[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012157806A - Method for producing aqueous foamed liquid - Google Patents

Method for producing aqueous foamed liquid Download PDF

Info

Publication number
JP2012157806A
JP2012157806A JP2011018460A JP2011018460A JP2012157806A JP 2012157806 A JP2012157806 A JP 2012157806A JP 2011018460 A JP2011018460 A JP 2011018460A JP 2011018460 A JP2011018460 A JP 2011018460A JP 2012157806 A JP2012157806 A JP 2012157806A
Authority
JP
Japan
Prior art keywords
aqueous
liquid
foaming
foamed
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011018460A
Other languages
Japanese (ja)
Inventor
Hiroyasu Tachibana
宏泰 立花
Masaki Nishimura
匡樹 西村
Takaaki Koro
孝明 紅露
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2011018460A priority Critical patent/JP2012157806A/en
Publication of JP2012157806A publication Critical patent/JP2012157806A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Heat Sensitive Colour Forming Recording (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing an aqueous foamed coating liquid for forming a foamed resin coated film.SOLUTION: The method for preparing an aqueous foamed liquid for forming a foamed resin coated film includes passing an aqueous foamed liquid through a cooler for stirring and mixing the aqueous foamed liquid, wherein the aqueous foamed fluid is foamed by mechanically stirring and mixing an aqueous raw material liquid containing a resin for forming a coated film and a non-aqueous gas, and wherein the cooler is provided with: a static mixer with a function of dividing a fluid passing through a tubular body by a plurality of elements fixed and arranged in series within the tubular body, turning the direction of the fluid, and stirring and mixing the fluid with a reversed direction; and a cooling mechanism for cooling the fluid passing through the tubular body from outside the tubular body via a tubular wall of the static mixer.

Description

本発明は、均一で微細な気泡を大量に含む樹脂塗膜を形成することができる樹脂を含有する水性発泡液を調製する方法に関する。   The present invention relates to a method for preparing an aqueous foaming liquid containing a resin capable of forming a resin coating film containing a large amount of uniform and fine bubbles.

近年、微細な気泡を含む発泡塗工液を塗布して作製した気泡を含む発泡塗布層の特異な物理的特性、熱的特性、光学特性を利用する分野が多くなっている。例えば、特許文献1には、基材と感熱発色層の中間に発泡塗布層を設けて断熱性、クッション性を付与した高感度の感熱記録紙が記載されている。   In recent years, there are an increasing number of fields that utilize the specific physical characteristics, thermal characteristics, and optical characteristics of a foam coating layer containing bubbles produced by applying a foam coating solution containing fine bubbles. For example, Patent Document 1 describes a high-sensitivity heat-sensitive recording paper in which a foamed coating layer is provided between a base material and a heat-sensitive coloring layer to provide heat insulation and cushioning properties.

優れた断熱性、クッション性を備えた発泡塗布層であるためには発泡塗布層の気泡の体積割合は多いほうが好ましいし、表面が平滑な発泡塗布層とするためには気泡のサイズが均一でかつ気泡の径が小さいことが好ましい。このような発泡塗布層を形成するには、気泡の体積割合が高く、なおかつ気泡の径が小さい発泡塗工液を調製することが必要である。   In order to obtain a foam coating layer with excellent heat insulation and cushioning properties, it is preferable that the volume ratio of the foam in the foam coating layer is large, and in order to obtain a foam coating layer having a smooth surface, the size of the bubbles is uniform. And it is preferable that the bubble diameter is small. In order to form such a foam coating layer, it is necessary to prepare a foam coating solution having a high volume ratio of bubbles and a small bubble diameter.

気泡を大量に含む発泡液を調製する方法には化学的方法と機械的な方法がある。化学的な発泡方法は、化学反応により液中で気体を発生させて発泡液を調製する方法であり、機械的な発泡方法は、気体と液体を機械的に攪拌混合して発泡液を作製する方法であるが、機械的な発泡方法の方が薬品を使用しないため発泡塗布層が化学的に安定であるし、経済性の面でも優れているので好ましい。   There are chemical methods and mechanical methods for preparing a foaming liquid containing a large amount of bubbles. The chemical foaming method is a method of preparing a foaming liquid by generating a gas in the liquid by a chemical reaction, and the mechanical foaming method is a method of creating a foaming liquid by mechanically stirring and mixing the gas and the liquid. As a method, the mechanical foaming method is preferable because it does not use chemicals, so that the foam coating layer is chemically stable and economical.

特開平05−032052号公報JP 05-032052 A 特開平11−043699号公報Japanese Patent Laid-Open No. 11-043699

機械的な発泡方法では、気体と液体とを機械的に攪拌混合することにより発泡液を作製するが、発泡液中の気泡径を小さくしようとする場合、気体と液体の混合部で強いせん断力を与える必要がある。せん断力が弱いと、泡径が小さくならなかったり、発泡が均一にならなかったりする。しかし、機械的に強いせん断を与えた場合、摩擦により発熱し、発泡液の温度が上昇する。一般的に、溶液、エマルジョンの粘度は温度の上昇により低下する場合が多い。発泡液の温度が上昇し、粘度が低下すると、破泡、泡の合一等が起こりやすくなる。そのため、機械発泡装置の攪拌混合部は冷却されることが望ましいが、攪拌ローター等、回転したり動いたりする部位を冷却するには、回転軸に冷却水水路を設けることが必要で機構が複雑になるので、回転攪拌部の外側のみを冷却するのが一般的である。しかし、そのような冷却方式では、冷却面積が限定されるので、冷却効率は高くなく、充分な冷却が難しい。   In the mechanical foaming method, a foaming liquid is prepared by mechanically stirring and mixing a gas and a liquid. However, when trying to reduce the bubble diameter in the foaming liquid, a strong shearing force is applied at the gas / liquid mixing part. Need to give. When the shearing force is weak, the bubble diameter does not become small, or foaming does not become uniform. However, when mechanically strong shear is applied, heat is generated due to friction, and the temperature of the foaming liquid rises. In general, the viscosity of solutions and emulsions often decreases with increasing temperature. When the temperature of the foaming liquid rises and the viscosity decreases, foam breakage, foam coalescence, etc. easily occur. For this reason, it is desirable to cool the stirring and mixing part of the mechanical foaming device, but in order to cool the rotating and moving parts such as the stirring rotor, it is necessary to provide a cooling water channel on the rotating shaft and the mechanism is complicated. Therefore, it is general to cool only the outside of the rotary stirring unit. However, in such a cooling method, since the cooling area is limited, the cooling efficiency is not high and sufficient cooling is difficult.

攪拌混合による発熱を吸収するために、発泡させようとする液体をあらかじめ冷却しておいてから、機械発泡装置へ送り込むことも可能であるが、冷却による液体の粘度上昇、凍結による変質等を生じる恐れがあり、水溶液、水系エマルジョンでは氷点以下に冷却することは難しい。   In order to absorb the heat generated by stirring and mixing, it is possible to cool the liquid to be foamed in advance and then send it to the mechanical foaming device, but this will cause an increase in the viscosity of the liquid due to cooling, alteration due to freezing, etc. There is a fear, and it is difficult to cool below the freezing point with an aqueous solution or aqueous emulsion.

そこで、攪拌混合部の冷却だけでなく、攪拌混合部の下流側に、冷却部、例えば2重管型熱交換器を設置し、発泡液を冷却することも可能であるが、一般に発泡した液は冷却管内部をプラグフロー(ピストン流)で流れ易く、また発泡していて断熱性が高いため、管壁に接している部分の発泡液だけが冷却され、管中央部分を流れる発泡液は冷却されない。冷却部の流路を薄く、あるいは細長くして伝熱面積を増やすことによって充分な冷却を得ることも可能であるが、その場合、攪拌混合部から冷却部出口までの到達時間が長くなり、むしろ破泡、泡の合一が進行することが多い。また、このような熱交換装置の設置は、洗浄やメンテナンスの面でのデメリットが大きい。   Therefore, it is possible not only to cool the stirring and mixing unit, but also to install a cooling unit such as a double-pipe heat exchanger downstream of the stirring and mixing unit to cool the foaming liquid. Is easy to flow inside the cooling pipe by plug flow (piston flow), and since it is foaming and has high heat insulation, only the foaming liquid in contact with the pipe wall is cooled, and the foaming liquid flowing in the center part of the pipe is cooled. Not. It is also possible to obtain sufficient cooling by increasing the heat transfer area by thinning or elongating the flow path of the cooling section, but in that case, the arrival time from the stirring and mixing section to the cooling section outlet becomes longer, rather In many cases, bubble breaking and foam coalescence progress. Moreover, the installation of such a heat exchange device has a great demerit in terms of cleaning and maintenance.

