JP2012156482A - Reception side non-contact charging module and reception side non-contact charging apparatus - Google Patents
Reception side non-contact charging module and reception side non-contact charging apparatus Download PDFInfo
- Publication number
- JP2012156482A JP2012156482A JP2011206909A JP2011206909A JP2012156482A JP 2012156482 A JP2012156482 A JP 2012156482A JP 2011206909 A JP2011206909 A JP 2011206909A JP 2011206909 A JP2011206909 A JP 2011206909A JP 2012156482 A JP2012156482 A JP 2012156482A
- Authority
- JP
- Japan
- Prior art keywords
- contact charging
- charging module
- coil
- side non
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は、平面コイル部と磁性シートとを有する受信側非接触充電モジュール及び受信側非接触充電機器に関する。 The present invention relates to a receiving-side non-contact charging module and a receiving-side non-contact charging device having a planar coil portion and a magnetic sheet.
近年、本体機器を充電器で非接触充電することのできるものが多く利用されている。これは、充電器側に送電用コイル、本体機器側に受電用コイルを配し、両コイル間に電磁誘導を生じさせることにより充電器側から本体機器側に電力を伝送するものである。そして、上記本体機器として携帯端末機器等を適用することも提案されている。 In recent years, many devices that can charge the main device in a non-contact manner with a charger have been used. In this method, a power transmission coil is arranged on the charger side, a power reception coil is arranged on the main device side, and electromagnetic induction is generated between the two coils to transmit power from the charger side to the main device side. It has also been proposed to apply a mobile terminal device or the like as the main device.
この携帯端末機器等の本体機器や充電器は、薄型化や小型化が要望されるものである。この要望に応えるため、(特許文献1)のように、送電用コイルや受電用コイルとしての平面コイル部と、磁性シートとを備えることが考えられる。 The main device such as the portable terminal device and the charger are required to be thin and small. In order to meet this demand, it is conceivable to provide a planar coil portion as a power transmission coil or a power reception coil and a magnetic sheet as in (Patent Document 1).
この種の非接触充電モジュールは1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせにマグネットが利用されることある。しかしながら、(特許文献1)のように単線の平面コイル部と全面が平面状の磁性シートとを備えた非接触充電モジュールでは、これらの1次側非接触充電モジュールと2次側非接触充電モジュールとの位置あわせのためのマグネットを備えた場合、マグネットの影響を受けてしまう。すなわち、コイルのうち、最も強く磁界を発生する部分が内側部分である。1次側非接触充電モジュールのコイルと2次側非接触充電モジュールのコイルの内側部分はそれぞれ対向している。従って、例えばマグネットが内側部分と対向する部分の間にマグネットが存在すると、マグネットが内側部分の間の磁界を妨げ、非接触充電モジュールの電力伝送効率を低下させてしまう。 In this type of contactless charging module, a magnet may be used to align the primary side contactless charging module and the secondary side contactless charging module. However, in the non-contact charging module provided with a single flat coil portion and a magnetic sheet with a flat surface as in (Patent Document 1), these primary-side non-contact charging module and secondary-side non-contact charging module If you have a magnet for positioning with, it will be affected by the magnet. That is, the portion of the coil that generates the strongest magnetic field is the inner portion. The inner side portions of the coil of the primary side non-contact charging module and the coil of the secondary side non-contact charging module are opposed to each other. Therefore, for example, if a magnet is present between a portion where the magnet is opposed to the inner portion, the magnet obstructs the magnetic field between the inner portions, thereby reducing the power transmission efficiency of the non-contact charging module.
そこで、本発明は、上記の問題に鑑み、位置合わせのためのマグネットを用いても、特にコイルの内側部分に対するグネットからの悪影響を防止し、電力伝送効率を向上させる受信側非接触充電モジュール及び受信側非接触充電機器を提供することを目的とする。 Therefore, in view of the above problems, the present invention prevents a bad influence from a gnet on the inner portion of the coil, even when using a magnet for alignment, and a receiving side non-contact charging module that improves power transmission efficiency and An object is to provide a non-contact charging device on the receiving side.
上記課題を解決するために本発明は、送信側非接触充電モジュールから電磁誘導によって電力を受信する受信側非接触充電モジュールであって、送信側非接触充電モジュールとの位置合わせに際し、送信側非接触充電モジュールに備えられた円形マグネットを利用する場合と、円形マグネットを利用しない場合と、がある受信側非接触充電モジュールにおいて、導線が渦巻き状に巻回された平面コイル部と、前記平面コイル部を載置し、前記送信側非接触充電モジュールとの位置合わせに際し円形マグネットを使用する場合に前記送信側非接触充電モジュールの円形マグネットと引き合う磁性シートと、を備え、前記平面コイル部の中空部が、前記送信側非接触充電モジュールに備えられた円形マグネットよりも大きいことを特徴とする受信側非接触充電モジュールとした。 In order to solve the above-described problems, the present invention provides a receiving-side non-contact charging module that receives electric power from a transmitting-side non-contact charging module by electromagnetic induction. In a receiving-side non-contact charging module in which a circular magnet provided in a contact charging module is used and in a case where a circular magnet is not used, a planar coil portion in which a conductive wire is wound in a spiral shape, and the planar coil And a magnetic sheet that attracts the circular magnet of the transmitting side non-contact charging module when a circular magnet is used for alignment with the transmitting side non-contact charging module, and the hollow of the planar coil unit The receiving unit is larger than a circular magnet provided in the transmitting side non-contact charging module It was a non-contact charging module.
本発明によれば、位置合わせのためのマグネットを用いても、特にコイルの内側部分に対するグネットからの悪影響を防止し、電力伝送効率を向上させる受信側非接触充電モジュール及び受信側非接触充電機器を提供することができる。 According to the present invention, even when a magnet for alignment is used, a reception-side non-contact charging module and a reception-side non-contact charging device that prevent adverse effects from gnets, particularly on the inner part of the coil, and improve power transmission efficiency. Can be provided.
