[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012154740A - Center deviation measuring device and method therefor - Google Patents

Center deviation measuring device and method therefor Download PDF

Info

Publication number
JP2012154740A
JP2012154740A JP2011013221A JP2011013221A JP2012154740A JP 2012154740 A JP2012154740 A JP 2012154740A JP 2011013221 A JP2011013221 A JP 2011013221A JP 2011013221 A JP2011013221 A JP 2011013221A JP 2012154740 A JP2012154740 A JP 2012154740A
Authority
JP
Japan
Prior art keywords
disk
center deviation
center
shaped substrate
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011013221A
Other languages
Japanese (ja)
Inventor
Kuniyuki Someya
邦之 染谷
Toru Momose
徹 百瀬
Wongasakyau Sitipon
ウォンガサキャウ シティポン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011013221A priority Critical patent/JP2012154740A/en
Publication of JP2012154740A publication Critical patent/JP2012154740A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a center deviation measuring device and a method therefor capable of reducing time needed for measuring center deviation of the inner periphery and the outer periphery of a disk-shaped substrate having a circular hole in the central part.SOLUTION: A center deviation measuring device for measuring center deviation of the inner periphery and the outer periphery of a disk-shaped substrate W having a circular hole in the central part is provided with: a measuring part which measures the radial width B of the main plane S between the inner peripheral end surface C1 and the outer peripheral end surface C2 in a measuring region DA formed in between a light projection part and a light receiving part, over the whole periphery of the disk-shaped substrate in a non-contact state; and a calculation part for calculating the center deviation by calculating the difference A between the maximum value Bmax and the minimum value Bmin of the radial width B measured by the measuring part and using the difference A.

Description

本発明は、中央部に円孔を有する円盤状基板の内周中心と外周中心のずれを測定する技術に関する。   The present invention relates to a technique for measuring a deviation between an inner circumference center and an outer circumference center of a disk-shaped substrate having a circular hole in a central portion.

例えばガラス又はアルミニウム磁気ディスク基板の製造工程においては、内周と外周の同芯度が測定されて、管理されている。一般に、同芯度は、ディスク基板の内周端面と外周端面を接触式又は非接触式センサによって計測し、その内周円と外周円の中心をそれぞれ求め、それらの中心間距離を算出することにより、測定される。   For example, in the manufacturing process of a glass or aluminum magnetic disk substrate, the concentricity of the inner periphery and the outer periphery is measured and managed. In general, the concentricity is obtained by measuring the inner and outer peripheral end surfaces of a disk substrate with a contact or non-contact sensor, obtaining the centers of the inner and outer circles, and calculating the distance between the centers. Is measured.

例えば、2つの円周の中心をそれぞれ求め、それらの中心間距離に基づいて、同芯度を測定する先行技術文献として、例えば特許文献1,2が挙げられる。特許文献1,2には、非接触式センサによる測定技術が開示されている。   For example, Patent Documents 1 and 2 are cited as prior art documents for obtaining the centers of two circumferences and measuring the concentricity based on the distance between the centers. Patent Documents 1 and 2 disclose measurement techniques using non-contact sensors.

特開2002−54917号公報JP 2002-54917 A 特開2008−171532号公報JP 2008-171532 A

確かに、上述の従来技術の場合、2つの円周の中心ずれの測定を正確に実施することができる。しかしながら、2つの円周の中心をそれぞれ求めなければならないので、両中心間のずれの測定に時間を要してしまうという欠点がある。そのため、例えば、工程管理のために頻繁に測定をする場合には、従来の測定方法では不向きである。   Certainly, in the case of the above-described prior art, it is possible to accurately measure the misalignment between the two circumferences. However, since the centers of the two circumferences must be obtained, there is a disadvantage that it takes time to measure the deviation between the centers. Therefore, for example, when the measurement is frequently performed for process management, the conventional measurement method is not suitable.

そこで、本発明は、中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する時間を短縮可能な、中心ずれ測定装置及びその方法の提供を目的とする。   Therefore, an object of the present invention is to provide a center deviation measuring apparatus and method for reducing the time required to measure the center deviation between the inner circumference and the outer circumference of a disc-shaped substrate having a circular hole in the center.

上記目的を達成するため、本発明に係る中心ずれ測定装置は、
中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する中心ずれ測定装置であって、
前記内周と前記外周に挟まれた主平面の半径方向幅を円盤状基板の全周にわたって計測する計測部と、
前記計測部によって計測された前記半径方向幅の最大値と最小値の差を演算して該差を用いて中心ずれを演算する演算部と、
を備えることを特徴とするものである。
In order to achieve the above object, a center deviation measuring apparatus according to the present invention is:
A center deviation measuring device for measuring the center deviation between the inner circumference and the outer circumference of a disc-shaped substrate having a circular hole in the center,
A measurement unit that measures the radial width of the main plane sandwiched between the inner periphery and the outer periphery over the entire circumference of the disk-shaped substrate;
A calculation unit that calculates a difference between the maximum value and the minimum value of the radial width measured by the measurement unit and calculates a center shift using the difference;
It is characterized by providing.

また、上記目的を達成するため、本発明に係る中心ずれ測定方法は、
中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する中心ずれ測定方法であって、
前記内周と前記外周に挟まれた主平面の半径方向幅を円盤状基板の全周にわたって計測する計測工程と、
計測された前記半径方向幅の最大値と最小値の差を演算する演算工程と、
を有する、ことを特徴とするものである。
In order to achieve the above object, the center deviation measuring method according to the present invention is:
A center deviation measuring method for measuring the center deviation of the inner circumference and outer circumference of a disc-shaped substrate having a circular hole in the center,
A measuring step of measuring the radial width of the main plane sandwiched between the inner periphery and the outer periphery over the entire circumference of the disc-shaped substrate;
A calculation step of calculating a difference between the maximum value and the minimum value of the measured radial width;
It is characterized by having.

また、上記目的を達成するため、本発明に係る中心ずれ測定方法は、
中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する中心ずれ測定方法であって、
中央部に円孔を有する複数の円盤状基板を立てた状態で横方向に並べて収容する収納容器から、収容されている円盤状基板を昇降機構によって立てた状態で上昇させて離脱させ、
離脱させた円盤状基板を該円盤状基板の周方向に回転させ、
回転させた円盤状基板の主平面の半径方向幅を全周にわたって計測する計測工程と、
前記半径方向幅を計測した円盤状基板を前記昇降機構によって下降させて前記収納容器に戻し、
前記収納容器に収容されている別の円盤状基板が前記昇降機構によって前記収納容器から上昇して離脱するように、前記収納容器と前記昇降機構との前記横方向の相対位置を移動させるピッチ移動工程と、
計測工程で計測された前記半径方向幅の最大値と最小値の差を演算して該差を用いて中心ずれを演算する演算工程とを含む、ことを特徴とするものである。
In order to achieve the above object, the center deviation measuring method according to the present invention is:
A center deviation measuring method for measuring the center deviation of the inner circumference and outer circumference of a disc-shaped substrate having a circular hole in the center,
From the storage container that stores a plurality of disk-shaped substrates having a circular hole in the center in a standing state, the stored disk-shaped substrates are lifted and detached in a standing state by an elevating mechanism,
Rotate the detached disk-shaped substrate in the circumferential direction of the disk-shaped substrate,
A measurement process for measuring the radial width of the main plane of the rotated disk-shaped substrate over the entire circumference;
The disk-shaped substrate whose radial width is measured is lowered by the lifting mechanism and returned to the storage container,
Pitch movement for moving the horizontal relative position of the storage container and the lifting mechanism so that another disk-shaped substrate stored in the storage container is lifted and removed from the storage container by the lifting mechanism Process,
And a calculation step of calculating a difference between the maximum value and the minimum value of the radial width measured in the measurement step and calculating a center deviation using the difference.

