[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012151262A - Generation method and generation program of backscattering intensity in charged particle beam exposure, and manufacturing method of semiconductor device utilizing that method - Google Patents

Generation method and generation program of backscattering intensity in charged particle beam exposure, and manufacturing method of semiconductor device utilizing that method Download PDF

Info

Publication number
JP2012151262A
JP2012151262A JP2011008456A JP2011008456A JP2012151262A JP 2012151262 A JP2012151262 A JP 2012151262A JP 2011008456 A JP2011008456 A JP 2011008456A JP 2011008456 A JP2011008456 A JP 2011008456A JP 2012151262 A JP2012151262 A JP 2012151262A
Authority
JP
Japan
Prior art keywords
layer
charged particle
intensity
area
particle intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008456A
Other languages
Japanese (ja)
Other versions
JP5779886B2 (en
Inventor
Kozo Ogino
宏三 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Semiconductor Ltd
Original Assignee
Fujitsu Semiconductor Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Semiconductor Ltd filed Critical Fujitsu Semiconductor Ltd
Priority to JP2011008456A priority Critical patent/JP5779886B2/en
Publication of JP2012151262A publication Critical patent/JP2012151262A/en
Application granted granted Critical
Publication of JP5779886B2 publication Critical patent/JP5779886B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To generate the backscattering intensity with higher accuracy by reducing the generation man-hour of parameters.SOLUTION: In a method of generating the backscattering intensity of charged particles, parameters of a k-th layer is determined according to the mixture ratio obtained by the weighted mean of pattern area density from a first layer to a (k-1)th layer and the depth. Intensities of downward transmission electrons, reflection electrons and upward transmission electrons are determined, and the sum of the reflection electrons on the uppermost layer directly under a resist layer and the upward transmission electrons is output as the backscattering intensity to the resist layer.

Description

本発明は,荷電粒子ビーム露光における後方散乱強度の生成方法,生成プログラム及びその方法を利用した半導体装置の製造方法に関する。   The present invention relates to a backscattering intensity generation method and generation program in charged particle beam exposure, and a semiconductor device manufacturing method using the method.

近年,半導体装置の集積度の向上に伴い,要求されるパターンサイズが微細化され,荷電粒子ビーム,例えば,電子ビームを用いた露光方法が使用されている。このような荷電粒子ビーム露光方法(以下,簡単のために単に電子ビーム露光方法と称する。)の問題点は,近接効果によりレジスト寸法が変動することである。レジストを通り抜けた電子は,基板を構成する物質で散乱されてレジスト中に戻り,レジストを再感光する。このレジストに戻る電子は後方散乱電子と呼ばれ,後方散乱電子の量(強度,エネルギー)に応じて現像後のレジストパターンの寸法が変動する。これが近接効果である。そして,この後方散乱電子の量は近傍の物質のパターンの粗密に比例するため,パターンレイアウトに応じて近接効果によるレジスト寸法の変動幅も異なってしまう。   In recent years, as the degree of integration of semiconductor devices has improved, the required pattern size has been reduced, and an exposure method using a charged particle beam, for example, an electron beam, has been used. The problem with such a charged particle beam exposure method (hereinafter simply referred to as the electron beam exposure method for simplicity) is that the resist dimensions vary due to the proximity effect. Electrons that have passed through the resist are scattered by the material constituting the substrate and returned to the resist, and the resist is re-exposed. The electrons returning to the resist are called backscattered electrons, and the dimension of the resist pattern after development varies according to the amount (intensity, energy) of backscattered electrons. This is the proximity effect. Since the amount of backscattered electrons is proportional to the density of the pattern of the nearby substance, the variation width of the resist dimension due to the proximity effect varies depending on the pattern layout.

この近接効果を補正するための方法として,1点から入射した電子がレジストに与えるエネルギー分布(EID:Exposure Intensity Distribution)関数にもとづき,それぞれの領域において基板から戻る電子の影響を見積もり,それに応じてその領域での露光量を適正化したり,パターン寸法を変更したりすることが提案されている。   As a method for correcting this proximity effect, the influence of electrons returning from the substrate in each region is estimated based on the energy distribution (EID: Exposure Intensity Distribution) function given to the resist by electrons incident from one point, and accordingly, It has been proposed to optimize the exposure amount in the region or change the pattern size.

さらに,電子ビームが入射されるレジスト層の下には,それぞれが複数の物質のパターンを有する複数の層が存在し,レジスト層に入射された電子ビームは,前方散乱によりそのエネルギーの一部がレジスト層に蓄積されるとともに,下層の複数層で散乱されてレジスト層に戻りそのエネルギーの一部がレジスト層に蓄積される。この下層で散乱されてレジスト層に戻る電子が後方散乱電子である。   Furthermore, there are a plurality of layers each having a pattern of a plurality of substances under the resist layer to which the electron beam is incident. A part of the energy of the electron beam incident on the resist layer is caused by forward scattering. While being accumulated in the resist layer, it is scattered by a plurality of lower layers and returns to the resist layer, and a part of the energy is accumulated in the resist layer. Electrons scattered in this lower layer and returning to the resist layer are backscattered electrons.

このレジストの下層にある複数層で散乱される後方散乱電子強度を正確に見積もることで,近接効果によるレジスト寸法の変動幅を正確に見積もることができ,それに基づいて,露光量を補正したり露光パターンを補正したりして,露光現像後のパターン幅を設計値どおりにまたは同等にすることが行われる。   By accurately estimating the backscattered electron intensity scattered by multiple layers below this resist, it is possible to accurately estimate the fluctuation range of the resist dimensions due to the proximity effect. The pattern width after exposure and development is made equal to the design value or equivalent by correcting the pattern.

上記のレジストの下層にある複数層で散乱される後方散乱電子強度を正確に見積もる方法は,例えば,以下の特許文献に記載されている。   A method for accurately estimating the intensity of backscattered electrons scattered by a plurality of layers under the resist is described in, for example, the following patent documents.

特開2005−101501号公報JP 2005-101501 A 特開2007−27613号公報JP 2007-27613 A 特開2004−31836号公報JP 2004-31836 A

特許文献1などには,多層配線構造の電子ビーム露光において,電子の後方散乱強度を見積もるモデルとしてSEEF(Simplified Electron Energy Flux)モデルが提案されている。このモデルでは,多層配線構造の各層における(1)下向きに透過する電子の強度と,(2)反射する電子の強度と,(3)上向きに透過する電子の強度を求めて,最上層のレジスト層の直下の層における反射電子の強度と上向きの透過電子の強度の和を,後方散乱強度として求める。各層は,複数の物質パターンが混在しているので,例えば,配線層がシリコン酸化膜と金属物質とからなる場合は,電子の透過率,電子の散乱長のパラメータを,それぞれ上記の3つの強度と2つの物質について,予め露光実験により求めておく必要がある。つまり,1層に必要はパラメータが上記の例では12個にも及ぶ。   Patent Document 1 proposes a SEEF (Simplified Electron Energy Flux) model as a model for estimating the backscattering intensity of electrons in electron beam exposure of a multilayer wiring structure. In this model, (1) the intensity of electrons that are transmitted downward, (2) the intensity of electrons that are reflected, and (3) the intensity of electrons that are transmitted upward, in each layer of the multilayer wiring structure. The sum of the reflected electron intensity and the upward transmitted electron intensity in the layer immediately below the layer is obtained as the backscattering intensity. Each layer contains a plurality of material patterns. For example, when the wiring layer is made of a silicon oxide film and a metal material, the parameters of the electron transmittance and the electron scattering length are set to the above three intensities. These two substances must be obtained in advance by an exposure experiment. In other words, as many as 12 parameters are necessary for one layer in the above example.

そのため,多層配線構造の層の数に比例してパラメータの数が増大し,10層を超える多層配線構造の場合は,パラメータの数が100を超えることになり,露光実験で全てのパラメータを正確に抽出しておくことは過大な工数を必要とし,現実的ではない。   For this reason, the number of parameters increases in proportion to the number of layers in the multilayer wiring structure, and in the case of a multilayer wiring structure exceeding 10 layers, the number of parameters exceeds 100. It is not realistic to extract in the above process because it requires excessive man-hours.

さらに,SEEFモデルでは,各層におけるパラメータが固定値であるため,3次元的な重金属(例えばタングステンW)の分布の粗密度が大きい基板の場合,その粗密度がパラメータに反映されていないので,後方散乱強度の計算結果の誤差が大きくなりやすいという問題もある。   Further, in the SEEF model, since the parameters in each layer are fixed values, in the case of a substrate having a large coarse density of the distribution of three-dimensional heavy metal (for example, tungsten W), the coarse density is not reflected in the parameters. There is also a problem that an error in the calculation result of the scattering intensity tends to be large.

そこで,本発明の目的は,より簡便な方法で,またはより正確に,後方散乱強度を生成することができる方法,及びその方法を利用した半導体装置に製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method capable of generating backscattering intensity by a simpler method or more accurately, and a manufacturing method for a semiconductor device using the method.

荷電粒子ビーム露光における後方散乱強度の生成方法の第1の側面は,第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する方法において,
前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βとが,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に与えられ,
さらに,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とが,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に与えられ,
前記生成方法は,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記物質の混合比率に対する前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程を有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
前記第1層に対して,前記第1層における下向き透過荷電粒子強度Eと前記第1層における反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求めた後,第2層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eと反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求める第2の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第3の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第4の工程とを有する。
The first aspect of the method for generating the backscattering intensity in the charged particle beam exposure is that the layers from the first layer to the Nth layer each include a pattern of one substance or a plurality of substances on the first layer of the multilayer wiring structure. In the method for generating the backscattering intensity of the charged particles on the resist layer when the resist layer formed on is irradiated with a charged particle beam,
With respect to the kth (k ≦ N) kth layer from the resist layer, the reflection coefficient R corresponding to the number of particles reflected by the kth layer through the (k−1) th (k−1) th layer is reflected. k and the reflection scattering length β R and the downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that the charged particles that have reached the k-th layer pass through the k-th layer downward, According to the mixing ratio of the substance from the first layer to the (k-1) th layer and for each substance contained in the kth layer,
Further, the upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ corresponding to the number of particles that have passed through the k + 1th layer upward and transmitted through the kth layer are determined from the Nth layer. according to the mixing ratio of the substance up to the k + 1 layer and for each substance contained in the kth layer,
The generation method is as follows:
With respect to the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the A first step of dividing the area according to the reflection coefficient R k , the downward transmission coefficient T k , the upward transmission coefficient T ′ k and the scattering length β with respect to the mixing ratio, and the distance between the surrounding area and the area of interest. Have
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
For the first layer, the downward transmitted charged particle intensity E 1 in the first layer and the reflected charged particle intensity E ′ 1 in the first layer are obtained by the area of the first step, respectively, A second step in which the lower transmitted charged particle intensity E and the reflected charged particle intensity E ′ in each layer are sequentially calculated from the area of the first step in order from the second layer to the Nth layer;
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure Then, in order from the N-1th layer to the first layer, a third step of obtaining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step,
And a fourth step of outputting the sum of the reflected charged particle intensity E ′ 1 obtained in the first layer below the resist layer and the upward transmitted charged particle intensity E ″ 1 as the backscattering intensity. .

第1の側面によれば,高精度に後方散乱強度を求めることができる。   According to the first aspect, the backscattering intensity can be obtained with high accuracy.

本実施の形態における後方散乱のモデルを示す図である。It is a figure which shows the model of backscattering in this Embodiment. 後方散乱の電子エネルギー流(電子強度)を求める演算を説明する図である。It is a figure explaining the calculation which calculates | requires the electron energy flow (electron intensity) of backscattering. 後方散乱の電子エネルギー流(電子強度)を求める演算を説明する図である。It is a figure explaining the calculation which calculates | requires the electron energy flow (electron intensity) of backscattering. 本実施の形態のパラメータ抽出を説明する図である。It is a figure explaining the parameter extraction of this Embodiment. 本実施の形態におけるパラメータ抽出手順を示すフローチャート図である。It is a flowchart figure which shows the parameter extraction procedure in this Embodiment. レジスト非依存パラメータテーブルを生成するフローチャート図である。It is a flowchart figure which produces | generates a resist independent parameter table. 混合比率計算の係数(比重w)を算出するフローチャート図である。It is a flowchart figure which calculates the coefficient (specific gravity w) of mixing ratio calculation. レジスト依存パラメータテーブル作成のフローチャート図である。It is a flowchart figure of registration dependent parameter table preparation. 電子散乱の様子を示す図である。It is a figure which shows the mode of electron scattering. レジスト非依存のパラメータの生成を説明する図である。It is a figure explaining the production | generation of the parameter independent of a resist. レジスト非依存のパラメータの生成を説明する別の図である。It is another figure explaining the production | generation of a resist independent parameter. 計算方法により求めたレジスト非依存パラメータテーブル30の9つのパラメータを示す図である。It is a figure which shows nine parameters of the resist independent parameter table 30 calculated | required with the calculation method. 計算方法により求めたレジスト非依存パラメータテーブル30の9つのパラメータを示す図である。It is a figure which shows nine parameters of the resist independent parameter table 30 calculated | required with the calculation method. 図14は,混合比率α k−1と比重wとの関係を示す図である。FIG. 14 is a diagram illustrating the relationship between the mixing ratio α k−1 and the specific gravity w. 図14の具体的なフローチャート図である。FIG. 15 is a specific flowchart of FIG. 14. レジスト依存パラメータテーブル作成を説明する図である。It is a figure explaining registration dependence parameter table creation. レジスト依存パラメータテーブル作成を説明する図である。It is a figure explaining registration dependence parameter table creation. 本実施の形態における後方散乱強度計算の手順を示すフローチャート図である。It is a flowchart figure which shows the procedure of the backscattering intensity calculation in this Embodiment. 第k層の透過,反射,散乱長のパラメータを決定する手順の詳細フローチャート図である。It is a detailed flowchart figure of the procedure which determines the parameter of transmission, reflection, and scattering length of a k-th layer. 第k層の透過,反射,散乱長のパラメータの決定方法を説明する図である。It is a figure explaining the determination method of the parameter of transmission of the kth layer, reflection, and scattering length. 下向き透過係数と散乱長のパラメータの決定方法を示す図である。It is a figure which shows the determination method of the parameter of a downward transmission coefficient and scattering length. 反射計数と散乱長のパラメータの決定方法を示す図である。It is a figure which shows the determination method of the parameter of a reflection count and scattering length. 上向き透過係数と散乱長のパラメータの決定方法を示す図である。It is a figure which shows the determination method of the parameter of an upward transmission coefficient and scattering length. 図18に示した後方散乱強度計算の別のフローチャート図である。It is another flowchart figure of backscattering intensity calculation shown in FIG.

本発明は,荷電粒子ビーム露光に適用されるが,以下,その一例である電子ビーム露光を例にして説明する。従って,荷電粒子として電子が,荷電粒子ビームとして電子ビームがそれぞれ例示的に示される。   The present invention is applied to charged particle beam exposure. Hereinafter, an example of electron beam exposure will be described. Therefore, an electron is illustrated as a charged particle, and an electron beam is illustrated as a charged particle beam.

[半導体装置の製造方法の露光現像工程]
まず,本実施の形態における半導体装置の製造方法の露光現像工程について概略を説明する。集積回路設計ツールにより生成された設計パターンデータは,加工すべき物質または材料とそのパターンデータとを含み,露光パターンと露光量を有する露光データに変換される。即ち,露光データは,電子ビーム露光における各ショットの露光量と,各ショットのパターンデータとを有する。この電子ビーム露光は,ポイントビーム露光法と,可変成形露光法と,部分一括露光方法と,プロジェクションタイプの露光方法などのいずれであっても良い。ただし,プロジェクションタイプの露光方法を用いる場合には,露光量はパターンによらず一定である。
[Exposure development process of semiconductor device manufacturing method]
First, an outline of the exposure and development process of the method for manufacturing a semiconductor device in the present embodiment will be described. The design pattern data generated by the integrated circuit design tool includes a substance or material to be processed and its pattern data, and is converted into exposure data having an exposure pattern and an exposure amount. That is, the exposure data includes the exposure amount of each shot in electron beam exposure and the pattern data of each shot. This electron beam exposure may be a point beam exposure method, a variable shaping exposure method, a partial batch exposure method, a projection type exposure method, or the like. However, when a projection type exposure method is used, the exposure amount is constant regardless of the pattern.

設計値通りのパターンを設計値通りの露光量で露光すると,前述の通り,近接効果により現像パターンに変動を招く。従って,近接効果を考慮して露光パターンの形状と露光量のいずれか一方または両方を補正する近接効果補正工程により,近接効果補正された露光データが生成される。この近接効果補正工程には,後方散乱強度を高精度に生成する工程が含まれる。そして,補正された露光データにしたがって,露光装置により半導体ウエハまたはマスクに電子ビーム露光が行われ,露光されたレジストが現像され,レジスト層の下の層がパターニングされる。このパターニングの対象膜には,例えば,AlやCuなどの配線層,WやCuなどのビアホール層などが含まれる。   When a pattern according to a design value is exposed with an exposure amount according to a design value, as described above, the development pattern varies due to the proximity effect. Accordingly, the proximity effect corrected exposure data is generated by the proximity effect correction step of correcting either or both of the shape and exposure amount of the exposure pattern in consideration of the proximity effect. This proximity effect correction step includes a step of generating the backscattering intensity with high accuracy. Then, according to the corrected exposure data, the exposure apparatus performs electron beam exposure on the semiconductor wafer or mask, develops the exposed resist, and patterns the layer below the resist layer. The patterning target film includes, for example, a wiring layer such as Al and Cu, and a via hole layer such as W and Cu.