請求項1に記載の発明は、送信側非接触充電モジュールから電磁誘導によって電力を受信する受信側非接触充電モジュールであって、前記送信側非接触充電モジュールとの位置合わせに際し、前記送信側非接触充電モジュールに備えられた円形マグネットを利用する場合と、円形マグネットを利用しない場合と、がある受信側非接触充電モジュールにおいて、導線が渦巻き状に巻回された平面コイル部と、前記平面コイル部を載置し、前記送信側非接触充電モジュールとの位置合わせに際し円形マグネットを使用する場合に前記送信側非接触充電モジュールの円形マグネットと引き合う磁性シートと、を備え、前記平面コイル部の中空部が、前記送信側非接触充電モジュールに備えられた円形マグネットよりも大きいことを特徴とする受信側非接触充電モジュールであって、位置合わせのためのマグネットを用いても、特にコイルの内側部分に対するマグネットからの悪影響を防止し、電力伝送効率を向上させる受信側非接触充電モジュール及び受信側非接触充電機器を提供することができる。
The invention according to
請求項2に記載の発明は、前記平面コイル部は、前記平面コイル部に平行な面において、前記円形マグネットの面積が、前記平面コイル部の中空部の面積の80%〜95%となるように構成されたことを特徴とする請求項1に記載の受信側非接触充電モジュールであって、位置合わせの精度にばらつきにも十分対応でき、更に1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせの精度が向上できる。また、コイル21の巻き数も確保することができる。
According to a second aspect of the present invention, in the planar coil portion, the area of the circular magnet is 80% to 95% of the area of the hollow portion of the planar coil portion in a plane parallel to the planar coil portion. The receiving-side non-contact charging module according to
請求項3に記載の発明は、前記円形マグネットの径が15.5mmであることを特徴とする請求項1に記載の受信側非接触充電モジュールである。 A third aspect of the present invention is the receiving side non-contact charging module according to the first aspect, wherein the circular magnet has a diameter of 15.5 mm.
請求項4に記載の発明は、前記送信側非接触充電モジュールを備えた送信側非接触充電機器から電力を受信し、請求項1〜3のいずれかひとつに記載の受信側非接触充電モジュールを備えたことを特徴とする受信側非接触充電機器であって、位置合わせのためのマグネットを用いても、特にコイルの内側部分に対するマグネットからの悪影響を防止し、電力伝送効率を向上させる受信側非接触充電機器を提供することを目的とする。 Invention of Claim 4 receives electric power from the transmission side non-contact charging device provided with the said transmission side non-contact charging module, The receiving side non-contact charging module as described in any one of Claims 1-3 is used. A non-contact charging device on the receiving side characterized by comprising a receiving side that prevents adverse effects from the magnet, particularly on the inner part of the coil, and improves power transmission efficiency, even if a magnet for alignment is used An object is to provide a non-contact charging device.
(実施の形態)
以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明の実施の形
態における非接触充電モジュールの組立図、図2は、本発明の実施の形態における非接触充電モジュールの概念図であって(a)は上面図、(b)は図2(a)のA方向から見た断面図、(c)及び(d)は図2(a)のB方向から見た断面図である。図3は、本発明の実施の形態における非接触充電モジュールの磁性シートの概念図であり、(a)は上面図、(b)は図3(a)のA方向から見た断面図、(c)及び(d)は図3(a)のB方向から見た断面図である。図4は、本発明の実施の形態における非接触充電モジュールの磁性シートの概念図であり、(a)は上面図、(b)は図4(a)のA方向から見た断面図である。
(Embodiment)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an assembly diagram of a contactless charging module according to an embodiment of the present invention, FIG. 2 is a conceptual diagram of the contactless charging module according to an embodiment of the present invention, (a) is a top view, and (b). Fig. 2 is a cross-sectional view seen from the A direction in Fig. 2A, and Fig. 2C and Fig. 3D are cross-sectional views seen from the B direction in Fig. 2A. FIG. 3 is a conceptual diagram of a magnetic sheet of a contactless charging module according to an embodiment of the present invention, (a) is a top view, (b) is a cross-sectional view as viewed from the A direction in FIG. (c) And (d) is sectional drawing seen from the B direction of Fig.3 (a). 4A and 4B are conceptual diagrams of the magnetic sheet of the contactless charging module according to the embodiment of the present invention, where FIG. 4A is a top view and FIG. 4B is a cross-sectional view as viewed from the A direction in FIG. .