本発明によれば、中央部に円孔を有する円盤状基板の内周中心と外周中心の中心ずれを測定する時間を短縮できる。   ADVANTAGE OF THE INVENTION According to this invention, the time which measures the center shift | offset | difference of the inner periphery center and outer periphery center of a disk shaped board | substrate which has a circular hole in the center part can be shortened.

ガラス基板Wの内周と外周の中心ずれを本発明で測定する場合を示した図である。It is the figure which showed the case where the center shift | offset | difference of the inner periphery and outer periphery of the glass substrate W is measured by this invention. 計測領域DAの別態様を示した図である。It is the figure which showed another aspect of measurement area | region DA. 計測領域DAの別態様を示した図である。It is the figure which showed another aspect of measurement area | region DA. 計測領域DAの別態様を示した図である。It is the figure which showed another aspect of measurement area | region DA. 本発明の中心ずれ測定方法を説明するための図である。It is a figure for demonstrating the center deviation measuring method of this invention. 本発明の一実施形態である中心ずれ測定装置1の側面図である。It is a side view of center shift measuring device 1 which is one embodiment of the present invention. 回転機構10の第1の具体例を示した斜視図である。FIG. 3 is a perspective view showing a first specific example of a rotation mechanism 10. 図4に示したE−Eにおける回転機構10の断面図である。It is sectional drawing of the rotation mechanism 10 in EE shown in FIG. 回転機構10の第2の具体例を示した斜視図である。5 is a perspective view illustrating a second specific example of the rotation mechanism 10. FIG. 回転機構10の第3の具体例を示した模式図である。FIG. 6 is a schematic diagram illustrating a third specific example of the rotation mechanism 10. 図7に示した回転機構10を利用して、カセット40に収容されている複数のガラス基板Wの中心ずれを測定する装置を説明するための図である。It is a figure for demonstrating the apparatus which measures the center shift | offset | difference of the several glass substrate W accommodated in the cassette 40 using the rotation mechanism 10 shown in FIG. カセット40に収容されている複数のガラス基板Wの中心ずれを測定する方法を説明するための図である。FIG. 5 is a diagram for explaining a method for measuring the center deviation of a plurality of glass substrates W housed in a cassette 40.

以下、図面を参照しながら、本発明を実施するための形態の説明を行う。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

図1Aは、磁気記録媒体用ガラス基板Wの内周と外周の中心ずれを本発明で測定する場合を示した図である。ガラス基板Wは、中央部に円状の円孔が形成されたドーナツ状の円盤状基板である。主平面Sは、ガラス基板Wの外周端面C2と中央部の円孔の内周端面C1とに挟まれた平面状の環状面である。主平面Sの半径方向幅Bは、主平面Sのガラス基板Wの半径方向の寸法に相当する。   FIG. 1A is a diagram showing a case where the center deviation between the inner periphery and the outer periphery of the glass substrate W for magnetic recording medium is measured by the present invention. The glass substrate W is a donut-shaped disk-shaped substrate having a circular hole formed in the center. The main plane S is a planar annular surface sandwiched between the outer peripheral end surface C2 of the glass substrate W and the inner peripheral end surface C1 of the central circular hole. The radial width B of the main plane S corresponds to the radial dimension of the glass substrate W of the main plane S.

図2は、ガラス基板Wの内周と外周の中心ずれを説明するための図である。ガラス基板Wを周方向に中央部の円孔を回転中心として1回転させたとき、主平面Sの全周にわたる半径方向幅Bの中で最大の値がBmaxに相当し、主平面Sの全周にわたる半径方向幅Bの中で最小の値がBminに相当する。この場合、最大値Bmaxと最小値Bminの差Aが、ガラス基板Wの内周と外周の同芯度に相当する値であるため、差Aを、ガラス基板Wの外周と内周の中心ずれの度合を表す値として使用することができる。すなわち、差Aの絶対値が大きいほど、ガラス基板Wの外周と内周の中心ずれが大きいことを表し、差Aの絶対値が小さいほど、その中心ずれが小さいことを表し、差Aが零のとき、その中心ずれが無いことを表している。   FIG. 2 is a view for explaining the center deviation between the inner periphery and the outer periphery of the glass substrate W. FIG. When the glass substrate W is rotated once in the circumferential direction around the center circular hole as the rotation center, the maximum value in the radial width B over the entire circumference of the main plane S corresponds to Bmax, The smallest value in the radial width B over the circumference corresponds to Bmin. In this case, since the difference A between the maximum value Bmax and the minimum value Bmin is a value corresponding to the concentricity between the inner periphery and the outer periphery of the glass substrate W, the difference A is determined as the center deviation between the outer periphery and the inner periphery of the glass substrate W. It can be used as a value representing the degree of. That is, the larger the absolute value of the difference A, the larger the center deviation between the outer periphery and the inner circumference of the glass substrate W. The smaller the absolute value of the difference A, the smaller the center deviation, and the difference A is zero. Indicates that there is no misalignment.

つまり、ガラス基板Wの内周端面C1と外周端面C2に挟まれた主平面Sの半径方向幅Bを全周にわたって計測し、その計測された全周分の半径方向幅Bの最大値Bmaxと最小値Bminの差Aを演算し、該差Aを用いて中心ずれを演算することにより、ガラス基板Wの内周と外周の中心ずれを測定できる。この方法によれば、ガラス基板Wの内周と外周の中心ずれを測定するために、内周と外周の中心をそれぞれ求める必要がないため、中心ずれの測定時間を短縮できる。   That is, the radial width B of the main plane S sandwiched between the inner peripheral end surface C1 and the outer peripheral end surface C2 of the glass substrate W is measured over the entire circumference, and the maximum value Bmax of the measured radial width B for the entire circumference is measured. By calculating the difference A of the minimum value Bmin and calculating the center deviation using the difference A, the center deviation between the inner periphery and the outer periphery of the glass substrate W can be measured. According to this method, since it is not necessary to obtain the centers of the inner periphery and the outer periphery in order to measure the center deviation between the inner periphery and the outer periphery of the glass substrate W, it is possible to shorten the time for measuring the center deviation.

主平面Sの半径方向幅Bを全周にわたって計測するためには、例えば図1Aに示されるように、半径方向幅Bを計測するための所定の計測領域DAに主平面Sを全周にわたって通過させればよい。具体的には、ガラス基板Wの周方向に中央部の円孔を回転中心としてガラス基板Wを1回転又はそれ以上回転させればよい。半径方向幅Bの計測を安定化させるためには、主平面Sが計測領域DAを通過する速度(具体的には、回転の角速度)を一定にすることが好ましい。   In order to measure the radial width B of the main plane S over the entire circumference, for example, as shown in FIG. 1A, the main plane S is passed over the entire circumference in a predetermined measurement area DA for measuring the radial width B. You can do it. Specifically, the glass substrate W may be rotated once or more in the circumferential direction of the glass substrate W around the central hole as a rotation center. In order to stabilize the measurement of the radial width B, it is preferable that the speed (specifically, the angular speed of rotation) at which the main plane S passes through the measurement area DA is constant.

計測領域DAは、ガラス基板Wの主平面Sを全て含むような大きさにする必要はない。半径方向幅Bの誤計測を防ぐため、計測領域DAは、ガラス基板Wの半径方向の一方向において、主平面Sの半径方向幅Bを規定する内周端面C1の一部分と外周端面C2の一部分とを含むような大きさであればよい。測定時間をさらに短縮させたい場合、計測領域DAを広げると良い。例えば、図1Bのように計測領域DAを広げる、又は図1C,図1Dのように計測領域DAを2箇所以上設けて、ガラス基板Wの回転を半回転以下として測定もよい。   The measurement area DA does not have to be sized so as to include the entire main plane S of the glass substrate W. In order to prevent erroneous measurement of the radial width B, the measurement area DA has a part of the inner peripheral end face C1 and a part of the outer peripheral end face C2 that define the radial width B of the main plane S in one radial direction of the glass substrate W. It is sufficient if the size includes. If it is desired to further shorten the measurement time, the measurement area DA should be expanded. For example, the measurement area DA may be expanded as shown in FIG. 1B, or two or more measurement areas DA may be provided as shown in FIG. 1C and FIG. 1D, and the rotation of the glass substrate W may be half or less.