上記の通り,近接効果補正工程において,電子の後方散乱強度を求める工程が実行される。そして,近接効果補正された露光データによる露光,現像,パターニング工程を利用して,所望の半導体装置が製造される。   As described above, in the proximity effect correction step, the step of obtaining the electron backscattering intensity is executed. Then, a desired semiconductor device is manufactured by using the exposure, development, and patterning processes based on the exposure data corrected for the proximity effect.

[後方散乱モデル]
図1は,本実施の形態における後方散乱のモデルを示す図である。図1(A)は半導体装置の断面図であり,シリコン基板10上に,SiO2膜内にあるパターン密度のWのコンタクトホールを有するコンタクトホール層12が形成され,その上にパターンニングされていないAlのメタル層13が形成され,さらにその上にレジスト層14が形成されている。つまり,露光,現像対象のレジスト層14の下に,メタル層13とコンタクトホール層12とシリコン基板10の多層構造が存在する。レジスト層14が露光,現像され,それをマスクにしてAlのメタル層13がパターニングされ,それがシリコン酸化膜により埋められると,Alとシリコン酸化膜のパターンが混在する配線層が形成される。このような被パターニング材料層の形成と,その上のレジストの露光,現像と,現像されたレジストによる被パターニング材料層のパターニング工程とを繰り返すことで,多層配線構造がシリコン基板10上に形成される。
[Backscatter model]
FIG. 1 is a diagram showing a backscattering model in the present embodiment. FIG. 1A is a cross-sectional view of a semiconductor device. A contact hole layer 12 having a W contact hole with a pattern density in a SiO 2 film is formed on a silicon substrate 10 and patterned thereon. A non-Al metal layer 13 is formed, and a resist layer 14 is formed thereon. That is, a multilayer structure of the metal layer 13, the contact hole layer 12, and the silicon substrate 10 exists under the resist layer 14 to be exposed and developed. The resist layer 14 is exposed and developed, and the Al metal layer 13 is patterned using the resist layer 14 as a mask. When the resist layer 14 is filled with a silicon oxide film, a wiring layer in which Al and silicon oxide film patterns are mixed is formed. The multilayer wiring structure is formed on the silicon substrate 10 by repeating the formation of the patterning material layer, the exposure and development of the resist thereon, and the patterning process of the patterning material layer using the developed resist. The

したがって,多層配線構造を形成する半導体製造工程において,図1(B)に示したように,シリコン基板10上にN層の多層配線構造が形成され,その第1層上にレジスト層14が形成された状態で,レジスト層14が電子ビーム露光される工程が存在する。   Therefore, in the semiconductor manufacturing process for forming a multilayer wiring structure, as shown in FIG. 1B, an N-layer multilayer wiring structure is formed on the silicon substrate 10, and a resist layer 14 is formed on the first layer. In this state, there is a step in which the resist layer 14 is exposed to an electron beam.

図1(B)に示した後方散乱のモデルにより,以下のような計算によって,レジスト層14に照射される後方散乱電子の強度(エネルギー流)の分布(マップ)が求められる。この計算方法は,例えば,特開平2005−101501号公報に記載されたものと同等である。   With the backscattering model shown in FIG. 1B, the distribution (map) of the intensity (energy flow) of backscattered electrons irradiated on the resist layer 14 is obtained by the following calculation. This calculation method is equivalent to, for example, that described in JP-A-2005-101501.

本実施の形態における後方散乱のモデルでは,図1(B)に示されるとおり,レジスト層14の下にはシリコン基板10上に形成されたN層からなる多層配線構造20が形成され,多層配線構造10の各層,例えば第k層においては,電子ビームが次のように透過または反射されると仮定している。すなわち,第k層20kにおける電子(荷電粒子)強度は,(1)第k−1層を透過した第k−1層における下向き透過電子(荷電粒子)強度Ek−1に下向き透過係数Tを乗算して求めた第k層における下向き透過電子(荷電粒子)強度Eと,(2)第k−1層における下向き透過電子(荷電粒子)強度Ek−1に反射係数Rを乗算して求めた第k層における反射電子(荷電粒子)強度E’と,(3)第k+1層から戻る電子(荷電粒子)強度に上向き透過係数T'を乗算して求めた第k層における上向き透過電子(荷電粒子)強度E”とを有し,第k+1層から戻る電子(荷電粒子)強度は,第k+1層における上向き透過電子(荷電粒子)強度E”k+1と,第k+1層における反射電子(荷電粒子)強度E’との和である。 In the backscattering model according to the present embodiment, as shown in FIG. 1B, a multilayer wiring structure 20 composed of an N layer formed on the silicon substrate 10 is formed under the resist layer 14, and the multilayer wiring is formed. In each layer of the structure 10, for example the kth layer, it is assumed that the electron beam is transmitted or reflected as follows. That is, the electron (charged particle) intensity in the k-th layer 20k is equal to (1) the downward transmission electron (charged particle) intensity E k-1 in the k- 1th layer transmitted through the k−1th layer, and the downward transmission coefficient T k. multiplies the downward transmission electron (charged particles) intensity E k, the reflection coefficient R k downward transmission electron (charged particles) intensity E k-1 in (2) (k-1) -th layer in the k-th layer obtained by multiplying the The k-th layer obtained by multiplying the reflected electron (charged particle) intensity E ′ k in the k-th layer and (3) the electron (charged particle) intensity returning from the (k + 1) -th layer by the upward transmission coefficient T ′ k. upward transmission electron (charged particles) intensity E in "and a k, electrons (charged particles) intensity returning from the (k + 1) th layer, the upward transmission electron (charged particles) in the k + 1 layer strength E" and k + 1, k + 1-th layer With reflected electron (charged particle) intensity E ′ k It is.

なお,上記の電子強度は電子エネルギー流とも称する。   The above electron intensity is also referred to as electron energy flow.

したがって,後方散乱強度の計算では,多層配線構造20の第1層について,レジスト層14に入射される電子強度Eに下向き透過係数Tを乗算して求めた第1層における下向き透過電子強度Eと,反射係数Rを乗算して求めた第1層における反射電子強度E’とが求められる。このレジスト層14に入射される電子強度Eは,電子ビーム露光工程での露光強度に対応する。 Therefore, in the calculation of the backscattering intensity, the downward transmission electron intensity in the first layer obtained by multiplying the electron intensity E 0 incident on the resist layer 14 by the downward transmission coefficient T 1 for the first layer of the multilayer wiring structure 20. The reflected electron intensity E ′ 1 in the first layer obtained by multiplying E 1 by the reflection coefficient R 1 is obtained. The electron intensity E 0 incident on the resist layer 14 corresponds to the exposure intensity in the electron beam exposure process.

さらに,第2層〜第N層まで同様にして下向き透過電子強度Eと,反射電子強度E’とが求められる。   Further, the downward transmitted electron intensity E and the reflected electron intensity E ′ are obtained in the same manner from the second layer to the Nth layer.

その後,シリコン基板10における反射電子強度E’N+1が,第N層の下向き透過電子強度Eにシリコン基板での反射係数Rを乗算して求められる。そして,第N層について,この反射電子強度E’N+1に上向き透過係数T’を乗じて第N層における上向き透過電子強度E”を求めた後,第N−1層から第1層に対して順に,各層における上向き透過電子強度E”がそれぞれ求められる。最後に,レジスト層14の下の第1層で求められた反射電子強度E’と上向き透過電子強度E”との和がレジスト層への後方散乱強度として求められる。 Thereafter, the reflected electron intensity E ′ N + 1 on the silicon substrate 10 is obtained by multiplying the downward transmitted electron intensity E N of the Nth layer by the reflection coefficient R on the silicon substrate. Then, the N th layer, after obtaining the upward transmission electron intensity E "N in the N layer multiplied by N 'upward transmission coefficient T to N + 1' The backscattered electron intensity E, the first layer from the N-1 layer On the other hand, the upward transmitted electron intensity E ″ in each layer is obtained in order. Finally, the sum of the reflected electron intensity E ′ 1 and the upward transmitted electron intensity E ″ 1 obtained in the first layer below the resist layer 14 is obtained as the backscattering intensity to the resist layer.

多層配線構造20の各層は,例えばAlと酸化シリコンのパターンが混在する層や,Cuと酸化シリコンのパターンが混在する層や,Wと酸化シリコンのパターンが混在する層などである。そして,電子の透過や反射の散乱の振る舞いは,電子が照射される物質によって異なる。例えば,酸化シリコンは透過しやすく,アルミニウムAlや銅Cuはやや透過しにくく,重金属であるタングステンWは透過しにくい。したがって,物質毎にその下向き透過係数T,反射係数R,上向き透過係数T’が異なる。さらに,各層の異なる物質の面積密度は格子状に分割された複数のエリア(小領域)によって異なるので,そのエリアの物質の面積密度によっても電子の透過,反射の散乱の振る舞いも異なってくる。   Each layer of the multilayer wiring structure 20 is, for example, a layer in which Al and silicon oxide patterns are mixed, a layer in which Cu and silicon oxide patterns are mixed, and a layer in which W and silicon oxide patterns are mixed. And the behavior of electron transmission and reflection scattering differs depending on the material irradiated with electrons. For example, silicon oxide is easy to permeate, aluminum Al and copper Cu are somewhat difficult to permeate, and heavy metal tungsten W is difficult to permeate. Therefore, the downward transmission coefficient T, the reflection coefficient R, and the upward transmission coefficient T ′ are different for each material. Furthermore, since the area density of different materials in each layer differs depending on a plurality of areas (small regions) divided in a lattice shape, the behavior of electron transmission and reflection scattering also differs depending on the area density of the materials in that area.

また,入射された電子は周囲に散乱される。この散乱は一般にガウス分布に従い,ガウス分布の拡がりは,電子の散乱長に依存する。しかも,電子の散乱長は,物質によってもそれぞれ異なる。そこで,各層での下向き透過,反射,上向き透過の各電子強度は,面積密度法を用いて求められる。   In addition, incident electrons are scattered around. This scattering generally follows a Gaussian distribution, and the spread of the Gaussian distribution depends on the electron scattering length. Moreover, the electron scattering length varies depending on the material. Therefore, the electron intensity of downward transmission, reflection, and upward transmission in each layer is obtained using the area density method.

面積密度法では,各層をメッシュ状に分割して複数のエリア(小領域)にし,注目エリア(x,y)に対して,電子の散乱長で画定される領域内の周囲のエリア(x’,y’)から散乱される電子数を累積して,当該注目エリア(x,y)での電子数を求める。この電子数が電子強度(電子エネルギー流)である。その場合,電子の散乱により拡がる分布は,例えばガウス分布のように,散乱距離が長くなるほど電子数が減少し,その減少の割合は電子の散乱長に依存する。   In the area density method, each layer is divided into meshes to form a plurality of areas (small regions), and the surrounding area (x ′) in the region defined by the electron scattering length with respect to the area of interest (x, y) , y ′) to accumulate the number of electrons scattered from the target area (x, y). This number of electrons is the electron intensity (electron energy flow). In this case, the distribution that spreads due to electron scattering, such as a Gaussian distribution, decreases as the scattering distance increases, and the rate of the reduction depends on the electron scattering length.

図2,図3は,後方散乱の電子エネルギー流(電子強度)を求める演算を説明する図である。まず,図2中のS10には,第k層の下向き透過電子強度(電子エネルギー流)Eと,反射電子強度(電子エネルギー流)E’と,上向き透過電子強度(電子エネルギー流)E”とを面積分で求めるそれぞれの演算式(1)(2)(3)が示されている。この例では,第k層はWと酸化シリコンSiO2とからなる層である。 2 and 3 are diagrams for explaining the calculation for obtaining the electron energy flow (electron intensity) of backscattering. First, S10 in FIG. 2 includes downward transmitted electron intensity (electron energy flow) E k , reflected electron intensity (electron energy flow) E ′ k , and upward transmitted electron intensity (electron energy flow) E in the kth layer. The respective arithmetic expressions (1), (2), and (3) for determining k by area are shown. In this example, the kth layer is a layer made of W and silicon oxide SiO2.

例えば,式(1)の第k層の下向き透過電子強度(電子エネルギー流)E(x,y)は,第k−1層の下向き透過電子強度Ek−1に下向き透過係数Tkを乗じて求められる。そして,この演算では,周囲のエリア(x’,y’)に入射される第k−1層の下向き透過電子強度Ek−1(x’,y’)に,Wでのガウス分布g(x−x’,y−y’,βTW,k)と,Wでの透過係数Tと,Wの周囲のエリア(x’,y’)での面積密度αW,kを乗算したものと,下向き透過電子強度E’k−1(x’,y’)に,SiO2でのガウス分布g(x−x’,y−y’;βSiO2,k)と,SiO2での透過係数TSiO2と,SiO2の面積密度(1−αW,k)を乗算したものとを加算したものを,周囲のエリア(x’,y’)全てについて面積分される。 For example, the downward transmission electron intensity (electron energy flow) E k (x, y) of the k-th layer in Equation (1) is multiplied by the downward transmission coefficient Tk to the downward transmission electron intensity E k−1 of the k− 1th layer. Is required. In this calculation, the downward transmitted electron intensity E k−1 (x ′, y ′) of the k− 1th layer incident on the surrounding area (x ′, y ′) is converted into a Gaussian distribution g ( x-x ', y-y ', β TW, k) and the transmission coefficient T W at W, around the W area (x ', y' multiplied by the area density alpha W, k in) And downward transmission electron intensity E ′ k−1 (x ′, y ′), Gaussian distribution g (x ′ ′, y ′ ′; β SiO2, k ) in SiO 2, and transmission coefficient T in SiO 2. The sum of SiO2 and the product of the area density of SiO2 (1-α W, k ) is divided into areas for all surrounding areas (x ′, y ′).

式(2)の第k層の反射電子強度(電子エネルギー流)E’,式(3)の第k層の上向き透過電子強度(電子エネルギー流)E”も同様の面積分で求められる。 The reflected electron intensity (electron energy flow) E ′ k of the k-th layer in equation (2) and the upward transmitted electron intensity (electron energy flow) E ″ k of the k-th layer in equation (3) are also obtained in the same area. .

図2中のS11には,S10内の式(1)(2)(3)の面積密度αW,k,下向き透過係数,反射係数,上向き透過係数,それぞれの散乱長などのパラメータ,ガウス分布g(x,y;β)と,その式(4)が示されている。散乱長βが長ければ,エリア(x,y)での電子の数が少なく高さの低いガウス分布になる,散乱長βが短ければその逆になることが理解できる。 S11 in FIG. 2 includes parameters such as area density α W, k , downward transmission coefficient, reflection coefficient, upward transmission coefficient, scattering length of each of equations (1), (2), and (3) in S10, and a Gaussian distribution. g (x, y; β) and its formula (4) are shown. It can be understood that if the scattering length β is long, the number of electrons in the area (x, y) is small and the Gaussian distribution is low, and if the scattering length β is short, the opposite is true.

次に,図3中のS12には,各層で反射されてレジストまで戻ってきた電子強度(電子エネルギー流)である後方散乱強度(後方散乱電子エネルギー流)E(x,y)を求める演算式(5)が示されている。注目エリア(x,y)においてレジスト層に戻る電子強度E(x,y)は,図1に示したとおり,第1層の反射電子強度E’(x,y)と上向き透過電子強度E”(x,y)の和である。そして,それは,図3中に示されるとおり,第1層〜第N+1層からの後方散乱強度の和である。この演算式は図1にて前述したとおりである。 Next, in S12 in FIG. 3, an arithmetic expression for obtaining a backscattering intensity (backscattering electron energy flow) E (x, y) that is an electron intensity (electron energy flow) reflected from each layer and returning to the resist. (5) is shown. As shown in FIG. 1, the electron intensity E (x, y) returning to the resist layer in the attention area (x, y) is the reflected electron intensity E ′ 1 (x, y) of the first layer and the upward transmitted electron intensity E. ” 1 (x, y), which is the sum of the backscattering intensities from the first layer to the (N + 1) th layer, as shown in FIG. Just as you did.

なお,図3のS12に示された計算式(5)の演算子「*」は,畳み込み積分を意味する。   Note that the operator “*” in the calculation formula (5) shown in S12 of FIG. 3 means convolution integration.

[パラメータ抽出工程]
本実施の形態では,後方散乱強度の計算に必要なパラメータの抽出をできるだけ少ない実験で求める。そのために,後方散乱強度計算に必要なパラメータ(透過係数,反射係数,散乱長など)を,レジストに依存する成分と依存しない(レジスト非依存)成分とに分離する。
[Parameter extraction process]
In this embodiment, extraction of parameters necessary for calculating the backscattering intensity is obtained with as few experiments as possible. For this purpose, parameters (transmission coefficient, reflection coefficient, scattering length, etc.) necessary for backscattering intensity calculation are separated into components that depend on the resist and components that do not depend on (resist independent).

