を劣化させたりする恐れが高まる。二酸化塩素ガス濃度が0.01ppm未満であれば、付着微生物の不活化(殺菌)効果が十分に発揮しなくなるおそれがある。なお、付着微生物を死に至らしめ、かつ動物がより安全にその空間に生活・生存することができるという点で、0.1ppm〜0.05ppmであることが好ましく、0.03ppm〜0.05ppmであることがさらに好ましい。被処理物である物品(物体)を15分〜5時間、好ましくは30分〜3時間、低濃度二酸化塩素ガスに暴露する。但し、当該動物の待避が不要のため、5時間以上の長時間暴露による付着微生物の低減効果も実用上期待できる。
Chlorine dioxide gas The chlorine dioxide gas used in the present invention is a low concentration chlorine dioxide gas, specifically a chlorine dioxide gas having a concentration of 0.1 ppm or less, preferably a chlorine dioxide gas having a concentration of 0.1 ppm to 0.01 ppm. It is. If it exceeds 0.1 ppm, there is a concern about the influence on animals, and it is necessary to save it during use. Moreover, the oxidizing power of chlorine dioxide gas cannot be ignored, and the risk of rusting the surface of the metal article or degrading the synthetic resin article increases. If the chlorine dioxide gas concentration is less than 0.01 ppm, the inactivation (sterilization) effect of the attached microorganisms may not be sufficiently exhibited. In addition, it is preferably 0.1 ppm to 0.05 ppm in terms of causing the attached microorganism to die and allowing the animal to live and survive in the space more safely, and 0.03 ppm to 0.05 ppm. More preferably it is. An article (object) that is an object to be treated is exposed to low-concentration chlorine dioxide gas for 15 minutes to 5 hours, preferably 30 minutes to 3 hours. However, since it is not necessary to save the animal, the effect of reducing the attached microorganisms due to long-term exposure of 5 hours or more can be expected in practice.
二酸化塩素ガスの供給方法(発生方法)
本発明において、二酸化塩素は、従来公知の化学反応を利用して発生させたものを利用すればよい。例えば、亜塩素酸塩と酸性物質の混合により起こる反応生成物(二酸化塩素ガス)をそのまま、あるいは一旦、水に溶かして溶存二酸化塩素ガスとしたのちバブリングなどの方法で取り出す方法、または前記の溶存二酸化塩素ガスを徐放剤(デンプン系吸水性樹脂、セルロース系吸水性樹脂、合成ポリマー系吸水性樹脂などの高吸水性樹脂や焼成骨材あるいは多孔質材料など)に吸着させてから少しずつ有効成分である二酸化塩素を放出(徐放)する方法、空気中に湿分が存在する雰囲気中にて固形の亜塩素酸塩に紫外線を照射した際に発生する二酸化塩素ガスを使用する方法などがあり、これら二酸化塩素ガスを空間(人の居住空間)内に定期的にあるいは不定期に放出する。
また、市販の二酸化塩素発生装置、例えばLISPASSシリーズ(登録商標 大幸薬品社製)などの発生装置を用いることもできる。
Chlorine dioxide gas supply method (generation method)
In the present invention, chlorine dioxide generated using a conventionally known chemical reaction may be used. For example, a reaction product (chlorine dioxide gas) generated by mixing chlorite and an acidic substance is taken out as it is or once dissolved in water to form dissolved chlorine dioxide gas and then extracted by a method such as bubbling or the above-mentioned dissolved Effective gradually after adsorbing chlorine dioxide gas to sustained-release agents (highly water-absorbent resins such as starch-based water-absorbent resins, cellulose-based water-absorbent resins, synthetic polymer-based water-absorbent resins, calcined aggregates, porous materials, etc.) A method of releasing (sustained release) chlorine dioxide as a component, a method of using chlorine dioxide gas generated when ultraviolet rays are irradiated to solid chlorite in an atmosphere where moisture exists in the air, etc. Yes, these chlorine dioxide gases are released into the space (people's living space) regularly or irregularly.
A commercially available chlorine dioxide generator, for example, a generator such as LISPASS series (registered trademark, manufactured by Daiko Pharmaceutical Co., Ltd.) can also be used.