図3は、本発明の一実施形態である中心ずれ測定装置1の側面図である。中心ずれ測定装置1は、半径方向幅Bの計測部として、投光部12と受光部11とを備えている。投光部12の投光面14と受光部11の受光面13とに挟まれた空間に計測領域DAが形成される。投光部12は、投光面14が上向きになるように、ガラス基板Wの取り付け位置に対して下側に配置される。受光部11は、支柱15の上部に設置され、受光面13が下向きになるように、ガラス基板Wの取り付け位置に対して上側に配置される。受光面13を下向きにすることによって、上向きにする場合に比べて、天井の蛍光灯などの他の外乱光が受光面13に入射することを抑え、ひいては半径方向幅Bの誤計測を防止することができる。   FIG. 3 is a side view of the center deviation measuring apparatus 1 according to an embodiment of the present invention. The center deviation measuring apparatus 1 includes a light projecting unit 12 and a light receiving unit 11 as a measuring unit having a radial width B. A measurement area DA is formed in a space sandwiched between the light projecting surface 14 of the light projecting unit 12 and the light receiving surface 13 of the light receiving unit 11. The light projecting unit 12 is disposed below the mounting position of the glass substrate W so that the light projecting surface 14 faces upward. The light receiving unit 11 is installed on the upper side of the support column 15 and is arranged on the upper side with respect to the attachment position of the glass substrate W so that the light receiving surface 13 faces downward. By facing the light receiving surface 13 downward, other disturbance light such as a fluorescent lamp on the ceiling is prevented from entering the light receiving surface 13 as compared with the case where the light receiving surface 13 faces upward, thereby preventing erroneous measurement of the radial width B. be able to.

投光部12は、ガラス基板Wに向けてその主平面Sの法線方向(図3の場合、Z軸方向)から光を照射する。投光部12は、例えば、光源21と、レンズ22とを備えている。半径方向幅Bの計測精度向上の点で、光源21の好適な例として、発光ダイオードが挙げられ、より好適な例として、窒化ガリウム発光ダイオードが挙げられる。一方、レンズ22は、計測領域DAを形成する光学部品である。レンズ22は、計測領域DAの安定的な形成のため、光源21から放たれた光を平行光に変換するコリメータレンズが好適である。レンズ22によって、光源21からの光が、主平面Sの全領域のうち内周端面C1と外周端面C2とに挟まれた半径方向の一部分に集光される。   The light projecting unit 12 irradiates light toward the glass substrate W from the normal direction of the main plane S (Z-axis direction in the case of FIG. 3). The light projecting unit 12 includes, for example, a light source 21 and a lens 22. In terms of improving the measurement accuracy of the radial width B, a suitable example of the light source 21 is a light emitting diode, and a more preferred example is a gallium nitride light emitting diode. On the other hand, the lens 22 is an optical component that forms the measurement area DA. The lens 22 is preferably a collimator lens that converts light emitted from the light source 21 into parallel light in order to stably form the measurement area DA. The light from the light source 21 is condensed by the lens 22 onto a part in the radial direction between the inner peripheral end face C1 and the outer peripheral end face C2 in the entire area of the main plane S.

受光部11は、ガラス基板Wの主平面Sの方向から到来した光を受光する。半径方向幅Bは、受光部11によって受光された光の明暗のエッジ位置に基づいて計測される。受光部11は、例えば、投光部12からの光が照射されたガラス基板Wの映像を、テレセントリックレンズ23を介して、CCDイメージセンサ(撮像素子)25上に結像させる。また、受光部11は、ビームスプリッタ24備え、ガラス基板Wの映像を、CCDイメージセンサ25とCMOSイメージセンサ26に分けてもよい。   The light receiving unit 11 receives light arriving from the direction of the main plane S of the glass substrate W. The radial width B is measured based on the bright and dark edge positions of the light received by the light receiving unit 11. For example, the light receiving unit 11 forms an image of the glass substrate W irradiated with light from the light projecting unit 12 on a CCD image sensor (imaging device) 25 via the telecentric lens 23. The light receiving unit 11 may include a beam splitter 24 and divide the image on the glass substrate W into the CCD image sensor 25 and the CMOS image sensor 26.

中心ずれ計測装置1の演算部16は、受光部11のCCDイメージセンサ25から送出される受光信号に基づいて、主平面Sのエッジ(内周端面C1と外周端面C2)を計測し、半径方向幅Bの最大値Bmaxと最小値Bminを導出する。そして、演算部16は、最大値Bmaxと最小値minの差Aを算出して、その差Aの算出結果を出力部17に出力する。演算部16は、AD変換器やCPUなどによって構成されるとよい。出力部17は、例えば、ディスプレイ、プリンター、スピーカ、それらのいずれかの組み合わせであればよい。出力部17は、受光部11のCMOSイメージセンサ26によって得られた映像を表示するものでもよい。   The calculation unit 16 of the center deviation measuring device 1 measures the edges (inner peripheral end surface C1 and outer peripheral end surface C2) of the main plane S based on the light reception signal transmitted from the CCD image sensor 25 of the light receiving unit 11, and the radial direction. The maximum value Bmax and the minimum value Bmin of the width B are derived. Then, the calculation unit 16 calculates a difference A between the maximum value Bmax and the minimum value min and outputs the calculation result of the difference A to the output unit 17. The arithmetic unit 16 may be configured by an AD converter, a CPU, or the like. The output unit 17 may be, for example, a display, a printer, a speaker, or any combination thereof. The output unit 17 may display an image obtained by the CMOS image sensor 26 of the light receiving unit 11.

また、中心ずれ測定装置1は、ガラス基板Wの主平面Sを全周にわたって計測領域DAに通過させる可動機構として、回転機構10を備えている。回転機構10は、XY平面内で、ガラス基板Wをその周方向にその中央部の円孔を回転中心としてモータで回転させる手段である。回転機構10は、台座18によって固定されている。   Further, the center deviation measuring apparatus 1 includes a rotation mechanism 10 as a movable mechanism that allows the main plane S of the glass substrate W to pass through the measurement area DA over the entire circumference. The rotation mechanism 10 is means for rotating the glass substrate W in the XY plane by a motor in the circumferential direction around the center circular hole. The rotation mechanism 10 is fixed by a pedestal 18.

図4は、回転機構10の第1の具体例を示した斜視図である。回転機構10は、ガラス基板Wを回転させる回転台32と、ガラス基板Wを位置決めする中心軸33と、回転台32を回転させるモータ等を収容するハウジング31とを備えている。回転台32の上面32aに、ガラス基板Wが載る。外形が円柱状の中心軸33は、ガラス基板Wの中央部の円孔が上方から嵌合されてガラス基板Wを位置決めする部材である。回転台32は、XY平面内をガラス基板Wの周方向に自転するが、中心軸33は、回転しない固定されたままの部材である。中心軸33には、投光部12から照射された光が、ガラス基板Wの内周端面C1を通過して、受光部11に到達するように、溝34が形成されている。   FIG. 4 is a perspective view showing a first specific example of the rotation mechanism 10. The rotation mechanism 10 includes a turntable 32 that rotates the glass substrate W, a central shaft 33 that positions the glass substrate W, and a housing 31 that houses a motor and the like that rotates the turntable 32. A glass substrate W is placed on the upper surface 32 a of the turntable 32. The central axis 33 having a cylindrical outer shape is a member for positioning the glass substrate W by fitting a circular hole at the center of the glass substrate W from above. The turntable 32 rotates within the XY plane in the circumferential direction of the glass substrate W, but the central axis 33 is a fixed member that does not rotate. A groove 34 is formed in the central axis 33 so that light emitted from the light projecting unit 12 passes through the inner peripheral end face C1 of the glass substrate W and reaches the light receiving unit 11.