図4は,本実施の形態のパラメータ抽出を説明する図である。後方散乱強度計算に必要なパラメータを,レジスト依存のパラメータと,レジスト非依存のパラメータとに分ける。レジスト非依存パラメータは,入射電子Eに対して第1層から第N層と基板の第N+1層の多層配線構造20における各層と各材料に対する透過係数,反射係数,散乱長である。これらのパラメータは,電子散乱のモンテカルロシミュレーションを実行することにより抽出することができ,現実のサンプルでの露光実験などを行わずに抽出できる。 FIG. 4 is a diagram for explaining parameter extraction according to the present embodiment. Parameters required for backscattering intensity calculation are divided into resist-dependent parameters and resist-independent parameters. Resist-independent parameters, the transmission coefficient for each material and each layer in the multilayer wiring structure 20 of the N layer and the layer N + 1 of the substrate from the first layer with respect to the incident electron E 0, the reflection coefficient, the scattering length. These parameters can be extracted by executing a Monte Carlo simulation of electron scattering, and can be extracted without performing an exposure experiment with an actual sample.

さらに,後述するとおり,各層の透過係数,反射係数,散乱係数は,それより上の複数層または下の複数層の物質の混合比率に応じて異ならせることで,より高精度の係数を使用することができる。そして,物質の混合比率は,各層の物質の面積密度αを各層の比重wで重み付けした値である。この各層の比重wも,電子散乱のモンテカルロシミュレーションにより抽出される。つまり,一種のレジスト非依存パラメータともいえる。   Furthermore, as will be described later, the transmission coefficient, reflection coefficient, and scattering coefficient of each layer are made different depending on the mixing ratio of substances in the upper layer or the lower layers, so that a higher accuracy coefficient is used. be able to. The substance mixing ratio is a value obtained by weighting the area density α of the substance in each layer by the specific gravity w of each layer. The specific gravity w of each layer is also extracted by Monte Carlo simulation of electron scattering. In other words, it is a kind of resist-independent parameter.

一方,レジスト依存のパラメータは,レジスト層14に戻ってきた電子強度Eがレジスト層14内で蓄積されて露光エネルギーとして消費される蓄積エネルギーΔEに変換される変換比率CM,kであり,例えば,実験結果(露光,現像したパターン幅)に基づいて最小二乗法により求められる。変換比率CM,kは,電子が後方散乱される基板内の深さに依存し,各層kの各材料M(Al,Cu,W,SiO2など)に対応して,それぞれ抽出される。 On the other hand, the resist-dependent parameter is a conversion ratio C M, k in which the electron intensity E returned to the resist layer 14 is converted into stored energy ΔE that is accumulated in the resist layer 14 and consumed as exposure energy. Based on the experimental result (exposure and developed pattern width), it is obtained by the least square method. The conversion ratio C M, k depends on the depth in the substrate where electrons are back-scattered, and is extracted corresponding to each material M (Al, Cu, W, SiO 2, etc.) of each layer k.

図5は,本実施の形態におけるパラメータ抽出手順を示すフローチャート図である。パラメータ抽出手順は,まず,半導体製品の基板構造を特定する基板条件22に対して電子散乱のモンテカルロシミュレーションを行って,レジスト非依存のパラメータテーブル30を作成する工程(S20)を有する。このレジスト非依存のパラメータテーブル20のパラメータ(透過係数,反射係数,散乱長など)は,目標層内の目的材料のレジスト層からの深さz毎に,及び目的材料より上及び下の複数層の混合された材料の混合比率毎に抽出される。具体的な方法は後で詳述する。   FIG. 5 is a flowchart showing a parameter extraction procedure in the present embodiment. The parameter extraction procedure includes a step (S20) in which a Monte Carlo simulation of electron scattering is performed on the substrate condition 22 that specifies the substrate structure of the semiconductor product to create a resist-independent parameter table 30 (S20). The parameters (transmission coefficient, reflection coefficient, scattering length, etc.) of the resist-independent parameter table 20 are obtained for each depth z from the resist layer of the target material in the target layer, and a plurality of layers above and below the target material. It is extracted at every mixing ratio of the mixed materials. A specific method will be described in detail later.

さらに,パラメータ抽出手順は,混合比率を計算するための各層の係数(比重w)を算出する工程(S22)を有する。この比重wを算出する工程では,レジスト非依存のパラメータテーブル30を参照して,比重wからなる混合比率係数テーブル31が演算により求められる。図5に示されるとおり,比重wは,透過係数T,T’と反射係数R毎に求められる。下向き透過係数Tと反射係数Rに対する比重wは,各層1〜k毎に,それより上の層の比重である。例えば,第3層に対しては,それより上の第1,第2層の比重w,wが抽出される。第k層に対しては,それより上の第1〜k−1層の比重w〜wk−1が抽出される。逆に,上向き透過電子強度を求める場合の上向き透過係数T’のパラメータ抽出での混合比率は,目的材料の層より下の複数層の混合比率であるので,下の複数層の比重w〜wk+1が抽出される。具体的な方法は後で詳述する。 Further, the parameter extraction procedure includes a step (S22) of calculating a coefficient (specific gravity w k ) of each layer for calculating the mixing ratio. In the step of calculating the density w k, with reference to the resist-independent parameter table 30, the mixing ratio coefficient table 31 consisting of a specific gravity w k is determined by calculation. As shown in FIG. 5, the specific gravity w k is obtained for each of the transmission coefficients T and T ′ and the reflection coefficient R. The specific gravity w k for the downward transmission coefficient T and the reflection coefficient R is the specific gravity of the layer above it for each of the layers 1 to k . For example, for the third layer, the specific weights w 1 and w 2 of the first and second layers above it are extracted. For the k-th layer, which specific gravity w 1 to w k-1 of the first 1 to k-1 layer of the upper are extracted from. Conversely, the mixing ratio of the parameter extraction of the upward transmission coefficient T 'in the case of obtaining the upward transmission electron intensity, because it is the mixing ratio of a plurality of layers below the target layer material, the specific gravity w N ~ multiple layers of lower w k + 1 is extracted. A specific method will be described in detail later.

また,パラメータ抽出手順は,レジスト依存のパラメータテーブルを作成する工程(S24)を有する。このレジスト依存のパラメータテーブル32には,各層,各材料毎にレジスト層に戻ってきた電子強度Eをレジストの露光エネルギーとしてレジストに蓄積された電子強度ΔEに変換する変換比率CM,kが含まれる。つまり,変換比率Cは,各層k毎に各材料M毎に抽出される。このレジスト依存のパラメータテーブル32は,製品の典型的な構造のサンプルに対して露光実験を行い,得られた現像後パターンのパターン幅に基づいて,最小二乗法により求められる。また,そのとき,レジスト非依存のパラメータテーブル30と混合比率係数(比重w)パラメータテーブル31が参照される。具体的な方法は後で詳述する。 The parameter extraction procedure includes a step of creating a resist-dependent parameter table (S24). The resist-dependent parameter table 32 includes conversion ratios C M, k for converting the electron intensity E returned to the resist layer for each layer and each material into the electron intensity ΔE accumulated in the resist as the exposure energy of the resist. It is. That is, the conversion ratio C is extracted for each material M for each layer k. The resist-dependent parameter table 32 is obtained by the least square method based on the pattern width of the developed pattern obtained by performing an exposure experiment on a sample having a typical structure of the product. At that time, the resist-independent parameter table 30 and the mixing ratio coefficient (specific gravity w) parameter table 31 are referred to. A specific method will be described in detail later.

[レジスト非依存パラメータテーブル]
図6は,レジスト非依存パラメータテーブルを生成するフローチャート図である。図9,10,11を参照しながら,図12,13に示したレジスト非依存パラメータテーブルを生成する方法を説明する。
[Registry-independent parameter table]
FIG. 6 is a flowchart for generating a resist-independent parameter table. A method for generating the resist-independent parameter table shown in FIGS. 12 and 13 will be described with reference to FIGS.

図9は,電子散乱の様子を示す図である。レジスト層14の任意の位置に入射する電子エネルギー流E0は,レジスト層14で前方散乱されて入射エネルギーの一部が露光エネルギーとして蓄積され,さらに,レジスト層14を透過した電子エネルギー流は,基板上の多層配線構造20,シリコン基板10内を散乱しながら透過または反射して,レジスト層14に戻ってくる。多層配線構造20とシリコン基板10内での散乱は,レジストの材料に依存することはない。   FIG. 9 is a diagram showing the state of electron scattering. The electron energy flow E0 incident on an arbitrary position of the resist layer 14 is scattered forward by the resist layer 14, a part of the incident energy is accumulated as exposure energy, and the electron energy flow transmitted through the resist layer 14 The light is transmitted or reflected while being scattered in the multilayer wiring structure 20 and the silicon substrate 10, and returns to the resist layer 14. Scattering in the multilayer wiring structure 20 and the silicon substrate 10 does not depend on the resist material.

このような電子の散乱の振る舞いは,各電子を乱数を使って散乱させるモンテカルロシミュレーションにより計算によって求めることができる。つまり,パラメータ(各層の下向き及び上向き透過係数,反射係数,散乱長など)を,実験によらず計算によって求めることができる。   Such electron scattering behavior can be calculated by Monte Carlo simulation in which each electron is scattered using random numbers. That is, parameters (downward and upward transmission coefficients, reflection coefficients, scattering lengths, etc.) of each layer can be obtained by calculation without experiments.

さらに,ある深さの層における透過や反射は,電子がその層に達するまでの層構造の違いにより異なる。そこで,本実施の形態では,目的層内の目的材料でのパラメータを求めるときに,その目的材料に電子が達するまでの層構造を混合材料で代用する。   Furthermore, transmission and reflection in a layer at a certain depth vary depending on the difference in layer structure until electrons reach the layer. Therefore, in the present embodiment, when the parameters of the target material in the target layer are obtained, the layer structure until electrons reach the target material is substituted with the mixed material.

従来の方法では,パラメータは目的材料のエリア上または下の混合材料の混合比率αに関係なく,全ての多層構造は均一な混合比であると仮定して求められていた。従って,多層構造によっては,パラメータの精度は低く誤差を含んでいた。   In the conventional method, the parameters are obtained on the assumption that all multilayer structures have a uniform mixing ratio regardless of the mixing ratio α of the mixed material above or below the target material area. Therefore, depending on the multilayer structure, the accuracy of the parameters is low and includes errors.

図10は,レジスト非依存のパラメータの生成を説明する図である。図10(A)に示されるとおり,入射された電子Eは様々な面積密度の材料で構成された複数の層を通過して混合材料M(例えばCu)に到達する。しかし,実際の製品の層構造は多種多様であるので,図10(B)に示されるとおり,目的材料Mの上の層構造34を混合材料36に置き換えて,混合材料の混合比率αに依存するパラメータを生成する。図10(B)のモデルによれば,入射電子EはCuの混合比率αを有する混合材料36を通過して深さzにある厚みΔzの目的材料Cuに達する。   FIG. 10 is a diagram illustrating the generation of resist-independent parameters. As shown in FIG. 10A, incident electrons E pass through a plurality of layers made of materials having various area densities and reach a mixed material M (for example, Cu). However, since the layer structure of the actual product is diverse, as shown in FIG. 10B, the layer structure 34 on the target material M is replaced with the mixed material 36 and depends on the mixing ratio α of the mixed material. Generate the parameters to be According to the model of FIG. 10B, the incident electrons E pass through the mixed material 36 having the Cu mixing ratio α and reach the target material Cu having the thickness Δz at the depth z.

図6のフローチャート図の最初の工程S200では,製品の基板条件(基板及び多層配線構造)に基づいて基板構造を設定する。具体的には,図10(B)のモデルに示された目的材料Cuと,目的材料の深さzと,目的材料より上の混合材料の混合比率αが設定される。   In the first step S200 in the flowchart of FIG. 6, the substrate structure is set based on the substrate conditions (substrate and multilayer wiring structure) of the product. Specifically, the target material Cu shown in the model of FIG. 10B, the depth z of the target material, and the mixing ratio α of the mixed material above the target material are set.

これらを入力条件として,電子散乱のモンテカルロシミュレーションを行い,目的材料に入射する電子エネルギー流と,目的材料を透過あるいは反射した電子エネルギー流の分布を求める(S202)。ここで,電子エネルギー流とは,目的材料のエリア(小さい単位領域)を通過する総エネルギー量であり,電子強度である。また,電子散乱のモンテカルロシミュレーションは,一般に市販されているシミュレーションソフトウエアを利用して行うことができる。   Using these as input conditions, Monte Carlo simulation of electron scattering is performed, and the distribution of the electron energy flow incident on the target material and the electron energy flow transmitted or reflected by the target material is obtained (S202). Here, the electron energy flow is the total amount of energy passing through the area (small unit area) of the target material, and is the electron intensity. In addition, Monte Carlo simulation of electron scattering can be performed by using commercially available simulation software.

そして,上記求めた電子エネルギー流の分布から,目的材料に対する入力と出力の電子エネルギー流をガウス分布で近似する(S204)。最後に,入力と出力のガウス分布の強度の比から,透過係数Tと反射係数Rを算出し,さらに,各ガウス分布の拡がりから散乱長を算出する(S206)。   Then, the input and output electron energy flows to the target material are approximated by a Gaussian distribution from the obtained electron energy flow distribution (S204). Finally, the transmission coefficient T and the reflection coefficient R are calculated from the intensity ratio of the input and output Gaussian distributions, and the scattering length is calculated from the spread of each Gaussian distribution (S206).

上記の工程S200〜S206は,全ての深さzと全ての目的材料Mと全ての混合比率に対して行われ,それぞれのパラメータが抽出される。   The above steps S200 to S206 are performed for all the depths z, all the target materials M, and all the mixing ratios, and the respective parameters are extracted.

図11は,レジスト非依存のパラメータの生成を説明する別の図である。図11は,図6のフローチャートの工程S204,S206について説明する。図11(A)は,下向き透過電子の透過率Tと散乱長βの生成を示す。入射された電子Eが混合比率αの混合材料36を通り抜けて目的材料Mに到達する電子エネルギー流をガウス分布で近似すると,目的材料Mへの入力電子エネルギー流Einに散乱長βinに依存するガウス分布G(βin)を乗じた,Ein×G(βin)となる。つまり,入射される電子がガウス分布で薄められて広がった電子エネルギー流になると考えられる。さらに,目的材料Mを下向きに透過して飛び出す電子エネルギー流をガウス分布で近似すると,目的材料Mからの出力電子エネルギー流Eoutに散乱長βoutに依存するガウス分布G(βout)を乗じた,Eout×G(βout)となる。 FIG. 11 is another diagram illustrating the generation of resist-independent parameters. FIG. 11 illustrates steps S204 and S206 in the flowchart of FIG. FIG. 11A shows the generation of the transmittance T of the downward transmission electrons and the scattering length β. When the incident electron E 0 passes through the mixed material 36 having the mixing ratio α and the electron energy flow reaching the target material M is approximated by a Gaussian distribution, the input electron energy flow E in to the target material M becomes the scattering length β in . E in × G (β in ) multiplied by the dependent Gaussian distribution G (β in ). In other words, it is considered that the incident electron is diluted with a Gaussian distribution and spreads into an electron energy flow. Furthermore, when the electron energy flow that permeates downward through the target material M is approximated by a Gaussian distribution, the output electron energy flow Eout from the target material M is multiplied by a Gaussian distribution G (β out ) that depends on the scattering length β out . , E out × G (β out ).

そして,これらのガウス分布の強度の比から下向き透過率T(z,α)は,
(z,α)=Eout/Ein
となる。
From the ratio of the intensity of these Gaussian distributions, the downward transmittance T M (z, α) is
T M (z, α) = E out / E in
It becomes.

一方,散乱長βTMは,入力時の散乱長βinの拡がり面積β inが出力時の散乱長β outの拡がり面積β outに広がったと考えて,目的材料Mでの散乱長βTMによる拡がり面積β TMは,β out−β inであるので,
β in=β out+β TM
βTM(z,α)=√(β out−β in
となる。
On the other hand, scattering length beta TM is believed to spread the area beta 2 in a scattering length beta in the time of input is spread spread area beta 2 out of scattering length beta 2 out of output, the scattering length for the purpose material M beta Since the spread area β 2 TM by TM is β 2 out −β 2 in ,
β 2 in = β 2 out + β 2 TM
β TM (z, α) = √ (β 2 out −β 2 in )
It becomes.

図11(B)の反射電子,図11(C)の上向き透過電子の場合も,上記と同様の計算によりそれぞれのパラメータ,反射係数R(z,α)と散乱長βRM(z,α),上向き透過係数T’(z,α)と散乱長βT’M(z,α)を求めることができる。 Also in the case of the reflected electrons in FIG. 11B and the upward transmitted electrons in FIG. 11C, the respective parameters, reflection coefficient R M (z, α) and scattering length β RM (z, α) are calculated by the same calculation as described above. ), An upward transmission coefficient T ′ M (z, α) and a scattering length β T′M (z, α).