本願発明の非接触充電モジュール1は、導線が渦巻き状に巻回された平面コイル部2と、平面コイル部2のコイル21の面に対向するように設けられた磁性シート3とを備える。
The
図1に示すとおり、平面コイル部2は、面上で渦を描くように径方向に向けて導電体を巻いたコイル21と、コイル21の両端に設けられた端子22、23を備える。コイル21は導線を平面上で平行に巻きまわしたものであり、コイルによって形成された面をコイル面と呼ぶ。なお、厚み方向とは、平面コイル部2と磁性シート3との積層方向である。本実施の形態では、コイル21は直径が20mmの内径から外に向かって巻回され、外径が30mmとなっている。すなわち、コイル21はドーナツ形状に巻回されている。なお、コイル21は円形に巻回されてもよいし、多角形に巻回されてもよい。
As shown in FIG. 1, the
また、導線はお互いに空間を空けるように巻回されることによって、上段の導線と下段の導線との間の浮遊容量が小さくなり、コイル21の交流抵抗を小さく抑えることができる。また、空間を詰めるように巻回されることによって、コイル21の厚みを抑えることができる。
In addition, since the conducting wires are wound so as to leave a space between each other, the stray capacitance between the upper conducting wire and the lower conducting wire is reduced, and the AC resistance of the
また、図3のように本実施の形態においては、断面積が円形状の導線としているが、方形形状などの導線でもよい。ただし、断面積が方形状の導線と比較して円形状の導線とでは、隣り合う導線どうしの間に隙間が生じるため、導線間の浮遊容量が小さくなり、コイル21の交流抵抗を小さく抑えることができる。
Further, in the present embodiment as shown in FIG. 3, the cross-sectional area is a circular conducting wire, but a conducting wire having a square shape or the like may be used. However, in the case of a circular conductor compared with a rectangular conductor, a gap is formed between adjacent conductors, so that the stray capacitance between the conductors is reduced, and the AC resistance of the
また、コイル21は厚さ方向に2段で巻回するよりも1段で巻回した方がコイル21の交流抵抗が低くなり、伝送効率を高くすることができる。これは、2段で導線を巻回すると、上段の導線と下段の導線との間に浮遊容量が発生するためである。従って、コイル21は全体を2段で巻回するよりも、なるべく多くの部分を1段によって巻回した方がよい。また、1段で巻回することによって、非接触充電モジュール1として薄型化することができる。なお、コイル21の交流抵抗が低いことでコイル21における損失を防ぎ、L値を向上させることによって、L値に依存する非接触充電モジュール1の電力伝送効率を向上させることができる。
In addition, the
また、本実施の形態においては、図1に示すコイル21の内側の内径xは10mm〜20mmであり、外径は約30mmである。内径xが小さいほど、同じ大きさの非接触充電モジュール1においてコイル21のターン数を増やすことができ、L値を向上させることができる。
Moreover, in this Embodiment, the inner diameter x inside the
なお、端子22、23はお互いに近接してもよく、離れて配置されてもよいが、離れて配置された方が非接触充電モジュール1を実装しやすい。
In addition, although the
磁性シート3は電磁誘導作用を利用した非接触充電の電力伝送効率を向上させるために設けたものであって、図2に示す通り、平坦部31と、中心であってコイル21の内径に
相当する中心部32と、直線凹部33とを備える。なお、図3に示すとおり、中心部32は必ずしも凸型とする必要ない。直線凹部33はスリット34であってもよいし、直線凹部33またはスリット34は必ずしも必要であるわけではない。ただし、図2(c)、(d)にあるように、直線凹部33またはスリット34を設けることによって、コイル21の巻き終わりから端子23までの導線を直線凹部33またはスリット34内に収納することができるので、薄型化することができる。すなわち、直線凹部33またはスリット34は磁性シート3の端部とほぼ垂直であり、中心部32の外周の接線と重なるように形成される。このように直線凹部33またはスリット34を形成することによって、導線を折り曲げることなく端子22、23を形成することができる。なお、この場合、直線凹部33またはスリット34の長さは約15mm〜20mmである。ただし、直線凹部33またはスリット34の長さはコイル21の内径に依存する。また、直線凹部33またはスリット34は、磁性シート3の端部と中心部32の外周が最も近づく部分に形成してもよい。これによって、直線凹部33またはスリット34の形成面積を最低限に抑えることができ、非接触充電モジュール1の伝送効率を向上させることができる。なお、この場合、直線凹部33またはスリット34の長さは約5mm〜10mmである。どちらの配置であっても、直線凹部33またはスリット34の内側端部は中心部32に接続している。また、直線凹部33またはスリット34は、他の配置にしてもよい。すなわち、コイル21はなるべく1段構造であることが望ましく、その場合、コイル21の半径方向のすべてのターンを1段構造とするか、1部を1段構造として他の部分を2段構造とすることが考えられる。従って、端子22、23のうち1方はコイル21外周から引き出すことができるが、他方は内側から引き出さなくてはならない。従って、コイル21が巻回されている部分と、コイル21の巻き終わりから端子22または23までの部分とが、必ず厚さ方向において重なってしまう。従って、その重なる部分に直線凹部33またはスリット34を設ければよい。直線凹部33であれば磁性シート3に貫通孔やスリットを設けないので磁束が漏れることを防ぎ、非接触充電モジュール1の電力伝送効率を向上させることができる。対して、スリット34の場合は、磁性シート3の形成が容易となる。直線凹部33である場合、図4に示すように断面形状が方形状となるような直線凹部33に限定されず、円弧状や、丸みを帯びてもよい。
The
また、本実施の形態においては、磁性シート3としてNi−Zn系のフェライトシート、Mn−Zn系のフェライトシート、Mg−Zn系のフェライトシートなどを使うことができる。フェライトシートは、アモルファス金属の磁性シートに比較してコイル21の交流抵抗を低下させることができる。
In the present embodiment, a Ni—Zn ferrite sheet, a Mn—Zn ferrite sheet, a Mg—Zn ferrite sheet, or the like can be used as the