図5は、図4に示したE−Eにおける回転機構10の断面図である。被計測物としてのガラス基板Wが、回転台32の上面に載っている。回転機構10の回転台32は、ガラス基板Wの内周端面C1を中心軸33の側面33aに接触させて滑らせながら、ガラス基板Wを回転させる。溝34は、投光部12から内周端面C1を通って受光部11に到達する光の経路として、ガラス基板Wの主平面Sの法線方向に延在するように中心軸33に形成された切り欠き部である。溝34を設けることによって、中心軸33の側面と回転台32の内筒面との間の隙間を通ってきた光が、ガラス基板Wの中央部の円孔の内周端面C1と内周端面C1の半径方向の内側を通ることができるため、受光部11で計測される内周端面C1における光の明暗がはっきりし、内周端面C1を正確に計測することができる。   FIG. 5 is a cross-sectional view of the rotation mechanism 10 taken along the line EE shown in FIG. A glass substrate W as an object to be measured is placed on the upper surface of the turntable 32. The turntable 32 of the rotation mechanism 10 rotates the glass substrate W while sliding the inner peripheral end surface C1 of the glass substrate W in contact with the side surface 33a of the central shaft 33. The groove 34 is formed on the central axis 33 so as to extend in the normal direction of the main plane S of the glass substrate W as a path of light reaching the light receiving unit 11 from the light projecting unit 12 through the inner peripheral end face C1. It is a notch. By providing the groove 34, the light that has passed through the gap between the side surface of the central shaft 33 and the inner cylindrical surface of the turntable 32 is reflected by the inner peripheral end surface C <b> 1 and the inner peripheral end surface of the circular hole in the center of the glass substrate W. Since it can pass through the inside of C1 in the radial direction, the light and darkness of the light at the inner peripheral end face C1 measured by the light receiving unit 11 is clear, and the inner peripheral end face C1 can be accurately measured.

図6は、回転機構10の第2の具体例を示した斜視図である。中心軸33に形成される切り欠き部は、図4に示されるような溝形状に限ることはなく、図6に示されるように、ガラス基板Wが静止した状態で、ガラス基板Wの内周端面C1の一部分が中心軸33の側面33aに接触しないような形状であればよい。   FIG. 6 is a perspective view showing a second specific example of the rotation mechanism 10. The notch portion formed in the central shaft 33 is not limited to the groove shape as shown in FIG. 4, and the inner periphery of the glass substrate W in a state where the glass substrate W is stationary as shown in FIG. 6. The shape may be such that a part of the end surface C1 does not contact the side surface 33a of the central shaft 33.

また、投光部12から照射された光が乱反射しないように、さらには、受光部11が乱反射した光を受光しないように、回転台32と中心軸33は暗色(典型的には、黒色)であることが好ましい。   Further, the turntable 32 and the central axis 33 are dark (typically black) so that the light irradiated from the light projecting unit 12 is not irregularly reflected and further, the light received by the light receiving unit 11 is not irregularly reflected. It is preferable that

図7は、回転機構10の第3の具体例を示した模式図である。回転機構10は、ガラス基板Wの外周端面C2に外接可能な回転ローラーによって、ガラス基板Wをその周方向に回転させるものでもよい。図7には、回転ローラー41〜43が示されている。回転ローラーの全てが、ガラス基板Wに回転力を与える駆動源を備えるものでもよいし、その一部のみがそのような駆動源を備え、残りがそのような駆動源を備えずに回転支持ガイドとして機能するものでもよい。   FIG. 7 is a schematic view showing a third specific example of the rotation mechanism 10. The rotating mechanism 10 may rotate the glass substrate W in the circumferential direction by a rotating roller that can circumscribe the outer peripheral end surface C2 of the glass substrate W. FIG. 7 shows rotating rollers 41 to 43. All of the rotating rollers may be provided with a driving source that applies a rotational force to the glass substrate W, or only a part thereof is provided with such a driving source, and the rest is provided with such a driving source without being provided with such a driving source. It may function as.

図8は、図7に示した回転機構10を利用して、カセット40に収容されている複数のガラス基板Wの中心ずれを測定する装置を説明するための図である。上述の図3では、投光部12から受光部11への光の照射方向が上下方向である構成を例示した。図8では、投光部12から受光部11への光の照射方向が水平方向である構成を例示する。なお、図8において、図3に例示した、投光部12,受光部11,演算部16,出力部17などは同様の構成でよいため、省略している。   FIG. 8 is a view for explaining an apparatus for measuring the center deviation of the plurality of glass substrates W accommodated in the cassette 40 by using the rotation mechanism 10 shown in FIG. In FIG. 3 described above, the configuration in which the light irradiation direction from the light projecting unit 12 to the light receiving unit 11 is the vertical direction is illustrated. FIG. 8 illustrates a configuration in which the light irradiation direction from the light projecting unit 12 to the light receiving unit 11 is the horizontal direction. In FIG. 8, the light projecting unit 12, the light receiving unit 11, the calculation unit 16, the output unit 17, and the like illustrated in FIG.

図8は、カセット40を上方から見た図である。カセット40は、複数のガラス基板Wをそれらの主平面Sが鉛直となるように立てた状態で、横方向(すなわち、主平面Sの法線方向)に互いに離隔して並べて収容可能な収納容器(具体例として、ラック)である。カセット40は、複数のガラス基板Wを、それらの上部と下部を開放して露出させた状態で、支持している。回転ローラー41,42は、一枚のガラス基板Wを下方から規定位置まで押し上げ、規定位置まで押し上げたガラス基板Wを再び下降させることが可能な昇降機構として備えられている。回転ローラー41,42は、押し上げ前の初期状態では、カセット40の下方に配置されている。その規定位置には、ガラス基板Wにその周方向の回転力を与える駆動源を備える図7に示した回転ローラー43が設置されている(図8では省略)。また、カセット40は、カセット40の横方向への移動を可能にするキャリア44の上に載せられている。   FIG. 8 is a view of the cassette 40 as viewed from above. The cassette 40 is a storage container that can accommodate a plurality of glass substrates W arranged side by side in a lateral direction (that is, a normal direction of the main plane S) in a state where their main planes S are vertical. (As a specific example, a rack). The cassette 40 supports a plurality of glass substrates W with their upper and lower portions opened and exposed. The rotating rollers 41 and 42 are provided as an elevating mechanism that can push up one glass substrate W from below to a specified position and lower the glass substrate W pushed up to the specified position again. The rotating rollers 41 and 42 are disposed below the cassette 40 in the initial state before being pushed up. At the specified position, the rotating roller 43 shown in FIG. 7 provided with a driving source for applying a rotational force in the circumferential direction to the glass substrate W is installed (not shown in FIG. 8). The cassette 40 is placed on a carrier 44 that allows the cassette 40 to move in the lateral direction.