また機械的な発泡方法において、発泡液中の気泡の量(体積)が少ない場合、例えば発泡前の液体の体積に対する、発泡液の体積の比(発泡倍率)が1.1未満の発泡液を作ることは比較的容易であり、またその泡径を小さくすることも比較的容易である。そのような発泡液を作製できる装置はマイクロバブル発生装置、ナノバブル発生装置として安価に市販されている。ただし、発泡倍率が低い場合は、クッション性、断熱性といった気泡の特徴的効果が期待できない。   Further, in the mechanical foaming method, when the amount (volume) of bubbles in the foaming liquid is small, for example, a foaming liquid having a ratio of the volume of the foaming liquid (foaming ratio) to the volume of the liquid before foaming is less than 1.1. It is relatively easy to make and it is also relatively easy to reduce the bubble diameter. Devices capable of producing such a foaming liquid are commercially available at low cost as microbubble generators and nanobubble generators. However, when the expansion ratio is low, characteristic effects of bubbles such as cushioning properties and heat insulation properties cannot be expected.

気泡の特徴的効果を発現させるために発泡液中の気泡の量を大きく、すなわち液体に対して気体の混合比率を高くしようとした場合、発泡装置の攪拌混合部に導入する気体の量を多くする必要があるが、単に気体の導入量を増やしただけでは、気体と液体が攪拌混合部で充分な攪拌混合を受けずに素通りしてしまい、気泡径が小さくならなかったり、不均一な発泡状態となったり、気体と液体が分離してしまい、所望の発泡倍率で且つ所望の泡径の発泡液を得られなかったりという問題点がある。   In order to develop the characteristic effect of bubbles, the amount of bubbles in the foaming liquid is increased, that is, when an attempt is made to increase the mixing ratio of gas to the liquid, the amount of gas introduced into the stirring and mixing part of the foaming device is increased. However, simply increasing the amount of gas introduced will cause the gas and liquid to pass through without being sufficiently stirred and mixed in the stirring and mixing section, and the bubble diameter will not be reduced or uneven foaming will occur. There is a problem that the gas is in a state, the gas and the liquid are separated, and a foaming liquid having a desired foaming ratio and a desired foam diameter cannot be obtained.

そこで、発泡倍率の高い発泡液を作製する場合は、発泡装置の攪拌混合部の下流側に圧力損失を生じさせる(流路抵抗を付与する)ことにより、攪拌混合部を気体と液体が素通りするのを防止し、充分な攪拌混合が行われるようにする必要がある。一般に市販されている機械的発泡装置では、圧力損失を生じさせるために、攪拌混合部の下流に流路の狭窄部を設けている。例えば、愛工舎製のターボホイップや、モンドミックス社製のモンドミックスでは流路の一部をゴム状のチューブとし、外部から圧力をかけて流路を狭窄し、圧力損失を発生させる機構を備えている。また、より簡便にニードルバルブ等の弁により流路を狭窄し圧力損失を発生させる場合もある。しかしながら、このように流路に局所的な狭窄部を設けて圧力損失を生じさせた場合、狭窄部を通過した直後に急激に発泡液の圧力が減少するために、発泡液中の気泡が急に増大して破泡したり合一したりすることが多い。
また、上記局所的に狭窄部を設けて、所望の圧力損失を発生せる場合、発泡液内部、および発泡液-流路間の摩擦による熱の発生も局所的に起こっていることになり、発泡液の温度上昇から、破泡、泡の合一を加速する。
Therefore, when producing a foaming liquid having a high expansion ratio, a gas and a liquid pass through the stirring and mixing unit by causing a pressure loss (giving flow path resistance) to the downstream side of the stirring and mixing unit of the foaming apparatus. It is necessary to prevent this from occurring and to perform sufficient stirring and mixing. In general, a commercially available mechanical foaming apparatus is provided with a narrowed portion of the flow path downstream of the stirring and mixing portion in order to cause pressure loss. For example, Aikosha's turbo whip and Mondomix's Mondomix are equipped with a mechanism that generates a pressure loss by using part of the flow path as a rubber tube and constricting the flow path by applying pressure from the outside. ing. In some cases, pressure loss is generated by constricting the flow path with a valve such as a needle valve. However, when a local constriction is provided in the flow path to cause a pressure loss in this way, the pressure of the foaming liquid is abruptly decreased immediately after passing through the constriction. Often increases and breaks or coalesces.
In addition, when the above-mentioned locally constricted portion is provided to generate a desired pressure loss, heat is also generated locally due to friction between the foaming liquid and the foaming liquid-flow path. From the rise in the temperature of the liquid, it accelerates bubble breakage and coalescence of bubbles.

本発明は、上記事情を鑑みてなされたものであって、気体と液体を機械的に攪拌混合することにより発泡液を得る機械的発泡方法において、気泡径の小さな微細気泡を多量に含む発泡液の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and in a mechanical foaming method for obtaining a foaming liquid by mechanically stirring and mixing a gas and a liquid, the foaming liquid contains a large amount of fine bubbles having a small bubble diameter. It aims at providing the manufacturing method of.

上記の課題を解決することができる本発明は、塗膜形成用樹脂を含有する水性原料液と非水溶性気体とを機械的に攪拌混合して発泡させた水性発泡処理液を、通過する流体に対する攪拌混合機能を有するエレメントを管状体内部に備えている静止型混合器と一体化されていて、静止型混合器の管壁を通して内部流体を冷却する形式の冷却器内を通過させて冷却することにより、破泡や泡の合一が生じることのない安定な水性発泡液を作製する方法を基本とする、以下の発泡樹脂塗膜形成用の水性発泡液の調製方法に関する発明である。   The present invention that can solve the above-described problems is a fluid that passes through an aqueous foaming treatment liquid obtained by mechanically stirring and mixing an aqueous raw material liquid containing a resin for forming a coating film and a water-insoluble gas and foaming. It is integrated with a static mixer equipped with an element having a stirring and mixing function inside the tubular body, and is cooled by passing through a cooler of the type that cools the internal fluid through the tube wall of the static mixer. Thus, the invention relates to the following method for preparing an aqueous foam for forming a foamed resin coating film, which is based on a method for producing a stable aqueous foam that does not cause foam breakup or foam coalescence.

(1)塗膜形成用樹脂を含有する水性原料液と非水溶性気体とを機械的に攪拌混合して発泡させた水性発泡液を、管体内部に直列に固定配置されている複数のエレメントにより管体内を通過する流体を分割し、方向を転換し及び方向を反転させて流体を攪拌混合する機能を備えた静止型混合器と該静止型混合器の管壁を介して管体内通過流体を管体外から冷却する冷却機構とを備えた冷却器内を通過させて攪拌・冷却処理することを特徴とする、発泡樹脂塗膜形成用の水性発泡液の調製方法。 (1) A plurality of elements in which an aqueous foaming liquid obtained by mechanically stirring and mixing an aqueous raw material liquid containing a resin for forming a coating film and a water-insoluble gas is foamed and fixed in series inside the tube body The fluid passing through the tube through the tube wall of the static mixer having the function of dividing the fluid passing through the tube, changing the direction and reversing the direction and stirring and mixing the fluid A method for preparing an aqueous foaming liquid for forming a foamed resin coating film, characterized in that the mixture is stirred and cooled by passing through a cooler having a cooling mechanism for cooling the tube from the outside.

(2)前記冷却器による攪拌・冷却処理が、前記静止型混合器内に、流れ方向に4〜50kPa/cmの割合で圧力損失が生じる条件下で前記発泡させた水性発泡液を通過させて攪拌・冷却する処理である(1)項記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。 (2) Stirring / cooling treatment by the cooler allows the foamed aqueous foaming liquid to pass through the static mixer under conditions where pressure loss occurs at a rate of 4 to 50 kPa / cm in the flow direction. The method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to item (1), which is a process of stirring and cooling.