図3に示すように、磁性シート3は少なくとも高飽和磁束密度材3aと高透磁率材3bとを積層している。なお、高飽和磁束密度材3aと高透磁率材3bとを積層しない場合でも、飽和磁束密度350mT以上、厚みは少なくとも300μmの高飽和磁束密度材3aを使用するとよい。
As shown in FIG. 3, the
また、高飽和磁束密度材3aと高透磁率材3bとのどちらが平面コイル部2に近い側となってもよいが、図3などに示すように、高飽和磁束密度材3aが平面コイル部2に近い方がよい。このような構成とすることによって、平面コイル部2の交流抵抗が低下させることができる。その結果、非接触充電モジュール1の電力伝送効率を向上させることができる。
In addition, either the high saturation magnetic
また、本実施の形態において磁性シート3は約33mm×33mmである。図2(c)に示す中心部32の厚みd1は0.2mmである。また、図3(c)に示すd2は磁性シート3の厚みであって0.6mm、d3は0.15mm、d4は0.45mmとなるように、磁性シート3、高飽和磁束密度材3a、高透磁率材3bそれぞれの厚みを設定している。なお、コイル21を構成する導線の直径とほぼ同一とし、最低限の深さでしか直線凹
部33を形成しないようにするとよい。これは、直線凹部33が深くなるほど直線凹部33部分の磁性シート3が薄くなるため、非接触充電モジュール1の伝送効率を下げてしまうからである。
In the present embodiment, the
次に、なぜ磁性シート3を多層構造とするのかを説明する。
Next, why the
一般的に、非接触充電モジュール1は1次側非接触充電モジュール(送信側非接触充電モジュール)と2次側非接触充電モジュール(受信側非接触充電モジュール)との位置合わせにマグネットが利用される場合と、そうでない場合とがある。そして、非接触充電モジュール1はそのどちらの場合においても安定した動作が要求される。なお、マグネットは一般的に1次側非接触充電モジュールに搭載され、マグネットが2次側非接触充電モジュールの磁性シート3を主に引き寄せることで位置合わせができる。
In general, the
このとき、マグネットの影響によって、マグネットを位置合わせとして使用する場合と使用しない場合とで非接触充電モジュール1のコイル21のL値が大幅に変化する。これは、マグネットが存在することで1次側、2次側非接触充電モジュール間の磁束を妨げてしまうからである。従って、マグネットがある場合、非接触充電モジュール1のコイル21のL値が大幅に減少する。このマグネットによる影響を抑えるために、磁性シート3は高飽和磁束密度材3aを備える。高飽和磁束密度材3aは磁場が強くなっても磁束が飽和しにくいため、マグネットの影響を受けにくく、マグネットが使用されている際のコイル21のL値を向上させることができる。
At this time, due to the influence of the magnet, the L value of the
しかしながら、高飽和磁束密度材3aは一般的に高い透磁率を得ることができないため、位置合わせのマグネットが使用されない場合、コイル21のL値が高透磁率材3bに比べ低くなる。従って、高飽和磁束密度材3aに高透磁率材3bを積層して磁性シート3を構成する。すなわち、高透磁率材3bは磁界を強めることができるため、コイル21のL値を向上させることができる。これにより、マグネットがない場合においても、高透磁率材3bによってコイル21のL値を向上させることができる。
However, since the high saturation magnetic
高飽和磁束密度材3aは、フェライトシートであり、透磁率は250以上、飽和磁束密度は一般的に約340mTである。厚みは400μ〜500μmであり、本実施の形態においては約450μmである。本実施の形態では、例えばMn−Zn系材料が好適であり、薄くても高い透磁率を実現するものが好ましい。
The high saturation magnetic
高透磁率材3bは、フェライトシートであり、透磁率は3000以上、飽和磁束密度は約300mTである。厚みは100μ〜200μmであり、本実施の形態においては約150μmである。厚みが100μ〜200μm程度あれば、コイル21のL値を向上させることができる。本実施の形態では、例えばMn−Zn系材料が好適であり、非接触充電モジュールの近くにマグネットが存在しても、磁性シート3としてコイル21のL値を大きく変化させないものが好ましい。
The high
このように、磁性シート3の積層方向において、高飽和磁束密度材3aが高透磁率材3bの厚みの約3倍であることによって、コイル21のL値を向上させることができるとともに、薄型化を達成することができる。すなわち、限られた薄さのなかで高飽和磁束密度材3a及び高透磁率材3bそれぞれの効果を奏するためには、上記のような比の厚さで積層することが望ましい。更に、磁性シート3の厚みが、約600μmであることで、コイル21のL値を向上させることができるとともに、更なる薄型化を達成することができる。
Thus, in the laminating direction of the
なお、非接触充電モジュール1の薄型化、小型化を考慮しなければ、高飽和磁束密度材
3aは500μm以上であってもいいし、高透磁率材3bは200μm以上であってもよい。しかしながら、高飽和磁束密度材3aを約450μm、高透磁率材3bを約150μmとすることによって、薄型化を達成しつつ、高飽和磁束密度材3aと高透磁率材3bそれぞれの効果を得ることができる。
Note that the high saturation magnetic
なお、磁性シート3は、高飽和磁束密度材3a、高透磁率材3bそれぞれを焼成した後に接着シートによって積層してもよいし、高飽和磁束密度材3a、高透磁率材3bそれぞれの成形体を積層した後に焼成して積層してもよい。
The
また、高透磁率材3bは高飽和磁束密度材3aの全表面に積層しなくてもよい。すなわち、コイル21と対向する部分にのみ形成、もしくはコイル21の内周円の中に形成してもよい。
Further, the high
更に、高透磁率材3bはアモルファス磁性シートであってもよい。この場合、厚みを80μ〜100μmとすることができ、セラミックを使用するよりも薄型化させることができる。ただし、アモルファス磁性シートを使うと渦電流損が発生し、コイル21の交流抵抗が上昇してしまう。対して、セラミックスの磁性シートを使うと、交流抵抗を抑えることができ、充電効率を上昇させることができる。
Further, the high
図5は、本発明の実施の形態における磁石の有無及び積層の有無によるコイルのL値を示す図である。なお、このとき、高飽和磁束密度材3aと高透磁率材3bとを積層して600μmの磁性シート3と、高飽和磁束密度材のみで600μmの磁性シート3とで比較している。図5に示すとおり、マグネットを位置合わせとして使用した場合は、どちらの場合もL値が変わらない。しかしながら、マグネットを位置合わせとして使用しない場合は、高飽和磁束密度材3aと高透磁率材3bとを積層した磁性シート3の方が、L値が大きくなる。なお、一般に非接触充電モジュール1としては、L値が15〜35μHであることが求められる。すなわち、L値が35μH以上となると、磁界が強すぎて交流抵抗が大きくなり、コイル21における発熱量が大きくなってしまう。また、L値が15μH以下となると、磁界が弱すぎて電力伝送が不可能となる。ただし、磁石が位置合わせのために使用される際はL値が非常に低下してしまうため、L値は8〜35μHであることが求められる。