図9は、カセット40に収容されている複数のガラス基板Wの中心ずれを測定する方法を説明するための図である。図9は、カセット40を側方から見た図である。(a)(b)に示されるように、不図示の測定開始スイッチが押されると、回転ローラー41,42が上昇する。回転ローラー41,42は、ガラス基板W1の下部の外周端面を支えながら、ガラス基板W1を立てたまま上昇させて収納容器40から離脱させる。(c)に示されるように、回転ローラー41,42は、ガラス基板W1の上部の外周端面が回転ローラー43に接するまで、ガラス基板W1を上昇させる。ガラス基板W1の上部の外周端面が回転ローラー43に接すると、回転ローラー43は、モータMの駆動力によって、ガラス基板W1を周方向に回転させる。不図示の受光部11は、上述と同様に、ガラス基板W1の主平面Sの半径方向幅Bを全周にわたって計測する。(d)に示されるように、全周分の半径方向幅Bの計測後、回転ローラー41,42は、ガラス基板W1を立てたまま下降させて収納容器40の元の収容位置に戻す。(e)に示されるように、ガラス基板W1の収容位置の隣に収容されているガラス基板W2が回転ローラー41,42によって収納容器40から上昇させて離脱できるように、カセット40は1ピッチ(収納間隔の長さ分)移動する。カセット40と回転ローラー41,42との横方向の相対位置を移動させるピッチ移動機構として、キャリア44とキャリア44の横方向への移動を制御する制御部45とが備えられている。(f)に示されるように、回転ローラー41,42は、ガラス基板W2の下部の外周端面を支えながら、ガラス基板W2を立てたまま上昇させて収納容器40から離脱させる。以下、同様に繰り返される。   FIG. 9 is a view for explaining a method of measuring the center deviation of the plurality of glass substrates W accommodated in the cassette 40. FIG. 9 is a view of the cassette 40 as viewed from the side. (A) As shown in (b), when a measurement start switch (not shown) is pressed, the rotating rollers 41 and 42 are raised. The rotating rollers 41 and 42 lift the glass substrate W1 while standing and detach it from the storage container 40 while supporting the outer peripheral end surface of the lower portion of the glass substrate W1. As shown in (c), the rotating rollers 41 and 42 raise the glass substrate W <b> 1 until the outer peripheral end surface of the upper portion of the glass substrate W <b> 1 contacts the rotating roller 43. When the outer peripheral end surface of the upper portion of the glass substrate W1 comes into contact with the rotating roller 43, the rotating roller 43 rotates the glass substrate W1 in the circumferential direction by the driving force of the motor M. The light receiving unit 11 (not shown) measures the radial width B of the main plane S of the glass substrate W1 over the entire circumference, as described above. As shown in (d), after measuring the radial width B for the entire circumference, the rotating rollers 41 and 42 are lowered while the glass substrate W1 is standing and returned to the original storage position of the storage container 40. As shown in (e), the cassette 40 is separated by one pitch (so that the glass substrate W2 accommodated next to the accommodation position of the glass substrate W1 can be lifted and removed from the storage container 40 by the rotating rollers 41, 42. Move by the length of the storage interval). A carrier 44 and a controller 45 that controls the movement of the carrier 44 in the lateral direction are provided as a pitch movement mechanism that moves the relative position of the cassette 40 and the rotating rollers 41 and 42 in the lateral direction. As shown in (f), the rotating rollers 41 and 42 raise the glass substrate W2 while standing and support it from the storage container 40 while supporting the outer peripheral end surface of the lower portion of the glass substrate W2. Thereafter, the same is repeated.

不図示の演算部16は、計測された半径方向幅Bの最大値Bmaxと最小値Bminの差Aを、複数のガラス基板Wそれぞれについて演算する。これにより、複数のガラス基板W毎の中心ずれを測定できる。差Aの演算は、一枚のガラス基板Wの全周分の半径方向幅Bの計測が終了する毎に行ってもよいし、カセット40に収容されている複数のガラス基板Wの全周分の半径方向幅Bの計測が全て終了した段階でまとめて行ってもよい。   The calculator 16 (not shown) calculates the difference A between the maximum value Bmax and the minimum value Bmin of the measured radial width B for each of the plurality of glass substrates W. Thereby, the center shift | offset | difference for every several glass substrate W is measurable. The calculation of the difference A may be performed every time the measurement of the radial width B for the entire circumference of one glass substrate W is completed, or the entire circumference of the plurality of glass substrates W accommodated in the cassette 40. The measurement in the radial direction width B may be performed collectively at the stage when all the measurements are completed.

このように、上述の実施例によれば、ガラス基板Wの内周と外周の中心ずれを測定するために、内周と外周の中心をそれぞれ求める必要がないため、ガラス基板Wの中心ずれを簡易的に短時間で測定できる(内周の真円度と外周の真円度が、それぞれ測定する中心ずれの値より充分に小さい場合)。また、ガラス基板Wの回転中心と回転機構10の回転中心が一致していなくてもよく、予め芯出しを行うことを不要にできるため、その点でも測定時間短縮が可能となる。測定時間短縮の結果、ガラス基板の生産性も向上する。   Thus, according to the above-described embodiment, in order to measure the center deviation between the inner circumference and the outer circumference of the glass substrate W, it is not necessary to obtain the centers of the inner circumference and the outer circumference, respectively. It can be measured easily in a short time (when the roundness of the inner circumference and the roundness of the outer circumference are sufficiently smaller than the center deviation values to be measured, respectively). Further, the rotation center of the glass substrate W and the rotation center of the rotation mechanism 10 do not have to coincide with each other, and it is not necessary to perform centering in advance, so that the measurement time can be shortened. As a result of shortening the measurement time, the productivity of the glass substrate is also improved.

測定時間短縮の効果を確認するため、従来の触針式同芯度測定器(メーカー:KOSAKA。装置名:Roncorder EC1550)と本発明の実施例として図3に示した非接触式の測定装置とについて、測定タクト時間と測定のみに要する時間を比較した。従来の触針式同芯度測定器の場合、測定タクト時間は約3分、測定のみに要する時間は約1分20秒であるのに対して、図3に示した非接触式の測定装置の場合、測定タクト時間は約11秒、測定のみに要する時間は約7秒であり、大幅な時間短縮効果が確認できた。   In order to confirm the effect of shortening the measurement time, a conventional stylus type concentricity measuring device (manufacturer: KOSAKA, device name: Roncorder EC1550) and the non-contact type measuring device shown in FIG. 3 as an embodiment of the present invention The measurement tact time was compared with the time required for measurement alone. In the case of the conventional stylus type concentricity measuring device, the measurement tact time is about 3 minutes and the time required for only the measurement is about 1 minute 20 seconds, whereas the non-contact type measurement device shown in FIG. In this case, the measurement tact time was about 11 seconds, and the time required for the measurement was about 7 seconds, and a significant time shortening effect was confirmed.

また、本発明の中心ずれ測定装置及びその方法の実施例として図8,9に例示した装置又は方法によれば、複数のガラス基板Wの中心ずれをまとめて短時間に測定できる。特に、量産工程では、複数のガラス基板Wをカセット40に立てた状態で取り扱われることが多いため、測定時間削減によって得られる効果は特に高い。   Moreover, according to the apparatus or method illustrated in FIGS. 8 and 9 as an embodiment of the center deviation measuring apparatus and method of the present invention, the center deviations of a plurality of glass substrates W can be measured in a short time. In particular, in the mass production process, since a plurality of glass substrates W are often handled in a state where they are placed on the cassette 40, the effect obtained by reducing the measurement time is particularly high.

以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなく、上述した実施例に種々の変形、改良及び置換を加えることができる。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications, improvements, and modifications can be made to the above-described embodiments without departing from the scope of the present invention. Substitutions can be added.

例えば、主平面Sの半径方向幅Bは、内周端面C1と外周端面C2との撮像画面上での画素列に沿った離間距離によっても、計測可能である。撮像素子によって得られる撮像画像は、複数の画素から構成される。撮像画像を構成する各画素に割り当てられた座標によって、撮像画像内の被写体の位置を表すことができる。   For example, the radial width B of the main plane S can also be measured by the separation distance along the pixel row on the imaging screen between the inner peripheral end face C1 and the outer peripheral end face C2. A captured image obtained by the image sensor is composed of a plurality of pixels. The position of the subject in the captured image can be represented by the coordinates assigned to each pixel constituting the captured image.