図12,図13は,上記の計算方法により求めたレジスト非依存パラメータテーブル30の9つのパラメータを示す図である。このパラメータは,多層配線構造がCuとSiO2とからなる層を複数重ねた構造と仮定している。図12には,目的材料CuとSiO2(図中はSi)に対する下向き透過係数TCu,TSi,反射係数RCu,RSi,上向き透過係数T’Cu,T’Siを示す。それぞれの係数が,深さ方向zとCuの混合比率α(0%〜100%)別に求められている。また,図13には,目的材料CuとSiO2(図中はSi)に対する下向き透過の散乱長βTCu,βTSi,反射の散乱長βRCu,βRSi,上向き透過の散乱長βT’Cu,βT’Siを示す。それぞれの散乱長が,深さ方向zとCuの混合比率α(0%〜100%)別に求められている。 12 and 13 are diagrams showing nine parameters of the resist-independent parameter table 30 obtained by the above calculation method. This parameter assumes that the multilayer wiring structure has a structure in which a plurality of layers made of Cu and SiO 2 are stacked. FIG. 12 shows downward transmission coefficients T Cu and T Si , reflection coefficients R Cu and R Si , and upward transmission coefficients T ′ Cu and T ′ Si for the target materials Cu and SiO 2 (Si in the figure). Each coefficient is determined for each of the mixing ratio α (0% to 100%) of the depth direction z and Cu. Further, in FIG. 13, object material Cu and SiO2 scattering length of the downward transmission for (in the figure Si) β TCu, β TSi, reflection scattering length beta RCu, beta RSi, scattering length of the upward transmission beta T'Cu, β T′Si is shown. The respective scattering lengths are determined for each of the mixing ratio α (0% to 100%) of the depth direction z and Cu.

上記の製品モデルでは多層配線構造がCuとSiO2とからなる例である。他の製品モデルとして多層配線構造が例えばAlとSiO2の層とWとSiO2の層が混在する場合は,比較的硬いWと比較的軟らかいAl及びSiO2との混合比率α別に,それぞれのパラメータが求められる。配線層は一般的に金属などの導電物質とSiO2などの絶縁物質のパターンを有する。よって,金属等の導電物質の面積密度に対応して混合比率αが求められる。つまり,かかる例では,混合比率αは,多層配線構造に対して1種類である。   The above product model is an example in which the multilayer wiring structure is made of Cu and SiO2. As another product model, when the multilayer wiring structure includes, for example, Al and SiO2 layers and W and SiO2 layers, the respective parameters are obtained for each mixing ratio α of relatively hard W and relatively soft Al and SiO2. It is done. The wiring layer generally has a pattern of a conductive material such as metal and an insulating material such as SiO2. Therefore, the mixing ratio α is determined corresponding to the area density of the conductive material such as metal. That is, in such an example, the mixing ratio α is one type for the multilayer wiring structure.

また,ここで混合比率αは,各層の面積密度αを混合して求められる値である。   Here, the mixing ratio α is a value obtained by mixing the area density α of each layer.

図12の下向き透過係数TCuについて説明すると,深さ方向zが大きくなるほど電子の横方向の散乱が増加するので下向きの透過率は低下する。また,SiO2に比べて硬いCuの混合比率αが大きいほど(例えば100%)目的材料に到達するまでに電子の横方向の散乱が増加するので下向きの透過率は低下する。この傾向は,反射係数RCuの場合は逆の関係になる。さらに,上向きの透過係数T’Cuについては,下向き透過係数と同様の傾向をもつ。 The downward transmission coefficient T Cu in FIG. 12 will be described. As the depth direction z increases, the lateral scattering of electrons increases, so the downward transmission decreases. Further, as the mixing ratio α of hard Cu as compared with SiO 2 is larger (for example, 100%), the scattering in the lateral direction of electrons increases until the target material is reached, and thus the downward transmittance decreases. This tendency is opposite in the case of the reflection coefficient R Cu . Furthermore, for the upward transmission coefficient T 'Cu, it has the same tendency and a downward transmission coefficient.

図13の目的材料Cuでの下向き透過の散乱長βTCuについて説明すると,ある深さzのところで散乱長がピークをもち,より深くなると散乱長はゼロになる。しかも,Cuの混合比率αが大きいほど(例えば100%)散乱長のピークはより浅いzになり,小さいほど(例えば0%)散乱長のピークはより深いzになる。これも,Cuの混合比率αが高いほどそこで横方向に散乱していて目的材料を透過できる電子が制限されるために目的材料での散乱は小さいと思われる。逆にCuの混合比率αが低いほどそこでは縦方向に進み目的材料での散乱は大きいと思われる。 Describing the downward transmission scattering length βTCu in the target material Cu in FIG. 13, the scattering length has a peak at a certain depth z, and the scattering length becomes zero when the depth becomes deeper. Moreover, as the Cu mixing ratio α is larger (for example, 100%), the scattering length peak becomes a shallower z, and as it is smaller (for example, 0%), the scattering length peak becomes a deeper z. Again, the higher the mixing ratio α of Cu, the smaller the scattering in the target material because the electrons scattered in the lateral direction are limited and the electrons that can pass through the target material are limited. On the contrary, the lower the Cu mixing ratio α, the longer the vertical direction, and the greater the scattering of the target material.

[混合比率係数テーブル]
本実施の形態では,レジスト非依存のパラメータテーブルの透過係数T,T’,反射係数R,それらの散乱長βを電子散乱のモンテカルロシミュレーションにより求めた。そのシミュレーションにおいて,目的材料に達するまでの多層配線構造の混合比率αを使用した。
[Mixing ratio coefficient table]
In the present embodiment, the transmission coefficients T and T ′, the reflection coefficient R, and the scattering length β of the parameter table independent of the resist are obtained by Monte Carlo simulation of electron scattering. In the simulation, the mixing ratio α of the multilayer wiring structure to reach the target material was used.

しかしながら,実際の製品の多層配線構造では,ある材料,例えばCuの面積密度αは各層で異なる。例えば,SiO2に比べて硬いCuの面積密度がより浅い層で高く,深い層で低い場合は,下向き透過率は比較的小さいが,逆の場合は下向き透過率は比較的高くなる傾向が見出された。つまり,目的材料に到達する電子が通過した多層配線構造の各層のCuの面積密度に依存して,パラメータが異なることを意味する。   However, in a multilayer wiring structure of an actual product, the area density α of a certain material, for example, Cu is different in each layer. For example, when the area density of hard Cu is higher in the shallower layer than in SiO2 and lower in the deeper layer, the downward transmittance is relatively small, but in the opposite case, the downward transmittance tends to be relatively high. It was done. That is, the parameters differ depending on the area density of Cu in each layer of the multilayer wiring structure through which electrons reaching the target material have passed.

そこで,本実施の形態では,後方散乱強度の計算において,対象製品に対応するパラメータをパラメータテーブル30から抽出するに際して,電子が通過する多層配線構造の各層の面積密度αに各層の比重wで重み付けして求めた混合比率αに基づいてパラメータを抽出する。そのためには,混合比率係数テーブル31として各層の比重wを予め求めておく必要がある。 Therefore, in this embodiment, when extracting the parameter corresponding to the target product from the parameter table 30 in the calculation of the backscattering intensity, the area density α of each layer of the multilayer wiring structure through which electrons pass is weighted by the specific gravity w of each layer. The parameters are extracted based on the mixing ratio α obtained in the above manner. For this purpose, it is necessary to obtain the specific gravity w of each layer in advance as the mixing ratio coefficient table 31.

図7は,混合比率計算の係数(比重w)を算出するフローチャート図である。また,図14は,混合比率α k−1と比重wとの関係を示す図である。さらに,図15は,具体的なフローチャート図である。 FIG. 7 is a flow chart for calculating a mixing ratio calculation coefficient (specific gravity w). FIG. 14 is a diagram showing the relationship between the mixing ratio α k−1 and the specific gravity w. FIG. 15 is a specific flowchart.

図14に示されるとおり,混合比率α k−1は,第1層〜第k−1層の面積比率α〜αk−1を,それぞれの層の比重w〜wk−1で重み付け演算して求められる。図14中の演算式のとおりである。そして,この比重w〜wk−1は,以下に示す計算により予め求めることができる。 As shown in FIG. 14, the mixing ratio alpha - k-1 is the area ratio alpha 1 to? K-1 of the first layer to the k-1 layer, a specific gravity w 1 to w k-1 of each layer It is obtained by weighting calculation. It is as the arithmetic expression in FIG. Then, the specific gravity of w 1 ~w k-1 can be obtained in advance by calculation described below.

まず,第1層から第k−1層のパターン面積密度α1〜αk−1の層構造に対して,レジスト非依存のパラメータテーブル30の作成と同じように,電子散乱のモンテカルロシミュレーションを行い,第k層の目的材料Mのパラメータ値を算出する(S220)。この場合,各層のパターン面積密度αの組み合わせは,0%または100%の2種類(図中0,1)に対するすべての組み合わせ(2k−1通り),あるいは実験計画法で適宜選択した合理的な数の組み合わせである。 First, Monte Carlo simulation of electron scattering is performed on the layer structure of the pattern area density α 1 to α k−1 from the first layer to the (k−1) th layer in the same manner as the creation of the resist-independent parameter table 30. The parameter value of the target material M of the kth layer is calculated (S220). In this case, the combinations of pattern area density α of each layer are all combinations (2 k-1 ways) for two types (0, 1 in the figure) of 0% or 100%, or rational selection appropriately selected by the experimental design method It is a combination of various numbers.

図15には,基板番号#1〜#11の11個の組み合わせ例が示されている。この基板番号#1〜#11は,第1層〜第8層のCuの比率(面積密度α)を0(0%)または1(100%)にした基板構造である。これらの11個の基板構造に対して前述の電子散乱のモンテカルロシミュレーションにより第9層の材料CuまたはSiO2(図中はSi)の下向き透過係数TM,9を算出している(S220)。一方,上記の11個の下向き透過係数TM,9と,第9層の深さzとに基づいて,図12のレジスト非依存のパラメータテーブル30内の下向き透過係数TCu,TSiを逆引きして,それぞれの混合比率α を抽出する(S222)。 FIG. 15 shows 11 combinations of board numbers # 1 to # 11. The substrate numbers # 1 to # 11 are substrate structures in which the Cu ratio (area density α) of the first to eighth layers is 0 (0%) or 1 (100%). These eleven by Monte Carlo simulation of electron scattering above for the substrate structure of the ninth layer material Cu or SiO2 (in the figure Si) is calculated on the down transmission coefficient T M, 9 of (S220). On the other hand, based on the 11 downward transmission coefficients T M, 9 and the depth z of the ninth layer, the downward transmission coefficients T Cu , T Si in the resist-independent parameter table 30 in FIG. Then, each mixing ratio α - 8 is extracted (S222).

そして,最小二乗法による回帰分析により,混合比率α を算出するための第1層〜第8層の比重w〜wを算出する(S224)。その結果,図15中のS224内に示された混合比率α を算出する式が得られる。この比重w〜wが混合比率係数テーブル31である。 Then, by regression analysis by the least squares method, the mixing ratio alpha - calculating the 8 first layer to the eighth layer of a specific gravity w 1 to w 8 for calculating (S224). As a result, an expression for calculating the mixing ratio α - 8 shown in S224 in FIG. 15 is obtained. The specific weights w 1 to w 8 are the mixing ratio coefficient table 31.

上記の説明では,下向き透過係数TCu,TSiに対する比重w〜wの混合比率係数テーブルを求めた。同様の方法で,反射係数RCu,RSiに対する比重w〜wの混合比率係数テーブルと,上向き透過係数T’Cu,T’Siに対する比重w〜wの混合比率係数テーブルとをそれぞれ求めることができる。いずれも,電子散乱のモンテカルロシミュレーションと回帰分析による最小二乗法により近似的に求めることができる。 In the above description, a mixing ratio coefficient table having specific gravity w 1 to w 8 for the downward transmission coefficients T Cu and T Si was obtained. In the same manner, a mixing ratio coefficient table of specific gravity w 1 to w 8 for reflection coefficients R Cu and R Si and a mixing ratio coefficient table of specific gravity w 9 to w N for upward transmission coefficients T ′ Cu and T ′ Si are obtained. Each can be requested. Both can be obtained approximately by Monte Carlo simulation of electron scattering and the least square method by regression analysis.

これにより,下向き透過係数,反射係数,上向き透過係数それぞれに対して,各層からの影響を反映させた混合比率を別々に求めることができる。   Thereby, the mixing ratio reflecting the influence from each layer can be obtained separately for each of the downward transmission coefficient, the reflection coefficient, and the upward transmission coefficient.

以上の通り,比重w〜wからなる混合比率係数テーブル31は,電子散乱のモンテカルロシミュレーションを実行することで,計算によって生成することができる。 As described above, the mixing ratio coefficient table 31 including the specific weights w 1 to w 8 can be generated by calculation by executing a Monte Carlo simulation of electron scattering.

[レジスト依存パラメータテーブル]
次に,レジスト依存パラメータテーブルの生成方法について説明する。図4にて説明したとおり,レジスト層14に戻ってきた電子エネルギー流Eは,その一部がレジストの露光エネルギーとしてレジストに蓄積される。従って,蓄積エネルギー流ΔEは,戻ってきた電子エネルギー流Eに変換比率CM,Kを乗じたものになる。図5に示したとおり,レジスト依存パラメータテーブル32は,材料M毎にそして各層k毎にこの変換比率CM,Kを有する。
[Registration dependent parameter table]
Next, a method for generating a resist dependence parameter table will be described. As described with reference to FIG. 4, a part of the electron energy flow E returning to the resist layer 14 is accumulated in the resist as exposure energy of the resist. Accordingly, the stored energy flow ΔE is obtained by multiplying the returned electron energy flow E by the conversion ratios CM and K. As shown in FIG. 5, the resist dependence parameter table 32 has the conversion ratios C M, K for each material M and for each layer k.

本実施の形態では,この変換比率CM,Kを露光実験結果により求める。つまり,実験用の多層配線構造サンプルに対する露光実験で測定された現像後のパターン幅などから,レジスト層で蓄積された露光エネルギー流ΔEを求めることができる。従って,露光エネルギー流ΔEの計算式の係数に対応する変換比率CM,Kを,実験結果に基づいて,最小二乗法により求めることができる。 In the present embodiment, the conversion ratios CM, K are obtained from the results of exposure experiments. That is, the exposure energy flow ΔE accumulated in the resist layer can be obtained from the pattern width after development measured in the exposure experiment on the experimental multilayer wiring structure sample. Therefore, the conversion ratios C M, K corresponding to the coefficients of the calculation formula of the exposure energy flow ΔE can be obtained by the least square method based on the experimental results.

図8は,レジスト依存パラメータテーブル作成のフローチャート図である。まず,露光実験として,各層のパターン面積密度を異ならせた多層配線構造をもつ基板サンプル上にレジスト層を形成し,線幅,ピッチ,本数を異ならせたラインアンドスペースのパターンからなる評価パターンを電子ビーム露光し,現像後のパターンの線幅を測定する(S240)。   FIG. 8 is a flowchart for creating a resist dependence parameter table. First, as an exposure experiment, a resist layer is formed on a substrate sample having a multilayer wiring structure in which the pattern area density of each layer is different, and an evaluation pattern composed of line and space patterns with different line widths, pitches, and numbers is formed. Electron beam exposure is performed, and the line width of the developed pattern is measured (S240).

そして,各層kの各材料M毎に,蓄積エネルギー流への変換係数CMKをパラメータとして,測定した線幅から推定される蓄積エネルギー流の実験値に基づき,最小二乗法を適用して最適化する(S242)。 For each material M in each layer k, optimization is performed by applying the least square method based on the experimental value of the stored energy flow estimated from the measured line width, using the conversion coefficient C MK for the stored energy flow as a parameter. (S242).

上記のレジスト依存パラメータテーブル作成については,以下,具体例により更に説明する。   The above-described registration-dependent parameter table creation will be further described below with a specific example.

図16,図17は,レジスト依存パラメータテーブル作成を説明する図である。まず,図16は,電子散乱のモンテカルロシミュレーションにより計算した深さz〜z+Δz(Δz=250nm)から反射されてきた電子の持つエネルギーの総和Ezと,レジストに蓄積されるエネルギーの総和DEzと,その変換係数Cz=DEz/Ezとを示す。この例では,レジスト材料名がPMMA,電子ビームの加速電圧が50kVである。また,変換係数Czは深さ依存性を有するが,物質依存性は示されていない。さらに,図16では,変換係数Cz=DEz/Ezの深さ依存性が重要で,エネルギーEz,DEzの大きさは余り意味がない。   16 and 17 are diagrams for explaining creation of a resist dependence parameter table. First, FIG. 16 shows the total energy Ez of electrons reflected from the depth z to z + Δz (Δz = 250 nm) calculated by the Monte Carlo simulation of electron scattering, the total energy DEz of energy accumulated in the resist, and its The conversion coefficient Cz = DEz / Ez. In this example, the resist material name is PMMA, and the acceleration voltage of the electron beam is 50 kV. Further, the conversion coefficient Cz has a depth dependency, but does not show a substance dependency. Further, in FIG. 16, the depth dependency of the conversion coefficient Cz = DEz / Ez is important, and the magnitudes of the energy Ez and DEz are not so meaningful.

図16によると,レジストで蓄積されるエネルギーの総和DEzは,深さzに依存して異なり,ある深さzから反射されてきた電子による蓄積エネルギーが最も大きい。同様に,各深さzからレジストに戻ってくる後方散乱電子エネルギー流Ezも,深さzに依存して異なり,ある深さzから反射されてきた電子のエネルギー流Ezが最も大きい。そして,変換係数Cz=DEz/Ezは,深さzに応じて異なり,深さzが深いほど変換係数Cz=DEz/Ezは大きくなっている。   According to FIG. 16, the total energy DEz accumulated in the resist varies depending on the depth z, and the accumulated energy due to the electrons reflected from the certain depth z is the largest. Similarly, the backscattered electron energy flow Ez returning to the resist from each depth z also differs depending on the depth z, and the energy flow Ez of electrons reflected from a certain depth z is the largest. The conversion coefficient Cz = DEz / Ez differs depending on the depth z, and the conversion coefficient Cz = DEz / Ez increases as the depth z increases.