FIG. 5 is a diagram showing the L value of the coil depending on the presence / absence of a magnet and the presence / absence of lamination in the embodiment of the present invention. At this time, the high saturation magnetic
次に、磁性シート3の中心部の厚みについて説明する。図6は、本発明の実施の形態における非接触充電モジュールの磁性シートの概念図であり、中心部32が凹部形状または貫通孔となっている。図2のように中心部32は凸形状であることでコイル21の磁束密度を向上させ、非接触充電モジュール1の伝送効率を向上させる。
Next, the thickness of the central part of the
しかしながら、中心部32を凹部形状または貫通孔とするような穴部を設けることで、マグネットの影響を小さくすることができる。以下にその理由を説明する。
However, the influence of the magnet can be reduced by providing a hole portion in which the
前述したように、非接触充電モジュール1は1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせにマグネットが利用される場合と、そうでない場合とがある。そして、マグネットが存在することで1次側、2次側非接触充電モジュール間の磁束を妨げてしてしまうため、マグネットがある場合に非接触充電モジュール1のコイル21のL値が大幅に減少する。また、コイル21は非接触充電モジュール1において図示しないコンデンサを用いてLC共振回路をつくる。このとき、マグネットを位置合わせに利用する場合と利用しない場合とでL値が大幅に変化すると、コンデンサとの共振周波数も大幅に変化してしまう。この共振周波数は、1次側非接触充電モジュールと2次側非接触充電モジュールとの電力伝送に用いられるため、マグネットの有無によって共振周波数が大幅に変化すると正しく電力伝送ができなくなってしまう。
As described above, the
従って、マグネットを位置合わせに利用する場合と利用しない場合との共振周波数を近い値とするために、マグネットを位置合わせに利用する場合と利用しない場合でのコイル21のL値を近い値とすることが必要である。
Accordingly, in order to make the resonance frequency close to when the magnet is used for alignment and when not used, the L value of the
図7は、本実施の形態の非接触充電モジュールにおいて位置合わせにマグネットを利用する場合としない場合におけるコイルのL値と中央部の厚みの関係を示す図である。なお、くり抜きの度合いとは、0%は中心部32を凹型形状とせずに平坦図であることを示し、100%とは中心部32を貫通孔としていることを示す。図7に示す通り、磁石を利用しない場合では、磁性シート3の中心部32を薄くするほど、コイル21の磁界が小さくなってL値が減少する。対して、磁石を利用する場合では、磁性シート3の中心部32を薄くするほど、磁性シート3とマグネットとの積層方向の距離が大きくなるため、マグネットの影響が小さくなり、コイル21の磁界が大きくなってL値が上昇する。そして、中心部32を貫通孔に形成した場合が最もL値が近づく。すなわち、中心部32を貫通孔とすることによって、位置合わせに利用するマグネットの影響を最小限に抑えることができる。
FIG. 7 is a diagram showing the relationship between the L value of the coil and the thickness of the central portion when the magnet is used for alignment in the non-contact charging module of the present embodiment. The degree of hollowing out indicates that 0% is a flat view without forming the
また、マグネットは磁性シート3と引き合うことによって位置合わせを行うため、中央部にある程度の厚みがあるほうが位置合わせの精度が向上する。特に、くり抜きの度合いを60%以上にすると、位置合わせの精度が落ちる。従って、くり抜きの度合いを40〜60%とすることによって、マグネットを位置合わせに利用する場合と利用しない場合でのコイル21のL値を近い値とすると同時に、マグネットの位置合わせの効果も十分に得ることができる。すなわち、マグネットと磁性シート3の中央部32が引き合い、お互いの中心どうしを位置合せできる。なお、本実施の形態では約50%としており、最も効果的に双方の効果を得ることができる。また、半分程度厚みを残すことを、貫通孔を形成した後に貫通孔内に磁性体を半分の深さまで充填してもよい。
Further, since the magnet is aligned with the
また、磁性シート3は高飽和磁束密度材3aと高透磁率材3bを積層してもいいので、例えば一方の中心部32を平坦に形成し、他方の中心部32に貫通孔に形成して、磁性シート3として中心部32を凹型形状に形成してもよい。また、凹部、または貫通孔の直径は、コイルの内径よりも小さくするとよい。凹部または貫通孔の直径をコイルの内径と略同一(コイルの内径よりも0〜2mm小さい)とすることで、コイルの内周円内の磁界を高めることができる。
The
また、凹部または貫通孔の直径をコイルの内径よりも小さくして(コイルの内径よりも2〜8mm小さい)階段状にすることで、階段状の外側は位置合わせのために利用でき、内側はマグネットを位置合わせに利用する場合と利用しない場合でのコイル21のL値を近い値とするために利用できる。また、凹部または貫通孔は、マグネットのサイズよりも大きくするとよい。
Further, by making the diameter of the recess or the through hole smaller than the inner diameter of the coil (2 to 8 mm smaller than the inner diameter of the coil), the outer side of the step can be used for alignment, This can be used to make the L value of the
更に、凹部または貫通孔の上面の形状は、コイル21の内側円の形状と同一であることにより、マグネットと磁性シート3の中央部32がバランスよく引き合い、お互いの中心どうしの位置合せが精度よくできる。
Furthermore, since the shape of the upper surface of the recess or the through hole is the same as the shape of the inner circle of the
凹部または貫通孔のすべての端部は、コイル21の内径から等距離であることにより、マグネットと磁性シート3の中央部32がバランスよく引き合い、お互いの中心どうしの位置合せが更に精度よくできる。