例えば、図1Aに示した計測領域DAを、撮像画像の視野とする。撮像画像の左右方向をx軸方向とし、上下方向をy軸方向とすると、内周端面C1の絶対位置は、内周端面C1上の複数の点Pjが属する画素の位置を表す座標(xj,yj)によって定めることができる(jは、自然数)。同様に、外周端面C2の絶対位置は、外周端面C2上の複数の点Piが属する画素の位置を表す座標(xi,yi)によって定めることができる(iは、自然数)。したがって、上述の演算部16は、x座標が互いに同一の点Pjと点Piとの間の距離(画素数)を半径方向幅Bとして計測することができる。そして、回転機構10によって、内周端面C1と外周端面C2を計測領域DA内に入るように全周にわたって移動させることによって、主平面Sの全周にわたる半径方向幅Bを計測できる。   For example, the measurement area DA shown in FIG. 1A is set as the field of view of the captured image. Assuming that the left-right direction of the captured image is the x-axis direction and the up-down direction is the y-axis direction, the absolute position of the inner peripheral end face C1 is a coordinate representing the positions of pixels to which a plurality of points Pj on the inner peripheral end face C1 belong (xj, yj) (j is a natural number). Similarly, the absolute position of the outer peripheral end face C2 can be determined by coordinates (xi, yi) representing the positions of pixels to which a plurality of points Pi on the outer peripheral end face C2 belong (i is a natural number). Therefore, the arithmetic unit 16 described above can measure the distance (number of pixels) between the point Pj and the point Pi having the same x coordinate as the radial width B. The radial width B over the entire circumference of the main plane S can be measured by moving the inner circumferential end face C1 and the outer circumferential end face C2 over the entire circumference by the rotation mechanism 10 so as to enter the measurement area DA.

また、上述の実施例では、主平面Sを全周にわたって計測領域DAに通過させる可動手段として、回転機構10を例示した。この実施例では、受光部11などの計測部を固定したまま、回転機構10を回転させることによって、計測領域DA内のガラス基板Wを動かしている。しかしながら、当該可動手段は、受光部11などの計測部を動かすことによって、主平面Sを全周にわたって計測領域DAに通過させてもよい。   Moreover, in the above-mentioned Example, the rotation mechanism 10 was illustrated as a movable means which passes the main plane S to measurement area | region DA over a perimeter. In this embodiment, the glass substrate W in the measurement area DA is moved by rotating the rotation mechanism 10 while fixing the measurement unit such as the light receiving unit 11. However, the movable means may cause the main plane S to pass through the measurement area DA over the entire circumference by moving a measurement unit such as the light receiving unit 11.

また、上述の図8,9に示した実施例では、回転ローラー41〜43の横方向への移動は固定し、カセット40を横方向に移動させて、回転ローラー41〜43とカセット40との横方向での相対位置を変えていた。しかしながら、回転ローラー41〜43を横方向に移動させて、カセット40の横方向への移動を固定することにより、回転ローラー41〜43とカセット40との横方向での相対位置を変えてもよい。   In the embodiment shown in FIGS. 8 and 9 described above, the movement of the rotating rollers 41 to 43 in the lateral direction is fixed, the cassette 40 is moved in the lateral direction, and the rotation rollers 41 to 43 and the cassette 40 are moved. The relative position in the horizontal direction was changed. However, the relative position of the rotating rollers 41 to 43 and the cassette 40 in the horizontal direction may be changed by moving the rotating rollers 41 to 43 in the horizontal direction and fixing the movement of the cassette 40 in the horizontal direction. .

本発明の測定の対象となるガラス基板としては特に制限はなく、中央部に円孔を有する円盤形状の基板であればよい。   There is no restriction | limiting in particular as a glass substrate used as the measuring object of this invention, What is necessary is just a disk-shaped board | substrate which has a circular hole in the center part.

また、ガラス基板のガラスの種類は、それぞれの用途に適したものが適宜選択されるが、アモルファスガラスでもよいし、結晶化ガラスでもよく、ガラス基板の表層に強化層を有する強化ガラス(例えば、化学強化ガラス)でもよい。   In addition, the glass type of the glass substrate is appropriately selected for each application, but may be amorphous glass or crystallized glass, and tempered glass having a tempered layer on the surface layer of the glass substrate (for example, Chemically tempered glass) may also be used.

また、加工前のガラス基板(以下、ガラス素基板ともいう)の製造方法としても特に制限はなく、フロート法で造られたものでもよく、フュージョン法で造られたものでもよく、プレス成形法で造られたものでもよい。   Moreover, there is no restriction | limiting in particular as a manufacturing method of the glass substrate before a process (henceforth a glass base substrate), The thing produced by the float process may be used, The thing produced by the fusion method may be used, It may be made.

中央部に円孔を有する円盤形状の基板の中でも、磁気記録媒体用ガラス基板は、他のガラス基板製品に要求される形状特性に比べて厳しいレベルのものが要求されるが、本測定装置を使用した測定方法および本測定装置を使用した測定方法を有する検査工程を含む磁気記録媒体用ガラス基板の製造方法が最も好適に適用されるものである。   Among disk-shaped substrates with a circular hole in the center, the glass substrate for magnetic recording media is required to have a level that is stricter than the shape characteristics required for other glass substrate products. The manufacturing method of the glass substrate for magnetic recording media including the inspection process having the measuring method used and the measuring method using this measuring apparatus is most suitably applied.

一般に、磁気記録媒体用ガラス基板及び磁気ディスクの製造工程は、以下の工程を含む。(1)フロート法、フュージョン法またはプレス成形法で成形されたガラス素基板を、中央部に円孔を有する円盤形状に加工した後、内周側面と外周側面に面取り加工を行う。(2)ガラス基板の上下主平面に研削加工を行う。(3)ガラス基板の側面部と面取り部に端面研磨を行う。(4)ガラス基板の上下主平面に研磨を行う。研磨工程は、1次研磨のみでも良く、1次研磨と2次研磨を行っても良く、2次研磨の後に3次研磨を行っても良い。(5)ガラス基板の精密洗浄を行い、磁気記録媒体用ガラス基板を製造する。(6)磁気記録媒体用ガラス基板の上に磁性層などの薄膜を形成し、磁気ディスクを製造する。   Generally, the manufacturing process of the glass substrate for magnetic recording media and the magnetic disk includes the following processes. (1) A glass base substrate formed by a float method, a fusion method or a press molding method is processed into a disk shape having a circular hole in the center, and then chamfered on the inner peripheral side surface and the outer peripheral side surface. (2) Grinding is performed on the upper and lower main planes of the glass substrate. (3) End face polishing is performed on the side surface portion and the chamfered portion of the glass substrate. (4) Polish the upper and lower main planes of the glass substrate. The polishing step may be only primary polishing, primary polishing and secondary polishing may be performed, or tertiary polishing may be performed after secondary polishing. (5) A glass substrate for a magnetic recording medium is manufactured by precision cleaning of the glass substrate. (6) A thin film such as a magnetic layer is formed on a glass substrate for a magnetic recording medium to manufacture a magnetic disk.

なお、上記磁気記録媒体用ガラス基板及び磁気ディスクの製造工程において、各工程間にガラス基板洗浄(工程間洗浄)やガラス基板表面のエッチング(工程間エッチング)を実施してもよい。さらに、磁気記録媒体用ガラス基板に高い機械的強度が求められる場合、ガラス基板の表層に強化層を形成する強化工程(例えば、化学強化工程)を研磨工程前、または研磨工程後、あるいは研磨工程間で実施してもよい。   In the manufacturing process of the glass substrate for magnetic recording medium and the magnetic disk, glass substrate cleaning (inter-process cleaning) or etching of the glass substrate surface (inter-process etching) may be performed between the processes. Furthermore, when high mechanical strength is required for the glass substrate for magnetic recording media, a strengthening step (for example, a chemical strengthening step) for forming a reinforcing layer on the surface layer of the glass substrate is performed before the polishing step, after the polishing step, or the polishing step. You may carry out between.

本発明において、磁気記録媒体用ガラス基板は、アモルファスガラスでもよく、結晶化ガラスでもよく、ガラス基板の表層に強化層を有する強化ガラス(例えば、化学強化ガラス)でもよい。また、本発明のガラス基板のガラス素基板は、フロート法で造られたものでもよく、フュージョン法で造られたものでもよく、プレス成形法で造られたものでもよい。   In the present invention, the glass substrate for a magnetic recording medium may be amorphous glass, crystallized glass, or tempered glass (for example, chemically tempered glass) having a tempered layer on the surface layer of the glass substrate. Further, the glass base substrate of the glass substrate of the present invention may be made by a float method, may be made by a fusion method, or may be made by a press molding method.

本発明の測定装置は、測定基準を満たせば、磁気記録媒体用ガラス基板及び磁気ディスクの製造工程のガラス基板の形状付与工程(1)や、端面研磨工程(3)で、加工途中の磁気記録媒体用ガラス基板の形状の検査に使用できる。また、磁気記録媒体用ガラス基板及び磁気ディスクの製造工程において、測定基準を満たせば、ガラス基板を精密洗浄して製造された磁気記録媒体用ガラス基板(5)の形状検査(磁気記録媒体用ガラス基板の最終検査)や、磁気記録媒体用ガラス基板の上に磁性層などの薄膜を形成して製造された磁気ディスク(6)の形状検査に使用できる。   If the measurement apparatus of the present invention satisfies the measurement standard, the magnetic recording medium during processing in the glass substrate shape imparting step (1) and the end surface polishing step (3) in the manufacturing process of the glass substrate for magnetic recording media and the magnetic disk. It can be used for inspection of the shape of a glass substrate for media. Further, in the manufacturing process of the glass substrate for magnetic recording medium and the magnetic disk, if the measurement standard is satisfied, the shape inspection of the glass substrate for magnetic recording medium (5) manufactured by precisely cleaning the glass substrate (glass for magnetic recording medium) It can be used for final inspection of a substrate) and shape inspection of a magnetic disk (6) manufactured by forming a thin film such as a magnetic layer on a glass substrate for a magnetic recording medium.

1 中心ずれ測定装置
10 回転機構
11 受光部
12 投光部
13 受光面
14 投光面
15 支柱
16 演算部
17 出力部
18 台座
21 光源
22 レンズ
23 テレセントリックレンズ
24 ビームスプリッタ
25 CCDイメージセンサ
26 CMOSイメージセンサ
31 ハウジング
32 回転台
33 中心軸
40 カセット
41〜43 回転ローラー
44 キャリア
45 制御部
A 差
B 半径方向幅
C1 内周端面
C2 外周端面
DA 計測範囲
S 主平面
W ガラス基板
DESCRIPTION OF SYMBOLS 1 Center deviation measuring apparatus 10 Rotating mechanism 11 Light receiving part 12 Light projecting part 13 Light receiving surface 14 Light projecting surface 15 Strut 16 Calculation part 17 Output part 18 Base 21 Light source 22 Lens 23 Telecentric lens 24 Beam splitter 25 CCD image sensor 26 CMOS image sensor 31 Housing 32 Turntable 33 Central Axis 40 Cassette 41-43 Rotating Roller 44 Carrier 45 Control Unit A Difference B Radial Width C1 Inner End Face C2 Outer End Face DA Measurement Range S Main Plane W Glass Substrate

Claims (16)

中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する中心ずれ測定装置であって、
前記内周と前記外周に挟まれた主平面の半径方向幅を円盤状基板の全周にわたって計測する計測部と、
前記計測部によって計測された前記半径方向幅の最大値と最小値の差を演算して該差を用いて中心ずれを演算する演算部と、
を備えることを特徴とする、中心ずれ測定装置。
A center deviation measuring device for measuring the center deviation between the inner circumference and the outer circumference of a disc-shaped substrate having a circular hole in the center,
A measurement unit that measures the radial width of the main plane sandwiched between the inner periphery and the outer periphery over the entire circumference of the disk-shaped substrate;
A calculation unit that calculates a difference between the maximum value and the minimum value of the radial width measured by the measurement unit and calculates a center shift using the difference;
A center deviation measuring apparatus comprising:
可動機構を更に備え、
前記計測部が、所定の計測領域内の被計測物を計測するものであって、
前記可動機構は、円盤状基板の全周にわたって前記主平面を前記計測領域に通過させる、請求項1に記載の中心ずれ測定装置。
A movable mechanism,
The measurement unit measures an object to be measured in a predetermined measurement area,
The center shift measuring apparatus according to claim 1, wherein the movable mechanism passes the main plane through the measurement region over the entire circumference of the disk-shaped substrate.
前記可動機構が、前記円盤状基板の周方向に前記円盤状基板を回転させる回転機構を有する、請求項2に記載の中心ずれ測定装置。   The center deviation measuring apparatus according to claim 2, wherein the movable mechanism includes a rotation mechanism that rotates the disk-shaped substrate in a circumferential direction of the disk-shaped substrate. 前記計測部が、前記円盤状基板の主平面の方向から到来した光を受光する受光部を有し、
前記半径方向幅が、前記受光部によって受光された光に基づいて計測される、請求項2又は3に記載の中心ずれ測定装置。
The measurement unit has a light receiving unit that receives light coming from the direction of the main plane of the disk-shaped substrate,
The center deviation measuring device according to claim 2 or 3, wherein the radial width is measured based on light received by the light receiving unit.
前記計測部が、前記円盤状基板に対して光を照射する投光部を有する、請求項4に記載の中心ずれ測定装置。   The center deviation measuring apparatus according to claim 4, wherein the measuring unit includes a light projecting unit that irradiates light to the disk-shaped substrate. 前記受光部が、前記主平面の方向から到来した光を撮像素子で受光する、請求項4又は5に記載の中心ずれ測定装置。   The center deviation measuring device according to claim 4 or 5, wherein the light receiving unit receives light arriving from the direction of the main plane with an imaging device. 前記受光部の受光面が下向きである、請求項4から6のいずれか一項に記載の中心ずれ測定装置。   The center deviation measuring device according to any one of claims 4 to 6, wherein a light receiving surface of the light receiving unit faces downward. 前記可動機構が、
中央部に円孔を有する複数の円盤状基板を立てた状態で横方向に並べて収容する収納容器から、収容されている円盤状基板を立てた状態で上昇させて離脱させ、離脱させた円盤状基板を下降させて前記収納容器に戻す昇降機構と、
前記収納容器に収容されている別の円盤状基板が前記昇降機構によって前記収納容器から上昇して離脱するように、前記収納容器と前記昇降機構との前記横方向の相対位置を移動させるピッチ移動機構とを有する、請求項2から6のいずれか一項に記載の中心ずれ測定装置。
The movable mechanism is
Disc shape in which a plurality of disc-shaped substrates having a circular hole in the central portion are stowed up and separated from a storage container that is stored side by side in a standing state, and the disc-shaped substrate that is contained is raised in a standing state. An elevating mechanism for lowering the substrate and returning it to the storage container;
Pitch movement for moving the horizontal relative position of the storage container and the lifting mechanism so that another disk-shaped substrate stored in the storage container is lifted and removed from the storage container by the lifting mechanism The center deviation measuring device according to any one of claims 2 to 6, further comprising a mechanism.
前記円盤状基板が、ガラス基板である、請求項1から8のいずれか一項に記載の中心ずれ測定装置。   The center deviation measuring device according to any one of claims 1 to 8, wherein the disk-shaped substrate is a glass substrate. 前記ガラス基板が、磁気記録媒体用ガラス基板である、請求項9に記載の中心ずれ測定装置。   The center deviation measuring apparatus according to claim 9, wherein the glass substrate is a glass substrate for a magnetic recording medium. 中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する中心ずれ測定方法であって、
前記内周と前記外周に挟まれた主平面の半径方向幅を円盤状基板の全周にわたって計測する計測工程と、
計測された前記半径方向幅の最大値と最小値の差を演算する演算工程と、
を有する中心ずれ測定方法。
A center deviation measuring method for measuring the center deviation of the inner circumference and outer circumference of a disc-shaped substrate having a circular hole in the center,
A measuring step of measuring the radial width of the main plane sandwiched between the inner periphery and the outer periphery over the entire circumference of the disc-shaped substrate;
A calculation step of calculating a difference between the maximum value and the minimum value of the measured radial width;
A method of measuring a center deviation.
中央部に円孔を有する円盤状基板の内周と外周の中心ずれを測定する中心ずれ測定方法であって、
中央部に円孔を有する複数の円盤状基板を立てた状態で横方向に並べて収容する収納容器から、収容されている円盤状基板を昇降機構によって立てた状態で上昇させて離脱させ、
離脱させた円盤状基板を該円盤状基板の周方向に回転させ、
回転させた円盤状基板の主平面の半径方向幅を全周にわたって計測する計測工程と、
前記半径方向幅を計測した円盤状基板を前記昇降機構によって下降させて前記収納容器に戻し、
前記収納容器に収容されている別の円盤状基板が前記昇降機構によって前記収納容器から上昇して離脱するように、前記収納容器と前記昇降機構との前記横方向の相対位置を移動させるピッチ移動工程と、
計測工程で計測された前記半径方向幅の最大値と最小値の差を演算して該差を用いて中心ずれを演算する演算工程とを含む、中心ずれ測定方法。
A center deviation measuring method for measuring the center deviation of the inner circumference and outer circumference of a disc-shaped substrate having a circular hole in the center,
From the storage container that stores a plurality of disk-shaped substrates having a circular hole in the center in a standing state, the stored disk-shaped substrates are lifted and detached in a standing state by an elevating mechanism,
Rotate the detached disk-shaped substrate in the circumferential direction of the disk-shaped substrate,
A measurement process for measuring the radial width of the main plane of the rotated disk-shaped substrate over the entire circumference;
The disk-shaped substrate whose radial width is measured is lowered by the lifting mechanism and returned to the storage container,
Pitch movement for moving the horizontal relative position of the storage container and the lifting mechanism so that another disk-shaped substrate stored in the storage container is lifted and removed from the storage container by the lifting mechanism Process,
A center deviation measuring method comprising: calculating a difference between a maximum value and a minimum value of the radial width measured in the measurement step and calculating a center deviation using the difference.
前記円盤状基板が、ガラス基板である、請求項11又は12に記載の中心ずれ測定方法。   The center deviation measuring method according to claim 11 or 12, wherein the disk-shaped substrate is a glass substrate. 前記ガラス基板が、磁気記録媒体用ガラス基板である、請求項13に記載の中心ずれ測定方法。   The center deviation measuring method according to claim 13, wherein the glass substrate is a glass substrate for a magnetic recording medium. 請求項1から10のいずれか一項に記載の中心ずれ測定装置を用いた検査工程を有する円盤状基板の製造方法。   The manufacturing method of the disk shaped board | substrate which has an test | inspection process using the center shift measuring apparatus as described in any one of Claims 1-10. 請求項11から14のいずれか一項に記載の中心ずれ測定方法が使用される検査工程を含む円盤状基板の製造方法。   The manufacturing method of a disk shaped board | substrate including the test | inspection process in which the center-shift measuring method as described in any one of Claims 11-14 is used.
JP2011013221A 2011-01-25 2011-01-25 Center deviation measuring device and method therefor Withdrawn JP2012154740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011013221A JP2012154740A (en) 2011-01-25 2011-01-25 Center deviation measuring device and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011013221A JP2012154740A (en) 2011-01-25 2011-01-25 Center deviation measuring device and method therefor