(3)前記冷却器による攪拌・冷却処理が、前記静止型混合器内を、100〜500kPa(0.1〜0.5MPa)の圧力損失が生じる条件下で前記発泡させた水性発泡液を通過させて攪拌・冷却する処理である(1)項又は(2)項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。 (3) Stirring / cooling treatment by the cooler passes through the foamed aqueous foam liquid under the condition that a pressure loss of 100 to 500 kPa (0.1 to 0.5 MPa) occurs in the static mixer. The method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to (1) or (2), which is a process of stirring and cooling.

(4)前記塗膜形成用樹脂を含有する水性原料液が、樹脂水溶液系及び水性樹脂エマルション系の樹脂含有液から選ばれる水性原料液である(1)項〜(3)項のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。 (4) Any one of (1) to (3), wherein the aqueous raw material liquid containing the resin for forming a coating film is an aqueous raw material liquid selected from a resin aqueous solution and an aqueous resin emulsion-based resin-containing liquid. A method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to the item.

(5)前記静止型混合器と冷却機構とを備えた冷却器内を通過して攪拌・冷却処理された水性発泡液中の気泡の直径が15μm以下、好ましくは1〜10μmで、発泡倍率が1.1超に調整されていることを特徴とする(1)項〜(4)項のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。 (5) The diameter of bubbles in the aqueous foamed liquid that has been stirred and cooled after passing through the cooler including the static mixer and the cooling mechanism is 15 μm or less, preferably 1 to 10 μm, and the expansion ratio is The method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to any one of (1) to (4), which is adjusted to exceed 1.1.

(6)前記非水溶性気体が空気及び/又は窒素である(1)項〜(5)項のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。 (6) The method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to any one of (1) to (5), wherein the water-insoluble gas is air and / or nitrogen.

(7)前記発泡樹脂塗膜形成用の水性発泡液が、感熱記録紙における基材と感熱発色層の中間の発泡樹脂塗膜層形成用の水性発泡塗工液である(1)項〜(6)項のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。 (7) The aqueous foaming liquid for forming the foamed resin coating film is an aqueous foaming coating liquid for forming a foamed resin coating film layer between the base material and the thermosensitive coloring layer in the thermal recording paper. 6. A method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to any one of items 6).

(8)前記(1)項〜(7)項に記載の調製方法で調製されている発泡樹脂塗膜形成用の水性発泡液を塗工液として基材シート面に塗工し、乾燥して形成されている発泡樹脂層を有する感熱記録体用基材シート。 (8) Applying the aqueous foam liquid for forming a foamed resin coating film prepared by the preparation method described in the above items (1) to (7) to the base sheet surface as a coating liquid, and drying. A base sheet for a heat-sensitive recording material having a formed foamed resin layer.

本発明によれば、泡径が均一で微細な気泡を大量に含む樹脂含有水性発泡液を、連続生産が可能で生産性が高く、低コストで製造することができる方法が提供される。また、該樹脂含有水性発泡液を塗工して形成される発泡樹脂塗工層は、表面状態が平滑で、断熱性、クッション性に富む発泡樹脂塗工層であるので、たとえば感熱記録体用の発泡樹脂層からなる中間層のように、優れた断熱性、クッション性を有する層を備えることが要求される各種製品への応用が可能である。   ADVANTAGE OF THE INVENTION According to this invention, the method which can produce the resin-containing aqueous | water-based foaming liquid which has a uniform foam diameter and contains a lot of fine bubbles in large quantities at a low cost is possible. Further, the foamed resin coating layer formed by coating the resin-containing aqueous foaming liquid is a foamed resin coating layer having a smooth surface state and excellent heat insulation and cushioning properties. The present invention can be applied to various products that are required to have a layer having excellent heat insulation and cushioning properties, such as an intermediate layer made of a foamed resin layer.

本発明の発泡樹脂塗膜形成用の水性発泡液の調製方法を実施することができる装置の模式図である。It is a schematic diagram of the apparatus which can implement the preparation method of the aqueous foaming liquid for foaming resin coating film formation of this invention.

以下、図面を参照して本発明の発泡樹脂塗膜形成用の水性発泡塗工液の調製方法を説明する。
図1は、本発明の発泡樹脂塗膜形成用の水性発泡液の調製方法を実施することができる連続製造装置を示す。
Hereinafter, a method for preparing an aqueous foam coating solution for forming a foamed resin coating film of the present invention will be described with reference to the drawings.
FIG. 1 shows a continuous production apparatus capable of carrying out the method for preparing an aqueous foaming liquid for forming a foamed resin coating film of the present invention.

図1の装置において、符号1は、塗膜形成用樹脂を含有する水性原料液を調製する「原料液調製槽」を示す。「原料液調製槽1」では、所定割合で水と樹脂を含有する「樹脂水溶液」又は「水性樹脂エマルジョン」よりなる塗膜形成用樹脂を含有する水性原料液が調製される。調製された水性原料液は「ポンプ2」によって「冷却ジャケット4」を備えている「発泡処理槽3」に送られ、「気体貯槽5」から「流量調整弁6」を経て供給される所定量の窒素又は空気等と一緒にされて攪拌機Mにより攪拌混合され、気泡が形成されている水性発泡液が調製される。   In the apparatus of FIG. 1, the code | symbol 1 shows the "raw material liquid preparation tank" which prepares the aqueous raw material liquid containing resin for film formation. In the “raw material liquid preparation tank 1”, an aqueous raw material liquid containing a resin for forming a coating film composed of “resin aqueous solution” or “aqueous resin emulsion” containing water and resin at a predetermined ratio is prepared. The prepared aqueous raw material liquid is sent by the “pump 2” to the “foaming treatment tank 3” having the “cooling jacket 4” and supplied from the “gas storage tank 5” through the “flow rate adjusting valve 6”. Aqueous foaming liquid in which bubbles are formed is prepared by mixing together with nitrogen or air and stirring and mixing with a stirrer M.

発泡処理槽3において調製された水性発泡液は、次いで、「入口側圧力計7a」で導入圧力が測定された後、「静止型混合器7」(スタティックミキサー)とその外壁を覆って設置されている冷却ジャケット等よりなる「冷却機構10」を備えた「冷却器8」の静止型混合器7内に導入される。「入口側圧力計7a」における導入圧力の数値と、冷却器8の「出口側圧力計7b」による出口側圧力の数値の差として冷却器8に設定される圧力損失の数値は、後述するように、冷却器8における静止型混合器7内に設置されている複数のエレメントの配置状態や、該複数のエレメントの配置状態によって通過する流体の圧力損失がその長さに比例するように設計されている静止型混合器7の長さを調節することによって調整される。
冷却器8を通って気泡がさらに微細化されると同時に均一に冷却されて安定な発泡液とされた樹脂含有水性発泡液は、「水性発泡液貯槽9」に貯蔵され、発泡樹脂塗工層を形成する塗工液として使用される。
Next, the aqueous foaming liquid prepared in the foaming treatment tank 3 is installed so as to cover the “static mixer 7” (static mixer) and its outer wall after the introduction pressure is measured by the “inlet side pressure gauge 7a”. It is introduced into a static mixer 7 of a “cooler 8” having a “cooling mechanism 10” composed of a cooling jacket or the like. The numerical value of the pressure loss set in the cooler 8 as a difference between the numerical value of the inlet pressure in the “inlet side pressure gauge 7a” and the numerical value of the outlet side pressure in the “outlet side pressure gauge 7b” of the cooler 8 will be described later. Furthermore, the arrangement state of the plurality of elements installed in the static mixer 7 in the cooler 8 and the pressure loss of the fluid passing through the arrangement state of the plurality of elements are designed to be proportional to the length. It is adjusted by adjusting the length of the stationary mixer 7.
The resin-containing aqueous foamed liquid, which has been further miniaturized at the same time through the cooler 8 and is uniformly cooled to be a stable foamed liquid, is stored in the “aqueous foamed liquid storage tank 9”, and the foamed resin coating layer Used as a coating solution to form

図1の連続製造装置において、「原料液調製槽1」で調製される水性原料液の温度は、液状で取り扱いできる温度に保たれる。調製された樹脂含有の水性原料液は、攪拌によって発生する熱を吸収して温度が上昇するので、液状での取り扱いに支障をきたすような凍結や粘度の極端な上昇が生じない範囲で原料液調製槽1の外部から冷却することが好ましい。   In the continuous production apparatus of FIG. 1, the temperature of the aqueous raw material liquid prepared in the “raw material liquid preparation tank 1” is kept at a temperature that can be handled in a liquid state. The prepared resin-containing aqueous raw material liquid absorbs heat generated by stirring and the temperature rises, so that the raw material liquid is within a range that does not cause freezing or extreme increase in viscosity that hinders handling in liquid form. It is preferable to cool from the outside of the preparation tank 1.