生活環境空間
本発明を適用し得る生活環境空間(本発明における「物品」が存する空間)は、例えば家屋、乗用車や電車、バス、タクシーなど移動交通手段の車内や駅構内、劇場や映画館、病院(診察室、手術室、待合室など)、介護施設、飲食店、空港のロビー、公衆銭湯などの浴場、公衆トイレ、事務所、教室などヒトが出入りする空間、あるいはマウスケージ、ビニールハウスなどの動物を飼育又は植物を栽培する空間が挙げられる。しかし、これらに限定されるものではなく、閉鎖状態又は開放状態を随時とり得るような空間であるならば任意の空間に適用することが可能である。低濃度の二酸化塩素ガスを使用する本発明により、このような生活環境空間における全ての物品に付着した微生物を、ヒトなどそこに居住する動物を待避させることなく殺菌・不活化することができる。
Living environment space The living environment space to which the present invention can be applied (the space where the “article” in the present invention exists) is, for example, in a vehicle, a station premises, a theater, a movie theater, Hospitals (examination rooms, operating rooms, waiting rooms, etc.), nursing homes, restaurants, airport lobbies, public baths such as public baths, public toilets, offices, classrooms and other spaces where people enter and exit, mouse cages, plastic houses, etc. Examples include a space for raising animals or cultivating plants. However, the present invention is not limited to these, and the present invention can be applied to any space as long as the space can be closed or opened at any time. According to the present invention using a low concentration of chlorine dioxide gas, microorganisms attached to all articles in such a living environment space can be sterilized and inactivated without evacuating animals such as humans.
付着微生物
本発明でいう付着微生物としては特に限定はなく、細菌としてはグラム陽性菌あるいはグラム陰性菌、例えば、黄色ブドウ球菌、緑膿菌、大腸菌、連鎖球菌、淋菌、梅毒菌、髄膜炎菌、クレブシエラ(肺炎桿菌)、サルモネラ菌、ボツリヌス菌、プロテウス、百日咳菌、セラチア菌、腸炎ビブリオ菌、シトロバクター、アシネトバクター、カンピロバクター、エンテロバクター、マイコプラズマ、クラミジア、クロストリジウムなどが挙げられる。また、真菌としては、例えば、白癬菌、マラセチア菌、カンジダなどが挙げられる。さらに、ウイルスとしてはエンベロープのあるウイルスあるいはエンベロープのないウイルス、例えば、水痘・帯状疱疹ウイルス、インフルエンザウイルス(ヒト、鳥、豚など)、単純性疱疹ウイルス、アデノウイルス、エンテロウイルス、ヒトパピローマウイルス(ヒト乳頭種ウイルス)、ボックスウイルス、コクサッキーウイルスなどが挙げられる。単純ヘルペスウイルス、サイトメガロウイルス、EBウイルス、アデノウイルス、パピローマウイルス、JCウイルス、パルボウイルス、B型肝炎ウイルス、C型肝炎ウイルス、ラッサウイルス、ネコカリシウイルス、ノロウイルス、サポウイルス、SARSウイルス、風疹ウイルス、ムンプスウイルス、麻疹ウイルス、RSウイルス、ポリオウイルス、コクサッキーウイルス、エコーウイルス、マールブルグウイルス、エボラウイルス、黄熱病ウイルス、デング熱ウイルス、ブンヤウイルス科のウイルス、狂犬病ウイルス、レオウイルス科のウイルス、ヒト免疫不全ウイルス、ヒトTリンパ好性ウイルス、サル免疫不全ウイルス、STLV等が挙げられる。
Adherent microorganisms The attached microorganisms used in the present invention are not particularly limited, and the bacteria include Gram-positive bacteria or Gram-negative bacteria, such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus, Neisseria gonorrhoeae, syphilis, meningococcus Klebsiella (Klebsiella pneumoniae), Salmonella, Clostridium botulinum, Proteus, Bordetella pertussis, Serratia, Vibrio parahaemolyticus, Citrobacter, Acinetobacter, Campylobacter, Enterobacter, Mycoplasma, Chlamydia, Clostridium and the like. Examples of fungi include ringworm, malassezia, and candida. Furthermore, the viruses include enveloped or non-enveloped viruses such as varicella / zoster virus, influenza virus (human, bird, swine, etc.), herpes simplex virus, adenovirus, enterovirus, human papillomavirus (human papilloma virus) Virus), box virus, Coxsackie virus and the like. Herpes simplex virus, cytomegalovirus, EB virus, adenovirus, papilloma virus, JC virus, parvovirus, hepatitis B virus, hepatitis C virus, lassa virus, feline calicivirus, norovirus, sapovirus, SARS virus, rubella virus , Mumps virus, measles virus, RS virus, poliovirus, coxsackie virus, echovirus, Marburg virus, Ebola virus, yellow fever virus, dengue virus, Bunyaviridae virus, rabies virus, reoviridae virus, human immunodeficiency virus , Human T lymphophilic virus, simian immunodeficiency virus, STLV and the like.