このように変換係数が深さzによって異なることが確認された。そして,Betheの阻止能によれば,レジストの単位長さに蓄積されるエネルギーは,電子の持つエネルギーに依存する。このような変換係数Czの依存性に鑑み,本実施の形態では,各層のそれぞれの材料に変換係数Czを割り当てた蓄積電子エネルギー流ΔE(x,y)と,露光実験データ(入射電子エネルギー流と現像パターン線幅など)とから,当該変換係数Czを求める。   Thus, it was confirmed that the conversion coefficient differs depending on the depth z. According to Bethe's stopping power, the energy accumulated in the unit length of the resist depends on the energy of the electrons. In view of such dependency of the conversion coefficient Cz, in this embodiment, the stored electron energy flow ΔE (x, y) in which the conversion coefficient Cz is assigned to each material of each layer, and exposure experiment data (incident electron energy flow). And the development pattern line width), the conversion coefficient Cz is obtained.

図17は,レジスト依存パラメータテーブル作成の工程S242を説明する図である。まず,変換係数CMKを,各層のそれぞれの材料に割り当てる(S242−1)。これは,レジスト非依存パラメータ(透過係数T,T’,反射計数R,それらの散乱長β)が各材料毎に深さz毎に求められていたのと同じである。 FIG. 17 is a diagram for explaining step S242 of creating a resist dependence parameter table. First, the conversion coefficient C MK is assigned to each material of each layer (S242-1). This is the same as the resist-independent parameters (transmission coefficients T, T ′, reflection coefficient R, and their scattering length β) obtained for each depth z for each material.

そして,後方散乱電子エネルギー流E(x,y)の計算式(5)(図3参照)に,この変換係数CMKを導入する(S242−2)。蓄積エネルギー流ΔE(x,y)=CMK×E(x,y)であるので,蓄積エネルギー流ΔE(x,y)は,図17中の式(6),(7)のように表すことができる。つまり,式(5)の各層から戻ってくる後方散乱電子エネルギー流の項に,変換係数CMKを割り当てて式(6)(7)を得る。式(6)(7)では,反射係数R(x,y)に変換係数CMKを乗じて,レジスト依存性を付加した反射係数R^(x,y)としている。その理由は,透過係数T(x,y),T’(x,y)に変換係数を割り当てると,これらの透過係数が式(5)において異なる層からの後方散乱電子エネルギー流の項にも含まれているので,最小二乗法などで変換係数を求めることが容易でなくなるからである。 Then, this conversion coefficient C MK is introduced into the calculation formula (5) (see FIG. 3) of the backscattered electron energy flow E (x, y) (S242-2). Since the stored energy flow ΔE (x, y) = C MK × E (x, y), the stored energy flow ΔE (x, y) is expressed as in equations (6) and (7) in FIG. be able to. That is, equations (6) and (7) are obtained by assigning the conversion coefficient C MK to the term of the backscattered electron energy flow returning from each layer of equation (5). In equation (6) (7), the reflection coefficient R k (x, y) is multiplied by a conversion factor C MK, the reflection coefficient obtained by adding a resist dependence R ^ k (x, y) is set to. The reason for this is that if conversion coefficients are assigned to the transmission coefficients T k (x, y) and T ′ k (x, y), these transmission coefficients are terms of backscattered electron energy flow from different layers in equation (5). This is because it is not easy to obtain the conversion coefficient by the method of least squares.

最後に,様々な基板構成のサンプルに対して露光,現像実験を行い,その実験結果(パターン幅測定値)である露光実験データに基づいて,最小二乗法などにより変換係数を抽出する(S242−3)。式(6)(7)において,電子の透過係数TM,K,T’M,K,その散乱長βTM,K,βT’M,K,反射計数RM,K,その散乱長βRM,Kは,前述のとおり電子散乱のモンテカルロシミュレーションにより算出されるパラメータであり,変換係数CM,Kは露光実験により抽出されるパラメータである。 Finally, exposure and development experiments are performed on samples of various substrate configurations, and conversion coefficients are extracted by the least square method or the like based on the exposure experiment data that is the experimental results (pattern width measurement values) (S242-). 3). In the equations (6) and (7), the electron transmission coefficients T M, K , T ′ M, K , their scattering lengths β TM, K , β T′M, K , reflection counts R M, K , their scattering lengths β RM and K are parameters calculated by Monte Carlo simulation of electron scattering as described above, and conversion coefficients CM and K are parameters extracted by exposure experiments.

以上の通り,本実施の形態によれば,後方散乱電子強度を算出するためのパラメータを,電子散乱のモンテカルロシミュレーションにより求めることができるレジスト非依存パラメータ(透過係数T,T’,反射係数R,散乱長β,混合比率係数w)と,露光実験により求めるレジスト依存パラメータ(変換係数C)とに分けることで,実験から抽出すべきパラメータの数を減らすことができる。従来は,透過係数T,T’,反射係数R,散乱長βを全て露光実験に基づいて抽出していたので,パラメータ抽出に過大な工数を要していたが,本実施の形態では電子散乱のモンテカルロシミュレーションにより一部のパラメータを求め,変換係数だけを露光実験に基づいて抽出するので,パラメータ抽出の工数を少なくできる。   As described above, according to the present embodiment, parameters for calculating the backscattered electron intensity can be obtained by resist-independent parameters (transmission coefficients T, T ′, reflection coefficient R, By dividing into the scattering length β and the mixing ratio coefficient w) and the resist dependent parameter (conversion coefficient C) obtained by the exposure experiment, the number of parameters to be extracted from the experiment can be reduced. Conventionally, the transmission coefficients T and T ′, the reflection coefficient R, and the scattering length β are all extracted based on the exposure experiment. Therefore, excessive man-hours are required for parameter extraction. Since some parameters are obtained by Monte Carlo simulation and only the conversion coefficient is extracted based on the exposure experiment, the number of parameter extraction steps can be reduced.

さらに,本実施の形態によれば,透過係数T,T’,反射係数R,散乱長βのパラメータを,目的材料に到達する電子が通過してきた上層または下層の混合比率α毎に抽出してパラメータテーブルを作成する。したがって,後方散乱強度計算の対象製品の多層配線構造に対応して,各層の面積比率αと比重wとから混合比率αを求め,その混合比率αに応じた最適なパラメータをパラメータテーブルから抽出して後方散乱強度を計算するので,高精度な計算結果を得ることができる。 Further, according to the present embodiment, the parameters of the transmission coefficients T, T ′, the reflection coefficient R, and the scattering length β are extracted for each upper layer or lower layer mixing ratio α through which electrons reaching the target material have passed. Create a parameter table. Therefore, in response to a multilayer wiring structure of products backscatter intensity calculation, the mixing ratio of the respective layers of the area ratio alpha and specific gravity w alpha - look, the mixture ratio alpha - optimal parameters corresponding to the parameter table Since the backscattering intensity is calculated after extraction, a highly accurate calculation result can be obtained.

[近接効果補正の後方散乱強度の計算工程]
図18は,本実施の形態における後方散乱強度計算の手順を示すフローチャート図である。このフローチャートの手順は,後方散乱強度計算プログラムをコンピュータが実行することにより行われる手順を示す。
[Calculation process of backscattering intensity for proximity effect correction]
FIG. 18 is a flowchart showing the procedure of backscattering intensity calculation in the present embodiment. The procedure of this flowchart shows the procedure performed by the computer executing the backscattering intensity calculation program.

対象製品の半導体装置について,既にレジスト非依存パラメータテーブル30と,混合比率係数テーブル31と,レジスト依存パラメータテーブル32が作成済みである。そこで,露光対象の半導体装置の多層配線構造の第k層のパターンデータ40から,第k層の面積密度マップ42を作成する(S30)。パターンデータ40は第k層の材料毎のパターンのデータであり,面積密度マップは第k層を格子状に分割した複数のエリア(最小領域)それぞれの材料毎の面積密度αである。たとえば,第k層がCuとSiO2からなる場合は,Cuの面積密度αCuに対して,SiO2の面積密度は1−αCuになる。この第k層の面積密度マップ42は,レジスト層の下の第1層〜第N層まで全て作成される。 A resist-independent parameter table 30, a mixing ratio coefficient table 31, and a resist-dependent parameter table 32 have already been created for the target semiconductor device. Therefore, an area density map 42 of the kth layer is created from the pattern data 40 of the kth layer of the multilayer wiring structure of the semiconductor device to be exposed (S30). The pattern data 40 is pattern data for each material of the k-th layer, and the area density map is an area density α for each material of a plurality of areas (minimum regions) obtained by dividing the k-th layer in a lattice shape. For example, if the k-th layer is made of Cu and SiO2, based on the area density alpha Cu of Cu, the area density of the SiO2 will be 1-alpha Cu. The k-th layer area density map 42 is created from the first layer to the N-th layer below the resist layer.

後方散乱強度計算プログラムを実行するコンピュータに,第k層のパターンデータ40を入力すると,第k層の面積密度マップ42が生成される(S30)。それを第1層〜第N層まで繰り返す。   When pattern data 40 for the kth layer is input to a computer that executes a backscattering intensity calculation program, an area density map 42 for the kth layer is generated (S30). This is repeated from the first layer to the Nth layer.

次に,面積密度マップ42から,第k層の透過係数T,T’,反射係数R,それらの散乱長βなどのパラメータを決定する(S32)。このパラメータの決定は,第1層〜第N層の面積密度マップ42と,比重wを有する混合比率係数テーブル31と,透過係数T,T’,反射係数R,それらの散乱長βを有するレジスト非依存パラメータテーブル30とを参照して,行われる。   Next, parameters such as transmission coefficients T and T ', reflection coefficient R, and their scattering length β of the k-th layer are determined from the area density map 42 (S32). The parameters are determined by determining the area density map 42 of the first layer to the Nth layer, the mixing ratio coefficient table 31 having the specific gravity w, the transmission coefficients T and T ′, the reflection coefficient R, and the resist having the scattering length β. This is performed with reference to the independent parameter table 30.

図19は,第k層の透過,反射,散乱長のパラメータを決定する手順の詳細フローチャート図である。図20は,第k層の透過,反射,散乱長のパラメータの決定方法を説明する図である。図20を参照しながら,図19のパラメータ決定手順を説明する。   FIG. 19 is a detailed flowchart of a procedure for determining the transmission, reflection, and scattering length parameters of the k-th layer. FIG. 20 is a diagram for explaining a method for determining transmission, reflection, and scattering length parameters of the k-th layer. The parameter determination procedure of FIG. 19 will be described with reference to FIG.

まず,第k層の各エリアに対して,その上にある第1層〜第k−1層のパターン面積密度(例えばαCu)を参照し,混合比率係数テーブルの第k層の欄の比重w〜wk−1を各層のパターン面積密度(αCu)に乗じて加算し混合比率α k−1を求める(S320)。図20に示されるとおり,第k層のエリア内の目的材料Mに対して,その上の第1層〜第k−1層の面積密度α〜αk−1に,混合比率係数テーブル31内の第1層〜第k−1層の比重w〜wk−1をそれぞれ乗じて加算することで,混合比率α k−1を求める。 First, with respect to each area of the kth layer, the pattern area density (for example, α Cu ) of the first layer to the (k−1) th layer thereon is referred to, and the specific gravity in the column of the kth layer in the mixing ratio coefficient table w 1 ~w k-1 was added by multiplying the layers of the pattern area density (alpha Cu) mixing ratio alpha - Request k-1 (S320). As shown in FIG. 20, with respect to the target material M in the area of the k-th layer, the area ratio α 1 to α k−1 of the first layer to the (k− 1) -th layer is set to the mixing ratio coefficient table 31 the specific gravity of w 1 to w k-1 of the first layer to the k-1 layer of the inner by adding by multiplying respectively, the mixing ratio alpha - Request k-1.

そして,レジスト非依存のパラメータテーブル30を参照し,目的材料Mの材料に対応するテーブルから混合比率α k−1と第k層の深さzに対応するパラメータ(図20の例ではTCu)を抽出する(S322)。他のパラメータR,βも同様にしてテーブルから抽出することができる。 Then, resist refers to the non-dependent parameter table 30, object material material mixing ratio from the corresponding table of M alpha - T Cu in the example of k-1 and the corresponding parameters to the depth z of the k-th layer (FIG. 20 ) Is extracted (S322). Other parameters R and β can be similarly extracted from the table.

図21は,下向き透過係数と散乱長のパラメータの決定方法を示す図である。目的材料のあるエリアの上の多層構造の混合材料について混合比率α k−1を求め(S320),レジスト非依存のパラメータテーブル30を参照して,下向き透過係数TCuとその散乱長βT,Cuとを抽出する(S322)。 FIG. 21 is a diagram illustrating a method for determining the parameters of the downward transmission coefficient and the scattering length. Mixture ratio for the mixed material of the multilayer structure on the purposeful material area alpha - k-1 look (S320), with reference to the resist-independent parameter table 30, the downward transmission coefficient T Cu and its scattering length beta T , Cu are extracted (S322).

図22は,反射計数と散乱長のパラメータの決定方法を示す図である。上記と同様に,目的材料のあるエリアの上の多層構造の混合材料について混合比率α k−1を求め(S320),レジスト非依存のパラメータテーブル30を参照して,反射係数RCuとその散乱長βR,Cuとを抽出する(S322)。 FIG. 22 is a diagram showing a method for determining parameters of reflection count and scattering length. In the same manner as described above, the mixing ratio α - k-1 is obtained for the mixed material having a multilayer structure on the area where the target material is present (S320), and the reflection coefficient R Cu and its reflection coefficient R Cu are determined by referring to the resist-independent parameter table 30. The scattering length β R and Cu are extracted (S322).

次に,第k層の各エリアに対して,その下にある第k+1層〜第N層のパターン面積密度を参照し,混合比率テーブルの第k層の欄の比重wk+1〜wを各層のパターン面積密度に乗じて加算し混合比率α k+1を求める(S324)。そして,レジスト非依存のパラメータテーブル30を参照し,目的材料Mの材料に対応するテーブルから混合比率α k+1と第k層の深さzに対応する上向き透過係数のパラメータを抽出する(S326)。 Next, the layers for each area of the k-th layer, with reference to the pattern area density of the (k + 1) th layer to the N layer below it, the specific gravity of w k + 1 to w N column of the k-th layer mixing ratio table Is multiplied by the pattern area density to obtain a mixing ratio α - k + 1 (S324). Then, referring to the resist-independent parameter table 30, the parameters of the upward transmission coefficient corresponding to the mixing ratio α k + 1 and the depth z of the k-th layer are extracted from the table corresponding to the material of the target material M (S326). .

図23は,上向き透過係数と散乱長のパラメータの決定方法を示す図である。目的材料のあるエリアの下の多層構造の混合材料について混合比率α k+1を求め(S324),レジスト非依存のパラメータテーブル30を参照して,上向き透過係数T’Cuとその散乱長βT’,Cuとを抽出する(S326)。 FIG. 23 is a diagram illustrating a method for determining the parameters of the upward transmission coefficient and the scattering length. Mixture ratio for the mixed material of the multilayer structure under a purpose material area α - k + 1 a calculated (S324), with reference to the resist-independent parameter table 30, an upward transmission coefficient T 'Cu and its scattering length beta T' , Cu are extracted (S326).

透過,反射,散乱長のパラメータ決定工程S32は,第1層〜第N層全ての層について全てのエリアと材料毎に抽出される。このパラメータ決定工程S32は,後方散乱強度計算の準備工程として予め抽出される。しかし,後述する後方散乱強度計算で必要になるときにその都度抽出するようにしてもよい。   The parameter determination step S32 of transmission, reflection, and scattering length is extracted for every area and material for all the first to Nth layers. This parameter determination step S32 is extracted in advance as a preparation step for backscattering intensity calculation. However, it may be extracted each time it is necessary for the backscattering intensity calculation described later.

図18に戻り,次に,後方散乱強度により補正されるべき露光パターンデータ(未補正パターンデータ)44から入射される電子エネルギー流マップ(E)44を生成する(S34)。すなわち,コンピュータは,補正対象の未補正パターンデータ44を入力し,格子状に分割したエリア(小領域)のパターンの面積密度と露光量の積の和を求め,エリア毎の入射電子エネルギー流Eを求める。つまり,入射される電子エネルギー流マップ(E)44は,電子エネルギー流の初期値という意味であり,処理S35は初期化処理である。 Returning to FIG. 18, next, an incident electron energy flow map (E 0 ) 44 is generated from the exposure pattern data (uncorrected pattern data) 44 to be corrected by the backscattering intensity (S34). That is, the computer inputs the uncorrected pattern data 44 to be corrected, obtains the sum of the product of the area density and the exposure dose of the area (small area) divided into a grid, and enters the incident electron energy flow E for each area. Find 0 . That is, the incident electron energy flow map (E 0 ) 44 means an initial value of the electron energy flow, and the process S35 is an initialization process.

このエリア(小領域)の大きさは,電子の加速電圧と後方散乱の拡がりの大きさから決まり,Si基板上に加速電圧50kV程度で入射させる場合は1μm程度が適切である。また,下層になるほどエリアの大きさを大きくすることで,計算を高速化することができる。   The size of this area (small region) is determined by the acceleration voltage of electrons and the spread of backscattering, and about 1 μm is appropriate when it is incident on the Si substrate at an acceleration voltage of about 50 kV. In addition, the calculation can be speeded up by increasing the size of the area in the lower layer.