Since all the end portions of the recesses or the through holes are equidistant from the inner diameter of the
次に、マグネットのサイズとコイル21の内径のサイズとの関係について説明する。図8は、本発明の実施の形態における非接触充電モジュールのコイルとマグネットの断面図
である。図9は、コイルの内径とコイルのL値の関係を示す図である。
Next, the relationship between the size of the magnet and the size of the inner diameter of the
1次側非接触充電モジュール41と2次側非接触充電モジュール42が対向している。平面状に巻回されたコイル21のうち、1次側用コイル21aと2次側コイル21bは対向している。コイル21a、21bのうち、最も強く磁界を発生する部分が内側部分211、212である。各内側部分211、212はそれぞれ対向している。従って、図8(a)のようにマグネット30が内側部分211、212と対向する部分の間にマグネット30が存在すると、マグネット30が内側部分211、212の間の磁界を妨げ、非接触充電モジュール1の電力伝送効率を低下させてしまう。しかしながら、図8(b)のようにマグネット30がコイル21a、21bの内周円よりも小さいと、位置合わせされることによって内側部分211、212とが対向する部分の間にはマグネット30が存在しない。従って、マグネット30が内側部分211、212の間の磁界を妨げ、非接触充電モジュール1の電力伝送効率を低下させてしまうことがない。
The primary side
例えばマグネット30が円形の場合、以下のようになる。すなわち、マグネット30の外径とコイル21の内径とが同一である場合、マグネット30を最大限に大きくすることができるので、1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせの精度が向上できる。また、コイル21の内径を最小にすることができるので、コイル21の巻き数が増大してL値を向上させることができる。また、マグネット30の外径がコイル21の内径よりも小さい場合、位置合わせの精度にばらつきがあっても内側部分211、212が対向する部分の間にはマグネット30が存在しないようにすることができる。このとき、マグネット30の外径がコイル21の内径の80%〜95%であることによって、位置合わせの精度にばらつきにも十分対応でき、更に1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせの精度が向上できる。また、コイル21の巻き数も確保することができる。これは、平面コイル部2に平行な面において、マグネット30の面積は、平面コイル部2の内側円の面積の80%〜95%であることを意味する。
For example, when the
更に、図9に示すように、マグネット30のサイズ及びコイル21の外径を一定にした場合、コイル21の巻き数を減らしてコイル21の内径を大きくしていくと、マグネット30のコイル21に対する影響が小さくなる。すなわち、マグネット30を1次側非接触充電モジュールと2次側非接触充電モジュールとの位置合わせに利用する場合と利用しない場合におけるコイル21のL値が近い値となる。従って、マグネット30を使用するときと使用しないときとの共振周波数が非常に近い値となる。なお、このとき、コイルの外径は30mmに統一している。
Furthermore, as shown in FIG. 9, when the size of the
WPC規格では、マグネット30の径を15.5mmとしており、その強さは100mT程度である。本実施の形態においては、コイル21の内径を20mm、外径を30mmとしている。また、凹型または貫通孔とした中心部32の外径を18mmとしている。すなわち、平面コイル部2のコイル21の内径端部とマグネット30の外側端部との距離は、約4.5mmである。図9に示すように、距離を約4.5mmとすることで、マグネット30を使用する場合としない場合とのコイル21のL値を15μH以上としつつ、近づけることができる。また、平面コイル部2のコイル21の内径端部とマグネット30の外側端部との距離は、0mmより大きく、6mmよりも小さくすることで、L値を15μH以上としつつ、マグネット30を利用する場合と利用しない場合でのL値を近づけることができる。
In the WPC standard, the diameter of the
なお、磁性シート3は、他の磁性材を積層してもよいし、例えば高飽和磁束密度材3aを2層とし、高透磁率材3bを高飽和磁束密度材3aで挟む、または高透磁率材3bを2層とし、高飽和磁束密度材3aを高透磁率材3bで挟むなどしてもよい。すなわち、少な
くとも1層の高飽和磁束密度材3aと、少なくとも1層の高透磁率材3bとを備えるとよい。磁性シート3が厚いほど非接触充電モジュール1としては電力伝送効率が向上する。
The
また、磁性シート3の四隅であって、平坦部31上のコイル21が配置されていない領域に肉厚部を形成してもよい。すなわち、磁性シート3の四隅であって平坦部31上のコイル2の外周よりも外側は、磁性シート3の上に何も載せられていない。従って、そこに肉厚部を形成することによって磁性シート3の厚みを増加させ、非接触充電モジュール1の電力伝送効率を向上させることができる。肉厚部の厚みは厚ければ厚いほうがよいが、薄型化のため、導線の厚みとほぼ同一とする。
Moreover, you may form a thick part in the four corners of the
また、コイル21は環状に巻回されることに限定されず、方形状や多角形状に巻回される場合もある。更に、内側を3段構造とし、外側を2段構造とするように、内側を複数段に重ねて巻回し、外側を内側で巻回した段数よりも少ない段数で巻回することでも、本願の効果を得ることができる。
Further, the
次に、本発明の非接触充電モジュール1を備えた非接触充電機器について説明する。非接触電力伝送機器は、送電用コイル及び磁性シートを備える充電器と、受電用コイル及び磁性シートを備える本体機器とから成るものであり、本体機器が携帯電話などの電子機器となっている。充電器側の回路は、整流平滑回路部と、電圧変換回路部と、発振回路部と、表示回路部と、制御回路部と、上記送電用コイルとで構成されている。また本体機器側の回路は、上記受電用コイルと、整流回路部と、制御回路部と、主として2次電池から成る負荷Lとで構成されている。
Next, the non-contact charging device provided with the
この充電器から本体機器への電力伝送は、1次側である充電器の送電用コイルと、2次側である本体機器の受電用コイルとの間の電磁誘導作用を利用して行われる。 The power transmission from the charger to the main device is performed using an electromagnetic induction action between the power transmission coil of the charger on the primary side and the power receiving coil of the main device on the secondary side.