実施例1(低濃度ガスによる大腸菌の不活化効果)
温湿度(22±2℃、52±2%)の制御されたバイオセーフティ施設の部屋(39m3)で、二酸化塩素ガス発生装置を稼働させたのち、その部屋内にガラスシャーレを設置し、大腸菌<Escherichia coli(NBRC 3972)>の細菌懸濁液(1×108cells/ml、D-PBS中)100マイクロリットルを滴下した。そのガラスシャーレを空気または二酸化塩素ガス(加重平均濃度0.05ppm)に曝露した。所定時間(0時間、1時間、2時間、3時間、4時間、及び5時間)曝露後、大腸菌を回収し、生菌数CFU(Colony forming unit、以下同様)/dish)を希釈平板法により測定した。結果を[図1]に示す。生菌数が2log10(タテ軸)以上に減少している場合は*印1つ(*)を、5log10(タテ軸)以上に減少している場合は*印2つ(**)を、図中のグラフに併記した。
[図1]の結果より、低濃度二酸化塩素ガス(0.05ppm、0.14mg/m3)で物品の表面における付着微生物(大腸菌)が不活化(殺菌)されていることがわかる。
Example 1 (Inactivation effect of E. coli by low concentration gas)
After operating a chlorine dioxide gas generator in a room (39m 3 ) of a biosafety facility with controlled temperature and humidity (22 ± 2 ° C, 52 ± 2%), a glass petri dish was installed in the room, and Escherichia coli 100 microliters of a bacterial suspension of <Escherichia coli (NBRC 3972)> (1 × 10 8 cells / ml in D-PBS) was added dropwise. The glass petri dish was exposed to air or chlorine dioxide gas (weighted average concentration 0.05 ppm). After exposure for a predetermined time (0 hours, 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours), E. coli is recovered and the viable cell count CFU (Colony forming unit, the same applies hereinafter) / dish) is determined by a dilution plate method. It was measured. The results are shown in FIG. If the number of live bacteria is decreased more than 2 log 10 (vertical axis) * mark one (*), if you are reduced to 5 log 10 (vertical axis) or mark * two (**) This is also shown in the graph in the figure.
From the result of [FIG. 1], it can be seen that low-concentration chlorine dioxide gas (0.05 ppm, 0.14 mg / m 3 ) inactivates (sterilizes) attached microorganisms (E. coli) on the surface of the article.
実施例2(低濃度ガスによる黄色ブドウ球菌の不活化効果)
温湿度(22±2℃、52±2%)の制御されたバイオセーフティ施設の部屋(39m3)で、二酸化塩素ガス発生装置を稼働させたのち、その部屋内にガラスシャーレを設置し、黄色ブドウ球菌<Staphylococcus aureus(NBRC 13276)>の細菌懸濁液(1×108cells/ml、D-PBS中)100マイクロリットルを滴下した。そのガラスシャーレを空気または二酸化塩素ガス(加重平均濃度0.05ppm)に曝露した。所定時間(0時間、1時間、2時間、3時間、4時間、及び5時間)曝露後、大腸菌を回収し、生菌数(CFU/dish)を希釈平板法により測定した。結果を[図2]に示す。生菌数が2log10(タテ軸)以上に減少している場合は*印1つ(*)を、図中のグラフに併記した。
[図2]の結果より、低濃度二酸化塩素ガス(0.05ppm、0.14mg/m3)で物品の表面における付着微生物(黄色ブドウ球菌)が不活化(殺菌)されていることがわかる。
Example 2 (Inactivation effect of Staphylococcus aureus by low concentration gas)
After operating a chlorine dioxide gas generator in a room (39m 3 ) of a biosafety facility with controlled temperature and humidity (22 ± 2 ° C, 52 ± 2%), a glass petri dish was installed in the room, yellow 100 microliters of a bacterial suspension of Staphylococcus aureus (NBRC 13276) (1 × 10 8 cells / ml in D-PBS) was added dropwise. The glass petri dish was exposed to air or chlorine dioxide gas (weighted average concentration 0.05 ppm). After exposure for a predetermined time (0 hour, 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours), E. coli was recovered and the viable cell count (CFU / dish) was measured by a dilution plate method. The results are shown in FIG. When the number of viable bacteria decreased to 2 log 10 (vertical axis) or more, one * (*) was marked on the graph in the figure.