「原料液調製槽1」で調製された樹脂水溶液又は水性樹脂エマルジョンよりなる水性原料液を「発泡処理槽3」に送る「ポンプ2」や、「気体貯槽5」から空気や窒素ガス等を「発泡処理槽3」に送る「流量調整弁6」の種類等に制限はない。
「気体貯槽5」から「流量調整弁6」によって送られる気体は、図1においては、水性原料液の供給経路とは別の供給経路から「発泡処理槽3」に導入されているが、気体は、水性原料液の供給経路に供給されて水性原料液と一緒に「発泡処理槽3」に導入することも可能である。
“Pump 2” that sends an aqueous raw material solution made of a resin aqueous solution or an aqueous resin emulsion prepared in “raw material solution preparation tank 1” to “foaming treatment tank 3”, air, nitrogen gas, etc. from “gas storage tank 5” “ There is no limitation on the type of “flow rate adjusting valve 6” sent to the “foaming treatment tank 3”.
The gas sent from the “gas storage tank 5” by the “flow rate adjusting valve 6” is introduced into the “foaming treatment tank 3” from a supply path different from the supply path of the aqueous raw material liquid in FIG. Can be supplied to the supply path of the aqueous raw material liquid and introduced into the “foaming treatment tank 3” together with the aqueous raw material liquid.

「発泡処理槽3」は、密閉系内に気体と液体を連続的に定量供給しながら機械的な攪拌処理により空気等の気体を微細な気泡として樹脂含有の水性原料液中に分散、混合するための装置である。たとえば、スリット付多重円筒型連続発泡機(側面にスリットの付いた円筒型の多重になったステーターの間隙に、円筒型でかつステーターと同様のスリットを側面に有するローターを嵌め込み、ローターを高速回転させ、樹脂含有水性原料液と空気等とを送り込み、スリットを通過する際に樹脂含有液と空気等とを攪拌混合することにより、樹脂含有水性原料液中に空気等を分散、混合するタイプ)、二重円筒型連続発泡機(ピン付ローターとピン付外筒管から構成され、ローターを高速回転させ円筒内に送り込まれた樹脂含有水性原料液と空気等とを攪拌混合することによって樹脂含有水性原料液中に空気等を分散、混合するタイプ)、高速で回転する内刃と固定外刃間でせん断をかけるディスパータイプ混合機等を用いることができる。   The “foaming treatment tank 3” disperses and mixes gas such as air as fine bubbles in a resin-containing aqueous raw material liquid by mechanical stirring while continuously supplying gas and liquid in a closed system. It is a device for. For example, a multi-cylindrical continuous foaming machine with slits (a cylindrical rotor with a slit on the side is fitted in the gap between the cylindrical multiple stators with slits on the side, and the rotor rotates at high speed. The resin-containing aqueous raw material liquid and air are fed into the resin-containing aqueous raw material liquid by stirring and mixing the resin-containing liquid and air when passing through the slit. , Double-cylindrical continuous foaming machine (consisting of resin by stirring and mixing the resin-containing aqueous raw material liquid, which is composed of a rotor with a pin and an outer tube with a pin, and rotated into the cylinder at high speed) Disperse-type mixers that shear between the inner blade rotating at high speed and the fixed outer blade can be used.

「発泡処理槽3」は、その外側に「冷却ジャケット4」等を設置して冷却されていることが望ましい。「発泡処理槽3」の攪拌機Mの回転数を低く設定できる場合(約3000ppm以下)は、回転する部位の内部にも冷却水を通して冷却することにより冷却効率を高くすることも可能である。   The “foaming treatment tank 3” is desirably cooled by installing a “cooling jacket 4” or the like on the outside thereof. When the rotation speed of the stirrer M in the “foaming treatment tank 3” can be set low (about 3000 ppm or less), the cooling efficiency can be increased by cooling the inside of the rotating portion through cooling water.

本発明の方法では、樹脂を含有する水性原料液の組成、性状(粘度、界面活性剤添加率、種類)に応じて「発泡処理槽3」の攪拌機Mの回転速度、水性原料液と空気等の装置内滞留時間(攪拌時間)等を適宜に設定することにより、水性発泡液中の気泡の大きさを調節することができる。例えば、回転速度が一定で、かつ装置に供給される原料液量と空気量との比率が同一の場合は、装置内攪拌時間が長いほど、気泡のサイズは小さくなる傾向にある。また発泡倍率は、装置に供給される原料液量と空気量との比率を選定することによって調節することができる。
密閉系である「発泡処理槽3」で調製された水性発泡液は、調製されたままの状態で冷却器8に送られる。
In the method of the present invention, the rotational speed of the stirrer M in the “foaming treatment tank 3”, the aqueous raw material liquid and air, etc. The size of the bubbles in the aqueous foaming liquid can be adjusted by appropriately setting the residence time (stirring time) in the apparatus. For example, when the rotation speed is constant and the ratio between the amount of raw material liquid supplied to the apparatus and the amount of air is the same, the bubble size tends to decrease as the stirring time in the apparatus increases. The expansion ratio can be adjusted by selecting the ratio of the amount of raw material liquid supplied to the apparatus and the amount of air.
The aqueous foaming liquid prepared in the “foaming treatment tank 3” which is a closed system is sent to the cooler 8 as it is prepared.

「冷却器8」は、静止型混合器7とその管壁を覆う冷却機構10によって構成されている。
冷却器8においては、静止型混合器7内に配置されている複数のエレメントのそれぞれによる水性発泡液に対する分割作用・方向転換作用・方向反転作用によって通過する水性発泡液の全部分が冷却機構10で冷却されている管体の内壁と接触して均等に冷却されると共に、水性発泡液中の気泡がエレメントによりさらに微細化されて泡径が揃った状態とされる。
冷却機構10と一体化されている静止型混合器7としては、「スタティックミキサー」として知られているタイプの駆動部を持たない攪拌混合器が使用される。
The “cooler 8” includes a static mixer 7 and a cooling mechanism 10 that covers the tube wall.
In the cooler 8, the entire part of the aqueous foaming liquid that passes through the dividing action, the direction changing action, and the direction reversing action on the aqueous foaming liquid by each of the plurality of elements arranged in the static mixer 7 is the cooling mechanism 10. In addition, the air bubbles in contact with the inner wall of the pipe body cooled in (1) are cooled evenly, and the bubbles in the aqueous foaming liquid are further refined by the element so that the bubbles have a uniform diameter.
As the static mixer 7 integrated with the cooling mechanism 10, a stirring mixer having no driving unit of the type known as “static mixer” is used.

本発明の方法においては、冷却器8における静止型混合器7に導入される水性発泡液は、発泡処理槽3で調製されたままの圧力を保持して冷却器8の静止型混合器に導入されるが、冷却器8は、導入された発泡処理液が流れ方向に4〜20kPa/cmの割合で且つ全体で0.1〜0.5MPaの圧力損失で通過するように、冷却器8の静止型混合器部分の流路長、静止型混合器内のエレメントの形状、エレメントの配置個数等が調節される。静止型混合器内で均等に冷却されながら通過する水性発泡液の圧力損失は、水性発泡液の流量、粘度によっても変わるので、実際に発泡処理槽3で調製される水性発泡液毎に目的の圧力損失で水性発泡液が冷却器8内を通過できるように冷却器8の静止型混合器の流路長、静止型混合器エレメントの形状、エレメントの個数等を調節し、かつ冷却温度を調節する。   In the method of the present invention, the aqueous foaming liquid introduced into the static mixer 7 in the cooler 8 is introduced into the static mixer of the cooler 8 while maintaining the pressure as prepared in the foaming treatment tank 3. However, the cooler 8 is configured so that the introduced foaming treatment liquid passes through the flow direction at a rate of 4 to 20 kPa / cm and a pressure loss of 0.1 to 0.5 MPa as a whole. The flow path length of the static mixer portion, the shape of the element in the static mixer, the number of elements arranged, etc. are adjusted. The pressure loss of the aqueous foaming liquid that passes while being cooled uniformly in the static mixer varies depending on the flow rate and viscosity of the aqueous foaming liquid. Adjust the flow length of the static mixer of the cooler 8, the shape of the static mixer element, the number of elements, etc., and the cooling temperature so that the aqueous foam can pass through the cooler 8 with pressure loss. To do.

冷却器8における圧力損失が全体で0.1MPaより低い値となるように設定されていると、冷却器8に直接連結されている「発泡処理槽3」で気体と液体とが充分に混合せずに処理槽3から送り出されることとなり、冷却器8において必要とされる発泡倍率の水性発泡液を調製することができない。逆に、0.5MPaより高い値に設定されると、原料液あるいは気体が「発泡処理槽3」に滞留し、そこで厳しいシアを受けることとなることによって温度が上昇し、冷却器8の冷却機構10の負荷が過大となる結果、冷却器8を出る水性発泡液が変質しやすいものとなるし、液体、気体を「発泡処理槽3」に送り込む所要動力も増大するので好ましくない。   When the pressure loss in the cooler 8 is set to a value lower than 0.1 MPa as a whole, the “foaming treatment tank 3” directly connected to the cooler 8 allows sufficient mixing of gas and liquid. Accordingly, the aqueous foaming liquid having the foaming ratio required in the cooler 8 cannot be prepared. On the other hand, if the value is set higher than 0.5 MPa, the raw material liquid or gas stays in the “foaming treatment tank 3”, where the temperature rises by receiving severe shear, and cooling of the cooler 8 As a result of an excessive load on the mechanism 10, the aqueous foaming liquid exiting the cooler 8 is likely to be altered, and the required power for feeding the liquid and gas to the “foaming treatment tank 3” increases, which is not preferable.

冷却器8の静止型混合器部分における流れ方向の単位長さ当たりの圧力損失の範囲は、4kPa/cm〜40kPa/cmであることが望ましい。4kPa/cm より小さい値の場合は所望の圧力損失を得るのに必要な静止型混合器の部分の長さが長くなってしまい、経済的に好ましくないばかりか、冷却器8を通過する時間が長くなり過ぎて泡が破泡したり合一したりし易くなるため好ましくない。
逆に40kPa/cmより大きい値となると、冷却器8を出る際に急激に水性発泡液の圧力が減少するために、発泡液中の気泡が急膨張して破泡した気泡同士が合一したりすることが多いので好ましくない。
The range of pressure loss per unit length in the flow direction in the static mixer portion of the cooler 8 is desirably 4 kPa / cm to 40 kPa / cm. If the value is less than 4 kPa / cm 2, the length of the portion of the static mixer necessary to obtain the desired pressure loss is increased, which is not economically preferable, and the time required to pass through the cooler 8 Since it becomes too long and it becomes easy to foam and to unite, it is not preferable.
On the other hand, when the value is larger than 40 kPa / cm, the pressure of the aqueous foaming liquid suddenly decreases when leaving the cooler 8, so that the bubbles in the foaming liquid rapidly expand and the broken bubbles are united. It is not preferable because it often occurs.

本発明の方法で使用される冷却器8において、冷却機構10と一体化されている「静止型混合器7」としては、通過する流体を分割し、方向転換し、方向反転させる等の作用をする複数のエレメントを管路内に固定配置している、一般に「スタティックミキサー」と称されている駆動部を持たない攪拌混合器を使用する。使用できるスタティックミキサーとしては、例えば、特許文献2に記載されている軽量石鹸の製造に使用されているタイプの混合器が挙げられる。このようなスタティックミキサーとしては、管状部材の内部に矩形板をその長手軸線周りに180度捻ったものを最小単位部材として、複数の最小単位部材(エレメント)を、捻り方向が交互に異なる方向になるように一体的に直列に配置した構造を有しているものが挙げられる。   In the cooler 8 used in the method of the present invention, the “static mixer 7” integrated with the cooling mechanism 10 has functions such as dividing the fluid passing therethrough, changing the direction, and reversing the direction. A stirring mixer that does not have a drive unit generally called a “static mixer” is used, in which a plurality of elements are fixedly arranged in a pipe line. Examples of the static mixer that can be used include a mixer of the type used in the manufacture of lightweight soaps described in Patent Document 2. As such a static mixer, a rectangular plate inside a tubular member twisted 180 degrees around its longitudinal axis is used as a minimum unit member, and a plurality of minimum unit members (elements) are alternately turned in different directions. What has the structure arrange | positioned integrally in series so that it may become.

また、特開平5−131126号公報に示されるような、切り欠きのある円錐を組み合わせたもの、特開2004−195452号公報に示される互い違いに交差する櫛状のエレメントを用いたものなど、回転を伴わずに流体を分割混合するスタティックミキサーも使用可能である。
なお、スタティックミキサーには、孔を設けた円盤(邪魔板、仕切り)等を流体の流れと直交するように流路に設置することにより液体の攪拌混合を行わせるタイプもあるが、流路の極所的な狭窄により、泡の合一が起こり易く、また使用後に洗浄しても内部に残留物が生じやすいことなどから本発明の方法には不適である。
スタティックミキサーエレメントとしては、金属や樹脂等、種々の材料が使用できるが、耐薬品性の面からステンレスあるいは樹脂素材が好適に使用される。
In addition, a combination of notched cones as shown in Japanese Patent Laid-Open No. 5-131126, or a combination of comb-like elements as shown in Japanese Patent Laid-Open No. 2004-195542, which is rotated It is also possible to use a static mixer that divides and mixes fluids without accompanying.
There are types of static mixers in which liquid is stirred and mixed by installing a disk (baffle plate, partition) or the like with holes in the flow path so as to be orthogonal to the flow of the fluid. Due to the local narrowing, the coalescence of the bubbles is likely to occur, and even after washing after use, a residue is likely to be generated inside, which is not suitable for the method of the present invention.
As the static mixer element, various materials such as metal and resin can be used, but stainless steel or resin material is preferably used from the viewpoint of chemical resistance.

冷却器8において、冷却機構10により冷却されている静止型混合器7の部分は、冷却機構10部分の長さと必ずしも一致しなくてもよい。冷却機構が配置されている部分の流路長が長めに形成されていて、かつ、単位長さ当たりの圧力損失値が判明しているスタティックミキサーを用意して、前記したような適切な圧力損失が得られるようにスタティックミキサーの長さを増減する方法が簡便である。   In the cooler 8, the portion of the static mixer 7 that is cooled by the cooling mechanism 10 does not necessarily match the length of the cooling mechanism 10 portion. Prepare a static mixer in which the flow path length of the part where the cooling mechanism is arranged is long and the pressure loss value per unit length is known, and the appropriate pressure loss as described above The method of increasing / decreasing the length of the static mixer is simple.

冷却器8の「冷却機構10」は特に限定されない。水冷、空冷、ペルチェ素子による冷却等、通常の冷却機構を採用することができる。静止型混合器部分を冷却槽内に設置したり、静止型混合器の外側に冷却ジャケット10を設置した構造とし、静止型混合器7の外壁に冷却液を接触させて熱交換を行わせて冷却する方式が効率的である。   The “cooling mechanism 10” of the cooler 8 is not particularly limited. A normal cooling mechanism such as water cooling, air cooling, or cooling with a Peltier element can be employed. The static mixer part is installed in the cooling tank, or the cooling jacket 10 is installed outside the static mixer, and heat is exchanged by bringing the coolant into contact with the outer wall of the static mixer 7. The cooling method is efficient.

静止型混合器7を有する冷却器8は、必ずしも単一でなくてもよい。所望の圧力損失と冷却効果が得られるように、複数の冷却器を発泡液の流路に並列に設置してもよい。また、複数の冷却器を直列に接続し所望の圧力損失と冷却効果が得られるように接続数を増減できるような構成としてもよい。冷却器8における冷却が不足すると、調製される水性発泡液の液温が高くなり、経時での気泡の破泡や合一化が発生するので好ましくない。   The cooler 8 having the static mixer 7 is not necessarily a single unit. A plurality of coolers may be installed in parallel to the flow path of the foaming liquid so as to obtain a desired pressure loss and cooling effect. Moreover, it is good also as a structure which can increase / decrease the number of connections so that a several pressure cooler may be connected in series and a desired pressure loss and a cooling effect may be acquired. If the cooling in the cooler 8 is insufficient, the temperature of the aqueous foam liquid to be prepared becomes high, and bubbles break and coalesce with time, which is not preferable.

本発明の方法によって調製される水性発泡液を塗工液として用いて、発泡樹脂塗工層をシート上に形成することができる。発泡樹脂塗工層をシート上に形成する方法としては、従来公知の方法を用いることができる。例えば、押し出し成型、射出成型、塗工成型等を用いることができる。特に、水性発泡塗工液を、シート上に塗工、乾燥させて発泡樹脂被覆シートを得る塗工成型方法は生産性が高く好適である。
塗工成型の場合、支持体に塗工ヘッドを用いて発泡塗布液を塗工した後、乾燥器にて水分や溶剤分を除去し、支持体上に発泡樹脂塗工層を形成する。このとき、支持体から発泡樹脂塗工層を剥離することで、発泡樹脂塗工層からなる単独の発泡シートを得ることもできる。
A foamed resin coating layer can be formed on a sheet using an aqueous foaming liquid prepared by the method of the present invention as a coating liquid. As a method for forming the foamed resin coating layer on the sheet, a conventionally known method can be used. For example, extrusion molding, injection molding, coating molding, etc. can be used. In particular, a coating molding method for obtaining a foamed resin-coated sheet by coating and drying an aqueous foam coating solution on a sheet is preferable because of its high productivity.
In the case of coating molding, a foamed coating liquid is applied to a support using a coating head, and then moisture and solvent are removed by a drier to form a foamed resin coating layer on the support. At this time, the foamed resin coating layer can be peeled from the support to obtain a single foamed sheet composed of the foamed resin coating layer.

塗工方法としては、バーコート法、エアードクターコート法、ブレードコート法、スクイズコート法、エアーナイフコート法、ロールコート法、グラビアコート法、トランスファーコート法、コンマコート法、スムージングコート法、マイクログラビアコート法、リバースロールコート法、マルチロールコート法、ディップコート法、ロッドコート法、スプレーコート法、ゲートロールコート法、落下カーテンコート法、スライドコート法、ファウンテンコート法、およびスリットダイコート法などが挙げられる。   Coating methods include bar coating, air doctor coating, blade coating, squeeze coating, air knife coating, roll coating, gravure coating, transfer coating, comma coating, smoothing coating, and microgravure. Examples include coating method, reverse roll coating method, multi-roll coating method, dip coating method, rod coating method, spray coating method, gate roll coating method, falling curtain coating method, slide coating method, fountain coating method, and slit die coating method. It is done.

以下、実施例に基づいて本発明の水性発泡液の具体的な調製方法を説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例及び比較例中の「部」及び「%」は「質量部」及び「質量%」を表す。   Hereinafter, although the specific preparation method of the aqueous | water-based foaming liquid of this invention is demonstrated based on an Example, this invention is not limited by these Examples. In the examples and comparative examples, “parts” and “%” represent “parts by mass” and “mass%”.

<実施例1>
図1の原料液調製槽1内で調製した後記組成の水性原料液(固形分濃度31%)を、ポンプ2により100mL/minの流量で「発泡処理槽3」(二重円筒型連続発泡機:ピン付80mm径ローターとピン付100mm径外筒管から構成され回転数2000rpm)に送った。また、水性原料液と同時に、流量制御弁6で大気圧換算20mL/minに流量調整した空気を「気体貯槽5」から「発泡処理槽3」に送った。「発泡処理槽3」において調製した水性発泡処理液を「静止型混合器7」(ノリタケカンパニーリミテッド製スタティックミキサー、直径8mm、長さ25cm)を備えた「冷却器8」(流路管内径8mm)に送り込んだ。冷却器8の外側の「冷却機構10」(冷却ジャケット)には10℃の冷却水を流して、スタティックミキサー内の発泡液を冷却した。冷却器8を通過する水性発泡液の単位長さ当たりの圧力損失は20kPa/cmで、全体の圧力損失は0.5MPaであった。冷却器8から送り出される水性発泡液の比重を測定し、発泡倍率を求めたところ発泡倍率は1.2であった。水性発泡液をガラスプレート上に滴下して拡げ、デジタルマイクロスコープで泡径を測定した。
調製された水性発泡液における「発泡倍率」、「泡径」、「発泡液温度」の測定結果を表1に示す。
<Example 1>
An aqueous raw material liquid (solid content concentration of 31%) prepared in the raw material liquid preparation tank 1 of FIG. 1 at a flow rate of 100 mL / min is supplied to a “foaming treatment tank 3” (double cylindrical continuous foaming machine) by a pump 2. : It consists of an 80 mm diameter rotor with a pin and a 100 mm diameter outer tube with a pin, and was sent to a rotation speed of 2000 rpm. Simultaneously with the aqueous raw material liquid, air whose flow rate was adjusted to 20 mL / min in terms of atmospheric pressure by the flow rate control valve 6 was sent from the “gas storage tank 5” to the “foaming treatment tank 3”. “Cooler 8” (channel tube inner diameter 8 mm) equipped with “static mixer 7” (static mixer manufactured by Noritake Co., Ltd., diameter 8 mm, length 25 cm) was prepared as the aqueous foaming treatment liquid prepared in “foaming tank 3”. ). Cooling water at 10 ° C. was passed through the “cooling mechanism 10” (cooling jacket) outside the cooler 8 to cool the foamed liquid in the static mixer. The pressure loss per unit length of the aqueous foaming liquid passing through the cooler 8 was 20 kPa / cm, and the overall pressure loss was 0.5 MPa. When the specific gravity of the aqueous foaming liquid sent out from the cooler 8 was measured and the expansion ratio was determined, the expansion ratio was 1.2. The aqueous foam was dropped on a glass plate and spread, and the bubble diameter was measured with a digital microscope.
Table 1 shows the measurement results of “foaming ratio”, “foam diameter”, and “foaming liquid temperature” in the prepared aqueous foaming liquid.

[原料液組成]
水分散型ポリウレタン樹脂(商品名:アデカボンタイターHUX−381、旭電化工業社製) 100部
整泡剤:高級脂肪酸アンモニウム塩(商品名:F−1) 5部
増粘剤:カルボキシメチルセルロース系 (商品名:AGガム、第一工業製薬社製)3部
上記成分の混合物より31部を分取し、水を加えて全量を100部として原料液とした。
[Raw material composition]
Water-dispersible polyurethane resin (trade name: Adekabon titer HUX-381, manufactured by Asahi Denka Kogyo Co., Ltd.) 100 parts Foam stabilizer: Higher fatty acid ammonium salt (trade name: F-1) 5 parts Thickener: Carboxymethylcellulose ( (Product name: AG gum, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 3 parts 31 parts were taken from the mixture of the above components, and water was added to make 100 parts as a raw material solution.

[発泡樹脂被覆シートの作製]
上記の方法で調製した水性発泡液を、市販の坪量104.7g/mの上質紙(商品名:マシュマロ、王子製紙社製)の片面上にアプリケーターバーで乾燥後の塗工量が10g/mになるように塗工した。表面平滑性に優れた発泡樹脂塗工層を有する紙基材シートが得られた。
[Production of foamed resin-coated sheet]
The aqueous foamed liquid prepared by the above method has a coating weight of 10 g after drying with an applicator bar on one side of a high-quality paper (trade name: Marshmallow, manufactured by Oji Paper Co., Ltd.) having a basis weight of 104.7 g / m 2. / M 2 was applied. A paper base sheet having a foamed resin coating layer excellent in surface smoothness was obtained.

<実施例2>
実施例1の方法において、図1の冷却器8における静止型混合器7の長さを5cmとして、冷却器8を通過する発泡液の圧力損失を単位長さ当たり20kPa/cmで、全体で0.1MPaとした以外は実施例1と同様にして水性発泡液を調製した。
調製された水性発泡液における「発泡倍率」、「泡径」、「発泡液温度」の測定結果を表1に示す。
<Example 2>
In the method of Example 1, the length of the static mixer 7 in the cooler 8 of FIG. 1 is 5 cm, and the pressure loss of the foaming liquid passing through the cooler 8 is 20 kPa / cm per unit length, which is 0 in total. An aqueous foaming liquid was prepared in the same manner as in Example 1 except that the pressure was 1 MPa.
Table 1 shows the measurement results of “foaming ratio”, “foam diameter”, and “foaming liquid temperature” in the prepared aqueous foaming liquid.

<実施例3>
実施例1の方法において、図1の冷却器8における静止型混合器7の長さを12.5cmとして、冷却器8を通過する発泡液の圧力損失が単位長さ当たり40kPa/cmで、全体で0.5MPaとなるスタティックミキサーを組み込んだ以外は実施例1と同様にして水性発泡液を調製した。
調製された水性発泡液における「発泡倍率」、「泡径」、「発泡液温度」の測定結果を表1に示す。
<Example 3>
In the method of Example 1, the length of the static mixer 7 in the cooler 8 of FIG. 1 is 12.5 cm, and the pressure loss of the foaming liquid passing through the cooler 8 is 40 kPa / cm per unit length. An aqueous foaming liquid was prepared in the same manner as in Example 1 except that a static mixer of 0.5 MPa was incorporated.
Table 1 shows the measurement results of “foaming ratio”, “foam diameter”, and “foaming liquid temperature” in the prepared aqueous foaming liquid.

<比較例1>
実施例1の方法において、図1の冷却器8に静止型混合器7を挿入しなかった以外は実施例1と同様にして水性発泡液を調製した。
<Comparative Example 1>
In the method of Example 1, an aqueous foaming liquid was prepared in the same manner as in Example 1 except that the static mixer 7 was not inserted into the cooler 8 of FIG.

<比較例2>
実施例1の方法において、図1の冷却器8に冷却水の通水による冷却を行わなかった以外は実施例1と同様にして水性発泡液を調製した。
調製された水性発泡液における「発泡倍率」、「泡径」、「発泡液温度」の測定結果を表1に示す。
<Comparative Example 2>
In the method of Example 1, an aqueous foaming liquid was prepared in the same manner as in Example 1 except that cooling by passing cooling water was not performed in the cooler 8 of FIG.
Table 1 shows the measurement results of “foaming ratio”, “foam diameter”, and “foaming liquid temperature” in the prepared aqueous foaming liquid.

<比較例3>
実施例1において使用したスタティックミキサーの長さを4.0cmとし、冷却器8の圧力損失を単位長さ当たり20kPa/cmで全体で80KPaとした以外は実施例1と同様にして水性発泡液を調製した。
調製された水性発泡液における「発泡倍率」、「泡径」、「発泡液温度」の測定結果を表1に示す。
<Comparative Example 3>
The aqueous foaming liquid was prepared in the same manner as in Example 1 except that the length of the static mixer used in Example 1 was 4.0 cm, and the pressure loss of the cooler 8 was 20 kPa / cm per unit length and 80 KPa in total. Prepared.
Table 1 shows the measurement results of “foaming ratio”, “foam diameter”, and “foaming liquid temperature” in the prepared aqueous foaming liquid.

<比較例4>
実施例1の方法において、冷却器8を通過する発泡液の圧力損失が単位長さ当たり100kPa/cmで、全体で0.5MPaとなるスタティックミキサーを組み込んだ以外は実施例1と同様にして水性発泡液を調製した。
調製された水性発泡液における「発泡倍率」、「泡径」、「発泡液温度」の測定結果を表1に示す。
<Comparative Example 4>
In the method of Example 1, the aqueous solution was the same as Example 1 except that a static mixer in which the pressure loss of the foaming liquid passing through the cooler 8 was 100 kPa / cm per unit length and the total was 0.5 MPa was incorporated. A foaming liquid was prepared.
Table 1 shows the measurement results of “foaming ratio”, “foam diameter”, and “foaming liquid temperature” in the prepared aqueous foaming liquid.

Figure 2012157806
Figure 2012157806

実施例1〜3及び比較例1〜4の結果は、空気と液体を機械的に攪拌混合して発泡液を製造する方法において、空気と液体を機械的に攪拌混合する発泡処理装置の下流側に、スタティックミキサーを備えた冷却器を設けて通過する発泡液の圧損の値を所定値に制御しつつ均等に冷却することにより、泡径が均一で小さい気泡を安定した状態で含有している発泡液を製造できることを示している。   The results of Examples 1 to 3 and Comparative Examples 1 to 4 are the downstream side of the foam processing apparatus that mechanically stirs and mixes air and liquid in the method of producing the foamed liquid by mechanically stirring and mixing air and liquid. In addition, by providing a cooler equipped with a static mixer and uniformly cooling while controlling the pressure loss value of the foaming liquid passing through to a predetermined value, bubbles are uniformly contained and contain small bubbles in a stable state. It shows that a foaming liquid can be produced.

本発明の方法によれば、泡径が均一で微細な気泡を大量にかつ安定した状態で含んでいる樹脂含有水性発泡液を簡便に連続製造できる方法が提供されるので、該樹脂含有水性発泡液を発泡樹脂塗工層形成用の塗工液として利用することにより、表面状態が平滑で、断熱性、クッション性に富む発泡樹脂塗工層を基材面に形成することが求められる各種分野における製品の品質向上に多大の貢献をなすものである。   According to the method of the present invention, there is provided a method capable of simply and continuously producing a resin-containing aqueous foam containing a large amount of fine bubbles with a uniform foam diameter in a stable state. By using the liquid as a coating liquid for forming a foamed resin coating layer, various fields are required to form a foamed resin coating layer having a smooth surface state and excellent heat insulation and cushioning properties on the substrate surface. This greatly contributes to the improvement of product quality.

1:原料液調製槽
2:ポンプ
3:発泡処理槽
4:冷却ジャケット
5:気体貯槽
6:流量制御弁
7:静止型混合器
7a:入り口側圧力計
7b:出口側圧力計
8:冷却器
9:水性発泡液貯槽
10:冷却機構






















1: Raw material liquid preparation tank 2: Pump 3: Foaming treatment tank 4: Cooling jacket 5: Gas storage tank 6: Flow control valve 7: Static mixer 7a: Inlet side pressure gauge 7b: Outlet side pressure gauge 8: Cooler 9 : Aqueous foam storage tank 10: Cooling mechanism






















Claims (7)

塗膜形成用樹脂を含有する水性原料液と非水溶性気体とを機械的に攪拌混合して発泡させた水性発泡液を、管体内部に直列に固定配置されている複数のエレメントにより管体内を通過する流体を分割し、方向を転換し及び方向を反転させて流体を攪拌混合する機能を備えた静止型混合器と該静止型混合器の管壁を介して管体内通過流体を管体外から冷却する冷却機構とを備えた冷却器内を通過させて攪拌・冷却処理することを特徴とする、発泡樹脂塗膜形成用の水性発泡液の調製方法。   An aqueous foamed liquid obtained by mechanically stirring and mixing an aqueous raw material liquid containing a resin for forming a coating film and a water-insoluble gas is foamed by a plurality of elements fixedly arranged in series inside the tubular body. The fluid passing through the tubular body is separated from the outside of the tubular body through a stationary mixer having a function of stirring and mixing the fluid by dividing the fluid passing through the fluid, changing the direction and reversing the direction, and the tube wall of the stationary mixer. A method for preparing an aqueous foaming liquid for forming a foamed resin coating film, characterized in that the mixture is stirred and cooled by passing through a cooler having a cooling mechanism for cooling from the outside. 前記冷却器による攪拌・冷却処理が、前記静止型混合器内に、流れ方向に4〜50kPa/cmの割合で圧力損失が生じる条件下で前記発泡させた水性発泡液を通過させて攪拌・冷却する処理である請求項1記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。   Stirring / cooling treatment by the cooler is performed by passing the foamed aqueous foam liquid through the static mixer at a rate of 4 to 50 kPa / cm in the flow direction and stirring and cooling. The method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to claim 1, wherein 前記冷却器による攪拌・冷却処理が、前記静止型混合器内を、100〜500kPaの圧力損失が生じる条件下で前記発泡させた水性発泡液を通過させて攪拌・冷却する処理である請求項1又は2に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。   The stirring / cooling process by the cooler is a process of stirring and cooling the stationary foam mixer by passing the foamed aqueous foaming liquid under a condition that causes a pressure loss of 100 to 500 kPa. Or the preparation method of the aqueous | water-based foaming liquid for foaming resin coating-film formation of 2. 前記塗膜形成用樹脂を含有する水性原料液が、樹脂水溶液系及び水性樹脂エマルション系の樹脂含有液から選ばれる水性原料液である請求項1〜3のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。   The foamed resin coating according to any one of claims 1 to 3, wherein the aqueous raw material liquid containing the coating film-forming resin is an aqueous raw material liquid selected from a resin-containing liquid of an aqueous resin system and an aqueous resin emulsion system. A method for preparing an aqueous foaming liquid for film formation. 前記静止型混合器と冷却機構とを備えた冷却器内を通過して攪拌・冷却処理された水性発泡液中の気泡の直径が15μm以下で、発泡倍率が1.1超に調整されていることを特徴とする請求項1〜4のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。   The diameter of bubbles in the aqueous foamed liquid that has been stirred and cooled through the cooler including the static mixer and the cooling mechanism is 15 μm or less, and the foaming ratio is adjusted to more than 1.1. The preparation method of the aqueous | water-based foaming liquid for foaming resin coating-film formation of any one of Claims 1-4 characterized by the above-mentioned. 前記非水溶性気体が空気及び/又は窒素である請求項1〜5のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。   The said water-insoluble gas is air and / or nitrogen, The preparation method of the aqueous | water-based foaming liquid for foaming resin coating film formation of any one of Claims 1-5. 前記発泡樹脂塗膜形成用の水性発泡液が、感熱記録紙における基材と感熱発色層の中間の発泡樹脂塗膜層形成用の水性発泡塗工液である請求項1〜6のいずれか1項に記載の発泡樹脂塗膜形成用の水性発泡液の調製方法。