本実施の形態の非接触充電機器は、上記で説明した非接触充電モジュール1を備えるため、平面コイル部の断面積を十分に確保して電力伝送効率を向上させた状態で、非接触充電機器を小型化及び薄型化することができる。
Since the non-contact charging device of the present embodiment includes the
本発明の非接触充電モジュールによれば、平面コイル部の断面積を十分に確保して電力伝送効率を向上させた状態で、非接触充電モジュールを小型化及び薄型化することができるため、特にポータブルである電子機器に有用であり、携帯電話、ポータブルオーディオ、携帯用のコンピュータなどの携帯端末、デジタルカメラ、ビデオカメラなどの携帯機器などの様々な電子機器の非接触充電モジュールとして有用である。 According to the contactless charging module of the present invention, the contactless charging module can be reduced in size and thickness in a state in which the cross-sectional area of the planar coil portion is sufficiently secured and the power transmission efficiency is improved. It is useful for electronic devices that are portable, and is useful as a non-contact charging module for various electronic devices such as portable terminals such as mobile phones, portable audios, portable computers, digital cameras, and video cameras.
1 非接触充電モジュール
2 平面コイル部
21 コイル
211、212 内側部分
21b 2次側コイル(平面コイル部)
22、23 端子
3 磁性シート
3a 高飽和磁束密度材(第2の層)
3b 高透磁率材(第1の層)
30 マグネット
31 平坦部
32 中心部
33 直線凹部
34 スリット
41 1次側非接触充電モジュール(送信側非接触充電モジュール)
42 2次側非接触充電モジュール(受信側非接触充電モジュール)
DESCRIPTION OF
22, 23
3b High permeability material (first layer)
30
42 Secondary side non-contact charging module (receiving side non-contact charging module)
Claims (4)
前記送信側非接触充電モジュールとの位置合わせに際し、前記送信側非接触充電モジュールに備えられた円形マグネットを利用する場合と、円形マグネットを利用しない場合と、がある受信側非接触充電モジュールにおいて、
導線が巻回された平面コイル部と、
前記平面コイル部を載置し、前記送信側非接触充電モジュールとの位置合わせに際し円形マグネットを使用する場合に前記送信側非接触充電モジュールの円形マグネットと引き合う磁性シートと、を備え、
前記平面コイル部の中空部が、前記送信側非接触充電モジュールに備えられた円形マグネットよりも大きいことを特徴とする受信側非接触充電モジュール。 A receiving side non-contact charging module that receives electric power from the transmitting side non-contact charging module by electromagnetic induction,
In the case of using the circular magnet provided in the transmission side non-contact charging module and the case of not using the circular magnet in the alignment with the transmission side non-contact charging module, in the receiving side non-contact charging module,
A planar coil portion wound with a conducting wire;
A magnetic sheet that mounts the planar coil portion and attracts the circular magnet of the transmitting side non-contact charging module when using a circular magnet for alignment with the transmitting side non-contact charging module;
A receiving-side non-contact charging module, wherein a hollow portion of the planar coil portion is larger than a circular magnet provided in the transmitting-side non-contact charging module.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011206909A JP5845406B2 (en) | 2011-01-26 | 2011-09-22 | Receiving side non-contact charging module and receiving side non-contact charging device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011013618A JP4835795B1 (en) | 2011-01-26 | 2011-01-26 | Receiving side non-contact charging module and receiving side non-contact charging device |
JP2011206909A JP5845406B2 (en) | 2011-01-26 | 2011-09-22 | Receiving side non-contact charging module and receiving side non-contact charging device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011013618A Division JP4835795B1 (en) | 2011-01-26 | 2011-01-26 | Receiving side non-contact charging module and receiving side non-contact charging device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012156482A true JP2012156482A (en) | 2012-08-16 |
JP5845406B2 JP5845406B2 (en) | 2016-01-20 |
Family
ID=45418200
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011013618A Expired - Fee Related JP4835795B1 (en) | 2011-01-26 | 2011-01-26 | Receiving side non-contact charging module and receiving side non-contact charging device |
JP2011206909A Expired - Fee Related JP5845406B2 (en) | 2011-01-26 | 2011-09-22 | Receiving side non-contact charging module and receiving side non-contact charging device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011013618A Expired - Fee Related JP4835795B1 (en) | 2011-01-26 | 2011-01-26 | Receiving side non-contact charging module and receiving side non-contact charging device |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP4835795B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106073727A (en) * | 2016-08-09 | 2016-11-09 | 广州视源电子科技股份有限公司 | Charging box and electronic thermometer set with same |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN203366972U (en) | 2011-01-26 | 2013-12-25 | 松下电器产业株式会社 | Contactless charging module and receiving-side and transmission-side contactless charger using same |
US20130293191A1 (en) | 2011-01-26 | 2013-11-07 | Panasonic Corporation | Non-contact charging module and non-contact charging instrument |
JP5003834B1 (en) * | 2011-06-14 | 2012-08-15 | パナソニック株式会社 | Transmission-side non-contact charging module and transmission-side non-contact charging device using the same |
WO2012172812A1 (en) | 2011-06-14 | 2012-12-20 | パナソニック株式会社 | Communication apparatus |
US10204734B2 (en) | 2011-11-02 | 2019-02-12 | Panasonic Corporation | Electronic device including non-contact charging module and near field communication antenna |
KR101558311B1 (en) | 2011-11-02 | 2015-10-07 | 파나소닉 주식회사 | Non-contact wireless communication coil, transmission coil, and portable wireless terminal |
JP2013169122A (en) | 2012-02-17 | 2013-08-29 | Panasonic Corp | Non-contact charge module and portable terminal having the same |
JP6112383B2 (en) | 2012-06-28 | 2017-04-12 | パナソニックIpマネジメント株式会社 | Mobile device |
JP6008237B2 (en) | 2012-06-28 | 2016-10-19 | パナソニックIpマネジメント株式会社 | Mobile device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009159660A (en) * | 2007-12-25 | 2009-07-16 | Casio Comput Co Ltd | Noncontact power transfer device |
US20090212637A1 (en) * | 2008-02-22 | 2009-08-27 | Access Business Group International Llc | Magnetic positioning for inductive coupling |