From the result of [FIG. 2], it can be seen that the adherent microorganisms (Staphylococcus aureus) on the surface of the article are inactivated (sterilized) with low concentration chlorine dioxide gas (0.05 ppm, 0.14 mg / m 3 ).
実施例3(低濃度ガスによるインフルエンザAウイルスの不活化効果)
温湿度(22±2℃、52±2%)の制御されたバイオセーフティ施設の部屋(39m3)で、二酸化塩素ガス発生装置を稼働させたのち、その部屋内にガラスシャーレを設置し、インフルエンザAウイルス<Influenza A virus(H1N1, New Caledonia/20/99)>のウイルス浮遊液(108 TCID50 (50% tissue culture infectious dose、以下同様)/50マイクロリットル、D-PBS中)100マイクロリットルを滴下した。そのガラスシャーレを空気または二酸化塩素ガス(加重平均濃度0.05ppm)に曝露した。所定時間(0時間、1時間、2時間、3時間、4時間、及び5時間)曝露後、ウイルス浮遊液を回収し、常法に従ってウイルス感染価(TCID50/50マイクロリットル)を測定した。結果を[図3]に示す。ウイルス感染価が5log10(タテ軸)以上に減少している場合は*印2つ(**)を、図中のグラフに併記した。
[図3]の結果より、低濃度二酸化塩素ガス(0.05ppm、0.14mg/m3)で物品の表面における付着微生物(インフルエンザAウイルス)が不活化されていることがわかる。
Example 3 (Inactivation effect of influenza A virus by low concentration gas)
After operating a chlorine dioxide gas generator in a room (39m 3 ) of a biosafety facility with controlled temperature and humidity (22 ± 2 ° C, 52 ± 2%), a glass petri dish was installed in the room, and influenza Virus suspension of A virus <Influenza A virus (H1N1, New Caledonia / 20/99)> (10 8 TCID 50 (50% tissue culture infectious dose, the same applies hereinafter) / 50 microliters in D-PBS) 100 microliters Was dripped. The glass petri dish was exposed to air or chlorine dioxide gas (weighted average concentration 0.05 ppm). After exposure for a predetermined time (0 hour, 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours), the virus suspension was collected and the virus infectivity titer (TCID 50/50 microliter) was measured according to a conventional method. The results are shown in [FIG. 3]. When the virus infectivity titer was decreased to 5 log 10 (vertical axis) or more, two * marks (**) were also shown in the graph in the figure.
From the result of [FIG. 3], it can be seen that the attached microorganism (influenza A virus) on the surface of the article is inactivated by the low concentration chlorine dioxide gas (0.05 ppm, 0.14 mg / m 3 ).
