[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012157872A - Casting mold for continuous casting of steel and continuous casting method of steel - Google Patents

Casting mold for continuous casting of steel and continuous casting method of steel Download PDF

Info

Publication number
JP2012157872A
JP2012157872A JP2011017556A JP2011017556A JP2012157872A JP 2012157872 A JP2012157872 A JP 2012157872A JP 2011017556 A JP2011017556 A JP 2011017556A JP 2011017556 A JP2011017556 A JP 2011017556A JP 2012157872 A JP2012157872 A JP 2012157872A
Authority
JP
Japan
Prior art keywords
mold
inclined surface
slab
long side
short side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017556A
Other languages
Japanese (ja)
Other versions
JP5673149B2 (en
Inventor
Seiji Itoyama
誓司 糸山
Seiji Nabeshima
誠司 鍋島
Takashi Nishimura
隆 西村
Yoshiyuki Tanaka
芳幸 田中
Ayumi Ishikawa
歩 石川
Kenta Isaki
健太 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011017556A priority Critical patent/JP5673149B2/en
Publication of JP2012157872A publication Critical patent/JP2012157872A/en
Application granted granted Critical
Publication of JP5673149B2 publication Critical patent/JP5673149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

【課題】 鋳片の長辺長さと短辺長さとの比が1〜2である鋼鋳片を連続鋳造するための鋳型において、鋳造速度を2倍程度の範囲で変更した場合でも、鋳型と凝固シェルとの間に生成するエアーギャップ生成を効果的に抑制し、これにより、鋳片コーナー部の表層下の内部割れやそれに起因する縦割れを効果的に防止することのできる、鋳造速度依存性が小さく操業柔軟性に優れる連続鋳造用鋳型を提供する。
【解決手段】 鋳片の長辺長さと短辺長さとの比が1〜2である鋼鋳片用の鋳型であり、鋳型の内面に鋳片引き抜き方向に向かって対面間隔が狭まる傾斜面を有する鋳型において、鋳型の短辺3の内面は、上部側の第1傾斜面8と下部側の第2傾斜面9との2つの傾斜面で形成され、鋳型の長辺内面は1つの傾斜面で形成されていて、第1傾斜面のテーパ値が第2傾斜面のテーパ値よりも大きく、且つ、長辺内面のテーパ値が第1傾斜面のテーパ値よりも小さい。
【選択図】 図3
PROBLEM TO BE SOLVED: To provide a mold for continuously casting a steel slab having a ratio of a long side length to a short side length of 1 to 2, even when the casting speed is changed in a range of about 2 times. Depends on casting speed, which effectively suppresses air gap generation between the solidified shell and effectively prevents internal cracks under the surface layer of the slab corner and vertical cracks resulting from it. The present invention provides a continuous casting mold which is small in performance and excellent in operational flexibility.
A steel slab mold having a ratio of a long side length to a short side length of a slab of 1 to 2, and an inclined surface with a facing distance narrowing toward the slab drawing direction on the inner surface of the mold. In the mold having, the inner surface of the short side 3 of the mold is formed by two inclined surfaces of the first inclined surface 8 on the upper side and the second inclined surface 9 on the lower side, and the inner surface of the long side of the mold is one inclined surface. The taper value of the first inclined surface is larger than the taper value of the second inclined surface, and the taper value of the long side inner surface is smaller than the taper value of the first inclined surface.
[Selection] Figure 3

Description

本発明は、鋼鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2であるブルーム鋳片或いはビレット鋳片を連続鋳造するための鋳型及び該鋳型を使用した連続鋳造方法に関する。   The present invention is for continuously casting a bloom slab or billet slab in which the ratio (W / N) of the long side length (W) to the short side length (N) of the steel slab is 1-2. The present invention relates to a mold and a continuous casting method using the mold.

鋼の連続鋳造における鋳型内での凝固シェルの二次元的な熱収縮の概念図を図1に示す。図1において、符号1は連続鋳造用の鋳型、2は鋳型長辺、3は鋳型短辺、4は長辺面凝固シェル、5は短辺面凝固シェル、6は溶鋼、7はエアーギャップ(空隙)である。凝固の進行に伴い、凝固シェル4、5の温度が低下して凝固シェル4、5が収縮し、鋳型1の内壁面と凝固シェル4、5との間にエアーギャップ7が形成される。エアーギャップ7が形成されると鋳型1による凝固シェル4、5の抜熱が阻害されるので、このエアーギャップ7を補償するべく、連続鋳造用鋳型は、その内壁面が、鋳片引き抜き方向に向かって対面間隔が徐々に狭くなった傾斜面で構成されている。この傾斜面は、従来、直線的な勾配(以下、「テーパ」と記す)を設けて凝固シェルの熱収縮量を補償する例が一般的であったが、最近では、例えば、特許文献1に示すように、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1.0〜2.0であるブルーム鋳片或いはビレット鋳片を連続鋳造する鋳型においては、鋳型の短辺面及び長辺面を多段勾配状に形成する鋳型、所謂、2段テーパを鋳型の長辺面及び短辺面に付与した連続鋳造用鋳型が提案されている。   FIG. 1 shows a conceptual diagram of two-dimensional heat shrinkage of a solidified shell in a mold in continuous casting of steel. In FIG. 1, reference numeral 1 is a continuous casting mold, 2 is a mold long side, 3 is a mold short side, 4 is a long side solidified shell, 5 is a short side solidified shell, 6 is molten steel, and 7 is an air gap ( Gap). As the solidification progresses, the temperature of the solidified shells 4 and 5 is reduced and the solidified shells 4 and 5 are contracted, and an air gap 7 is formed between the inner wall surface of the mold 1 and the solidified shells 4 and 5. When the air gap 7 is formed, heat removal of the solidified shells 4 and 5 by the mold 1 is hindered. Therefore, in order to compensate for the air gap 7, the inner wall surface of the continuous casting mold is in the direction of drawing the slab. It is comprised by the inclined surface where the space | interval facing gradually became narrow toward it. Conventionally, this inclined surface is generally provided with a linear gradient (hereinafter referred to as “taper”) to compensate for the amount of heat shrinkage of the solidified shell. As shown, continuous casting of a bloom slab or billet slab having a ratio (W / N) of the long side length (W) to the short side length (N) of 1.0 to 2.0. As a casting mold, a casting mold in which the short side surface and the long side surface of the mold are formed in a multi-stage gradient shape, that is, a continuous casting mold in which a so-called two-step taper is provided on the long side surface and the short side surface of the mold has been proposed. .

この2段テーパの鋳型は、凝固初期の大きな寸法収縮を補償し、これにより、鋳型と凝固シェルとの間に形成されるエアーギャップを小さくして、エアーギャップ生成による凝固シェルの復熱や不均一凝固を抑制し、特に、鋳片コーナー部の表層下に発生する内部割れやそれに起因する縦割れを防止することを目的とした鋳型である。ブルーム鋳片やビレット鋳片の場合には、鋳片の長辺長さが120〜600mmであり、スラブ鋳片のそれ(900〜3400mm)と比較して短く、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が小さいことから、鋳型内での凝固シェルのバルジング現象(溶鋼静圧により膨らむ現象)は無視できるので、特許文献1に提案されるように、鋳型の長辺面と短辺面のテーパを等しくし、且つ2段勾配状に設定することが行われていた。   This two-step taper mold compensates for the large dimensional shrinkage at the initial stage of solidification, thereby reducing the air gap formed between the mold and the solidified shell, thereby recuperating the heat of the solidified shell due to the generation of the air gap. It is a mold intended to suppress uniform solidification and in particular to prevent internal cracks that occur below the surface layer of the slab corner and vertical cracks resulting therefrom. In the case of a bloom slab or billet slab, the long side length of the slab is 120 to 600 mm, which is shorter than that of the slab slab (900 to 3400 mm), and the long side length of the slab ( Since the ratio (W / N) of W) to the short side length (N) is small, the bulging phenomenon of the solidified shell in the mold (a phenomenon that swells due to the static pressure of the molten steel) can be ignored. As described above, the taper of the long side surface and the short side surface of the mold is made equal, and the two-step gradient is set.