US20090230777A1 (en) * | 2008-03-13 | 2009-09-17 | Access Business Group International Llc | Inductive power supply system with multiple coil primary |
WO2010080739A2 (en) * | 2009-01-06 | 2010-07-15 | Access Business Group International Llc | Inductive power supply |
WO2011096569A1 (en) * | 2010-02-05 | 2011-08-11 | 日立金属株式会社 | Magnetic circuit for a non-contact charging device, power supply device, power receiving device, and non-contact charging device |
JP2012095456A (en) * | 2010-10-27 | 2012-05-17 | Sanyo Electric Co Ltd | Non-contact power transmission system, primary side apparatus and secondary side apparatus |
JP2012147638A (en) * | 2011-01-14 | 2012-08-02 | Tdk Corp | Secondary side coil unit for noncontact electricity feeding and noncontact electricity feeding device |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010288431A (en) * | 2009-06-15 | 2010-12-24 | Sanyo Electric Co Ltd | Device housing battery and charging pad |
-
2011
- 2011-01-26 JP JP2011013618A patent/JP4835795B1/en not_active Expired - Fee Related
- 2011-09-22 JP JP2011206909A patent/JP5845406B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009159660A (en) * | 2007-12-25 | 2009-07-16 | Casio Comput Co Ltd | Noncontact power transfer device |
US20090212637A1 (en) * | 2008-02-22 | 2009-08-27 | Access Business Group International Llc | Magnetic positioning for inductive coupling |
JP2011514796A (en) * | 2008-02-22 | 2011-05-06 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Magnetic positioning for inductive coupling |
US20090230777A1 (en) * | 2008-03-13 | 2009-09-17 | Access Business Group International Llc | Inductive power supply system with multiple coil primary |
JP2011517926A (en) * | 2008-03-13 | 2011-06-16 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Inductive charging system having a plurality of primary coils |
WO2010080739A2 (en) * | 2009-01-06 | 2010-07-15 | Access Business Group International Llc | Inductive power supply |
JP2012514967A (en) * | 2009-01-06 | 2012-06-28 | アクセス ビジネス グループ インターナショナル リミテッド ライアビリティ カンパニー | Contactless power supply |
WO2011096569A1 (en) * | 2010-02-05 | 2011-08-11 | 日立金属株式会社 | Magnetic circuit for a non-contact charging device, power supply device, power receiving device, and non-contact charging device |
JP2012095456A (en) * | 2010-10-27 | 2012-05-17 | Sanyo Electric Co Ltd | Non-contact power transmission system, primary side apparatus and secondary side apparatus |
JP2012147638A (en) * | 2011-01-14 | 2012-08-02 | Tdk Corp | Secondary side coil unit for noncontact electricity feeding and noncontact electricity feeding device |
Non-Patent Citations (1)
Title |
---|
"Volume I: Low Power", SYSTEM DESCRIPTION WIRELESS POWER TRANSFER, vol. Version 1.0.1, JPN6012017368, October 2010 (2010-10-01), pages 11 - 33, ISSN: 0002932171 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106073727A (en) * | 2016-08-09 | 2016-11-09 | 广州视源电子科技股份有限公司 | Charging box and electronic thermometer set with same |
Also Published As
Publication number | Publication date |
---|---|
JP4835795B1 (en) | 2011-12-14 |
JP2012157147A (en) | 2012-08-16 |
JP5845406B2 (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5845404B2 (en) | Receiving side non-contact charging module and receiving side non-contact charging device | |
JP5845406B2 (en) | Receiving side non-contact charging module and receiving side non-contact charging device | |
US10218222B2 (en) | Non-contact charging module having a wireless charging coil and a magnetic sheet | |
KR101198880B1 (en) | Contact-less Charging Module and Reception-side and Transmission-side Contact-less Charging Devices Using the Same | |
JP4835796B1 (en) | Receiving side non-contact charging module and receiving side non-contact charging device | |
JP5942084B2 (en) | Non-contact charging module, non-contact charging device and portable device using the same | |
WO2012101731A1 (en) | Contactless charging module and receiving-side and transmission-side contactless charger using same | |
JP4983999B1 (en) | Non-contact charging module and non-contact charging device using the same | |
JP2012120328A (en) | Noncontact charging module and noncontact charger | |
JP4900525B1 (en) | Non-contact charging module, transmitting-side non-contact charging device and receiving-side non-contact charging device provided with the same | |
JP5445545B2 (en) | Non-contact charging module, non-contact charger and electronic device | |
JP2013093989A (en) | Non-contact charging module, non-contact charger using the same and portable terminal | |
JP5845407B2 (en) | Receiving side non-contact charging module and receiving side non-contact charging device | |
JP5824631B2 (en) | Non-contact charging module and charger and electronic device using the same | |
JP5938559B2 (en) | Non-contact charging module and non-contact charging device using the same | |
JP4900523B1 (en) | Receiving side non-contact charging module, portable terminal using the same, transmitting non-contact charging module, and non-contact charger using the same | |
JP4983992B1 (en) | Transmission-side non-contact charging module and transmission-side non-contact charging device using the same | |
JP2013005713A (en) | Portable terminal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131216 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140106 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140926 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20141007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150615 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5845406 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
SZ03 | Written request for cancellation of trust registration |
Free format text: JAPANESE INTERMEDIATE CODE: R313Z03 |
|
LAPS | Cancellation because of no payment of annual fees |