実施例4(低濃度ガスによるネコカリシウイルス<ノロウイルス代替ウイルス>の不活化効果)
温湿度(22±2℃、52±2%)の制御されたバイオセーフティ施設の部屋(39m3)で、二酸化塩素ガス発生装置を稼働させたのち、その部屋内にガラスシャーレを設置し、ネコカリシウイルス< Feline calicivirus(F9)>のウイルス浮遊液(108 TCID50/50マイクロリットル、D-PBS中)100マイクロリットルを滴下した。そのガラスシャーレを空気または二酸化塩素ガス(加重平均濃度0.05ppm)に曝露した。所定時間(0時間、1時間、2時間、3時間、4時間、及び5時間)曝露後、ウイルス浮遊液を回収し、常法に従ってウイルス感染価(TCID50/50マイクロリットル)を測定した。結果を[図4]に示す。ウイルス感染価が2log10(タテ軸)以上に減少している場合は*印1つ(*)を、図中のグラフに併記した。
[図4]の結果より、低濃度二酸化塩素ガス(0.05ppm、0.14mg/m3)で物品の表面における付着微生物(ネコカリシウイルス)が不活化されていることがわかる。
Example 4 (Inactivation effect of feline calicivirus <norovirus substitute virus> by low concentration gas)
After operating the chlorine dioxide generator in a room (39m 3 ) of a biosafety facility with controlled temperature and humidity (22 ± 2 ° C, 52 ± 2%), a glass petri dish was installed in the room. 100 microliters of the virus suspension of calicivirus <Feline calicivirus (F9)> (10 8 TCID 50/50 microliters in D-PBS) was added dropwise. The glass petri dish was exposed to air or chlorine dioxide gas (weighted average concentration 0.05 ppm). After exposure for a predetermined time (0 hour, 1 hour, 2 hours, 3 hours, 4 hours, and 5 hours), the virus suspension was collected and the virus infectivity titer (TCID 50/50 microliter) was measured according to a conventional method. The results are shown in [FIG. 4]. When the virus infectivity titer decreased to 2 log 10 (vertical axis) or more, one * (*) was also shown in the graph in the figure.
From the results of [FIG. 4], it can be seen that low-concentration chlorine dioxide gas (0.05 ppm, 0.14 mg / m 3 ) inactivates attached microorganisms (feline calicivirus) on the surface of the article.
Claims (2)
当該物品を、濃度0.1ppm以下の低濃度二酸化塩素ガスに曝露することを特徴とする付着微生物の不活化方法。 A method for inactivating microorganisms attached to the outer surface of an article,
A method for inactivating attached microorganisms, wherein the article is exposed to low-concentration chlorine dioxide gas having a concentration of 0.1 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011054655A JP2012188405A (en) | 2011-03-11 | 2011-03-11 | Inactivation method of adhesive microorganism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011054655A JP2012188405A (en) | 2011-03-11 | 2011-03-11 | Inactivation method of adhesive microorganism |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016010879A Division JP2016117747A (en) | 2016-01-22 | 2016-01-22 | Evacuation avoidance method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012188405A true JP2012188405A (en) | 2012-10-04 |
Family
ID=47081969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011054655A Pending JP2012188405A (en) | 2011-03-11 | 2011-03-11 | Inactivation method of adhesive microorganism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012188405A (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6312226A (en) * | 1986-06-30 | 1988-01-19 | ダイセル化学工業株式会社 | Purification of horticultural house |
JPH10192377A (en) * | 1997-01-14 | 1998-07-28 | Chisso Corp | Method for environmental sterilization by gaseous chlorine dioxide |
JP2001516213A (en) * | 1997-03-03 | 2001-09-25 | エンゲルハード・コーポレーシヨン | Methods, compositions and systems for controlled release of chlorine dioxide gas |
JP2002272827A (en) * | 2001-03-14 | 2002-09-24 | San Seal:Kk | Infection prevention system for treatment room, dissecting room and the like |
JP2004050131A (en) * | 2002-07-23 | 2004-02-19 | San Seal:Kk | Method and apparatus for generating chlorine dioxide gas |
JP2007068612A (en) * | 2005-09-05 | 2007-03-22 | San Seal:Kk | Air purifier |
WO2007061092A1 (en) * | 2005-11-28 | 2007-05-31 | Taiko Pharmaceutical Co., Ltd. | Countermeasure against infection with floating virus |
WO2008111357A1 (en) * | 2007-03-15 | 2008-09-18 | Taiko Pharmaceutical Co., Ltd. | Pure chlorine dioxide solution, and gel-like composition and foamable composition each comprising the same |
WO2009051018A1 (en) * | 2007-10-15 | 2009-04-23 | Taiko Pharmaceutical Co., Ltd. | Portable inlet air sterilizer |
-
2011
- 2011-03-11 JP JP2011054655A patent/JP2012188405A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6312226A (en) * | 1986-06-30 | 1988-01-19 | ダイセル化学工業株式会社 | Purification of horticultural house |