Publications (1)

Publication Number Publication Date
JP2012154740A true JP2012154740A (en) 2012-08-16

Family

ID=46836619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011013221A Withdrawn JP2012154740A (en) 2011-01-25 2011-01-25 Center deviation measuring device and method therefor

Country Status (1)

Country Link
JP (1) JP2012154740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052257A (en) * 2012-09-06 2014-03-20 Asahi Glass Co Ltd Device for measuring shape of disk-shaped substrate and method thereof
KR101622982B1 (en) 2014-12-19 2016-05-20 한국항공우주연구원 Hole eccentric measurememt device and measurememt methods for coupons test

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159722A (en) * 1994-11-30 1996-06-21 Nok Corp Product dimension measuring instrument
JP2007256133A (en) * 2006-03-24 2007-10-04 Hitachi High-Technologies Corp Method and device for inspecting surface defect of disc
JP2008122349A (en) * 2006-11-15 2008-05-29 Tekkusu Iijii:Kk Measuring instrument

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159722A (en) * 1994-11-30 1996-06-21 Nok Corp Product dimension measuring instrument
JP2007256133A (en) * 2006-03-24 2007-10-04 Hitachi High-Technologies Corp Method and device for inspecting surface defect of disc
JP2008122349A (en) * 2006-11-15 2008-05-29 Tekkusu Iijii:Kk Measuring instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014052257A (en) * 2012-09-06 2014-03-20 Asahi Glass Co Ltd Device for measuring shape of disk-shaped substrate and method thereof
KR101622982B1 (en) 2014-12-19 2016-05-20 한국항공우주연구원 Hole eccentric measurememt device and measurememt methods for coupons test

Similar Documents

Publication Publication Date Title
JP4814731B2 (en) Substrate holding apparatus, inspection or processing apparatus, substrate holding method, inspection or processing method, and inspection apparatus
US9576854B2 (en) Peeling apparatus, peeling system, and peeling method
CN101711354A (en) Method for detecting surface defects on a substrate and device using said method
KR20060019236A (en) Exposure apparatus for manufacturing semiconductor device
JP2016213458A (en) Imprint device, substrate transport device, imprint method and manufacturing method for manufacturing article
KR102189285B1 (en) Method of obtaining location information of dies
JP2011122935A (en) Inspection method and inspection device
JP6502504B2 (en) Pre-alignment measurement apparatus and method
JP6473038B2 (en) Inspection apparatus and substrate processing apparatus
JP2012154740A (en) Center deviation measuring device and method therefor
JPWO2013027252A1 (en) Encoder manufacturing apparatus, encoder manufacturing method, servo motor manufacturing method
KR20200086727A (en) Double-sided polishing machine and double-sided polishing method
JP2016152284A (en) Positioning device, lithography device, and substrate positioning method
JP2014052257A (en) Device for measuring shape of disk-shaped substrate and method thereof
KR102103891B1 (en) Conveyance apparatus, lithography apparatus, and method of manufacturing article
JP2014002064A (en) Inspection device, and inspection method
JP4563847B2 (en) Board inspection equipment
JP7422458B2 (en) Foreign matter inspection equipment, foreign matter inspection method, processing equipment, and article manufacturing method
JP2005083939A (en) Method and device for measuring amount of warp and device for lamination
JP2011252772A (en) Device and method for shape measurement of glass substrate and manufacturing method of glass substrate
JP2009250653A (en) Surface inspection method and surface inspection device
JP5875405B2 (en) Substrate processing apparatus and substrate processing method
US6780262B2 (en) Multilayer disc manufacturing apparatus, and disc bonding method
JP2008177206A (en) Substrate holder, surface shape measuring device and stress measuring device
TW201433786A (en) Wafer inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20140306