しかし、特許文献1のような鋳型テーパの場合、同一連続鋳造機で鋳造速度が大きく異なる操業形態を採る際には好適なテーパ値が変化することから、スラブ鋳片用の連続鋳造用鋳型のように幅変更できない構造であるブルーム鋳片用やビレット鋳片用の鋳型では、鋳造速度に対応したテーパの鋳型を複数台設ける必要がある。例えば、特許文献1において、鋳造速度が0.6m/min及び1.5m/minの場合を例としてテーパ値を算出すると、鋳造速度と好適テーパ値(%/m)は、下記の表1のようになる。   However, in the case of a mold taper as in Patent Document 1, a suitable taper value changes when adopting an operation mode in which the casting speed is greatly different in the same continuous casting machine, so that a continuous casting mold for a slab slab is changed. In the case of a mold for a bloom slab or a billet slab having a structure in which the width cannot be changed, it is necessary to provide a plurality of taper molds corresponding to the casting speed. For example, in Patent Document 1, when the taper value is calculated using the casting speeds of 0.6 m / min and 1.5 m / min as an example, the casting speed and the preferred taper value (% / m) are shown in Table 1 below. It becomes like this.

Figure 2012157872
Figure 2012157872

つまり、好適な鋳型テーパ値は鋳造速度の依存性が大きく、同一組成の連続鋳造用モールドパウダーを使用しても、鋳造速度が2倍以上異なる操業を行う場合には、テーパの異なる鋳型を少なくとも2セット設ける必要があり、鋳型準備やメンテナンスの費用を考えると大きな負担となる。特許文献1では、これを解決するために、テーパの小さい鋳型を優先使用して操業するとしている。従って、特許文献1においては、好適なテーパ値が使用する鋳型のテーパ値よりも大きい鋳造条件では、前述した鋳片欠陥の効率的防止に限界が生じるという問題があった。   In other words, the preferred mold taper value is highly dependent on the casting speed. Even when mold powder for continuous casting having the same composition is used, when casting operations are performed more than twice as different, at least molds having different tapers are used. It is necessary to provide two sets, which is a heavy burden considering the cost of mold preparation and maintenance. In Patent Document 1, in order to solve this problem, it is assumed that a mold with a small taper is preferentially used for operation. Therefore, in patent document 1, there existed a problem that a limit arises in the efficient prevention of the slab defect mentioned above on the casting conditions whose suitable taper value is larger than the taper value of the casting_mold | template used.

特開2007−175769号公報JP 2007-175769 A

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2であるブルーム鋳片或いはビレット鋳片を連続鋳造するための鋳型において、鋳造速度を2倍程度の範囲で変更した場合でも、鋳型と凝固シェルとの間に生成するエアーギャップ生成を抑制し、これにより、鋳片コーナー部の表層下の内部割れやそれに起因する縦割れを効果的に防止することのできる、鋳造速度依存性が小さく操業柔軟性に優れた連続鋳造用鋳型を提供することであり、また、この連続鋳造用鋳型を使用した鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is that the ratio (W / N) of the long side length (W) to the short side length (N) of the slab is 1-2. Even when the casting speed is changed in the range of about 2 times in the mold for continuous casting of the bloom slab or billet slab, the generation of the air gap generated between the mold and the solidified shell is suppressed. Is to provide a continuous casting mold that can effectively prevent internal cracks under the surface of the slab corners and vertical cracks resulting from it, and has low casting speed dependency and excellent operational flexibility. Another object of the present invention is to provide a continuous casting method of steel using this continuous casting mold.

上記課題を解決するための本発明の要旨は以下のとおりである。
(1) 鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2である鋼鋳片を連続鋳造する鋳型であり、該鋳型の内面に鋳片引き抜き方向に向かって対面間隔が狭まる傾斜面を有する連続鋳造用鋳型において、鋳型の短辺内面は、上部側の第1傾斜面と下部側の第2傾斜面との2つの傾斜面で形成され、鋳型の長辺内面は1つの傾斜面で形成されていて、前記第1傾斜面のテーパ値が前記第2傾斜面のテーパ値よりも大きく、且つ、前記長辺内面のテーパ値が前記第1傾斜面のテーパ値よりも小さいことを特徴とする、鋼の連続鋳造用鋳型。
(2) 前記短辺内面の第1傾斜面のテーパ値θnuと前記長辺内面の傾斜面のテーパ値θwとの比(θnu/θw)が2.0〜3.5であり、前記短辺内面の第1傾斜面のテーパ値θnuが1.5〜4.0%/m、前記短辺内面の第2傾斜面のテーパ値θndが0.7〜1.0%/mであることを特徴とする、上記(1)に記載の鋼の連続鋳造用鋳型。
(3) 上記(1)または上記(2)に記載の鋼の連続鋳造用鋳型を用いて、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2である鋼鋳片を連続鋳造することを特徴とする、鋼の連続鋳造方法。
The gist of the present invention for solving the above problems is as follows.
(1) A mold for continuously casting a steel slab having a ratio (W / N) of the long side length (W) to the short side length (N) of the slab of 1 to 2, and the inner surface of the mold In the continuous casting mold having an inclined surface whose facing distance narrows toward the slab drawing direction, the inner surface of the short side of the mold is two inclined surfaces of a first inclined surface on the upper side and a second inclined surface on the lower side The inner surface of the long side of the mold is formed by one inclined surface, the taper value of the first inclined surface is larger than the taper value of the second inclined surface, and the taper value of the inner surface of the long side Is a mold for continuous casting of steel, wherein the taper value of the first inclined surface is smaller.
(2) The ratio (θnu / θw) between the taper value θnu of the first inclined surface of the inner surface of the short side and the taper value θw of the inclined surface of the inner surface of the long side is 2.0 to 3.5, and the short side The taper value θnu of the first inclined surface of the inner surface is 1.5 to 4.0% / m, and the taper value θnd of the second inclined surface of the inner surface of the short side is 0.7 to 1.0% / m. The continuous casting mold for steel according to (1), characterized in that it is characterized in that
(3) Using the steel continuous casting mold described in (1) or (2) above, the ratio of the long side length (W) to the short side length (N) of the slab (W / N) ) Is a continuous casting method of steel, characterized by continuously casting a steel slab of 1 to 2.

本発明によれば、鋳型長辺のテーパ値が鋳型短辺のテーパ値に比較して小さいことから、鋳造速度依存性が小さく、鋳造速度を2倍程度の範囲で変更した場合でも、鋳型と凝固シェルとの間に生成するエアーギャップ生成を効果的に抑制し、これにより、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2であるブルーム鋳片或いはビレット鋳片のコーナー部の表層下の内部割れやそれに起因する縦割れを効果的に防止することが実現される。   According to the present invention, since the taper value on the long side of the mold is smaller than the taper value on the short side of the mold, the casting speed dependency is small, and even when the casting speed is changed in the range of about twice, The air gap generated between the solidified shell is effectively suppressed, and the ratio (W / N) of the long side length (W) to the short side length (N) of the slab is 1 to 1. Therefore, it is possible to effectively prevent internal cracks under the surface layer of the corners of the bloom slab or billet slab and vertical cracks resulting therefrom.