JPH10192377A (en) * | 1997-01-14 | 1998-07-28 | Chisso Corp | Method for environmental sterilization by gaseous chlorine dioxide |
JP2001516213A (en) * | 1997-03-03 | 2001-09-25 | エンゲルハード・コーポレーシヨン | Methods, compositions and systems for controlled release of chlorine dioxide gas |
JP2002272827A (en) * | 2001-03-14 | 2002-09-24 | San Seal:Kk | Infection prevention system for treatment room, dissecting room and the like |
JP2004050131A (en) * | 2002-07-23 | 2004-02-19 | San Seal:Kk | Method and apparatus for generating chlorine dioxide gas |
JP2007068612A (en) * | 2005-09-05 | 2007-03-22 | San Seal:Kk | Air purifier |
WO2007061092A1 (en) * | 2005-11-28 | 2007-05-31 | Taiko Pharmaceutical Co., Ltd. | Countermeasure against infection with floating virus |
WO2008111357A1 (en) * | 2007-03-15 | 2008-09-18 | Taiko Pharmaceutical Co., Ltd. | Pure chlorine dioxide solution, and gel-like composition and foamable composition each comprising the same |
WO2009051018A1 (en) * | 2007-10-15 | 2009-04-23 | Taiko Pharmaceutical Co., Ltd. | Portable inlet air sterilizer |
Non-Patent Citations (1)
Title |
---|
MORINO, HIROFUMI ET AL.: "Inactivation of feline calicivirus, a norovirus surrogate, by chlorine dioxide gas", BIOCONTROL SCIENCE, vol. 14, no. 4, JPN6015005305, 2009, pages 147 - 153, ISSN: 0003005602 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Szeto et al. | The efficacy of vacuum-ultraviolet light disinfection of some common environmental pathogens | |
CN108025182B (en) | Method and device for disinfection, sterilization and disinfection | |
EP2051743B1 (en) | Method for using ozone as a disinfectant | |
KR20190028712A (en) | Inactivation of high resistant infectious microorganisms and proteins by non-buffered hypohalous acid compositions | |
JP2023055894A (en) | Cleaning composition and methods of making and using the same | |
Comini et al. | Positive and negative ions potently inhibit the viability of airborne gram-positive and gram-negative bacteria | |
Stibich et al. | The microbiological impact of pulsed xenon ultraviolet disinfection on resistant bacteria, bacterial spore and fungi and viruses | |
Rutala et al. | Does Coating All Room Surfaces with an Ultraviolet C Light–Nanoreflective Coating Improve Decontamination Compared with Coating Only the Walls? | |
JP6243482B2 (en) | Method for inactivating pathogenic microorganisms | |
JP2012188405A (en) | Inactivation method of adhesive microorganism | |
JP2016117747A (en) | Evacuation avoidance method | |
JP7204232B2 (en) | How to dispose of medical waste containers | |
Klánová et al. | Use of ozone to reduce bacteria and moulds in the air and on surfaces | |
JP2021186812A (en) | Disinfectant, disinfection method and disinfection kit | |
RU2646816C1 (en) | Decontaminant for refilling of household aerosol sprayers for decontamibation of the air environment and indoor surfaces | |
Fahim et al. | Evaluation of germicidal UV-C light for surface disinfection in a tertiary care hospital | |
US20220072188A1 (en) | Air Sterilizing Apparatus For Lifts | |
JP2013188447A (en) | Sterilizer in which air filter having sterilizing power is combined with ozone generator | |
RU2561872C1 (en) | Method of disinfection of livestock premises from pseudomonosis causative agent | |
Martínez-Ramírez et al. | Design, construction and robust validation of a germicidal device based on UV irradiation: a necessity for hospital disinfection in the COVID-19 era | |
Ingale et al. | Effective UV-C (Ultraviolet) Air Flow Disinfection System for Burn Patients Outside Intensive Care Unit | |
Gafincu-Grigoriu et al. | NEW METHODS OF INACTIVATION OF SOME PATHOGENIC AGENTS IN DENTAL CLINICS. REVIEW | |
CN201894348U (en) | Electronic shoe box | |
Russignaga et al. | Study on the effectiveness of the sanitization activity of a robot equipped with UV lamps | |
CN113729038A (en) | Traditional Chinese medicine air disinfectant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150409 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151104 |