そこで,ようやく,第1層から第N層の電子エネルギー流マップ46,48,50の計算が行われる。まず,第k層の下向き透過電子エネルギー流マップE46の計算(S36)と,反射電子エネルギー流マップE’48の計算(S38)とが,第1層〜第N層の順に繰り返される。この計算式は,図17の式(6)(7)の通りである。つまり,初期値の電子エネルギー流マップ(E)と,工程S32で予め抽出したパラメータを利用して,式(6)(7)の計算が行われる。 Therefore, the calculation of the electron energy flow maps 46, 48, 50 from the first layer to the Nth layer is finally performed. First, the calculation of the downward transmitted electron energy flow map E k 46 in the k-th layer (S36) and the calculation of the reflected electron energy flow map E ′ k 48 (S38) are repeated in the order of the first layer to the N-th layer. . This calculation formula is as shown in formulas (6) and (7) of FIG. That is, the calculations of Expressions (6) and (7) are performed using the initial value electron energy flow map (E 0 ) and the parameters extracted in advance in step S32.

図1(B)に示されるように,初期値の電子エネルギー流マップ(E)から第1層の下向き透過電子エネルギー流マップEと反射電子エネルギー流マップE’が計算され,さらに,第1層の下向き透過電子エネルギー流マップEから第2層の下向き透過電子エネルギー流マップEと反射電子エネルギー流マップE’が計算され,それが第N+1層まで繰り返される。 As shown in FIG. 1B, a downward transmission electron energy flow map E 1 and a reflected electron energy flow map E ′ 1 of the first layer are calculated from the initial electron energy flow map (E 0 ), The downward transmission electron energy flow map E 2 and the reflection electron energy flow map E ′ 2 of the second layer are calculated from the downward transmission electron energy flow map E 1 of the first layer, and this is repeated until the (N + 1) th layer.

反射電子エネルギー流マップE’の計算では,図17の式(7)で説明したとおり,レジスト依存パラメータテーブル32内の変換係数CM,Kが参照され,反射係数Rにその変換係数CM,Kを乗じて行われる。したがって,反射電子エネルギー流マップにはレジストでのエネルギー蓄積率に対応する変換係数の影響が換算されたことになる。 In the calculation of reflection electron energy stream map E 'k, as described in equation (7) in FIG. 17, transform coefficient C M of the resist dependent parameter table 32, K is referred to, the conversion factor C M to the reflection coefficient R , K multiplied. Therefore, the influence of the conversion coefficient corresponding to the energy accumulation rate in the resist is converted into the reflected electron energy flow map.

第1層から第N+1層まで下向き透過電子エネルギー流マップEの計算(S36)と,反射電子エネルギー流マップE’の計算(S38)とが完了すると,今度は,第N層から第1層まで順に上向き透過電子エネルギー流マップE”50の計算(S40)が繰り返し行われる。この計算が完了すると,第1層の反射電子エネルギー流マップE’と,上向き透過電子エネルギー流マップE”との和が,レジスト層に戻る後方散乱電子エネルギー流マップとして出力される。しかも,変換係数の影響が含まれているので,この和は,図17に示した式(6)(7)のΔE(x,y)に対応するレジストに蓄積される後方散乱電子エネルギー流マップである。 When the calculation of the downward transmitted electron energy flow map E k from the first layer to the (N + 1) th layer (S36) and the calculation of the reflected electron energy flow map E ′ k (S38) are completed, the first to the first layer from the Nth layer The calculation of the upward transmitted electron energy flow map E ″ k 50 (S40) is repeated until the layers are completed. When this calculation is completed, the reflected electron energy flow map E ′ 1 of the first layer and the upward transmitted electron energy flow map E The sum of 1 is output as a backscattered electron energy flow map back to the resist layer. In addition, since the influence of the conversion coefficient is included, this sum is a backscattered electron energy flow map accumulated in the resist corresponding to ΔE (x, y) in the equations (6) and (7) shown in FIG. It is.

図示しないが,後方散乱強度計算後に,この後方散乱電子エネルギー流マップの各エリアのエネルギーに基づいて近接効果が見積もられ,露光データのパターンの補正や露光量の補正が行われる。そして,補正された露光データにより,実際の製品に対する露光工程が行われる。   Although not shown, after calculating the backscattering intensity, the proximity effect is estimated based on the energy of each area of the backscattered electron energy flow map, and the exposure data pattern and the exposure amount are corrected. Then, the exposure process for the actual product is performed based on the corrected exposure data.

図24は,図18に示した後方散乱強度計算の別のフローチャート図である。図24では,図18に示した第1層〜第N層の面積密度マップ作成工程S30と,電子エネルギー流マップの初期化工程S34は終了しているものとする。そして,まず,第k層において,深さzにある目的材料への入射位置から上に見た多層構造から混合比率αを計算し,その混合比率αと深さzから,下向き透過係数Tkと,反射係数Rkと,それらの散乱長βkと,変換係数Ckとを決定し(図18の工程S32に対応),決定したパラメータにより,その層から次の下層に入射する電子エネルギー流の分布(マップ)Ekを計算し,その層での反射エネルギー流の分布(マップ)E’kを計算する(図18の工程S36,S38に対応)。上記の第k層の計算を,第1層から第N+1層まで順に実行する。 FIG. 24 is another flowchart of the backscattering intensity calculation shown in FIG. In FIG. 24, it is assumed that the area density map creation step S30 of the first to Nth layers and the electron energy flow map initialization step S34 shown in FIG. 18 have been completed. First, in the k-th layer, the mixing ratio α is calculated from the multilayer structure seen from the incident position on the target material at the depth z, and the downward transmission coefficient is calculated from the mixing ratio α and the depth z. Tk, reflection coefficient Rk, their scattering length βk, and conversion coefficient Ck are determined (corresponding to step S32 in FIG. 18), and according to the determined parameters, the electron energy flow incident from the layer to the next lower layer is determined. The distribution (map) Ek is calculated, and the distribution (map) E′k of the reflected energy flow in the layer is calculated (corresponding to steps S36 and S38 in FIG. 18). The calculation of the k-th layer is executed in order from the first layer to the (N + 1) -th layer.

次に,第k層において,深さzにある目的材料への背面側の入射位置から下に見た多層構造から混合比率αを計算し,その混合比率αと深さzから,上向き透過係数T’kとその散乱長βkとを決定し(図18の工程S32に対応),決定したパラメータにより,その層から次の上層に入射する電子エネルギー流の分布(マップ)E”kを計算する(図18の工程S40に対応)。上記の第k層の計算を,第N層から第1層まで順に実行する。 Next, in the k-th layer, the mixing ratio α is calculated from the multilayer structure seen from the back side incident position on the target material at the depth z, and the upward direction is calculated from the mixing ratio α and the depth z. The transmission coefficient T′k and its scattering length βk are determined (corresponding to step S32 in FIG. 18), and the distribution (map) E ″ k of the electron energy flow incident from the layer to the next upper layer is determined by the determined parameters. Calculation (corresponding to step S40 in Fig. 18) The calculation of the k-th layer is executed in order from the N-th layer to the first layer.

このように,図24の後方散乱強度計算手順は,各層のパラメータの決定を,その層の電子エネルギー流マップを計算するときに行う。それ以外は,図18の計算手順と同じである。   As described above, the backscattering intensity calculation procedure in FIG. 24 determines the parameters of each layer when calculating the electron energy flow map of that layer. The rest is the same as the calculation procedure of FIG.

前述したとおり,本実施の形態によれば,透過係数T,T’,反射係数R,散乱長βのパラメータを,目的材料に到達する電子が通過してきた上層または下層の混合比率α毎に抽出してパラメータテーブルを作成する。したがって,後方散乱強度計算を,後方散乱強度計算の対象製品の多層配線構造に対応して,面積比率αと比重wとから混合比率αを求め,それに応じた最適なパラメータをパラメータテーブルから抽出して行うことができる。よって,より高精度な計算結果を得ることができる。 As described above, according to the present embodiment, the parameters of the transmission coefficients T and T ′, the reflection coefficient R, and the scattering length β are set for each upper layer or lower layer mixing ratio α through which electrons reaching the target material have passed. Extract and create a parameter table. Thus, the backscattering strength calculated, corresponding to the multilayer wiring structure of products backscatter intensity calculation, the mixing ratio of the area ratio alpha and specific gravity w alpha - extract determined, the optimum parameters corresponding thereto from the parameter table Can be done. Therefore, a more accurate calculation result can be obtained.

以上の実施の形態をまとめると,次の付記のとおりである。   The above embodiment is summarized as follows.

(付記1)
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する方法において,
前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βとが,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に与えられ,
さらに,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とが,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に与えられ,
前記生成方法は,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記物質の混合比率に対する前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程を有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
さらに,前記第1層に対して,前記第1層における下向き透過荷電粒子強度Eと前記第1層における反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求めた後,第2層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eと反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求める第2の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第3の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第4の工程とを有する荷電粒子の後方散乱強度の生成方法。
(Appendix 1)
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a method for generating a backscattering intensity of the charged particles to a layer,
With respect to the kth (k ≦ N) kth layer from the resist layer, the reflection coefficient R corresponding to the number of particles reflected by the kth layer through the (k−1) th (k−1) th layer is reflected. k and the reflection scattering length β R and the downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that the charged particles that have reached the k-th layer pass through the k-th layer downward, According to the mixing ratio of the substance from the first layer to the (k-1) th layer and for each substance contained in the kth layer,
Further, the upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ corresponding to the number of particles that have passed through the k + 1th layer upward and transmitted through the kth layer are determined from the Nth layer. according to the mixing ratio of the substance up to the k + 1 layer and for each substance contained in the kth layer,
The generation method is as follows:
With respect to the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the A first step of dividing the area according to the reflection coefficient R k , the downward transmission coefficient T k , the upward transmission coefficient T ′ k and the scattering length β with respect to the mixing ratio, and the distance between the surrounding area and the area of interest. Have
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
Furthermore, after determining the downward transmitted charged particle intensity E 1 in the first layer and the reflected charged particle intensity E ′ 1 in the first layer for the first layer by the area of the first step, respectively. , A second step of sequentially determining the lower transmitted charged particle intensity E and the reflected charged particle intensity E ′ in each layer from the second layer to the Nth layer by the area of the first step,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure Then, in order from the N-1th layer to the first layer, a third step of obtaining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step,
And a fourth step of outputting the sum of the reflected charged particle intensity E ′ 1 obtained in the first layer below the resist layer and the upward transmitted charged particle intensity E ″ 1 as the backscattering intensity. A method for generating the backscattering intensity of charged particles.

(付記2)
付記1において,
前記面積分する第1の工程において,前記第1層から第k−1層までの前記物質の混合比率αは,前記着目エリアから上の前記第1層から第k−1層それぞれの物質の面積比率(α〜αk―1)に,前記第1層から第k−1層それぞれの比重(w〜wk−1)を乗算し加算して求められる荷電粒子の後方散乱強度の生成方法。
(Appendix 2)
In Appendix 1,
In the first step of dividing the area, the mixing ratio α − of the substance from the first layer to the (k−1) th layer is determined by the respective substances of the first layer to the k−1th layer above the target area. The charged particle backscattering intensity obtained by multiplying the area ratio (α 1 to α k-1 ) by the specific gravity (w 1 to w k-1 ) of each of the first to k-1 layers Generation method.

(付記3)
付記1または2において,
前記面積分する第1の工程において,前記第N層から第k+1層までの物質の混合比率αは,前記着目エリアから下の前記第N層から第k+1層それぞれの物質の面積比率(α〜αk+1)に,前記第N層から第k+1層それぞれの比重(w〜wk+1)を乗算し加算して求められる荷電粒子の後方散乱強度の生成方法。
(Appendix 3)
In Appendix 1 or 2,
In the first step of dividing the area, the mixing ratio α of the substances from the Nth layer to the (k + 1) th layer is the area ratio (α of each of the substances from the Nth layer to the (k + 1) th layer below the target area. N in to? k + 1), the method of generating the backscattering intensity of the first through N of the (k + 1) th layer, respectively layers gravity (w N to w k + 1) multiplied by the sum to sought charged particles.

(付記4)
付記1,2,3のいずれかにおいて,
前記第2の工程での反射荷電粒子強度を求めるときに,前記レジスト層に戻る荷電粒子強度が当該レジスト層の露光で蓄積される割合である変換係数Cを,前記反射係数Rに乗じて,当該反射荷電粒子強度を求める荷電粒子の後方散乱強度の生成方法。
(Appendix 4)
In any one of Supplementary Notes 1, 2, and 3,
When obtaining the reflected charged particle intensity in the second step, the reflection coefficient R k is multiplied by a conversion coefficient C k which is a ratio of the charged particle intensity returning to the resist layer accumulated by exposure of the resist layer. Then, a method of generating the backscattering intensity of the charged particles to obtain the reflected charged particle intensity.

(付記5)
付記1において,
さらに,荷電粒子の後方散乱強度を計算する対象の半導体装置の構造に対して電子散乱のシミュレーションを実行して,第k層での前記反射係数R及び反射散乱長βと,下向き透過係数T及び下向き透過散乱長βとを,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に生成し,第k層での前記上向き透過係数T’及び上向き透過散乱長βT’とを,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に生成する第1のパラメータ生成工程を有する荷電粒子の後方散乱強度の生成方法。
(Appendix 5)
In Appendix 1,
Further, a simulation of electron scattering is performed on the structure of the semiconductor device for which the backscattering intensity of the charged particles is to be calculated, and the reflection coefficient R k and the reflection scattering length β R at the k-th layer and the downward transmission coefficient are calculated. T k and downward transmission scattering length β T are generated for each substance contained in the k-th layer according to the mixing ratio of the substances from the first layer to the (k−1) -th layer, and in the k-th layer The upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ are generated for each of the substances included in the k-th layer according to the mixing ratio of the substances from the Nth layer to the (k + 1) th layer. A method for generating a backscattering intensity of a charged particle, which includes a first parameter generation step.

(付記6)
付記5において,
さらに,各層が所定の面積密度の組み合わせを有する複数の多層配線構造サンプルに対して前記電子散乱のシミュレーションを実行して,各多層配線構造サンプルに対して第k層の前記下向き透過係数,反射係数,または上向き透過係数を求め,前記第1のパラメータ生成工程で生成した前記第k層の深さzの前記下向き透過係数,反射係数,または上向き透過係数のテーブルを参照して,前記複数の多層配線構造サンプルの第k層の上側または下側の混合比率を抽出し,当該抽出した前記複数の多層配線構造サンプルの混合比率と,前記複数の多層配線構造サンプルの各層の面積密度とに基づいて,各層の比重wを求める第2のパラメータ生成工程を有する荷電粒子の後方散乱強度の生成方法。
(Appendix 6)
In Appendix 5,
Further, the simulation of electron scattering is performed on a plurality of multilayer wiring structure samples each layer having a predetermined area density combination, and the downward transmission coefficient and reflection coefficient of the kth layer for each multilayer wiring structure sample. Or by referring to a table of the downward transmission coefficient, reflection coefficient, or upward transmission coefficient of the depth z of the k-th layer generated in the first parameter generation step. Extracting the upper or lower mixing ratio of the k-th layer of the wiring structure sample, and based on the extracted mixing ratio of the plurality of multilayer wiring structure samples and the area density of each layer of the plurality of multilayer wiring structure samples , A method for generating the backscattering intensity of charged particles, which has a second parameter generation step for obtaining the specific gravity w of each layer.

(付記7)
付記6において,
前記第2のパラメータ生成工程は,前記各層の比重wを,前記下向き透過係数と反射係数と上向き透過係数それぞれに対して求める荷電粒子の後方散乱強度の生成方法。
(Appendix 7)
In Appendix 6,
The second parameter generation step is a method for generating a backscattering intensity of a charged particle, in which the specific gravity w of each layer is obtained for each of the downward transmission coefficient, the reflection coefficient, and the upward transmission coefficient.

(付記8)
付記6において,
前記面積分する第1の工程において,前記第1層から第k−1層までの前記物質の混合比率αを,前記着目エリアから上の前記第1層から第k−1層それぞれの物質の面積比率(α〜αk―1)に,前記第2のパラメータ生成工程で求められた前記第1層から第k−1層それぞれの比重(w〜wk−1)を乗算し加算して求める荷電粒子の後方散乱強度の生成方法。
(Appendix 8)
In Appendix 6,
In the first step of dividing the area, the mixing ratio α of the substance from the first layer to the (k−1) th layer is set to the substance of each of the first layer to the k−1th layer above the target area. the area ratio of the (alpha 1 to? k-1), multiplied by the second parameter generation step is from the first layer obtained in the k-1 layer each specific gravity (w 1 to w k-1) A method for generating the backscattering intensity of a charged particle obtained by addition.

(付記9)
付記6において,
前記面積分する第1の工程において,前記第N層から第k+1層までの物質の混合比率αを,前記着目エリアから下の前記第N層から第k+1層それぞれの物質の面積比率(α〜αk+1)に,前記第2のパラメータ生成工程で求められた前記第N層から第k+1層それぞれの比重(w〜wk+1)を乗算し加算して求める荷電粒子の後方散乱強度の生成方法。
(Appendix 9)
In Appendix 6,
In the first step of dividing the area, the mixing ratio α of the substance from the Nth layer to the (k + 1) th layer is set to the area ratio (α of each substance of the Nth layer to the (k + 1) th layer below the target area. N to α k + 1 ) multiplied by the specific gravity (w N to w k + 1 ) of each of the ( N ) th layer to the ( k + 1 ) th layer obtained in the second parameter generation step and added to obtain the backscattering intensity of the charged particle Generation method.