The aqueous foaming liquid for forming the foamed resin coating film is an aqueous foaming coating liquid for forming a foamed resin coating film layer between the substrate and the thermosensitive coloring layer in the thermal recording paper. A method for preparing an aqueous foaming liquid for forming a foamed resin coating film according to the item.






JP2011018460A 2011-01-31 2011-01-31 Method for producing aqueous foamed liquid Pending JP2012157806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011018460A JP2012157806A (en) 2011-01-31 2011-01-31 Method for producing aqueous foamed liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011018460A JP2012157806A (en) 2011-01-31 2011-01-31 Method for producing aqueous foamed liquid

Publications (1)

Publication Number Publication Date
JP2012157806A true JP2012157806A (en) 2012-08-23

Family

ID=46838805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011018460A Pending JP2012157806A (en) 2011-01-31 2011-01-31 Method for producing aqueous foamed liquid

Country Status (1)

Country Link
JP (1) JP2012157806A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056547A1 (en) * 2013-10-17 2015-04-23 株式会社 アスプ Gas-containing liquid production device and gas-containing liquid injection mechanism
JP2015080756A (en) * 2013-10-22 2015-04-27 パナソニック株式会社 Fine bubble generation device and bubble diameter control method
JP2021000599A (en) * 2019-06-20 2021-01-07 株式会社塩 Fluid system and inspection device of the same, inspection method, control method of fluid system and control program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538668A (en) * 1976-07-13 1978-01-26 Denki Kagaku Kogyo Kk Extruder for thermoplastic resin foam
JPS5990409U (en) * 1982-12-09 1984-06-19 株式会社東芝 static mixer
JPH0532052A (en) * 1991-08-01 1993-02-09 Oji Paper Co Ltd Thermal recording material
JPH05131126A (en) * 1991-04-24 1993-05-28 Apuriori Kk Stationary mixer of fluid
JPH09103734A (en) * 1995-10-06 1997-04-22 Noritake Co Ltd Formation of coating film by bubbles and device therefor
JPH10147060A (en) * 1996-11-15 1998-06-02 Oji Paper Co Ltd Thermosensible recording body
JPH10309451A (en) * 1997-05-08 1998-11-24 Noritake Co Ltd Static mixer for heat exchanger
JPH1143699A (en) * 1997-07-25 1999-02-16 Kao Corp Production of lightweight soap
JP2004195452A (en) * 2002-12-13 2004-07-15 Sulzer Chemtech Ag Static mixer for high viscosity medium
US20090163694A1 (en) * 2007-12-21 2009-06-25 Michael Gann Process for the continuous production of high efficient aqueous amino formaldehyde resin solutions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538668A (en) * 1976-07-13 1978-01-26 Denki Kagaku Kogyo Kk Extruder for thermoplastic resin foam
JPS5990409U (en) * 1982-12-09 1984-06-19 株式会社東芝 static mixer
JPH05131126A (en) * 1991-04-24 1993-05-28 Apuriori Kk Stationary mixer of fluid
JPH0532052A (en) * 1991-08-01 1993-02-09 Oji Paper Co Ltd Thermal recording material
JPH09103734A (en) * 1995-10-06 1997-04-22 Noritake Co Ltd Formation of coating film by bubbles and device therefor
JPH10147060A (en) * 1996-11-15 1998-06-02 Oji Paper Co Ltd Thermosensible recording body
JPH10309451A (en) * 1997-05-08 1998-11-24 Noritake Co Ltd Static mixer for heat exchanger
JPH1143699A (en) * 1997-07-25 1999-02-16 Kao Corp Production of lightweight soap
JP2004195452A (en) * 2002-12-13 2004-07-15 Sulzer Chemtech Ag Static mixer for high viscosity medium
US20090163694A1 (en) * 2007-12-21 2009-06-25 Michael Gann Process for the continuous production of high efficient aqueous amino formaldehyde resin solutions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015056547A1 (en) * 2013-10-17 2015-04-23 株式会社 アスプ Gas-containing liquid production device and gas-containing liquid injection mechanism
US9868092B2 (en) 2013-10-17 2018-01-16 Asupu Co., Ltd Gas-containing liquid generating apparatus and gas-containing liquid injecting module
JP2015080756A (en) * 2013-10-22 2015-04-27 パナソニック株式会社 Fine bubble generation device and bubble diameter control method
JP2021000599A (en) * 2019-06-20 2021-01-07 株式会社塩 Fluid system and inspection device of the same, inspection method, control method of fluid system and control program
JP7115753B2 (en) 2019-06-20 2022-08-09 株式会社塩 FLUID SYSTEM, INSPECTION DEVICE, INSPECTION METHOD, FLUID SYSTEM CONTROL METHOD AND CONTROL PROGRAM

Similar Documents

Publication Publication Date Title
JP5795794B2 (en) Emulsifying device for continuous production of emulsion and / or dispersion
US7165881B2 (en) Methods and apparatus for high-shear mixing and reacting of materials
JP3206061U (en) Device for stirring molten glass, apparatus for stirring molten glass including such device, and use of such device
BR112018006973B1 (en) APPARATUS AND METHOD FOR AERATION OF A FOOD PRODUCT
JP2012157806A (en) Method for producing aqueous foamed liquid
EP2473264B1 (en) Mixing device and dynamic mixing method
JP2011115730A (en) Method for producing composition in which dispersed phase is finely dispersed into continuous phase, and device for producing the composition
JP2013522029A (en) Mixing or dispersing member and method of performing static mixing or dispersion
JPWO2012133736A1 (en) Method and apparatus for producing a composition in which a dispersed phase is finely dispersed in a continuous phase
US4624213A (en) Curtain coating apparatus and method of use
JP2013063378A (en) Preparation device and preparation method for aqueous foam liquid
JP2013223828A (en) Agitation mixer
KR20130036695A (en) Heat exchange device
Müller-Fischer et al. Dynamically enhanced membrane foaming
Yuan et al. Performance of slotted pores in particle manufacture using rotating membrane emulsification
SE438103B (en) METHOD AND APPARATUS FOR DISPERSING A FIRST LIQUID IN ANOTHER LIQUID
JP3719681B1 (en) Bubble dispersion device for highly viscous liquids
Iqbal et al. Emulsion Solidification: Influence of the Droplet Size of the Water‐in‐Oil Emulsion on the Generated Particle Size
Singha et al. Process technology of nanoemulsions in food processing
Vananroye et al. Morphology development during microconfined flow of viscous emulsions
JP2019068834A (en) Methods and systems for production of low water activity fillings
CN205850621U (en) A kind of mechanical agitation type Continuous Emulsifier strengthening conveying
CN210496440U (en) Water-based paint polymerization device
JP2000271463A (en) Inline dynamic mixing device
JPS5927796B2 (en) Continuous floating soap manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150512