連続鋳造用鋳型横断面内における凝固シェルの二次元的な熱収縮の概念図である。It is a conceptual diagram of the two-dimensional heat shrinkage | contraction of the solidification shell in the casting_mold | template cross section for continuous casting. 本発明に係る連続鋳造用鋳型の長辺縦断面及び短辺縦断面の模式図である。It is a schematic diagram of a long side longitudinal section and a short side longitudinal section of the casting mold for continuous casting according to the present invention. 本発明に係る鋳型を鋳片長辺面に平行な面で切断したときの断面図である。It is sectional drawing when the casting_mold | template which concerns on this invention is cut | disconnected by the surface parallel to a slab long side surface. 鋳造速度が0.6〜2.0m/minで鋳型内凝固不均一度が10%以下となる領域を、テーパ値θnd別に示す図である。It is a figure which shows the area | region where a casting speed is 0.6-2.0 m / min and solidification nonuniformity in a casting_mold | template becomes 10% or less according to taper value (theta) nd. 鋳造速度が0.6〜2.0m/minで鋳型内抜熱量偏差が15%以下となる領域を、テーパ値θnd別に示す図である。It is a figure which shows the area | region where a casting speed is 0.6-2.0 m / min and the amount of heat removal in a mold | type becomes 15% or less according to taper value (theta) nd. テーパの異なる鋳型を用い、鋳造速度0.6〜2.0m/minで縦割れ或いは内部割れの発生有無を調査した結果を示す図である。It is a figure which shows the result of having investigated the presence or absence of the occurrence of a vertical crack or an internal crack at the casting speed of 0.6-2.0 m / min using the mold | die from which a taper differs. テーパの異なる鋳型を用い、鋳造速度1.0〜2.0m/minでブレークアウト或いは鋳型と凝固シェルとの焼き付きの発生有無を調査した結果を示す図である。It is a figure which shows the result of having investigated the presence or absence of generation | occurrence | production of a breakout or a casting_mold | template and the solidification shell with the casting speed of 1.0-2.0 m / min using the mold | die from which a taper differs.

以下、本発明を具体的に説明する。凝固初期における凝固シェルの体積収縮に起因する凝固シェルと鋳型内面との間でのエアーギャップ(空隙)の生成は、凝固シェルの冷却速度つまり鋳型抜熱量に大きく影響するのは公知の事実であり、従って、鋼の連続鋳造においては、凝固シェルの温度低下に伴う体積収縮に応じたテーパを鋳型内壁面に設け、凝固シェルと鋳型内壁との間にエアーギャップが形成されることを防止している。特に、ブルーム鋳片及びビレット鋳片は、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2であり、スラブ鋳片のように鋳型内における長辺側凝固シェルのバルジングが発生しずらいため、鋳型の長辺内面及び短辺内面にテーパを設けることが一般的である。   Hereinafter, the present invention will be specifically described. It is a well-known fact that the formation of an air gap (void) between the solidified shell and the inner surface of the mold due to the volume shrinkage of the solidified shell in the initial stage of solidification greatly affects the cooling rate of the solidified shell, that is, the amount of heat removed from the mold. Therefore, in continuous casting of steel, a taper corresponding to the volume shrinkage accompanying the temperature drop of the solidified shell is provided on the inner wall surface of the mold to prevent an air gap from being formed between the solidified shell and the inner wall of the mold. Yes. In particular, the bloom slab and billet slab have a ratio (W / N) of the long side length (W) to the short side length (N) of the slab of 1 to 2, as in a slab slab. Since bulging of the long-side solidified shell in the mold is difficult to occur, it is common to provide a taper on the long-side inner surface and the short-side inner surface of the mold.

発明者らは、特許文献1の効果を検証するために、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2であるブルーム鋳片及びビレット鋳片の連続鋳造において、特許文献1に開示された好適テーパ値による鋳造実験を実施した。しかしながら、期待に反して、鋳片コーナー部の表層下の内部割れやそれに起因する縦割れが軽減するどころか、逆に増える場合が発生することを経験した。また、このような場合、鋳片の断面形状が平行四辺形(ブルーム鋳片の場合)や菱形(ビレット鋳片の場合)に変形することもあった。この場合には、鋳型の4つの面での抜熱量がアンバランスになっていることを確認した。   In order to verify the effect of Patent Document 1, the inventors have bloom casting in which the ratio (W / N) of the long side length (W) to the short side length (N) of the slab is 1-2. In continuous casting of a piece and a billet slab, a casting experiment with a suitable taper value disclosed in Patent Document 1 was performed. However, contrary to expectations, we experienced that the internal cracks under the surface layer of the slab corners and the vertical cracks caused by the cracks could be reduced instead of increasing. In such a case, the cross-sectional shape of the slab may be deformed into a parallelogram (in the case of a bloom slab) or a rhombus (in the case of a billet slab). In this case, it was confirmed that the heat removal amount on the four surfaces of the mold was unbalanced.

この現象の原因を調査した結果、生成するエアーギャップの厚みを鋳型の長辺面及び短辺面ともにテーパで補償し過ぎると、凝固シェルから鋳型への熱移動が促進されて凝固初期の凝固シェルの冷却速度がより一層大きくなり、これによって不均一凝固を招くことが主たる原因であることを突き止めた。   As a result of investigating the cause of this phenomenon, if the thickness of the air gap to be generated is too much compensated by the taper on both the long and short sides of the mold, heat transfer from the solidified shell to the mold is promoted, and the solidified shell in the initial stage of solidification It has been found that the main cause of this is that the cooling rate of the steel is further increased, thereby causing uneven solidification.

この問題を解決するためには、鋳型短辺の内壁面は、鋳片短辺面の冷却を促進させるために上部側のテーパ値が下部側のテーパ値よりも大きい2段の傾斜面とした上で、鋳型長辺側のテーパ値をエアーギャップの生成量よりも少なく補償して鋳型長辺面での抜熱量の増加を緩和させ、鋳片長辺面の凝固シェルの幅方向熱収縮を抑制することが必要であり、その結果として、鋳片短辺凝固シェルと鋳型短辺との間に生成するエアーギャップが抑制できることに思い至り、本発明に繋がった。即ち、鋳型長辺面のテーパ値を鋳型短辺面のテーパ値よりも相対的に小さくして鋳片長辺面の冷却速度を鋳片短辺面の冷却速度に比較して遅くする必要があり、また、このためには鋳型長辺面のテーパは1段とすべきであることを知見した。   In order to solve this problem, the inner wall surface of the mold short side is a two-step inclined surface in which the taper value on the upper side is larger than the taper value on the lower side in order to promote cooling of the short side surface of the slab. Above, the taper value on the long side of the mold is compensated less than the amount of air gap generated to mitigate the increase in heat removal on the long side of the mold and suppress the heat shrinkage in the width direction of the solidified shell on the long side of the slab As a result, it was conceived that the air gap generated between the slab short side solidified shell and the mold short side can be suppressed, which led to the present invention. That is, the taper value of the mold long side surface should be relatively smaller than the taper value of the mold short side surface, and the cooling rate of the slab long side surface must be slower than the cooling rate of the slab short side surface. Also, for this purpose, it has been found that the taper of the long side surface of the mold should be one step.

本発明は、上記知見に基づくものであり、本発明に係る連続鋳造用鋳型は、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2である鋼鋳片を連続鋳造する鋳型であって、鋳型の短辺内面は、上部側の第1傾斜面と下部側の第2傾斜面との2つの傾斜面で形成され、鋳型の長辺内面は1つの傾斜面で形成されていて、前記第1傾斜面のテーパ値が前記第2傾斜面のテーパ値よりも大きく、且つ、前記長辺内面のテーパ値が前記第1傾斜面のテーパ値よりも小さいことを特徴とする。   The present invention is based on the above knowledge, and the continuous casting mold according to the present invention has a ratio (W / N) of the long side length (W) to the short side length (N) of the slab of 1. A casting mold for continuously casting a steel slab of ˜2, wherein the inner surface of the mold is formed by two inclined surfaces of a first inclined surface on the upper side and a second inclined surface on the lower side, The inner surface of the long side is formed by one inclined surface, the taper value of the first inclined surface is larger than the taper value of the second inclined surface, and the taper value of the inner surface of the long side is the first inclined surface. It is characterized by being smaller than the taper value.

図2に、本発明に係る連続鋳造用鋳型の長辺断面及び短辺断面の模式図を示す。図2(A)が鋳型長辺断面であり、図2(B)が鋳型短辺断面の模式図であり、図2は片側の鋳型長辺及び鋳型短辺のみを表示し、相対する鋳型長辺及び鋳型短辺は省略している。尚、図2において、符号2は鋳型長辺、3は鋳型短辺、4は長辺面凝固シェル、5は短辺面凝固シェル、6は溶鋼、7はエアーギャップ、8は第1傾斜面、9は第2傾斜面である。   In FIG. 2, the schematic diagram of the long side cross section and short side cross section of the casting mold for continuous casting according to the present invention is shown. 2A is a mold long-side cross section, FIG. 2B is a schematic diagram of a mold short-side cross section, and FIG. 2 shows only one mold long side and mold short side, and the opposite mold lengths. Sides and mold short sides are omitted. In FIG. 2, reference numeral 2 is the long side of the mold, 3 is the short side of the mold, 4 is the solidified shell on the long side, 5 is the solidified shell on the short side, 6 is the molten steel, 7 is the air gap, and 8 is the first inclined surface. , 9 is a second inclined surface.

鋳型長辺2の内壁面は、図2(A)に示すように、テーパ値がθwの1つの面で形成され、鋳型短辺3の内壁面は、図2(B)に示すように、テーパ値がθnuの第1傾斜面8とテーパ値がθndの第2傾斜面9とで形成されている。   The inner wall surface of the mold long side 2 is formed by one surface having a taper value θw, as shown in FIG. 2A, and the inner wall surface of the mold short side 3 is formed as shown in FIG. The first inclined surface 8 having a taper value of θnu and the second inclined surface 9 having a taper value of θnd are formed.

ここでテーパ値の定義を説明する。図3は、本発明に係る連続鋳造用鋳型を鋳片長辺面に平行な面で切断したときの断面図である。鋳型短辺3の第1傾斜面8のテーパ値θnuは下記の(1)式で求められ、鋳型短辺3の第2傾斜面9のテーパ値θndは下記の(2)式で求められる。
θnu=[(Wu-Wm)/Wm]×100/H1 …(1)
θnd=[(Wm-Wd)/Wd]×100/H2 …(2)
但し、(1)式及び(2)式において、Wuは鋳型上端での鋳型幅(mm)、Wmは第1傾斜面と第2傾斜面との境界での鋳型幅(mm)、Wdは鋳型下端での鋳型幅(mm)、H1は鋳型上端から第1傾斜面と第2傾斜面との境界までの鉛直方向距離(m)、H2は第1傾斜面と第2傾斜面との境界から鋳型下端までの鉛直方向距離(m)である。(1)式、(2)式から明らかなようにテーパ値の単位は「%/m」となる。
Here, the definition of the taper value will be described. FIG. 3 is a cross-sectional view of the continuous casting mold according to the present invention cut along a plane parallel to the long side surface of the slab. The taper value θnu of the first inclined surface 8 of the mold short side 3 is obtained by the following equation (1), and the taper value θnd of the second inclined surface 9 of the mold short side 3 is obtained by the following equation (2).
θnu = [(Wu-Wm) / Wm] × 100 / H 1 … (1)
θnd = [(Wm-Wd) / Wd] × 100 / H 2 (2)
In the equations (1) and (2), Wu is the mold width (mm) at the upper end of the mold, Wm is the mold width (mm) at the boundary between the first inclined surface and the second inclined surface, and Wd is the mold. The mold width (mm) at the lower end, H 1 is the vertical distance (m) from the upper end of the mold to the boundary between the first inclined surface and the second inclined surface, and H 2 is the distance between the first inclined surface and the second inclined surface. The vertical distance (m) from the boundary to the lower end of the mold. As apparent from the equations (1) and (2), the unit of the taper value is “% / m”.

図示はしないが、同様に、鋳型長辺のテーパ値θwは下記の(3)式で求められる。
θw=[(Nu-Nd)/Nd]×100/L …(3)
但し、(3)式において、Nuは鋳型上端での鋳型厚み(mm)、Ndは鋳型下端での鋳型厚み(mm)、Lは鋳型の鉛直方向長さ(m)である。
Although not shown, similarly, the taper value θw of the mold long side can be obtained by the following equation (3).
θw = [(Nu-Nd) / Nd] × 100 / L (3)
In equation (3), Nu is the mold thickness (mm) at the upper end of the mold, Nd is the mold thickness (mm) at the lower end of the mold, and L is the vertical length (m) of the mold.

本発明者らは、鋳型短辺の第1傾斜面のテーパ値θnu、鋳型短辺の第2傾斜面のテーパ値θnd、及び、鋳型長辺のテーパ値θwの好適条件を検討した。その結果、鋳型短辺内面の第1傾斜面のテーパ値θnuと鋳型長辺内面の傾斜面のテーパ値θwとの比(θnu/θw)が下記の(4)式を満たし、鋳型短辺内面の第1傾斜面のテーパ値θnuが下記の(5)式を満たし、且つ鋳型短辺内面の第2傾斜面のテーパ値θndが下記の(6)式を満たす鋳型を用いることで、鋳造速度を0.5〜2.0m/minの範囲で変更しても、鋳片コーナー部の表層下の内部割れやそれに起因する縦割れを効果的に防止することができ、表面品質及び内部品質に優れた鋳片を安定して製造できることを確認した。   The present inventors examined suitable conditions for the taper value θnu of the first inclined surface of the mold short side, the taper value θnd of the second inclined surface of the mold short side, and the taper value θw of the mold long side. As a result, the ratio (θnu / θw) between the taper value θnu of the first inclined surface on the inner surface of the mold short side and the taper value θw of the inclined surface on the inner surface of the mold long side satisfies the following equation (4), By using a mold in which the taper value θnu of the first inclined surface satisfies the following expression (5) and the taper value θnd of the second inclined surface of the inner surface of the mold short side satisfies the following expression (6), the casting speed is Even if it is changed within the range of 0.5 to 2.0 m / min, it is possible to effectively prevent internal cracks under the surface layer of the slab corners and vertical cracks resulting from the cracks. It was confirmed that excellent slabs could be manufactured stably.

2.0≦θnu/θw≦3.5 …(4)
1.5≦θnu≦4.0 …(5)
0.7≦θnd≦1.0 …(6)
以下、比(θnu/θw)、第1傾斜面のテーパ値θnu(以下、単に「θnu」とも記す)及び第2傾斜面のテーパ値θnd(以下、単に「θnd」とも記す)が上記の(4)式〜(6)式の範囲に限定される理由を説明する。尚、鋳型長辺のテーパ値θw(以下、単に「θw」とも記す)の範囲は(4)式及び(5)式から自ずと求められ、θwは0.43〜2.0%/mとなる。
2.0 ≦ θnu / θw ≦ 3.5 (4)
1.5 ≦ θnu ≦ 4.0 (5)
0.7 ≦ θnd ≦ 1.0 (6)
Hereinafter, the ratio (θnu / θw), the taper value θnu of the first inclined surface (hereinafter simply referred to as “θnu”), and the taper value θnd of the second inclined surface (hereinafter also simply referred to as “θnd”) are The reason for being limited to the range of 4) Formula-(6) Formula is demonstrated. The range of the taper value θw (hereinafter also simply referred to as “θw”) of the long side of the mold is naturally obtained from the equations (4) and (5), and θw is 0.43 to 2.0% / m. .

本発明者らは、θnu=0.9〜5.0%/m、θnd=0.5〜1.3%/m、θw=0.23〜5.0%/m、比(θnu/θw)=1.0〜4.0の範囲の鋳型を準備し、鋳造速度を0.6m/min(鋳片サイズ:長辺長さ560mm、短辺長さ400mm)、1.0m/min(鋳片サイズ:長辺長さ400mm、短辺長さ300mm)、2.0m/min(鋳片サイズ:長辺長さ230mm、短辺長さ190mm)の3水準として鋳造試験を実施した。   We have θnu = 0.9 to 5.0% / m, θnd = 0.5 to 1.3% / m, θw = 0.23 to 5.0% / m, ratio (θnu / θw ) = 1.0 to 4.0, and casting speed is 0.6 m / min (slab size: long side length 560 mm, short side length 400 mm), 1.0 m / min (casting) The casting test was carried out with three levels of one size: long side length 400 mm, short side length 300 mm) and 2.0 m / min (cast piece size: long side length 230 mm, short side length 190 mm).

鋳造中、鉄板に包んだFe−S合金粉末を鋳型内に浸漬・投入し、鋳片断面から採取したサルファープリントによって鋳型内における凝固シェル厚(測定箇所:鋳型内溶鋼湯面から100mm下方の位置)を測定し、下記の(7)式で定義する凝固不均一度を求め、鋳型テーパと凝固不均一度との関係を調査した。また鋳造中、鋳型長辺及び鋳型短辺での鋳型抜熱量を鋳型冷却水の入出温度差と冷却水流量とから計算し、下記の(8)式で定義する抜熱量偏差を求め、鋳型テーパと抜熱量偏差との関係を調査した。   During casting, the Fe-S alloy powder wrapped in an iron plate is immersed in the mold, and the thickness of the solidified shell in the mold is measured by sulfur printing taken from the cross section of the slab (measurement location: 100 mm below the molten steel surface in the mold) ) Was measured, the solidification nonuniformity defined by the following equation (7) was determined, and the relationship between the mold taper and the solidification nonuniformity was investigated. Also, during casting, the amount of heat removed from the mold at the long side and the short side of the mold is calculated from the difference in temperature of the mold cooling water and the flow rate of the cooling water, and the deviation of the heat removal amount defined by the following equation (8) is obtained. And the relationship between the amount of heat removal and the deviation.

凝固不均一度=(dmax-dmin)×100/dmax …(7)
但し、(7)式において、dmax:鋳片長辺面または短辺面の凝固シェル厚の最大値(mm)、dmin:鋳片長辺面または短辺面の凝固シェル厚の最小値(mm)である。
Solidification non-uniformity = (dmax-dmin) x 100 / dmax (7)
However, in the formula (7), dmax is the maximum value (mm) of the solidified shell thickness on the long side or short side of the slab, and dmin is the minimum value (mm) of the solidified shell thickness on the long or short side of the slab. is there.

抜熱量偏差=|Hw-Hn|×100/max(Hw,Hn) …(8)
但し、(8)式において、Hw:鋳型長辺の平均抜熱量、Hn:鋳型短辺の平均抜熱量、max(Hw,Hn):HwまたはHnのいずれかの最大値である。
Heat removal deviation = | Hw-Hn | × 100 / max (Hw, Hn)… (8)
However, in the equation (8), Hw is the average heat removal amount at the long side of the mold, Hn is the average heat removal amount at the short side of the mold, and max (Hw, Hn) is the maximum value of either Hw or Hn.

その結果、鋳造速度が0.6〜2.0m/minと広範囲においても、比(θnu/θw)を2.0〜3.5とし、θnuを1.5〜4.0%/m、且つ、θndを0.7〜1.0%/mとすることで、凝固不均一度は、鋳片表面の縦割れ限界の凝固不均一度とされる10%を下回り、且つ、抜熱量偏差も鋳片断面形状劣化を防止する15%未満にできることを突き止めた。   As a result, the ratio (θnu / θw) is set to 2.0 to 3.5, θnu is set to 1.5 to 4.0% / m, and the casting speed is 0.6 to 2.0 m / min over a wide range. , Θnd is set to 0.7 to 1.0% / m, the solidification non-uniformity is less than 10%, which is the solidification non-uniformity of the vertical crack limit of the slab surface, and the heat removal amount deviation is also It was ascertained that the cross-sectional shape deterioration of the slab can be reduced to less than 15%.

比(θnu/θw)に範囲が存在する理由:
比(θnu/θw)が小さ過ぎると相対的に鋳片短辺面の凝固シェルの成長が抑制され、同様に、比(θnu/θw)が大き過ぎると相対的に鋳片長辺面の凝固シェルの成長が抑制される。いずれのケースにおいても、鋳片短辺面と長辺面との凝固シェル厚に差が生じて凝固不均一度が大きくなることから、凝固不均一度を10%以下とするためには比(θnu/θw)に或る範囲を設ける必要があり、2.0〜3.5が好適である。
Reasons why there is a range in the ratio (θnu / θw):
If the ratio (θnu / θw) is too small, the growth of the solidified shell on the short side of the slab is relatively suppressed. Similarly, if the ratio (θnu / θw) is too large, the solidified shell on the long side of the slab is relatively small. Growth is suppressed. In any case, since the solidification shell thickness between the slab short side surface and the long side surface is different and the solidification nonuniformity is increased, the ratio ( It is necessary to provide a certain range for θnu / θw), and 2.0 to 3.5 is preferable.

θnuに好適な範囲が存在する理由:
比(θnu/θw)が好適な2.0〜3.5の範囲において、θnuが小さ過ぎると抜熱量偏差が大きくなり、且つ鋳型短辺の抜熱量が低下して凝固シェル成長低下によるブレークアウトの危険があることから、これを回避するためにθnuに下限を設けている。一方、θnuが大き過ぎると、抜熱量偏差は小さくなるが、鋳型抜熱量絶対値の増加による縦割れや鋳型/凝固シェル間の摩擦力増大による拘束性ブレークアウトの危険があり、これを回避するためにθnuに上限を設けている。つまり、θnuにも好適な範囲が存在し、その値は上記理由から1.5〜4.0%/mとなる。
Reason why there is a suitable range for θnu:
When the ratio (θnu / θw) is in the preferred range of 2.0 to 3.5, if θnu is too small, the deviation in heat removal becomes large, and the heat removal at the short side of the mold is reduced, resulting in a breakout due to reduced solidified shell growth. In order to avoid this, a lower limit is set for θnu. On the other hand, if θnu is too large, the deviation in heat removal becomes small, but there is a risk of a vertical break due to an increase in the absolute value of the heat removal from the mold and a constraining breakout due to an increase in the frictional force between the mold and the solidified shell. Therefore, an upper limit is set for θnu. That is, there is a preferable range for θnu, and the value is 1.5 to 4.0% / m for the above reason.

θndに好適な範囲が存在する理由:
初期凝固シェルの成長や鋳型抜熱量は鋳型上部で大略決定される。換言すれば、鋳型下部のテーパθndは、上部のテーパθnuに比べると、初期凝固シェルの成長や鋳型抜熱挙動に及ぼす影響が小さくなる。しかし、その影響が小さいながらも初期凝固シェル成長や鋳型抜熱に影響し、θndの変化は、θnuと比(θnu/θw)との関係において、凝固不均一度10%以下、抜熱量偏差15%以下の領域を変化させる。
Reasons why there is a suitable range for θnd:
The growth of the initial solidified shell and the amount of heat removed from the mold are largely determined at the upper part of the mold. In other words, the taper θnd at the bottom of the mold has less influence on the growth of the initial solidified shell and the heat removal behavior of the mold than the taper θnu at the top. However, although the influence is small, it affects the initial solidification shell growth and mold heat removal. The change of θnd is a solidification nonuniformity of 10% or less and a heat removal deviation of 15 in the relationship between θnu and the ratio (θnu / θw). Change the area below%.

定性的にはθndが小さすぎると凝固シェル成長が遅れるので、その遅れを補うために、比(θnu/θw)を大きく設定する必要がある。従って、θndが小さい場合には、θnuと比(θnu/θw)との関係における凝固不均一度10%以下、抜熱量偏差15%以下の好適領域は、比(θnu/θw)の大きい側にシフトする。θndが大きい場合には、その逆に、好適領域は比(θnu/θw)の小さい側にシフトする。これらの結果から、θndの好適領域に或る範囲が存在することが分る。   Qualitatively, if θnd is too small, the growth of the solidified shell is delayed. Therefore, in order to compensate for the delay, the ratio (θnu / θw) needs to be set large. Therefore, when θnd is small, the preferred region where the solidification nonuniformity is 10% or less and the heat removal deviation is 15% or less in the relationship between θnu and the ratio (θnu / θw) is on the larger side of the ratio (θnu / θw). shift. Conversely, when θnd is large, the preferred region is shifted to the side where the ratio (θnu / θw) is small. From these results, it can be seen that a certain range exists in the preferred region of θnd.

θndの好適範囲0.7〜1.0%/mは、鋳造速度が大きく変化しても、θnuと比(θnu/θw)の関係において、凝固不均一度が10%以下、抜熱量偏差が15%以下である領域が広く、且つその領域の変化が少ない範囲として定められる。   A preferable range of θnd of 0.7 to 1.0% / m is a solidification non-uniformity of 10% or less and a heat removal amount deviation in the relationship between θnu and a ratio (θnu / θw) even if the casting speed changes greatly. The region that is 15% or less is defined as a wide range and a change in the region is small.

尚、鋳型短辺における第1傾斜面と第2傾斜面との境界の位置は、一般的に鋳型銅板温度変動の大きい鋳型内溶鋼湯面から100〜300mm下方の位置(鋳型上端から約150〜350mm下方の位置)とすればよい。   In addition, the position of the boundary between the first inclined surface and the second inclined surface on the short side of the mold is generally a position 100 to 300 mm below the molten steel surface in the mold where the temperature fluctuation of the mold copper plate is large (about 150 to about 150 to the upper end of the mold). (Position below 350 mm).

このような構成の本発明に係る連続鋳造用鋳型を用いて、鋼鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2であるブルーム鋳片或いはビレット鋳片を連続鋳造することで、鋳型長辺のテーパ値は鋳型短辺のテーパ値に比較して小さいことから、鋳造速度依存性が小さく、鋳造速度を2倍程度の範囲で変更した場合でも、鋳型と凝固シェルとの間に生成するエアーギャップ生成を効果的に抑制し、これにより、鋳片コーナー部の表層下の内部割れやそれに起因する縦割れを効果的に防止することが実現される。   Using the continuous casting mold according to the present invention having such a configuration, the ratio (W / N) of the long side length (W) to the short side length (N) of the steel slab is 1-2. By continuously casting bloom or billet slabs, the taper value on the long side of the mold is smaller than the taper value on the short side of the mold, so the dependence on the casting speed is small, and the casting speed is about twice the range. Even if it is changed, the air gap generated between the mold and the solidified shell is effectively suppressed, which effectively prevents internal cracks under the surface layer of the slab corner and vertical cracks caused by it. Is realized.

C:0.10〜0.13質量%、Si:0.15〜0.30質量%、Mn:0.10〜0.25質量%、P:0.015〜0.025質量%、S:0.010〜0.020質量%、Al:0.010〜0.035質量%の溶鋼を、鋳型短辺の第1傾斜面のテーパ値θnuが0.9〜5.0%/m、鋳型短辺の第2傾斜面のテーパ値θndが0.5〜1.3%/m、鋳型長辺のテーパ値θwが0.23〜5.0%/m、比(θnu/θw)が1.0〜4.0%/mである鋳型を準備し、鋳造速度を0.6m/min(鋳片サイズ:長辺長さ(W)=560mm、短辺長さ(N)=400mm、比(W/N)=1.40)、1.0m/min(鋳片サイズ:長辺長さ400mm、短辺長さ300mm、比(W/N)=1.33)、2.0m/min(鋳片サイズ:長辺長さ230mm、短辺長さ190mm、比(W/N)=1.21)の3水準で連続鋳造する試験を実施した。鋳型短辺の第1傾斜面と第2傾斜面との境界は、鋳型内湯面から150mm下方の位置(鋳型上端から約200mm下方の位置)とした。   C: 0.10 to 0.13 mass%, Si: 0.15 to 0.30 mass%, Mn: 0.10 to 0.25 mass%, P: 0.015 to 0.025 mass%, S: A molten steel of 0.010 to 0.020 mass%, Al: 0.010 to 0.035 mass%, a mold having a taper value θnu of 0.9 to 5.0% / m of the first inclined surface on the short side of the mold, and a mold The taper value θnd of the second inclined surface of the short side is 0.5 to 1.3% / m, the taper value θw of the mold long side is 0.23 to 5.0% / m, and the ratio (θnu / θw) is 1. A mold having a thickness of 0.0 to 4.0% / m was prepared, and the casting speed was 0.6 m / min (slab size: long side length (W) = 560 mm, short side length (N) = 400 mm, ratio (W / N) = 1.40), 1.0 m / min (slab size: long side length 400 mm, short side length 300 mm, ratio (W / N) = 1.33), 2.0 m / min (Slab size Long side length 230 mm, the short side length 190 mm, a continuous casting test in three levels of the ratio (W / N) = 1.21) was performed. The boundary between the first inclined surface and the second inclined surface on the short side of the mold was set to a position 150 mm below the molten metal surface in the mold (a position about 200 mm below the upper end of the mold).

尚、使用したモールドパウダーは、一般的に使用されている緩冷却(低抜熱)を志向した市販品(塩基度0.67、ガラス化温度1135℃)を使用し、鋳造速度に依らず同一のモールドパウダーを使用した。   The mold powder used is a commercially available product (basicity 0.67, vitrification temperature 1135 ° C) that is generally used for slow cooling (low heat removal), and is the same regardless of casting speed. The mold powder was used.

鋳造中、鉄板に包んだFe−S合金粉末を鋳型内に浸漬・投入し、鋳片断面から採取したサルファープリントによって鋳型内における凝固シェル厚(測定箇所:鋳型内溶鋼湯面から100mm下方の位置)を測定し、(7)式を用いて凝固不均一度を算出した。また鋳造中、鋳型長辺と鋳型短辺の鋳型抜熱量を鋳型冷却水の入出温度差と冷却水流量とから計算し、(8)式を用いて抜熱量偏差を求め、鋳型テーパとこれら凝固不均一度、抜熱量偏差との関係を調査した。鋳造した鋳片表面の縦割れ発生の有無も調査した。   During casting, the Fe-S alloy powder wrapped in an iron plate is immersed in the mold, and the thickness of the solidified shell in the mold is measured by sulfur printing taken from the cross section of the slab (measurement location: 100 mm below the molten steel surface in the mold) ) Was measured, and the coagulation nonuniformity was calculated using equation (7). Also, during casting, the amount of heat removed from the mold long side and the short side of the mold is calculated from the difference in the temperature of the mold cooling water and the flow rate of the cooling water, and the deviation of the heat removal is calculated using equation (8). The relationship between the non-uniformity and the heat extraction deviation was investigated. The presence or absence of vertical cracks on the cast slab surface was also investigated.

図4に、比(θnu/θw)とθnuとの関係において、鋳造速度が0.6〜2.0m/minで鋳型内凝固不均一度が10%以下となる領域を、θnd別に示す。図中には、凝固不均一度が10%超えるθnuの上限と下限とをθnd別に線引きした。θnd別に上限及び下限として示した線で挟まれ、その内部に存在する領域が凝固不均一度10%以下となる。   FIG. 4 shows, by θnd, regions where the casting speed is 0.6 to 2.0 m / min and the in-mold solidification nonuniformity is 10% or less in the relationship between the ratio (θnu / θw) and θnu. In the figure, the upper limit and lower limit of θnu at which solidification nonuniformity exceeds 10% are drawn by θnd. It is sandwiched by lines shown as the upper and lower limits for each θnd, and the region existing inside thereof is solidification nonuniformity of 10% or less.

同様のことを鋳型内抜熱量偏差についても整理し、図5にその結果を示す。図中、鋳型内抜熱量偏差が15%超えるθnuの上限と下限とを線引きした。θnd別に上限及び下限として示した線で挟まれ、その内部に存在する領域が鋳型内抜熱量偏差15%以下となる。   The same thing is arranged for the heat extraction deviation in the mold, and the result is shown in FIG. In the figure, the upper limit and the lower limit of θnu, in which the deviation of heat extraction from the mold exceeds 15%, are drawn. It is sandwiched by the lines shown as the upper and lower limits for each θnd, and the region existing in the inside is 15% or less of the heat removal amount in the mold.

図4及び図5から、比(θnu/θw)が2.0〜3.5で、θnuが1.5〜4.0%/m、且つ、θndが0.7〜1.0%/mである場合に、凝固不均一度が10%以下で且つ鋳型内抜熱量偏差が15%以下を同時に満足することが分る。   4 and 5, the ratio (θnu / θw) is 2.0 to 3.5, θnu is 1.5 to 4.0% / m, and θnd is 0.7 to 1.0% / m. In this case, it can be seen that the non-uniformity of solidification is 10% or less and the heat extraction deviation in the mold satisfies 15% or less at the same time.

また、図6には、比(θnu/θw)とθnuとの関係において、鋳造速度0.6〜2.0m/minで縦割れ或いは内部割れの発生有無を調査した結果を示す。この時、θndは0.7〜1.0%/mとした。図6において、○印は、縦割れ或いは内部割れが発生しないことを表し、●印は、縦割れ或いは内部割れが発生したことを表している。   FIG. 6 shows the results of investigating whether vertical cracks or internal cracks occurred at a casting speed of 0.6 to 2.0 m / min in the relationship between the ratio (θnu / θw) and θnu. At this time, θnd was set to 0.7 to 1.0% / m. In FIG. 6, ◯ indicates that no vertical crack or internal crack occurs, and ● indicates that a vertical crack or internal crack has occurred.

図7には、比(θnu/θw)とθnuとの関係において、鋳造速度1.0〜2.0m/minでブレークアウト或いは鋳型と凝固シェルとの焼き付きの発生有無を調査した結果を示す。この時、θndは0.7〜1.0%/mとした。図7において、○印は、ブレークアウト或いは焼き付きが発生しないことを表し、●印は、ブレークアウト或いは焼き付きが発生したことを表している。   FIG. 7 shows the result of investigating the occurrence of breakout or seizure between the mold and the solidified shell at a casting speed of 1.0 to 2.0 m / min in the relationship between the ratio (θnu / θw) and θnu. At this time, θnd was set to 0.7 to 1.0% / m. In FIG. 7, ◯ indicates that breakout or burn-in does not occur, and ● indicates that breakout or burn-in has occurred.

図6及び図7から明らかなように、本発明の範囲の鋳型(2.0≦比(θnu/θw)≦3.5、1.5≦θnu≦4.0、0.7≦θnd≦1.0)においては、鋳片欠陥(縦割れ或いは内部割れ)や操業トラブル(ブレークアウト或いは焼き付き)を抑止できることが確認できた。   As apparent from FIGS. 6 and 7, in the mold within the scope of the present invention (2.0 ≦ ratio (θnu / θw) ≦ 3.5, 1.5 ≦ θnu ≦ 4.0, 0.7 ≦ θnd ≦ 1.0), slab defects (longitudinal cracks) It was also confirmed that internal cracks) and operational troubles (breakout or seizure) could be suppressed.

図6及び図7では、比較のために、特許文献1の実施例における比(θnu/θw)(=0.3〜1.5)とθnu(=0.3〜5%/m)との範囲を破線で示す。図6及び図7に示すように、特許文献1の実施例に示す鋳型は、本発明の鋳型に比べて鋳片品質及び操業ともに不安定であることが確認できた。   6 and 7, for comparison, the ratio (θnu / θw) (= 0.3 to 1.5) and θnu (= 0.3 to 5% / m) in the example of Patent Document 1 are compared. The range is indicated by a broken line. As shown in FIGS. 6 and 7, it was confirmed that the mold shown in the example of Patent Document 1 is unstable in both slab quality and operation as compared with the mold of the present invention.

1 鋳型
2 鋳型長辺
3 鋳型短辺
4 長辺面凝固シェル
5 短辺面凝固シェル
6 溶鋼
7 エアーギャップ
8 第1傾斜面
9 第2傾斜面
1 Mold 2 Mold Long Side 3 Mold Short Side 4 Long Side Solidified Shell 5 Short Side Solidified Shell 6 Molten Steel 7 Air Gap 8 First Inclined Surface 9 Second Inclined Surface

Claims (3)

鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2である鋼鋳片を連続鋳造する鋳型であり、該鋳型の内面に鋳片引き抜き方向に向かって対面間隔が狭まる傾斜面を有する連続鋳造用鋳型において、鋳型の短辺内面は、上部側の第1傾斜面と下部側の第2傾斜面との2つの傾斜面で形成され、鋳型の長辺内面は1つの傾斜面で形成されていて、前記第1傾斜面のテーパ値が前記第2傾斜面のテーパ値よりも大きく、且つ、前記長辺内面のテーパ値が前記第1傾斜面のテーパ値よりも小さいことを特徴とする、鋼の連続鋳造用鋳型。   A mold for continuously casting a steel slab having a ratio (W / N) of a long side length (W) to a short side length (N) of 1-2, and a slab on the inner surface of the mold In a continuous casting mold having an inclined surface with a facing distance narrowing in the drawing direction, the inner surface of the short side of the mold is formed by two inclined surfaces, a first inclined surface on the upper side and a second inclined surface on the lower side. The inner surface of the long side of the mold is formed of one inclined surface, the taper value of the first inclined surface is larger than the taper value of the second inclined surface, and the taper value of the inner surface of the long side is the first surface. A mold for continuous casting of steel, characterized by being smaller than the taper value of one inclined surface. 前記短辺内面の第1傾斜面のテーパ値θnuと前記長辺内面の傾斜面のテーパ値θwとの比(θnu/θw)が2.0〜3.5であり、前記短辺内面の第1傾斜面のテーパ値θnuが1.5〜4.0%/m、前記短辺内面の第2傾斜面のテーパ値θndが0.7〜1.0%/mであることを特徴とする、請求項1に記載の鋼の連続鋳造用鋳型。   The ratio (θnu / θw) between the taper value θnu of the first inclined surface of the inner surface of the short side and the taper value θw of the inclined surface of the inner surface of the long side is 2.0 to 3.5; The taper value θnu of one inclined surface is 1.5 to 4.0% / m, and the taper value θnd of the second inclined surface of the inner surface of the short side is 0.7 to 1.0% / m. The mold for continuous casting of steel according to claim 1. 請求項1または請求項2に記載の鋼の連続鋳造用鋳型を用いて、鋳片の長辺長さ(W)と短辺長さ(N)との比(W/N)が1〜2である鋼鋳片を連続鋳造することを特徴とする、鋼の連続鋳造方法。   Using the steel continuous casting mold according to claim 1 or 2, the ratio (W / N) of the long side length (W) to the short side length (N) of the slab is 1-2. A continuous casting method of steel, characterized by continuously casting a steel slab.
JP2011017556A 2011-01-31 2011-01-31 Mold for continuous casting of steel and method for continuous casting of steel Active JP5673149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017556A JP5673149B2 (en) 2011-01-31 2011-01-31 Mold for continuous casting of steel and method for continuous casting of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017556A JP5673149B2 (en) 2011-01-31 2011-01-31 Mold for continuous casting of steel and method for continuous casting of steel

Publications (2)

Publication Number Publication Date
JP2012157872A true JP2012157872A (en) 2012-08-23
JP5673149B2 JP5673149B2 (en) 2015-02-18

Family

ID=46838856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017556A Active JP5673149B2 (en) 2011-01-31 2011-01-31 Mold for continuous casting of steel and method for continuous casting of steel

Country Status (1)

Country Link
JP (1) JP5673149B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103264147A (en) * 2013-06-13 2013-08-28 钢铁研究总院 Method for inhibiting surface longitudinal cracks of continuous casting sheet billet and crystallizer
JP2018130742A (en) * 2017-02-15 2018-08-23 新日鐵住金株式会社 Continuous casting mold for steel and method for continuous casting of steel slab
JP2019147178A (en) * 2018-02-28 2019-09-05 日本製鉄株式会社 Continuous casting machine
JP2020171932A (en) * 2019-04-09 2020-10-22 日本製鉄株式会社 Continuous casting method
CN112743053A (en) * 2020-12-29 2021-05-04 马鞍山钢铁股份有限公司 Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
CN112743052A (en) * 2020-12-29 2021-05-04 马鞍山钢铁股份有限公司 Slab crystallizer for solving casting blank narrow surface cracks and control method
CN113927005A (en) * 2020-06-29 2022-01-14 上海梅山钢铁股份有限公司 Method for reducing slab off-angle cracks
JP2022065814A (en) * 2020-10-16 2022-04-28 日本製鉄株式会社 Mold for continuous casting and continuous casting method for steel
WO2022131821A1 (en) * 2020-12-17 2022-06-23 주식회사 포스코 Mold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230083055A (en) * 2021-12-02 2023-06-09 주식회사 포스코 Method of mold and mold

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202593A (en) * 1999-01-11 2000-07-25 Astec Irie:Kk Seal material for preventing leakage of molten steel
JP2010253548A (en) * 2009-03-31 2010-11-11 Nippon Steel Corp Continuous casting method and continuous casting apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202593A (en) * 1999-01-11 2000-07-25 Astec Irie:Kk Seal material for preventing leakage of molten steel
JP2010253548A (en) * 2009-03-31 2010-11-11 Nippon Steel Corp Continuous casting method and continuous casting apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103264147A (en) * 2013-06-13 2013-08-28 钢铁研究总院 Method for inhibiting surface longitudinal cracks of continuous casting sheet billet and crystallizer
JP2018130742A (en) * 2017-02-15 2018-08-23 新日鐵住金株式会社 Continuous casting mold for steel and method for continuous casting of steel slab
JP2019147178A (en) * 2018-02-28 2019-09-05 日本製鉄株式会社 Continuous casting machine
JP7013941B2 (en) 2018-02-28 2022-02-01 日本製鉄株式会社 Continuous casting machine
JP2020171932A (en) * 2019-04-09 2020-10-22 日本製鉄株式会社 Continuous casting method
JP7226043B2 (en) 2019-04-09 2023-02-21 日本製鉄株式会社 Continuous casting method
CN113927005A (en) * 2020-06-29 2022-01-14 上海梅山钢铁股份有限公司 Method for reducing slab off-angle cracks
JP2022065814A (en) * 2020-10-16 2022-04-28 日本製鉄株式会社 Mold for continuous casting and continuous casting method for steel
JP7560725B2 (en) 2020-10-16 2024-10-03 日本製鉄株式会社 Mold for continuous casting and method for continuous casting of steel
WO2022131821A1 (en) * 2020-12-17 2022-06-23 주식회사 포스코 Mold
CN112743053A (en) * 2020-12-29 2021-05-04 马鞍山钢铁股份有限公司 Crystallizer for solving peritectic steel continuous casting slab surface cracks and control method
CN112743052A (en) * 2020-12-29 2021-05-04 马鞍山钢铁股份有限公司 Slab crystallizer for solving casting blank narrow surface cracks and control method

Also Published As

Publication number Publication date
JP5673149B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
JP5673149B2 (en) Mold for continuous casting of steel and method for continuous casting of steel
JP4864559B2 (en) Continuous casting mold
KR101360564B1 (en) Mold in continuous casting
JP2017013089A (en) Continuous casting method and cooling water control device for casting mold
JP6947737B2 (en) Continuous steel casting method
JP6085571B2 (en) Continuous casting mold
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP6787359B2 (en) Continuous steel casting method
JPH09276994A (en) Continuous casting mold
JP6947192B2 (en) Mold for continuous casting of steel and continuous casting method of steel
KR101660773B1 (en) Mold for casting
TWI656924B (en) Continuous casting mold and continuous casting method for steel
KR102033639B1 (en) Mold for casting
JP5769645B2 (en) Continuous casting method
JP5701710B2 (en) Continuous casting method of slabs using partial reduction roll stands.
JP7560725B2 (en) Mold for continuous casting and method for continuous casting of steel
JP5828295B2 (en) Continuous casting mold and steel continuous casting method using the same
JP6900700B2 (en) Mold for continuous casting of steel and continuous casting method of steel slabs
JP7669989B2 (en) Continuous Casting Method
JP2019147178A (en) Continuous casting machine
JP5691949B2 (en) Continuous casting method for large-section slabs
WO2018034164A1 (en) Vertical-type continuous casting method
JP4417899B2 (en) Continuous casting method
KR101410087B1 (en) Mold with the taper function
JP6000198B2 (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250