(付記10)
付記4において,
さらに,各層の面積密度が異なる多層配線構造サンプルに複数の異なる評価パターンを露光,現像し,当該現像後の前記評価パターンの線幅の測定値に基づいて,前記変換係数Cを求める第3のパラメータ生成工程を有する荷電粒子の後方散乱強度の生成方法。
(Appendix 10)
In Appendix 4,
Further, a plurality of different evaluation patterns are exposed and developed on a multilayer wiring structure sample having a different area density of each layer, and the conversion coefficient C k is obtained based on a measured value of the line width of the evaluation pattern after the development. A method for generating a backscattering intensity of a charged particle, which includes a parameter generation step.

(付記11)
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する方法において,
荷電粒子の後方散乱強度を計算する対象の半導体装置の構造に対して電子散乱のシミュレーションを実行して,前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βと,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とを,前記第k層に含まれる前記物質毎に生成する第1のパラメータ生成工程と,
各層の面積密度が異なる多層配線構造サンプルに複数の異なる評価パターンを露光,現像し,当該現像後の前記評価パターンの線幅の測定値に基づいて,前記レジスト層に戻る荷電粒子強度が当該レジスト層の露光で蓄積される割合である変換係数Cを求める第2のパラメータ生成工程と,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程とを有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
前記第1層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eを前記第1の工程の面積分で求める第2の工程と,
前記第1層から前記第N層に対して順に,前記変換係数Cを前記反射係数Rに乗じて,各層における反射荷電粒子強度E’を,前記第1の工程の面積分で求める第3の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第4の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第5の工程と,
を有する荷電粒子の後方散乱強度の生成方法。
(Appendix 11)
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a method for generating a backscattering intensity of the charged particles to a layer,
A simulation of electron scattering is performed on the structure of the semiconductor device for which the backscattering intensity of the charged particles is to be calculated, and the k−1th kth (k ≦ N) kth layer from the resist layer. The reflection coefficient R k and the reflection scattering length β R corresponding to the number of particles reflected by the k-th layer, and the charged particles reaching the k-th layer are the k-th layer. The downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that pass through the K + 1 layer, and the upward corresponding to the number of particles that the charged particles that have passed through the (k + 1) th layer upward pass through the kth layer A first parameter generation step for generating a transmission coefficient T ′ k and an upward transmission scattering length β T ′ for each of the substances included in the k-th layer;
A multilayer wiring structure sample having a different area density of each layer is exposed and developed with a plurality of different evaluation patterns, and the charged particle intensity returning to the resist layer is measured based on the measured line width of the evaluation pattern after the development. A second parameter generation step for obtaining a conversion coefficient C k which is a ratio accumulated by exposure of the layer;
For the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the reflection coefficient R k , downward transmission coefficient T k , upward transmission coefficient T ′ k and the scattering length β, and a first step of dividing the area according to the distance between the surrounding area and the area of interest,
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
A second step of sequentially determining the downward transmitted charged particle intensity E in each layer by the area of the first step in order from the first layer to the Nth layer;
In order from the first layer to the N-th layer, the reflection coefficient R k is multiplied by the conversion coefficient C k to obtain the reflected charged particle intensity E ′ in each layer by the area of the first step. 3 processes,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure And then, sequentially from the (N-1) th layer to the first layer, a fourth step for determining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step;
A fifth step of outputting the sum of the reflected charged particle intensity E ′ 1 and the upward transmitted charged particle intensity E ″ 1 obtained in the first layer below the resist layer as the backscattering intensity;
A method for generating the backscattering intensity of charged particles having:

(付記12)
付記1乃至11のいずれかに記載の荷電粒子の後方散乱強度の生成方法を実施する工程と,
前記生成された荷電粒子の後方散乱強度に基づいて,露光パターンと露光強度を有する露光データを補正する露光データ補正工程と,
前記補正された露光データにしたがって,レジスト層を露光する露光工程とを有する半導体装置の製造方法。
(Appendix 12)
Performing the method for generating the backscattering intensity of the charged particles according to any one of appendices 1 to 11,
An exposure data correction step of correcting exposure data having an exposure pattern and an exposure intensity based on the backscattering intensity of the generated charged particles;
A method for manufacturing a semiconductor device, comprising: exposing a resist layer in accordance with the corrected exposure data.

(付記13)
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する工程をコンピュータに実行させる荷電粒子の後方散乱強度生成プログラムにおいて,
前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βとが,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に与えられ,
さらに,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とが,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に与えられ,
前記生成する工程は,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記物質の混合比率に対する前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程を有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
さらに,前記第1層に対して,前記第1層における下向き透過荷電粒子強度Eと前記第1層における反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求めた後,第2層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eと反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求める第2の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第3の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第4の工程とを有する荷電粒子の後方散乱強度の生成プログラム。
(Appendix 13)
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a charged particle backscattering intensity generation program for causing a computer to execute a step of generating a backscattering intensity of the charged particle to the layer,
With respect to the kth (k ≦ N) kth layer from the resist layer, the reflection coefficient R corresponding to the number of particles reflected by the kth layer through the (k−1) th (k−1) th layer is reflected. k and the reflection scattering length β R and the downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that the charged particles that have reached the k-th layer pass through the k-th layer downward, According to the mixing ratio of the substance from the first layer to the (k-1) th layer and for each substance contained in the kth layer,
Further, the upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ corresponding to the number of particles that have passed through the k + 1th layer upward and transmitted through the kth layer are determined from the Nth layer. according to the mixing ratio of the substance up to the k + 1 layer and for each substance contained in the kth layer,
The generating step includes
With respect to the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the A first step of dividing the area according to the reflection coefficient R k , the downward transmission coefficient T k , the upward transmission coefficient T ′ k and the scattering length β with respect to the mixing ratio, and the distance between the surrounding area and the area of interest. Have
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
Furthermore, after determining the downward transmitted charged particle intensity E 1 in the first layer and the reflected charged particle intensity E ′ 1 in the first layer for the first layer by the area of the first step, respectively. , A second step of sequentially determining the lower transmitted charged particle intensity E and the reflected charged particle intensity E ′ in each layer from the second layer to the Nth layer by the area of the first step,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure Then, in order from the N-1th layer to the first layer, a third step of obtaining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step,
And a fourth step of outputting the sum of the reflected charged particle intensity E ′ 1 obtained in the first layer below the resist layer and the upward transmitted charged particle intensity E ″ 1 as the backscattering intensity. A program for generating the backscattering intensity of charged particles.

(付記14)
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する工程をコンピュータに実行させる荷電粒子の後方散乱強度生成プログラムにおいて,
前記生成する工程は,
荷電粒子の後方散乱強度を計算する対象の半導体装置の構造に対して電子散乱のシミュレーションを実行して,前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βと,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とを,前記第k層に含まれる前記物質毎に生成する第1のパラメータ生成工程と,
各層の面積密度が異なる多層配線構造サンプルに複数の異なる評価パターンを露光,現像し,当該現像後の前記評価パターンの線幅の測定値に基づいて,前記レジスト層に戻る荷電粒子強度が当該レジスト層の露光で蓄積される割合である変換係数Cを求める第2のパラメータ生成工程と,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程とを有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
前記第1層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eを前記第1の工程の面積分で求める第2の工程と,
前記第1層から前記第N層に対して順に,前記変換係数Cを前記反射係数Rに乗じて,各層における反射荷電粒子強度E’を,前記第1の工程の面積分で求める第3の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第4の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第5の工程と,
を有する荷電粒子の後方散乱強度の生成プログラム。
(Appendix 14)
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a charged particle backscattering intensity generation program for causing a computer to execute a step of generating a backscattering intensity of the charged particle to the layer,
The generating step includes
A simulation of electron scattering is performed on the structure of the semiconductor device for which the backscattering intensity of the charged particles is to be calculated, and the k−1th kth (k ≦ N) kth layer from the resist layer. The reflection coefficient R k and the reflection scattering length β R corresponding to the number of particles reflected by the k-th layer, and the charged particles reaching the k-th layer are the k-th layer. The downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that pass through the K + 1 layer, and the upward corresponding to the number of particles that the charged particles that have passed through the (k + 1) th layer upward pass through the kth layer A first parameter generation step for generating a transmission coefficient T ′ k and an upward transmission scattering length β T ′ for each of the substances included in the k-th layer;
A multilayer wiring structure sample having a different area density of each layer is exposed and developed with a plurality of different evaluation patterns, and the charged particle intensity returning to the resist layer is measured based on the measured line width of the evaluation pattern after the development. A second parameter generation step for obtaining a conversion coefficient C k which is a ratio accumulated by exposure of the layer;
For the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the reflection coefficient R k , downward transmission coefficient T k , upward transmission coefficient T ′ k and the scattering length β, and a first step of dividing the area according to the distance between the surrounding area and the area of interest,
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
A second step of sequentially determining the downward transmitted charged particle intensity E in each layer by the area of the first step in order from the first layer to the Nth layer;
In order from the first layer to the N-th layer, the reflection coefficient R k is multiplied by the conversion coefficient C k to obtain the reflected charged particle intensity E ′ in each layer by the area of the first step. 3 processes,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure And then, sequentially from the (N-1) th layer to the first layer, a fourth step for determining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step;
A fifth step of outputting the sum of the reflected charged particle intensity E ′ 1 and the upward transmitted charged particle intensity E ″ 1 obtained in the first layer below the resist layer as the backscattering intensity;
A program for generating the backscattering intensity of charged particles having:

10:シリコン基板 14:レジスト層
20:多層配線構造
10: Silicon substrate 14: Resist layer 20: Multilayer wiring structure

Claims (11)

第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する方法において,
前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βとが,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に与えられ,
さらに,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とが,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に与えられ,
前記生成方法は,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記物質の混合比率に対する前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程を有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
さらに,前記第1層に対して,前記第1層における下向き透過荷電粒子強度Eと前記第1層における反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求めた後,第2層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eと反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求める第2の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第3の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第4の工程とを有する荷電粒子の後方散乱強度の生成方法。
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a method for generating a backscattering intensity of the charged particles to a layer,
With respect to the kth (k ≦ N) kth layer from the resist layer, the reflection coefficient R corresponding to the number of particles reflected by the kth layer through the (k−1) th (k−1) th layer is reflected. k and the reflection scattering length β R and the downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that the charged particles that have reached the k-th layer pass through the k-th layer downward, According to the mixing ratio of the substance from the first layer to the (k-1) th layer and for each substance contained in the kth layer,
Further, the upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ corresponding to the number of particles that have passed through the k + 1th layer upward and transmitted through the kth layer are determined from the Nth layer. according to the mixing ratio of the substance up to the k + 1 layer and for each substance contained in the kth layer,
The generation method is as follows:
With respect to the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the A first step of dividing the area according to the reflection coefficient R k , the downward transmission coefficient T k , the upward transmission coefficient T ′ k and the scattering length β with respect to the mixing ratio, and the distance between the surrounding area and the area of interest. Have
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
Furthermore, after determining the downward transmitted charged particle intensity E 1 in the first layer and the reflected charged particle intensity E ′ 1 in the first layer for the first layer by the area of the first step, respectively. , A second step of sequentially determining the lower transmitted charged particle intensity E and the reflected charged particle intensity E ′ in each layer from the second layer to the Nth layer by the area of the first step,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure Then, in order from the N-1th layer to the first layer, a third step of obtaining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step,
And a fourth step of outputting the sum of the reflected charged particle intensity E ′ 1 obtained in the first layer below the resist layer and the upward transmitted charged particle intensity E ″ 1 as the backscattering intensity. A method for generating the backscattering intensity of charged particles.
請求項1において,
前記面積分する第1の工程において,前記第1層から第k−1層までの前記物質の混合比率αは,前記着目エリアから上の前記第1層から第k−1層それぞれの物質の面積比率(α〜αk―1)に,前記第1層から第k−1層それぞれの比重(w〜wk−1)を乗算し加算して求められる荷電粒子の後方散乱強度の生成方法。
In claim 1,
In the first step of dividing the area, the mixing ratio α − of the substance from the first layer to the (k−1) th layer is determined by the respective substances of the first layer to the k−1th layer above the target area. The charged particle backscattering intensity obtained by multiplying the area ratio (α 1 to α k-1 ) by the specific gravity (w 1 to w k-1 ) of each of the first to k-1 layers Generation method.
請求項1または2において,
前記面積分する第1の工程において,前記第N層から第k+1層までの物質の混合比率αは,前記着目エリアから下の前記第N層から第k+1層それぞれの物質の面積比率(α〜αk+1)に,前記第N層から第k+1層それぞれの比重(w〜wk+1)を乗算し加算して求められる荷電粒子の後方散乱強度の生成方法。
In claim 1 or 2,
In the first step of dividing the area, the mixing ratio α of the substances from the Nth layer to the (k + 1) th layer is the area ratio (α of each of the substances from the Nth layer to the (k + 1) th layer below the target area. N in to? k + 1), the method of generating the backscattering intensity of the first through N of the (k + 1) th layer, respectively layers gravity (w N to w k + 1) multiplied by the sum to sought charged particles.
請求項1,2,3のいずれかにおいて,
前記第2の工程での反射荷電粒子強度を求めるときに,前記レジスト層に戻る荷電粒子強度が当該レジスト層の露光で蓄積される割合である変換係数Cを,前記反射係数Rに乗じて,当該反射荷電粒子強度を求める荷電粒子の後方散乱強度の生成方法。
In any one of claims 1, 2, and 3,
When obtaining the reflected charged particle intensity in the second step, the reflection coefficient R k is multiplied by a conversion coefficient C k which is a ratio of the charged particle intensity returning to the resist layer accumulated by exposure of the resist layer. Then, a method of generating the backscattering intensity of the charged particles to obtain the reflected charged particle intensity.
請求項1において,
さらに,荷電粒子の後方散乱強度を計算する対象の半導体装置の構造に対して電子散乱のシミュレーションを実行して,第k層での前記反射係数R及び反射散乱長βと,下向き透過係数T及び下向き透過散乱長βとを,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に生成し,第k層での前記上向き透過係数T’及び上向き透過散乱長βT’とを,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に生成する第1のパラメータ生成工程を有する荷電粒子の後方散乱強度の生成方法。
In claim 1,
Further, a simulation of electron scattering is performed on the structure of the semiconductor device for which the backscattering intensity of the charged particles is to be calculated, and the reflection coefficient R k and the reflection scattering length β R at the k-th layer and the downward transmission coefficient are calculated. T k and downward transmission scattering length β T are generated for each substance contained in the k-th layer according to the mixing ratio of the substances from the first layer to the (k−1) -th layer, and in the k-th layer The upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ are generated for each of the substances included in the k-th layer according to the mixing ratio of the substances from the Nth layer to the (k + 1) th layer. A method for generating a backscattering intensity of a charged particle, which includes a first parameter generation step.
請求項5において,
さらに,各層が所定の面積密度の組み合わせを有する複数の多層配線構造サンプルに対して前記電子散乱のシミュレーションを実行して,各多層配線構造サンプルに対して第k層の前記下向き透過係数,反射係数,または上向き透過係数を求め,前記第1のパラメータ生成工程で生成した前記第k層の深さzの前記下向き透過係数,反射係数,または上向き透過係数のテーブルを参照して,前記複数の多層配線構造サンプルの第k層の上側または下側の混合比率を抽出し,当該抽出した前記複数の多層配線構造サンプルの混合比率と,前記複数の多層配線構造サンプルの各層の面積密度とに基づいて,各層の比重wを求める第2のパラメータ生成工程を有する荷電粒子の後方散乱強度の生成方法。
In claim 5,
Further, the simulation of electron scattering is performed on a plurality of multilayer wiring structure samples each layer having a predetermined area density combination, and the downward transmission coefficient and reflection coefficient of the kth layer for each multilayer wiring structure sample. Or by referring to a table of the downward transmission coefficient, reflection coefficient, or upward transmission coefficient of the depth z of the k-th layer generated in the first parameter generation step. Extracting the upper or lower mixing ratio of the k-th layer of the wiring structure sample, and based on the extracted mixing ratio of the plurality of multilayer wiring structure samples and the area density of each layer of the plurality of multilayer wiring structure samples , A method for generating the backscattering intensity of charged particles, which has a second parameter generation step for obtaining the specific gravity w of each layer.
請求項4において,
さらに,各層の面積密度が異なる多層配線構造サンプルに複数の異なる評価パターンを露光,現像し,当該現像後の前記評価パターンの線幅の測定値に基づいて,前記変換係数Cを求める第3のパラメータ生成工程を有する荷電粒子の後方散乱強度の生成方法。
In claim 4,
Further, a plurality of different evaluation patterns are exposed and developed on a multilayer wiring structure sample having a different area density of each layer, and the conversion coefficient C k is obtained based on a measured value of the line width of the evaluation pattern after the development. A method for generating a backscattering intensity of a charged particle, which includes a parameter generation step.
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する方法において,
荷電粒子の後方散乱強度を計算する対象の半導体装置の構造に対して電子散乱のシミュレーションを実行して,前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βと,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とを,前記第k層に含まれる前記物質毎に生成する第1のパラメータ生成工程と,
各層の面積密度が異なる多層配線構造サンプルに複数の異なる評価パターンを露光,現像し,当該現像後の前記評価パターンの線幅の測定値に基づいて,前記レジスト層に戻る荷電粒子強度が当該レジスト層の露光で蓄積される割合である変換係数Cを求める第2のパラメータ生成工程と,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程とを有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
前記第1層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eを前記第1の工程の面積分で求める第2の工程と,
前記第1層から前記第N層に対して順に,前記変換係数Cを前記反射係数Rに乗じて,各層における反射荷電粒子強度E’を,前記第1の工程の面積分で求める第3の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第4の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第5の工程と,
を有する荷電粒子の後方散乱強度の生成方法。
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a method for generating a backscattering intensity of the charged particles to a layer,
A simulation of electron scattering is performed on the structure of the semiconductor device for which the backscattering intensity of the charged particles is to be calculated, and the k−1th kth (k ≦ N) kth layer from the resist layer. The reflection coefficient R k and the reflection scattering length β R corresponding to the number of particles reflected by the k-th layer, and the charged particles reaching the k-th layer are the k-th layer. The downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that pass through the K + 1 layer, and the upward corresponding to the number of particles that the charged particles that have passed through the (k + 1) th layer upward pass through the kth layer A first parameter generation step for generating a transmission coefficient T ′ k and an upward transmission scattering length β T ′ for each of the substances included in the k-th layer;
A multilayer wiring structure sample having a different area density of each layer is exposed and developed with a plurality of different evaluation patterns, and the charged particle intensity returning to the resist layer is measured based on the measured line width of the evaluation pattern after the development. A second parameter generation step for obtaining a conversion coefficient C k which is a ratio accumulated by exposure of the layer;
For the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the reflection coefficient R k , downward transmission coefficient T k , upward transmission coefficient T ′ k and the scattering length β, and a first step of dividing the area according to the distance between the surrounding area and the area of interest,
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
A second step of sequentially determining the downward transmitted charged particle intensity E in each layer by the area of the first step in order from the first layer to the Nth layer;
In order from the first layer to the N-th layer, the reflection coefficient R k is multiplied by the conversion coefficient C k to obtain the reflected charged particle intensity E ′ in each layer by the area of the first step. 3 processes,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure And then, sequentially from the (N-1) th layer to the first layer, a fourth step for determining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step;
A fifth step of outputting the sum of the reflected charged particle intensity E ′ 1 and the upward transmitted charged particle intensity E ″ 1 obtained in the first layer below the resist layer as the backscattering intensity;
A method for generating the backscattering intensity of charged particles having:
請求項1乃至8のいずれかに記載の荷電粒子の後方散乱強度の生成方法を実施する工程と,
前記生成された荷電粒子の後方散乱強度に基づいて,露光パターンと露光強度を有する露光データを補正する露光データ補正工程と,
前記補正された露光データにしたがって,レジスト層を露光する露光工程とを有する半導体装置の製造方法。
Implementing the method for generating the backscattered intensity of charged particles according to any one of claims 1 to 8,
An exposure data correction step of correcting exposure data having an exposure pattern and an exposure intensity based on the backscattering intensity of the generated charged particles;
A method for manufacturing a semiconductor device, comprising: exposing a resist layer in accordance with the corrected exposure data.
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する工程をコンピュータに実行させる荷電粒子の後方散乱強度生成プログラムにおいて,
前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βとが,前記第1層から第k−1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる物質毎に与えられ,
さらに,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とが,前記第N層から第k+1層までの前記物質の混合比率に応じて且つ前記第k層に含まれる前記物質毎に与えられ,
前記生成する工程は,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記物質の混合比率に対する前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程を有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
さらに,前記第1層に対して,前記第1層における下向き透過荷電粒子強度Eと前記第1層における反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求めた後,第2層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eと反射荷電粒子強度E’とをそれぞれ前記第1の工程の面積分で求める第2の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第3の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第4の工程とを有する荷電粒子の後方散乱強度の生成プログラム。
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a charged particle backscattering intensity generation program for causing a computer to execute a step of generating a backscattering intensity of the charged particle to the layer,
With respect to the kth (k ≦ N) kth layer from the resist layer, the reflection coefficient R corresponding to the number of particles reflected by the kth layer through the (k−1) th (k−1) th layer is reflected. k and the reflection scattering length β R and the downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that the charged particles that have reached the k-th layer pass through the k-th layer downward, According to the mixing ratio of the substance from the first layer to the (k-1) th layer and for each substance contained in the kth layer,
Further, the upward transmission coefficient T ′ k and the upward transmission scattering length β T ′ corresponding to the number of particles that have passed through the k + 1th layer upward and transmitted through the kth layer are determined from the Nth layer. according to the mixing ratio of the substance up to the k + 1 layer and for each substance contained in the kth layer,
The generating step includes
With respect to the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the A first step of dividing the area according to the reflection coefficient R k , the downward transmission coefficient T k , the upward transmission coefficient T ′ k and the scattering length β with respect to the mixing ratio, and the distance between the surrounding area and the area of interest. Have
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
Furthermore, after determining the downward transmitted charged particle intensity E 1 in the first layer and the reflected charged particle intensity E ′ 1 in the first layer for the first layer by the area of the first step, respectively. , A second step of sequentially determining the lower transmitted charged particle intensity E and the reflected charged particle intensity E ′ in each layer from the second layer to the Nth layer by the area of the first step,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure Then, in order from the N-1th layer to the first layer, a third step of obtaining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step,
And a fourth step of outputting the sum of the reflected charged particle intensity E ′ 1 obtained in the first layer below the resist layer and the upward transmitted charged particle intensity E ″ 1 as the backscattering intensity. A program for generating the backscattering intensity of charged particles.
第1層から第N層までの各層が1つの物質または複数の物質のパターンをそれぞれ含む多層配線構造の前記第1層上に形成されたレジスト層に荷電粒子ビームを照射した場合に,前記レジスト層への前記荷電粒子の後方散乱強度を生成する工程をコンピュータに実行させる荷電粒子の後方散乱強度生成プログラムにおいて,
前記生成する工程は,
荷電粒子の後方散乱強度を計算する対象の半導体装置の構造に対して電子散乱のシミュレーションを実行して,前記レジスト層からk番目(k≦N)の第k層に対して,k−1番目の第k−1層を透過した荷電粒子が当該第k層で反射する粒子数に対応する反射係数R及び反射散乱長βと,前記第k層に達した荷電粒子が前記第k層を下向きに透過する粒子数に対応する下向き透過係数T及び下向き透過散乱長βと,第k+1層を上向きに透過した荷電粒子が前記第k層を上向きに透過する粒子数に対応する上向き透過係数T’及び上向き透過散乱長βT’とを,前記第k層に含まれる前記物質毎に生成する第1のパラメータ生成工程と,
各層の面積密度が異なる多層配線構造サンプルに複数の異なる評価パターンを露光,現像し,当該現像後の前記評価パターンの線幅の測定値に基づいて,前記レジスト層に戻る荷電粒子強度が当該レジスト層の露光で蓄積される割合である変換係数Cを求める第2のパラメータ生成工程と,
前記第k層の着目エリアに対して,前記着目エリアを含む周囲のエリアからの荷電粒子強度を,当該第k層内の前記周囲のエリアそれぞれの前記物質の面積密度αと,前記反射係数R,下向き透過係数T,上向き透過係数T'及び前記散乱長βと,前記周囲のエリアと着目エリア間の距離とに応じて,面積分する第1の工程とを有し,
前記第1の工程における前記荷電粒子強度は,(1)前記第k−1層を透過した前記第k−1層における下向き透過荷電粒子強度Ek−1に前記下向き透過係数Tを乗算して求めた前記第k層における下向き透過荷電粒子強度Eと,(2)前記第k−1層における前記下向き透過荷電粒子強度Ek−1に前記反射係数Rを乗算して求めた前記第k層における反射荷電粒子強度E’と,(3)前記第k+1層から戻る荷電粒子強度に前記上向き透過係数T'を乗算して求めた前記第k層における上向き透過荷電粒子強度E”とを有し,前記第k+1層から戻る荷電粒子強度は,前記第k+1層における上向き透過荷電粒子強度E”k+1と,前記第k+1層における反射荷電粒子強度E’との和であり,
前記第1層から前記第N層に対して順に,各層における下方透過荷電粒子強度Eを前記第1の工程の面積分で求める第2の工程と,
前記第1層から前記第N層に対して順に,前記変換係数Cを前記反射係数Rに乗じて,各層における反射荷電粒子強度E’を,前記第1の工程の面積分で求める第3の工程と,
前記多層配線構造の下の基板から反射される荷電粒子強度に前記上向き透過係数T’を乗じて前記第N層における上向き透過荷電粒子強度E”を前記第1の工程の面積分で求めた後,前記第N−1層から前記第1層に対して順に,各層における上向き透過荷電粒子強度E”をそれぞれ前記第1の工程の面積分で求める第4の工程と,
前記レジスト層の下の前記第1層で求められた前記反射荷電粒子強度E’と前記上向き透過荷電粒子強度E”との和を前記後方散乱強度として出力する第5の工程と,
を有する荷電粒子の後方散乱強度の生成プログラム。
When the resist layer formed on the first layer of the multilayer wiring structure in which each layer from the first layer to the Nth layer includes a pattern of one substance or a plurality of substances is irradiated with a charged particle beam, the resist In a charged particle backscattering intensity generation program for causing a computer to execute a step of generating a backscattering intensity of the charged particle to the layer,
The generating step includes
A simulation of electron scattering is performed on the structure of the semiconductor device for which the backscattering intensity of the charged particles is to be calculated, and the k−1th kth (k ≦ N) kth layer from the resist layer. The reflection coefficient R k and the reflection scattering length β R corresponding to the number of particles reflected by the k-th layer, and the charged particles reaching the k-th layer are the k-th layer. The downward transmission coefficient T k and the downward transmission scattering length β T corresponding to the number of particles that pass through the K + 1 layer, and the upward corresponding to the number of particles that the charged particles that have passed through the (k + 1) th layer upward pass through the kth layer A first parameter generation step for generating a transmission coefficient T ′ k and an upward transmission scattering length β T ′ for each of the substances included in the k-th layer;
A multilayer wiring structure sample having a different area density of each layer is exposed and developed with a plurality of different evaluation patterns, and the charged particle intensity returning to the resist layer is measured based on the measured line width of the evaluation pattern after the development. A second parameter generation step for obtaining a conversion coefficient C k which is a ratio accumulated by exposure of the layer;
For the target area of the k-th layer, the charged particle intensity from the surrounding area including the target area, the area density α k of the substance in each of the surrounding areas in the k-th layer, and the reflection coefficient R k , downward transmission coefficient T k , upward transmission coefficient T ′ k and the scattering length β, and a first step of dividing the area according to the distance between the surrounding area and the area of interest,
The charged particle intensity in the first step is calculated by (1) multiplying the downward transmitted charged particle intensity E k−1 in the k−1 layer transmitted through the k−1 layer by the downward transmission coefficient T k. The downward transmitted charged particle intensity E k in the k-th layer determined in step (2), and (2) the downward transmitted charged particle intensity E k−1 in the k− 1th layer multiplied by the reflection coefficient R k. Reflected charged particle intensity E ′ k in the k-th layer and (3) upward transmitted charged particle intensity E in the k-th layer obtained by multiplying the charged particle intensity returning from the k + 1-th layer by the upward transmission coefficient T ′ k "and a k, charged particle intensity returning from the (k + 1) th layer, upwardly transmitted charged particle intensity E in the first k + 1 layer" and k + 1, it is the sum of the reflected charged particle intensity E 'k in the (k + 1) -th layer ,
A second step of sequentially determining the downward transmitted charged particle intensity E in each layer by the area of the first step in order from the first layer to the Nth layer;
In order from the first layer to the N-th layer, the reflection coefficient R k is multiplied by the conversion coefficient C k to obtain the reflected charged particle intensity E ′ in each layer by the area of the first step. 3 processes,
The calculated a multilayer wiring area of the upwardly transmitted charged particle intensity E "said N first step amount in the N-th layer to the charged particle intensity said multiplied by the upward transmission coefficient T 'N reflected from the substrate under the structure And then, sequentially from the (N-1) th layer to the first layer, a fourth step for determining the upward transmitted charged particle intensity E ″ in each layer by the area of the first step;
A fifth step of outputting the sum of the reflected charged particle intensity E ′ 1 and the upward transmitted charged particle intensity E ″ 1 obtained in the first layer below the resist layer as the backscattering intensity;
A program for generating the backscattering intensity of charged particles having:
JP2011008456A 2011-01-19 2011-01-19 Method for generating backscattering intensity in charged particle beam exposure, generation program, and method for manufacturing semiconductor device using the method Expired - Fee Related JP5779886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008456A JP5779886B2 (en) 2011-01-19 2011-01-19 Method for generating backscattering intensity in charged particle beam exposure, generation program, and method for manufacturing semiconductor device using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008456A JP5779886B2 (en) 2011-01-19 2011-01-19 Method for generating backscattering intensity in charged particle beam exposure, generation program, and method for manufacturing semiconductor device using the method

Publications (2)

Publication Number Publication Date
JP2012151262A true JP2012151262A (en) 2012-08-09
JP5779886B2 JP5779886B2 (en) 2015-09-16

Family

ID=46793252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008456A Expired - Fee Related JP5779886B2 (en) 2011-01-19 2011-01-19 Method for generating backscattering intensity in charged particle beam exposure, generation program, and method for manufacturing semiconductor device using the method

Country Status (1)

Country Link
JP (1) JP5779886B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778737A (en) * 1993-09-08 1995-03-20 Fujitsu Ltd Charged particle beam exposure and charged particle beam exposure device
JPH0794378A (en) * 1993-09-20 1995-04-07 Fujitsu Ltd Method of electron beam exposure
JPH10275762A (en) * 1997-03-31 1998-10-13 Nec Corp Method for electron beam drawing
JP2005101501A (en) * 2003-08-21 2005-04-14 Fujitsu Ltd Generating method for backward scattering intensity based on lower-layer structure in charged-particle beam exposure, and semiconductor-device manufacturing method utilizing same generating method
JP2009200509A (en) * 2003-08-21 2009-09-03 Fujitsu Microelectronics Ltd Method of generating backscattering intensity based on lower layer structure in charged particle beam exposure, and method of fabricating semiconductor device applying the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778737A (en) * 1993-09-08 1995-03-20 Fujitsu Ltd Charged particle beam exposure and charged particle beam exposure device
JPH0794378A (en) * 1993-09-20 1995-04-07 Fujitsu Ltd Method of electron beam exposure
JPH10275762A (en) * 1997-03-31 1998-10-13 Nec Corp Method for electron beam drawing
JP2005101501A (en) * 2003-08-21 2005-04-14 Fujitsu Ltd Generating method for backward scattering intensity based on lower-layer structure in charged-particle beam exposure, and semiconductor-device manufacturing method utilizing same generating method
JP2009200509A (en) * 2003-08-21 2009-09-03 Fujitsu Microelectronics Ltd Method of generating backscattering intensity based on lower layer structure in charged particle beam exposure, and method of fabricating semiconductor device applying the same

Also Published As

Publication number Publication date
JP5779886B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP4814651B2 (en) Charged particle beam exposure method and program used therefor
US12066391B2 (en) Method and system for non-destructive metrology of thin layers
JP5719850B2 (en) Photoresist simulation
JP6065612B2 (en) Simulation method, simulation program, processing apparatus and simulator
JP5732843B2 (en) Simulator, processing apparatus, damage evaluation method, and damage evaluation program
JP2010034402A (en) Method of estimating pattern form
US12068305B2 (en) Multiple fin height integrated circuit
JP6057635B2 (en) Charged particle beam drawing apparatus and charged particle beam drawing method
JP4463589B2 (en) Method for generating backscattering intensity based on underlying structure in charged particle beam exposure and method for manufacturing semiconductor device using the method
JP5779886B2 (en) Method for generating backscattering intensity in charged particle beam exposure, generation program, and method for manufacturing semiconductor device using the method
Kruit et al. Optimum dose for shot noise limited CD uniformity in electron-beam lithography
CN107560539A (en) For the method and system measured in complex pattern structure
Arat et al. Model improvements to simulate charging in scanning electron microscope
KR20120136751A (en) Method for estimating point spread functions in electron-beam lithography
JP2010073137A (en) Method for designing semiconductor integrated circuit and design program
JP5880134B2 (en) Pattern measuring method and pattern measuring apparatus
JP2013222968A (en) Method of correcting electron proximity effects using voigt type scattering functions
TWI575392B (en) Method and system for establishing parametric model
JP2005159029A (en) Lithography evaluating method, lithography process and program
Vora et al. Sidewall slopes of SU-8 HARMST using deep x-ray lithography
JP4992930B2 (en) Method for generating backscattering intensity based on underlying structure in charged particle beam exposure and method for manufacturing semiconductor device using the method
WO2019176212A1 (en) Charged-particle beam device and cross-sectional shape estimation program
JP2002075818A (en) Method of computing absorbed-energy distribution of charged-beam exposure, simulator, charged-beam exposure method, manufacturing method of semiconductor device and mask and recording medium for recording program for computation of absorbed- energy distribution of charged-beam exposure
Niehoff et al. The influence of calibration pattern coverage for lumped parameter resist models on OPC convergence
Figueiro et al. Advanced module for model parameter extraction using global optimization and sensitivity analysis for electron beam proximity effect correction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5779886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees