[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012142628A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2012142628A
JP2012142628A JP2012100787A JP2012100787A JP2012142628A JP 2012142628 A JP2012142628 A JP 2012142628A JP 2012100787 A JP2012100787 A JP 2012100787A JP 2012100787 A JP2012100787 A JP 2012100787A JP 2012142628 A JP2012142628 A JP 2012142628A
Authority
JP
Japan
Prior art keywords
gate
semiconductor layer
trench
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100787A
Other languages
Japanese (ja)
Inventor
Eisuke Suekawa
英介 末川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012100787A priority Critical patent/JP2012142628A/en
Publication of JP2012142628A publication Critical patent/JP2012142628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power semiconductor device which responds to a request for achieving great current and high reliability even in the case where a distance between gate wires increases.SOLUTION: A power semiconductor device comprises: an nbuffer layer 56, an nlayer 57 and a p base region 66 provided on a top face of a pcollector layer 55 in this order; two trench gates 3, 4 respectively including trenches 3a, 4a provided adjacent to each other and parallel with each other from a surface of the p base region 66 such that the bottoms of the trenches 3a, 4a reach the inside of an nlayer 57, gate insulation films 3b, 4b respectively provided on inner faces of the trenches 3a, 4a, and gate electrodes 3c, 4c respectively provided so as to fill the inside of the gate insulation films 3b, 4b; nemitter regions 6 provided within a surface of the p base region 66 and each being adjacent to only one side of each of the respective trench gates 3, 4; an emitter electrode 51 provided on the p base region 66 and electrically connected with the nemitter region 6; and a collector electrode 63 provided on an undersurface of the pcollector layer 55.

Description

この発明は、MOSゲート構造を有する電力用半導体装置に関するもので、特にインバータなどの電力の変換や制御に用いられる絶縁ゲート型バイポーラトランジスタに関するものである。   The present invention relates to a power semiconductor device having a MOS gate structure, and more particularly to an insulated gate bipolar transistor used for power conversion and control of an inverter or the like.

近年、インバータなどの電力の変換や制御に用いられる電力用半導体装置として絶縁ゲート型バイポーラトランジスタ(以下IGBT(Insulated Gate Bipolar Transistor)という。)が多く利用されている。そしてこのIGBTにおいては、より大電流化(高耐圧化)及び高信頼性化の要求が高まっている。   In recent years, an insulated gate bipolar transistor (hereinafter referred to as an IGBT (Insulated Gate Bipolar Transistor)) is often used as a power semiconductor device used for power conversion and control of an inverter or the like. In this IGBT, demands for higher current (higher breakdown voltage) and higher reliability are increasing.

図7は、例えば特許文献1に示されているIGBTチップの平面図である。図7におけるIGBTチップ50おいて、51はエミッタ電極(第1の主電極)、52はエミッタ電極51の周縁の一部に設けられた凹部に形成されたゲートパッド、53はゲートパッド52からエミッタ電極51の周囲及び面内に延設され、エミッタ電極51を短冊状に分割するように設けられたゲート配線である。そしてゲート配線53の間には色々なセル構造のIGBTセル54が設けられている。   FIG. 7 is a plan view of an IGBT chip disclosed in Patent Document 1, for example. In the IGBT chip 50 in FIG. 7, 51 is an emitter electrode (first main electrode), 52 is a gate pad formed in a recess provided in a part of the periphery of the emitter electrode 51, and 53 is an emitter from the gate pad 52. It is a gate wiring that extends around and in the plane of the electrode 51 and is provided so as to divide the emitter electrode 51 into strips. Between the gate wirings 53, IGBT cells 54 having various cell structures are provided.

例えば図8は図7のIGBTセル54のA−A断面を示す部分断面図であり、非特許文献1に示されている一般的なプレーナゲート型IGBTのセル構造である。図8において、55は半導体基板からなるpコレクタ層(第1導電型の第1の半導体層)、56はpコレクタ層55の一方面上に設けられたnバッファ層(第2導電型の第2の半導体層)、57はnバッファ層56上に設けられたn層(第2導電型の第3の半導体層)、58はn層57の表面内に選択的に設けられたpベース領域(第1導電型の第1の半導体領域)、59はpベース領域58の表面内に選択的に設けられたnエミッタ領域(第2導電型の第2の半導体領域)、60はn層57とnエミッタ領域59の一部及びその間のpベース領域58の上に設けられた酸化膜等の絶縁体からなるゲート絶縁膜、61はゲート絶縁膜60上に設けられたポリシリコン等の導電体からなるゲート電極、62はゲート電極61とゲート絶縁膜60及びnエミッタ領域59の一部を覆うように設けられたシリケートガラス(BPSG)等の絶縁体からなる層間絶縁膜、51は図7で示したアルミニウム等の導電体からなるエミッタ電極で、層間絶縁膜62とpベース領域58及びnエミッタ領域59の一部を覆うように設けられている。63はpコレクタ層55の他方面上に設けられたアルミニウム等の導電体からなるコレクタ電極(第2の主電極)である。なおゲート電極61の延設方向(図8においては紙面前後方向)の端部はゲート配線53に接続されている。 For example, FIG. 8 is a partial cross-sectional view showing an AA cross section of the IGBT cell 54 of FIG. 7, which is a general planar gate IGBT cell structure disclosed in Non-Patent Document 1. In FIG. 8, 55 is a p + collector layer (first conductivity type first semiconductor layer) made of a semiconductor substrate, and 56 is an n + buffer layer (second conductivity layer) provided on one surface of the p + collector layer 55. Type second semiconductor layer), 57 is an n layer (second conductivity type third semiconductor layer) provided on the n + buffer layer 56, and 58 is selectively formed in the surface of the n layer 57. The provided p base region (first conductive type first semiconductor region) 59 is an n + emitter region (second conductive type second semiconductor region) selectively provided in the surface of the p base region 58. , 60 is a gate insulating film made of an insulator such as an oxide film provided on a part of the n layer 57 and the n + emitter region 59 and the p base region 58 therebetween, and 61 is formed on the gate insulating film 60. A gate electrode made of a conductor such as polysilicon provided, 62 is a gate electrode 61 a gate insulating film 60 and the n + portion so as to cover provided silicate glass (BPSG) or the like made of an insulator interlayer insulating film of the emitter region 59, 51 is a conductor such as aluminum as shown in FIG. 7 The emitter electrode is provided so as to cover the interlayer insulating film 62, the p base region 58, and a part of the n + emitter region 59. Reference numeral 63 denotes a collector electrode (second main electrode) made of a conductor such as aluminum provided on the other surface of the p + collector layer 55. Note that the end of the gate electrode 61 in the extending direction (the front-rear direction in FIG. 8) is connected to the gate wiring 53.

また図9は図7のIGBTセル54のA−A断面を示す部分断面図であり、非特許文献2に示されているテラスゲート構造を有するプレーナゲート型IGBTのセル構造である。図9において、図8と相違する点は、n層57上に設けられているテラスゲート部65であり、その特徴は、図8に示す一般的なプレーナゲート型IGBTに比してテラスゲート部65のゲート絶縁膜60が厚いことである。これによりゲート絶縁膜60の容量が小さくなるため、帰還容量が低減される。なお図9において図8で示したものと同じ又は相当するものについては同じ符号を付して説明は省略する。 FIG. 9 is a partial cross-sectional view showing the AA cross section of the IGBT cell 54 of FIG. 7, which is a planar gate IGBT cell structure having a terrace gate structure shown in Non-Patent Document 2. In FIG. 9, the difference from FIG. 8 is a terrace gate portion 65 provided on the n layer 57, which is characterized by a terrace gate as compared with the general planar gate IGBT shown in FIG. That is, the gate insulating film 60 of the portion 65 is thick. As a result, the capacitance of the gate insulating film 60 is reduced, so that the feedback capacitance is reduced. In FIG. 9, the same or corresponding parts as those shown in FIG.

また図10(a),(b)は図7のIGBTセル54の平面図及びA−A断面を示す部分断面図であり、ゲート動作しないトレンチ(以下、ダミートレンチという。)を有するトレンチゲート型IGBTのセル構造を示したもので、例えば特許文献2に相当するものが記載されている。なお図10(a)は理解し易くするためにエミッタ電極51を除いたものを示してある。図10において、pコレクタ層55、nバッファ層56、n層57、エミッタ電極51及びコレクタ電極63は図8で示したものと同じ又は相当するものであり同じ符号を付して説明は省略する。66はn層57上に設けられたpベース層(第1導電型の第4の半導体層)、67はpベース層66表面からn層57に達するように設けられたトレンチゲートであり、このトレンチゲート67は、トレンチ67aとトレンチ67aの内面に設けられた酸化膜などの絶縁体からなるゲート絶縁膜67b及びゲート絶縁膜67b内部を埋めるように設けられたポリシリコンなどの導電体からなるゲート電極67cから構成されている。68はpベース層66表面からn層57に達するように設けられたダミートレンチであり、このダミートレンチ68は、トレンチ68aとトレンチ68aの内面に設けられた酸化膜などの絶縁体からなる絶縁膜68b及び絶縁膜68b内部を埋めるように設けられかつエミッタ電極51と電気的に接続されたポリシリコンなどの導電体からなるダミー電極68cから構成されている。69はトレンチゲート67の両側に隣接してpベース層66の表面内に設けられたnエミッタ領域、70はnエミッタ領域69の一部とトレンチゲート67を覆うように設けられた層間絶縁膜、51は図7で示したエミッタ電極であり層間絶縁膜70,pベース層66、ダミートレンチ68及びnエミッタ領域69の露出部分を覆うように設けられている。なおダミートレンチを用いるのは、短絡時にIGBTチップ50に流れる電流が抑制されるので、短絡耐量(SCSOA(Short Circuit Safe Operation Area))の確保が可能であり、大電流化に対して有効に機能する点にある。なおゲート電極67cは、その端部がゲート配線53に接続されている。 FIGS. 10A and 10B are a plan view and a partial cross-sectional view showing an AA cross section of the IGBT cell 54 of FIG. 7, and a trench gate type having a trench that does not operate a gate (hereinafter referred to as a dummy trench). An IGBT cell structure is shown, for example, one corresponding to Patent Document 2 is described. In FIG. 10A, the emitter electrode 51 is removed for easy understanding. 10, p + collector layer 55, n + buffer layer 56, n layer 57, emitter electrode 51, and collector electrode 63 are the same as or equivalent to those shown in FIG. Is omitted. Reference numeral 66 denotes a p base layer (fourth semiconductor layer of the first conductivity type) provided on the n layer 57, and 67 denotes a trench gate provided so as to reach the n layer 57 from the surface of the p base layer 66. The trench gate 67 includes a trench 67a and a gate insulating film 67b made of an insulator such as an oxide film provided on the inner surface of the trench 67a and a conductor such as polysilicon provided so as to fill the inside of the gate insulating film 67b. Gate electrode 67c. Reference numeral 68 denotes a dummy trench provided so as to reach the n layer 57 from the surface of the p base layer 66. The dummy trench 68 is an insulation made of an insulator such as an oxide film provided on the inner surface of the trench 68a and the trench 68a. The dummy electrode 68c made of a conductor such as polysilicon is provided so as to fill the film 68b and the insulating film 68b and is electrically connected to the emitter electrode 51. 69 is an n + emitter region provided in the surface of the p base layer 66 adjacent to both sides of the trench gate 67, and 70 is an interlayer insulation provided so as to cover a part of the n + emitter region 69 and the trench gate 67. A film 51 is the emitter electrode shown in FIG. 7 and is provided so as to cover the exposed portions of the interlayer insulating film 70, the p base layer 66, the dummy trench 68 and the n + emitter region 69. The use of the dummy trench suppresses the current flowing through the IGBT chip 50 at the time of a short circuit, so that it is possible to ensure a short circuit withstand capability (SSCOA (Short Circuit Safe Operation Area)) and effectively function for increasing the current. There is in point to do. Note that an end portion of the gate electrode 67 c is connected to the gate wiring 53.

特開平8−316479号公報(第1図)JP-A-8-316479 (FIG. 1) 特開2002−353456号公報(第1図)JP 2002-353456 A (FIG. 1)

トランジスタ技術SPECIAL No.85 CQ出版株式会社 2004年1月1日発行 p44(図3−10)Transistor technology SPECIAL No. 85 CQ Publishing Co., Ltd. Published January 1, 2004 p44 (Figure 3-10) パワーデバイス・パワーICハンドブック コロナ社 1996年発行 p151(図6.28(a))Power Device Power IC Handbook Corona Publishing Co., Ltd. 1996 p151 (Fig. 6.28 (a))

従来の電力用半導体装置であるIGBTは、上述したように構成されているのであるが、昨今のIGBTに対する大電流化(高耐圧化)及び高信頼性化の要求に対して、次のような課題が顕著になっている。   An IGBT, which is a conventional power semiconductor device, is configured as described above. In response to the recent demands for higher current (higher breakdown voltage) and higher reliability for IGBTs, the following is provided. Challenges are prominent.

IGBTチップ50においては、ポリシリコン等の導電体で形成されるゲート電極61,67cのゲート抵抗(図7にRとして示す。)を抑えるために、図7で示したようにエミッタ電極51をアルミニウム等の導電体で形成されるゲート配線53で短冊状に分割するように設けている。しかしながら大電流化及び高信頼性化への対応として、IGBTチップ50が搭載されるIGBTパッケージにおいては、エミッタ電極51にボンディングするアルミニウム等の導電体からなるワイヤの数が増加する傾向にある。このためワイヤボンディングの信頼性を向上させるためには、ゲート配線53の間隔を広くして短冊状に設けられた各々のエミッタ電極51の面積を広くする必要があるが、反って広くすると、前述したようにゲート電極61,67cのゲート抵抗に大きな差異が生じてしまう。具体的にはIGBTセル54において、ゲート配線53に近い位置ではゲート抵抗が小さくなり、ゲート配線53から離れた位置(例えばゲート配線間の中央位置)ではゲート抵抗が大きくなる。そのためターンオフ時に、ゲート配線53に近い位置と離れた位置のIGBTセル54に供給される電流がアンバランス(以下、分流アンバランスという。)になり、ターンオフ速度が遅くなるゲート配線53から離れた位置のIGBTセル54に電流が集中し発熱することによりターンオフ耐量、即ち逆バイアス安全動作領域(RBSOA(Reverse Biased Safe Operating Area))が低下してしまう。   In the IGBT chip 50, in order to suppress the gate resistance (shown as R in FIG. 7) of the gate electrodes 61 and 67c formed of a conductor such as polysilicon, the emitter electrode 51 is made of aluminum as shown in FIG. It is provided so as to be divided into strips by a gate wiring 53 formed of a conductor such as. However, in response to the increase in current and the reliability, in the IGBT package on which the IGBT chip 50 is mounted, the number of wires made of a conductor such as aluminum bonded to the emitter electrode 51 tends to increase. For this reason, in order to improve the reliability of wire bonding, it is necessary to increase the area of each emitter electrode 51 provided in a strip shape by widening the interval between the gate wirings 53. As described above, a large difference occurs in the gate resistance of the gate electrodes 61 and 67c. Specifically, in the IGBT cell 54, the gate resistance decreases at a position close to the gate wiring 53, and the gate resistance increases at a position away from the gate wiring 53 (for example, a central position between the gate wirings). Therefore, at the time of turn-off, the current supplied to the IGBT cell 54 near and away from the gate line 53 becomes unbalanced (hereinafter referred to as shunt unbalance), and the position away from the gate line 53 where the turn-off speed is slow. When the current concentrates in the IGBT cell 54 and generates heat, the turn-off resistance, that is, the reverse bias safe operating area (RBSOA) is lowered.

このゲート電極61,67cのゲート抵抗を低減させる手段として、ゲート電極61,67cの材料であるポリシリコンに不純物をドープして低抵抗化したドープポリシリコンを用いることが考えられる。しかしながら図8及び図9に示すプレーナゲート型IGBTのゲート電極61にドープポリシリコンを用いた場合、ドープした不純物がゲート絶縁膜60及びn層57にオートドープしてゲートリーク特性や主耐圧リーク特性に影響を与えてしまう。また図10に示すトレンチゲート型IGBTのゲート電極67cにドープポリシリコンを用いた場合、トレンチゲートの幅は非常に狭く形成されているので、ゲート電極67cの断面積は非常に小さくなる。そのため、上述したようにゲート配線53の間隔が広くなるような場合、ゲート抵抗が増大して分流アンバランスが生じ、ターンオフ耐量が低下してしまう。 As a means for reducing the gate resistance of the gate electrodes 61 and 67c, it is conceivable to use doped polysilicon in which polysilicon, which is a material of the gate electrodes 61 and 67c, is doped to reduce the resistance. However, when doped polysilicon is used for the gate electrode 61 of the planar gate type IGBT shown in FIGS. 8 and 9, the doped impurities are auto-doped into the gate insulating film 60 and the n layer 57 to cause gate leakage characteristics and main breakdown voltage leakage. It will affect the characteristics. Further, when doped polysilicon is used for the gate electrode 67c of the trench gate type IGBT shown in FIG. 10, the width of the trench gate is very narrow, so that the cross-sectional area of the gate electrode 67c is very small. Therefore, as described above, when the interval between the gate wirings 53 is increased, the gate resistance is increased to cause a shunt imbalance, and the turn-off resistance is reduced.

この発明は、上記のような課題を解消するためになされたもので、ゲート配線53の間隔が広くなるような場合においても、分流アンバランスを改善しつつ、大電流化及び高信頼性化の要求に応える電力用半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even when the interval between the gate wirings 53 is widened, the current unbalance is improved and a large current and high reliability are achieved. An object is to provide a power semiconductor device that meets demands.

この発明に係る電力用半導体装置は、第1導電型の第1の半導体層、第1の半導体層の一方面上に設けられた第2導電型の第2の半導体層、第2の半導体層上に設けられた第2導電型の第3の半導体層、第3の半導体層上に設けられた第1導電型の第4の半導体層、第4の半導体層の表面から前記第3の半導体層内にその底部が達するようにして、互いに近設されかつ並設された、トレンチと、このトレンチの内面に設けられたゲート絶縁膜と、このゲート絶縁膜の内部を埋めるように設けられたゲート電極からなる2つのトレンチゲート、2つのトレンチゲートの各々の片側のみに隣接して、第4の半導体層の表面内に設けられた第2導電型の第1の半導体領域、第4の半導体層上に設けられ、かつ第1の半導体領域と電気的に接続された第1の主電極、第1の半導体層の他方面上に設けられた第2の主電極を備えている。   A power semiconductor device according to the present invention includes a first conductivity type first semiconductor layer, a second conductivity type second semiconductor layer provided on one surface of the first semiconductor layer, and a second semiconductor layer. A third semiconductor layer of a second conductivity type provided thereon, a fourth semiconductor layer of a first conductivity type provided on the third semiconductor layer, and the third semiconductor from the surface of the fourth semiconductor layer; A trench, a gate insulating film provided on the inner surface of the trench, and a gate insulating film provided in the inner surface of the trench were provided so as to reach the bottom of the layer and arranged side by side. A first semiconductor region of the second conductivity type provided in the surface of the fourth semiconductor layer adjacent to only one side of each of the two trench gates and the two trench gates composed of gate electrodes, a fourth semiconductor Provided on the layer and electrically connected to the first semiconductor region First main electrode, a second main electrode provided on the other surface of the first semiconductor layer.

この発明によれば、互いに近設されかつ並設された2つのトレンチゲートの各々の片側のみに隣接して、第4の半導体層の表面内に設けられた第2導電型の第1の半導体領域を備えるので、2つのトレンチゲートで1つのトレンチゲートのように動作するようになり、ゲート電極の断面積が実質的に増加する。このためゲート電極のゲート抵抗が従来に比して低減される。そのためターンオフ時の分流アンバランスが改善され、ターンオフ耐量の低下を防止できる。これによりゲート配線の間隔が広くなるような場合であっても、分流アンバランスの改善によりターンオフ耐量の低下が防止され、大電流化及び高信頼性化の要求に応えたトレンチゲート型の電力用半導体装置を得ることが出来る。また2つのトレンチゲートの各々には、片側のみに隣接して第1の半導体領域を設けているので、ターンオン時においてチャネルが片側のみにしか形成されない。よって短絡時の電流損失を低く抑えることができ、短絡耐量の確保が可能になる。   According to the present invention, the first semiconductor of the second conductivity type provided in the surface of the fourth semiconductor layer adjacent to only one side of each of the two trench gates arranged close to each other and juxtaposed. Since the region is provided, the two trench gates operate like one trench gate, and the cross-sectional area of the gate electrode is substantially increased. For this reason, the gate resistance of the gate electrode is reduced as compared with the prior art. Therefore, the shunt imbalance at the time of turn-off is improved, and a decrease in turn-off resistance can be prevented. Even if the gate wiring spacing is widened, the improvement of the shunt imbalance prevents the turn-off capability from being lowered, and the trench gate type power supply meets the demand for higher current and higher reliability. A semiconductor device can be obtained. Further, since each of the two trench gates is provided with the first semiconductor region adjacent to only one side, the channel is formed only on one side at the time of turn-on. Therefore, the current loss at the time of a short circuit can be suppressed low, and the short circuit tolerance can be ensured.

この発明の実施の形態1に係る電力用半導体装置であるプレーナゲート型IGBTの部分断面図である。1 is a partial cross-sectional view of a planar gate IGBT that is a power semiconductor device according to a first embodiment of the present invention. この発明の実施の形態2に係る電力用半導体装置であるプレーナゲート型IGBTの部分拡大図である。It is the elements on larger scale of the planar gate type IGBT which is a power semiconductor device concerning Embodiment 2 of this invention. この発明の実施の形態3に係る電力用半導体装置であるプレーナゲート型IGBTの部分断面図である。It is a fragmentary sectional view of planar gate type IGBT which is a power semiconductor device concerning Embodiment 3 of this invention. この発明の実施の形態5に係る電力用半導体装置であるトレンチゲート型IGBTの平面図及び部分断面図である。It is the top view and partial sectional view of a trench gate type IGBT which is a power semiconductor device according to Embodiment 5 of the present invention. この発明の実施の形態6に係る電力用半導体装置であるトレンチゲート型IGBTの平面図及び部分断面図である。It is the top view and partial sectional view of a trench gate type IGBT which is a power semiconductor device according to Embodiment 6 of the present invention. この発明の実施の形態7に係る電力用半導体装置であるトレンチゲート型IGBTの平面図及び部分断面図である。It is the top view and partial sectional view of a trench gate type IGBT which is a power semiconductor device according to Embodiment 7 of the present invention. 従来の電力用半導体装置であるIGBTチップを示す平面図である。It is a top view which shows the IGBT chip | tip which is the conventional semiconductor device for electric power. 従来の電力用半導体装置であるプレーナゲート型IGBTの部分断面図である。It is a fragmentary sectional view of the planar gate type IGBT which is the conventional semiconductor device for electric power. 従来の電力用半導体装置であるテラスゲート構造を有するプレーナゲート型IGBTの部分断面図である。It is a fragmentary sectional view of the planar gate type IGBT which has the terrace gate structure which is the conventional semiconductor device for electric power. 従来の電力用半導体装置であるダミートレンチ構造を備えたトレンチゲート型IGBTの部分断面図である。It is a fragmentary sectional view of trench gate type IGBT provided with the dummy trench structure which is the conventional semiconductor device for electric power.

実施の形態1
この発明の実施の形態1について説明する。図1はこの発明の実施の形態1に係る電力用半導体装置であるプレーナゲート型IGBTの部分断面図であり、図7に示すIGBTセル54のA−A断面におけるセル構造を示したものである。図1において従来技術で示した図8と相違する点は、ゲート電極1を、ゲート絶縁膜60上に設けられたポリシリコン膜1aと、このポリシリコン膜1a上に、ポリシリコンに不純物をドープして低抵抗化したドープポリシリコン膜1bを設けた構成とし、このゲート電極1の延設方向(図1においては紙面前後方向)にある端部をゲート配線53に接続していることである。その他の構成については図8に示したものと同じ又は相当するものであるため同じ符号を付して説明は省略する。
Embodiment 1
Embodiment 1 of the present invention will be described. FIG. 1 is a partial cross-sectional view of a planar gate type IGBT which is a power semiconductor device according to Embodiment 1 of the present invention, and shows a cell structure taken along the line AA of the IGBT cell 54 shown in FIG. . 1 is different from FIG. 8 shown in the prior art in that the gate electrode 1 is made of a polysilicon film 1a provided on the gate insulating film 60, and the polysilicon film 1a is doped with impurities. In other words, the doped polysilicon film 1b having a reduced resistance is provided, and the end of the gate electrode 1 in the extending direction (the front-rear direction in FIG. 1) is connected to the gate wiring 53. . The other configurations are the same as or correspond to those shown in FIG.

かかる図1の構造によれば、ゲート電極1を、ゲート絶縁膜60上に設けられたポリシリコン膜1aと、このポリシリコン膜1a上に、ポリシリコンに不純物をドープして低抵抗化したドープポリシリコン膜1bを設けた構成としたので、ゲート電極1のゲート抵抗が従来に比して低減される。そのためゲート配線53に近い位置のIGBTセル54とゲート配線53から離れた位置(例えばゲート配線間の中央位置)のIGBTセル54のゲート抵抗の差が小さくなる。よってゲート配線53に近い位置とゲート配線53から離れた位置のIGBTセル54におけるターンオフ時の分流アンバランスが改善され、ゲート配線53から離れた位置のIGBTセル54に電流が集中し発熱することが無くなるため、ターンオフ耐量の低下を防止できる。   According to the structure of FIG. 1, the gate electrode 1 is doped with the polysilicon film 1a provided on the gate insulating film 60 and the polysilicon film 1a doped with impurities to reduce the resistance. Since the polysilicon film 1b is provided, the gate resistance of the gate electrode 1 is reduced as compared with the prior art. Therefore, the difference in gate resistance between the IGBT cell 54 located near the gate wiring 53 and the IGBT cell 54 located away from the gate wiring 53 (for example, the central position between the gate wirings) is reduced. Therefore, the shunt unbalance at the time of turn-off in the IGBT cell 54 at a position close to the gate wiring 53 and a position away from the gate wiring 53 is improved, and current concentrates in the IGBT cell 54 at a position away from the gate wiring 53 and heat is generated. Since it is eliminated, it is possible to prevent a decrease in turn-off resistance.

またドープポリシリコン膜1bとゲート絶縁膜60の間に不純物がドープされていないポリシリコン膜1aを設けているので、ドープポリシリコン膜1bに含まれる不純物が、ゲート絶縁膜60又はn層57に自然に拡散するオートドープが抑制される。このためオートドープにより懸念されるゲートリーク特性や主耐圧リーク特性に対する影響を排除することが出来る。 In addition, since the polysilicon film 1a that is not doped with impurities is provided between the doped polysilicon film 1b and the gate insulating film 60, the impurities contained in the doped polysilicon film 1b are transferred to the gate insulating film 60 or the n layer 57. Autodope that diffuses naturally is suppressed. For this reason, it is possible to eliminate the influence on the gate leak characteristic and main breakdown voltage leak characteristic which are concerned by auto-doping.

これによりゲート配線53の間隔が広くなるような場合であっても、分流アンバランスの改善によりターンオフ耐量の低下が防止され、加えて不純物のオートドープの抑制により、懸念されるゲートリーク特性や主耐圧リーク特性に対する影響も排除可能となるため、大電流化(高耐圧化)及び高信頼性化の要求に応えたプレーナ型IGBTを得ることができる。   Accordingly, even when the interval between the gate wirings 53 is widened, the reduction of the turn-off resistance is prevented by improving the shunt imbalance, and additionally, the gate leakage characteristics and main factors which are concerned are suppressed by suppressing the auto-doping of impurities. Since the influence on the withstand voltage leakage characteristic can be eliminated, a planar type IGBT that meets the demands for high current (high withstand voltage) and high reliability can be obtained.

実施の形態2
実施の形態1では、ゲート電極1を、ゲート絶縁膜60上に設けられたポリシリコン膜1aと、このポリシリコン膜1a上に、ポリシリコンに不純物をドープして低抵抗化したドープポリシリコン膜1bを設けた構成としたものを示した。図2は実施の形態2を説明する部分拡大図であり、図1のゲート電極1の部分を拡大したものに相当する。この実施の形態2が実施の形態1と相違する点は、ドープポリシリコン膜1bに含まれる不純物に濃度勾配を持たせたところである。具体的には、図2に示す不純物濃度分布のように、ドープポリシリコン膜1bの厚さ方向に不純物濃度勾配を持たせ、ドープポリシリコン膜1bの上部での不純物濃度を最も高くして、厚さ方向、即ちポリシリコン膜1aに向かって不純物濃度を減少させ、ポリシリコン膜1bに接触するドープポリシリコン膜1bの底部での不純物濃度を最も低く、或いはゼロにしている。なお図8に示したものと同じ又は相当するものについては同じ符号を付して説明は省略する。
Embodiment 2
In the first embodiment, the gate electrode 1 includes a polysilicon film 1a provided on the gate insulating film 60, and a doped polysilicon film obtained by doping polysilicon with impurities to reduce the resistance. A configuration provided with 1b is shown. FIG. 2 is a partially enlarged view for explaining the second embodiment, and corresponds to an enlarged view of the portion of the gate electrode 1 of FIG. The difference between the second embodiment and the first embodiment is that the impurity contained in the doped polysilicon film 1b has a concentration gradient. Specifically, as in the impurity concentration distribution shown in FIG. 2, an impurity concentration gradient is provided in the thickness direction of the doped polysilicon film 1b, and the impurity concentration at the upper part of the doped polysilicon film 1b is set to the highest. The impurity concentration is decreased in the thickness direction, that is, toward the polysilicon film 1a, so that the impurity concentration at the bottom of the doped polysilicon film 1b contacting the polysilicon film 1b is the lowest or zero. In addition, the same code | symbol is attached | subjected about what is the same as that of what was shown in FIG. 8, or description.

かかる図2の構造によれば、ゲート電極1の抵抗が図2に示す抵抗分布のようになり、ドープポリシリコン膜1bの上部に低抵抗な領域を有することにより、実施の形態1と同様にターンオフ耐量の低下を防止できる。   According to the structure shown in FIG. 2, the resistance of the gate electrode 1 has the resistance distribution shown in FIG. 2, and the low resistance region is formed on the doped polysilicon film 1b. A decrease in turn-off resistance can be prevented.

またポリシリコン膜1aと接するドープポリシリコン膜1bの底部において、ドープポリシリコン膜1bの不純物濃度を最も低く、或いはゼロにしているので、ドープポリシリコン膜1bに含まれる不純物がゲート絶縁膜60又はn層57に自然に拡散するオートドープが、実施の形態1に比して一層抑制される。このためオートドープにより懸念されるゲートリーク特性や主耐圧リーク特性に対する影響を一層排除することが出来る。 In addition, since the impurity concentration of the doped polysilicon film 1b is the lowest or zero at the bottom of the doped polysilicon film 1b in contact with the polysilicon film 1a, the impurities contained in the doped polysilicon film 1b are removed from the gate insulating film 60 or Autodoping that diffuses naturally in the n layer 57 is further suppressed as compared with the first embodiment. For this reason, it is possible to further eliminate the influence on the gate leak characteristic and main breakdown voltage leak characteristic which are concerned by auto-doping.

これによりゲート配線53の間隔が広くなるような場合であっても、分流アンバランスの改善によりターンオフ耐量の低下が防止され、加えて不純物のオートドープの一層の抑制により、懸念されるゲートリーク特性や主耐圧リーク特性に対する影響も一層排除可能となるため、より大電流化(高耐圧化)及び高信頼性化の要求に応えたプレーナ型IGBTを得ることができる。   Accordingly, even when the interval between the gate wirings 53 is widened, the reduction of the turn-off resistance is prevented by improving the shunt imbalance, and in addition, the gate leakage characteristic which is a concern due to the further suppression of impurity auto-doping. Further, it is possible to further eliminate the influence on the main withstand voltage leakage characteristics, so that a planar IGBT that meets the demand for higher current (higher withstand voltage) and higher reliability can be obtained.

実施の形態3
実施の形態1で示したポリシリコン膜1aとドープポリシリコン膜1bからなるゲート電極1は、図9で示したテラスゲート構造を有するプレーナゲート型IGBTにも応用可能である。図3はこの発明の実施の形態3に係る電力用半導体装置であるテラスゲート構造を有したプレーナゲート型IGBTの部分断面図であり、図7に示すIGBTセル54のA−A断面におけるセル構造を示したものである。図3において従来技術で示した図9と相違する点は、テラスゲート部65において、ゲート電極2を、ゲート絶縁膜60上に設けたポリシリコン膜2aと、このポリシリコン膜2a上に、ポリシリコンに不純物をドープして低抵抗化したドープポリシリコン膜2bを設けた構成としたところである。なおゲート電極2の延設方向(図3においては紙面前後方向)にある端部はゲート配線53に接続されている。その他の構造については図8及び図9に示したものと同じ又は相当するものであるため同じ符号を付して説明は省略する。
Embodiment 3
The gate electrode 1 composed of the polysilicon film 1a and the doped polysilicon film 1b shown in the first embodiment can be applied to the planar gate type IGBT having the terrace gate structure shown in FIG. 3 is a partial cross-sectional view of a planar gate type IGBT having a terrace gate structure, which is a power semiconductor device according to Embodiment 3 of the present invention, and shows a cell structure in the AA cross section of the IGBT cell 54 shown in FIG. Is shown. 3 differs from FIG. 9 shown in the prior art in the terrace gate portion 65 in that the gate electrode 2 is provided on the polysilicon film 2a provided on the gate insulating film 60, and on the polysilicon film 2a. The doped polysilicon film 2b, which has a low resistance by doping impurities into silicon, is provided. Note that the end of the gate electrode 2 in the extending direction (the front-rear direction in FIG. 3) is connected to the gate wiring 53. The other structures are the same as or equivalent to those shown in FIGS. 8 and 9, and thus the same reference numerals are given and description thereof is omitted.

かかる図3の構造によれば、テラスゲート部65において、ゲート電極2を、ゲート絶縁膜60上に設けたポリシリコン膜2aと、このポリシリコン膜2a上に、ポリシリコンに不純物をドープして低抵抗化したドープポリシリコン膜2bを設けた構成としたので、ゲート電極2のゲート抵抗が従来に比して低減される。そのため実施の形態1と同様にターンオフ耐量の低下を防止できる。   According to the structure of FIG. 3, in the terrace gate portion 65, the gate electrode 2 is doped with the polysilicon film 2a provided on the gate insulating film 60, and the polysilicon film 2a is doped with impurities. Since the doped polysilicon film 2b having a reduced resistance is provided, the gate resistance of the gate electrode 2 is reduced as compared with the prior art. Therefore, a decrease in turn-off resistance can be prevented as in the first embodiment.

また実施の形態1と同様に、ドープポリシリコン膜2bに含まれる不純物がゲート絶縁膜60又はn層57に自然に拡散するオートドープが抑制される。このためオートドープにより懸念されるゲートリーク特性や主耐圧リーク特性に対する影響を排除できる。 Similarly to the first embodiment, autodoping in which impurities contained in doped polysilicon film 2b naturally diffuse into gate insulating film 60 or n layer 57 is suppressed. For this reason, it is possible to eliminate the influence on the gate leakage characteristic and main breakdown voltage leakage characteristic which are concerned by auto-doping.

これによりゲート配線53の間隔が広くなるような場合であっても、分流アンバランスの改善によりターンオフ耐量の低下が防止され、加えて不純物のオートドープの抑制により、懸念されるゲートリーク特性や主耐圧リーク特性に対する影響も一層排除可能となるため、より大電流化(高耐圧化)及び高信頼性化の要求に応えたプレーナ型IGBTを得ることができる。   Accordingly, even when the interval between the gate wirings 53 is widened, the reduction of the turn-off resistance is prevented by improving the shunt imbalance, and additionally, the gate leakage characteristics and main factors which are concerned are suppressed by suppressing the auto-doping of impurities. Since the influence on the withstand voltage leakage characteristic can be further eliminated, it is possible to obtain a planar IGBT that meets the demand for higher current (high withstand voltage) and higher reliability.

実施の形態4
実施の形態3では、テラスゲート部65において、ゲート電極2を、ゲート絶縁膜60上に設けたポリシリコン膜2aと、このポリシリコン膜2a上に、ポリシリコンに不純物をドープして低抵抗化したドープポリシリコン膜2bを設けた構成としたものを示したが、ドープポリシリコン膜2bに実施の形態2と同様に不純物濃度勾配を持たせてもよい。この場合実施の形態2と同じく、ターンオフ耐量の低下の防止に加え、ドープポリシリコン膜2bに含まれる不純物のゲート絶縁膜60又はn層57へのオートドープが一層抑制されるため、オートドープにより懸念されるIGBTのゲートリーク特性や主耐圧リーク特性に対する影響を一層排除することができるため、より大電流化及び高信頼性化の要求に応えたプレーナゲート型IGBTを得ることが出来る。
Embodiment 4
In the third embodiment, in the terrace gate portion 65, the gate electrode 2 is made of a polysilicon film 2a provided on the gate insulating film 60, and the polysilicon film 2a is doped with impurities to reduce the resistance. Although the structure in which the doped polysilicon film 2b is provided is shown, the doped polysilicon film 2b may have an impurity concentration gradient as in the second embodiment. In this case, as in the second embodiment, in addition to preventing a decrease in turn-off resistance, autodoping of impurities contained in the doped polysilicon film 2b into the gate insulating film 60 or the n layer 57 is further suppressed. Therefore, it is possible to further eliminate the influence on the gate leakage characteristics and main breakdown voltage leakage characteristics of the IGBT, which is a concern, thereby obtaining a planar gate IGBT that meets the demand for higher current and higher reliability.

実施の形態5
この発明の実施の形態5について説明する。図4(a),(b)は図7に示すIGBTセル54の平面図及びA−A断面を示す部分断面図であり、この発明の実施の形態5に係る電力用半導体装置であるダミートレンチを有するトレンチゲート型IGBTのセル構造を示したものである。なお図4(a)は理解し易くするためにエミッタ電極51を除いたものを示してある。図4において、pコレクタ層55(第1導電型の第1の半導体層)、nバッファ層56(第2導電型の第2の半導体層)、n層57(第2導電型の第3の半導体層)、エミッタ電極51(第1の主電極)、コレクタ電極63(第2の主電極)、pベース層66(第1導電型の第4の半導体層)及びダミートレンチ68(トレンチ68a、絶縁膜68b、ダミー電極68c)は、図10で示したものと同じ又は相当するものであり同じ符号を付して説明は省略する。3及び4は互いに近設されかつ並設された2つのトレンチゲートであり、pベース層66表面からn層57に達するように設けられている。この2つのトレンチゲート3及び4は、それぞれトレンチ3a,4aとトレンチ3a,4aの内面に設けられた酸化膜などの絶縁体からなるゲート絶縁膜3b,4b及びゲート絶縁膜3b,4b内部を埋めるように設けられたポリシリコンなどの導電体からなるゲート電極3c,4cから構成されている。6は2つのトレンチゲート3及び4の各々の片側のみに隣接してpベース層66の表面内に設けられたnエミッタ領域(第2導電型の第1の半導体領域)である。図4においては、2つのトレンチゲート3及び4を極力近設させるために、nエミッタ領域6は2つのトレンチゲート3及び4の両外側に設けている。7はnエミッタ領域6の一部と2つのトレンチゲート3及び4を覆うように設けられた層間絶縁膜、51は図7で示したエミッタ電極であり、層間絶縁膜7、pベース層66、ダミートレンチ68及びnエミッタ領域6の露出部を覆うように設けられている。なおゲート電極3c、4cは、その延設方向(図4(a)においては紙面上下方向、図4(b)においては紙面前後方向)にある端部でゲート配線53に接続されている。
Embodiment 5
Embodiment 5 of the present invention will be described. FIGS. 4A and 4B are a plan view and a partial cross-sectional view showing the AA cross section of the IGBT cell 54 shown in FIG. 7, and a dummy trench which is a power semiconductor device according to the fifth embodiment of the present invention. 1 shows a cell structure of a trench gate type IGBT having a gate electrode. FIG. 4 (a) shows the structure excluding the emitter electrode 51 for easy understanding. In FIG. 4, p + collector layer 55 (first conductivity type first semiconductor layer), n + buffer layer 56 (second conductivity type second semiconductor layer), n layer 57 (second conductivity type). (Third semiconductor layer), emitter electrode 51 (first main electrode), collector electrode 63 (second main electrode), p base layer 66 (first conductivity type fourth semiconductor layer), and dummy trench 68 ( The trench 68a, the insulating film 68b, and the dummy electrode 68c) are the same as or correspond to those shown in FIG. Reference numerals 3 and 4 denote two trench gates arranged close to each other and arranged in parallel, and are provided so as to reach the n layer 57 from the surface of the p base layer 66. The two trench gates 3 and 4 fill the insides of the gate insulating films 3b and 4b and the gate insulating films 3b and 4b made of an insulator such as an oxide film provided on the inner surfaces of the trenches 3a and 4a and the trenches 3a and 4a, respectively. The gate electrodes 3c and 4c made of a conductor such as polysilicon are provided. Reference numeral 6 denotes an n + emitter region (second conductivity type first semiconductor region) provided in the surface of the p base layer 66 adjacent to only one side of each of the two trench gates 3 and 4. In FIG. 4, the n + emitter region 6 is provided on both outer sides of the two trench gates 3 and 4 in order to make the two trench gates 3 and 4 as close as possible. 7 is an interlayer insulating film provided so as to cover a part of the n + emitter region 6 and the two trench gates 3 and 4, 51 is an emitter electrode shown in FIG. 7, and includes an interlayer insulating film 7 and a p base layer 66. The dummy trench 68 and the exposed portion of the n + emitter region 6 are provided so as to cover. The gate electrodes 3c and 4c are connected to the gate wiring 53 at the ends in the extending direction (the vertical direction in the drawing in FIG. 4A and the longitudinal direction in the drawing in FIG. 4B).

かかる図4の構造によれば、互いに近設されかつ並設された2つのトレンチゲート3及び4のそれぞれ片側のみに隣接して、pベース層66表面内にnエミッタ領域6を設けたので、2つのトレンチゲート3及び4でもって1つのトレンチゲートのように動作するようになり、ゲート電極の断面積が実質的に増加するため、より具体的には、ゲート電極の断面積がトレンチゲート3のゲート電極3cの断面積とトレンチゲート4のゲート電極4cの断面積の和となり増加(ここでは従来に比して約2倍となる。)するため、ゲート抵抗が従来に比して低減される。このためゲート配線53に近い位置のIGBTセル54とゲート配線53から離れた位置(例えばゲート配線間の中央位置)のIGBTセル54のゲート抵抗の差が小さくなる。よってゲート配線53に近い位置とゲート配線53から離れた位置のIGBTセル54におけるターンオフ時の分流アンバランスが改善され、ゲート配線53から離れた位置のIGBTセル54に電流が集中し発熱することが無くなるため、ターンオフ耐量の低下を防止できる。 According to the structure of FIG. 4, the n + emitter region 6 is provided in the surface of the p base layer 66 adjacent to only one side of each of the two trench gates 3 and 4 arranged close to each other and arranged side by side. More specifically, since the two trench gates 3 and 4 operate like one trench gate and the cross-sectional area of the gate electrode is substantially increased, the cross-sectional area of the gate electrode is more specifically the trench gate. 3 and the cross-sectional area of the gate electrode 4c of the trench gate 4 and the cross-sectional area of the gate electrode 3c and the gate electrode 4c of the trench gate 4 increase (in this case, about twice as much as in the prior art). Is done. For this reason, the difference in gate resistance between the IGBT cell 54 located near the gate wiring 53 and the IGBT cell 54 located away from the gate wiring 53 (for example, the central position between the gate wirings) is reduced. Therefore, the shunt unbalance at the time of turn-off in the IGBT cell 54 at a position close to the gate wiring 53 and a position away from the gate wiring 53 is improved, and current concentrates in the IGBT cell 54 at a position away from the gate wiring 53 and heat is generated. Since it is eliminated, it is possible to prevent a decrease in turn-off resistance.

また2つのトレンチゲート3及び4の各々には、片側のみに隣接してnエミッタ領域6を設けているので、ターンオン時においてnチャネルが片側のみにしか形成されない。よって短絡時の電流損失を低く抑えることができるため、ダミートレンチ68が無いような場合であっても、短絡耐量の確保が可能になる。さらにダミートレンチ68を設けることにより短絡耐量は一層向上する。 Further, since each of the two trench gates 3 and 4 is provided with the n + emitter region 6 adjacent to only one side, an n channel is formed only on one side at the time of turn-on. Therefore, since the current loss at the time of a short circuit can be suppressed low, even if there is no dummy trench 68, it is possible to ensure a short circuit withstand capability. Further, the provision of the dummy trench 68 further improves the short-circuit tolerance.

これによりゲート配線53の間隔が広くなるような場合であっても、分流アンバランスの改善によりターンオフ耐量の低下が防止されるため、大電流化及び高信頼性化の要求に応えたトレンチゲート型IGBTを得ることが出来る。さらにダミートレンチを設けることにより短絡耐量が一層向上するため、より大電流化及び高信頼性化の要求に応えたトレンチゲート型IGBTを得ることが出来る。   Accordingly, even when the interval between the gate wirings 53 is widened, a reduction in turn-off resistance is prevented by improving the shunt imbalance, so that the trench gate type that meets the demand for higher current and higher reliability is achieved. An IGBT can be obtained. Furthermore, since the short-circuit withstand capability is further improved by providing a dummy trench, a trench gate type IGBT that meets the demand for higher current and higher reliability can be obtained.

実施の形態6
この発明の実施の形態6について説明する。図5(a),(b)は図7に示すIGBTセル54の平面図及びA−A断面を示す部分断面図であり、この発明の実施の形態6に係る電力用半導体装置であるトレンチゲート型IGBTのセル構造を示したものである。なお図5(a)は理解し易くするためにエミッタ電極51を除いたものを示してある。図5において、pコレクタ層55(第1導電型の第1の半導体層)、nバッファ層56(第2導電型の第2の半導体層)、n層57(第2導電型の第3の半導体層)、エミッタ電極51(第1の主電極)、コレクタ電極63(第2の主電極)、pベース層66(第1導電型の第4の半導体層)は、図10で示したものと同じ又は相当するものであり同じ符号を付して説明は省略する。8はpベース層66表面からn層57に達するように設けられたトレンチゲートであり、このトレンチゲート8はトレンチ8aとトレンチ8aの内面に設けられた酸化膜などの絶縁体からなるゲート絶縁膜8b及びゲート絶縁膜8b内部を埋めるように設けられたポリシリコンなどの導電体からなるゲート電極8cから構成されている。9はトレンチゲート8の片側のみに隣接してpベース層66の表面内に設けられたnエミッタ領域(第2導電型の第1の半導体領域)、10はnエミッタ領域9の一部とトレンチゲート8を覆うように設けられた層間絶縁膜、51は図7で示したエミッタ電極であり、層間絶縁膜10、pベース層66及びnエミッタ領域9の露出部を覆うように設けられている。なおゲート電極8cは、その延設方向(図5(a)においては紙面上下方向、図5(b)においては紙面前後方向)にある端部でゲート配線53に接続されている。
Embodiment 6
Embodiment 6 of the present invention will be described. 5A and 5B are a plan view and a partial cross-sectional view showing the AA cross section of the IGBT cell 54 shown in FIG. 7, and a trench gate which is a power semiconductor device according to the sixth embodiment of the present invention. 1 shows a cell structure of a type IGBT. Note that FIG. 5A shows the structure excluding the emitter electrode 51 for easy understanding. In FIG. 5, a p + collector layer 55 (first conductivity type first semiconductor layer), an n + buffer layer 56 (second conductivity type second semiconductor layer), and an n layer 57 (second conductivity type). The third semiconductor layer), the emitter electrode 51 (first main electrode), the collector electrode 63 (second main electrode), and the p base layer 66 (first conductivity type fourth semiconductor layer) are shown in FIG. These are the same as or equivalent to those shown, and are denoted by the same reference numerals and description thereof is omitted. Reference numeral 8 denotes a trench gate provided so as to reach the n layer 57 from the surface of the p base layer 66. The trench gate 8 is a gate insulation made of an insulator such as an oxide film provided on the inner surface of the trench 8a and the trench 8a. The gate electrode 8c is formed of a conductor such as polysilicon provided so as to fill the film 8b and the gate insulating film 8b. 9 is an n + emitter region (first semiconductor region of the second conductivity type) provided in the surface of the p base layer 66 adjacent to only one side of the trench gate 8, and 10 is a part of the n + emitter region 9. The interlayer insulating film 51 is provided so as to cover the trench gate 8 and the emitter electrode 51 shown in FIG. 7 is provided so as to cover the exposed portions of the interlayer insulating film 10, the p base layer 66 and the n + emitter region 9. It has been. The gate electrode 8c is connected to the gate wiring 53 at the end in the extending direction (the vertical direction on the paper surface in FIG. 5A and the front-back direction on the paper surface in FIG. 5B).

かかる図5の構造によれば、トレンチゲート8の片側のみに隣接してpベース層66の表面内にnエミッタ領域9を設けたので、トレンチゲート8に供給される電流が従来に比して低減されるため、トレンチゲート8のゲート電極8cの実効的な断面積が大きくなり、トレンチゲート8のゲート抵抗は従来に比して低減される。そのためゲート配線53に近い位置のIGBTセル54とゲート配線53から離れた位置(例えばゲート配線間の中央位置)のIGBTセル54のゲート抵抗の差が小さくなる。よってゲート配線53に近い位置とゲート配線53から離れた位置のIGBTセル54におけるターンオフ時の分流アンバランスが改善され、ゲート配線53から離れた位置のIGBTセル54に電流が集中し発熱することが無くなるため、ターンオフ耐量の低下を防止できる。 According to the structure shown in FIG. 5, since the n + emitter region 9 is provided in the surface of the p base layer 66 adjacent to only one side of the trench gate 8, the current supplied to the trench gate 8 is larger than that of the conventional case. Therefore, the effective sectional area of the gate electrode 8c of the trench gate 8 is increased, and the gate resistance of the trench gate 8 is reduced as compared with the conventional case. Therefore, the difference in gate resistance between the IGBT cell 54 located near the gate wiring 53 and the IGBT cell 54 located away from the gate wiring 53 (for example, the central position between the gate wirings) is reduced. Therefore, the shunt unbalance at the time of turn-off in the IGBT cell 54 at a position close to the gate wiring 53 and a position away from the gate wiring 53 is improved, and current concentrates in the IGBT cell 54 at a position away from the gate wiring 53 and heat is generated. Since it is eliminated, it is possible to prevent a decrease in turn-off resistance.

またトレンチゲート8の片側のみに隣接してnエミッタ領域9を設けているので、ターンオン時においてnチャネルが片側のみにしか形成されない。よって短絡時の電流損失を低く抑えることができるため、短絡耐量の確保が可能になる。さらに実施の形態5で示したようなダミートレンチ68を設けることにより短絡耐量の一層の向上が可能となる。 Further, since n + emitter region 9 is provided adjacent to only one side of trench gate 8, n channel is formed only on one side at turn-on. Therefore, the current loss at the time of a short circuit can be suppressed low, and the short circuit tolerance can be ensured. Further, by providing the dummy trench 68 as shown in the fifth embodiment, it is possible to further improve the short-circuit resistance.

これによりゲート配線53の間隔が広くなるような場合であっても、分流アンバランスの改善によりターンオフ耐量の低下が防止されるため、大電流化及び高信頼性化の要求に応えたトレンチゲート型IGBTを得ることが出来る。さらにダミートレンチを設けることにより短絡耐量が一層向上するため、より大電流化及び高信頼性化の要求に応えたトレンチゲート型IGBTを得ることが出来る。   Accordingly, even when the interval between the gate wirings 53 is widened, a reduction in turn-off resistance is prevented by improving the shunt imbalance, so that the trench gate type that meets the demand for higher current and higher reliability is achieved. An IGBT can be obtained. Furthermore, since the short-circuit withstand capability is further improved by providing a dummy trench, a trench gate type IGBT that meets the demand for higher current and higher reliability can be obtained.

実施の形態7
実施の形態6では、トレンチゲート8の片側のみに隣接してpベース層66の表面内にnエミッタ領域9を設けたものを示したが、nエミッタ領域9はトレンチゲート8の片側のみに設けられていれば実施の形態6と同等の効果を得ることができる。例えば図6に示すように、nエミッタ領域9を所定の長さを有する第1のnエミッタ領域9aと第2のnエミッタ領域9bとして、トレンチゲート8の延設方向(図6(a)においては紙面上下方向、図6(b)及び図6(c)においては紙面前後方向)に隣接してpベース層66の表面内に交互に設けてもよい。なお図6において、図6(a)は図7に示すIGBTセル54の平面図であり、図6(b)及び図6(c)は図6(a)におけるB−B断面及びC−C断面を示す部分断面図である。また図6において実施の形態6の図5と同じ又は相当するものについては同じ符号を付して説明は省略する。
Embodiment 7
In the sixth embodiment, the n + emitter region 9 is provided in the surface of the p base layer 66 adjacent to only one side of the trench gate 8. However, the n + emitter region 9 is provided only on one side of the trench gate 8. If this is provided, the same effect as in the sixth embodiment can be obtained. For example, as shown in FIG. 6, the n + emitter region 9 is used as a first n + emitter region 9a and a second n + emitter region 9b having a predetermined length, and the extending direction of the trench gate 8 (FIG. 6 ( They may be alternately provided in the surface of the p base layer 66 adjacent to the vertical direction of the paper in a) and in the longitudinal direction of the paper in FIGS. 6B and 6C. 6 (a) is a plan view of the IGBT cell 54 shown in FIG. 7, and FIGS. 6 (b) and 6 (c) are cross-sectional views taken along line BB and CC in FIG. 6 (a). It is a fragmentary sectional view which shows a cross section. In FIG. 6, the same or corresponding parts as those in FIG. 5 of the sixth embodiment are denoted by the same reference numerals and description thereof is omitted.

1 ゲート電極、1a ポリシリコン膜、1b ドープポリシリコン膜、50 IGBTチップ、51 エミッタ電極、52 ゲートパッド、53 ゲート配線、54 IGBTセル、55 pコレクタ層、56 nバッファ層、57 n層、58 pベース領域、59 nエミッタ領域、60 ゲート絶縁膜、61 ゲート電極、62 層間絶縁膜、63 コレクタ電極。 1 gate electrode, 1a polysilicon film, 1b doped polysilicon film, 50 IGBT chip, 51 emitter electrode, 52 gate pad, 53 gate wiring, 54 IGBT cell, 55 p + collector layer, 56 n + buffer layer, 57 n Layer, 58 p base region, 59 n + emitter region, 60 gate insulating film, 61 gate electrode, 62 interlayer insulating film, 63 collector electrode.

Claims (6)

第1導電型の第1の半導体層、
前記第1の半導体層の一方面上に設けられた第2導電型の第2の半導体層、
前記第2の半導体層上に設けられた第2導電型の第3の半導体層、
前記第3の半導体層上に設けられた第1導電型の第4の半導体層、
前記第4の半導体層の表面から前記第3の半導体層内にその底部が達するようにして、互いに近設されかつ並設された、トレンチと、このトレンチの内面に設けられたゲート絶縁膜と、このゲート絶縁膜の内部を埋めるように設けられたゲート電極からなる2つのトレンチゲート、
前記2つのトレンチゲートの各々の片側のみに隣接して、前記第4の半導体層の表面内に設けられた第2導電型の第1の半導体領域、
前記第4の半導体層上に設けられ、かつ前記第1の半導体領域と電気的に接続された第1の主電極、
前記第1の半導体層の他方面上に設けられた第2の主電極、
を備えたことを特徴とする電力用半導体装置。
A first semiconductor layer of a first conductivity type;
A second semiconductor layer of a second conductivity type provided on one surface of the first semiconductor layer;
A third semiconductor layer of a second conductivity type provided on the second semiconductor layer;
A fourth semiconductor layer of a first conductivity type provided on the third semiconductor layer;
A trench, and a gate insulating film provided on the inner surface of the trench, arranged close to each other and arranged in parallel so that the bottom of the fourth semiconductor layer reaches the inside of the third semiconductor layer from the surface of the fourth semiconductor layer; , Two trench gates composed of gate electrodes provided so as to fill the inside of the gate insulating film,
A first semiconductor region of a second conductivity type provided in a surface of the fourth semiconductor layer adjacent to only one side of each of the two trench gates;
A first main electrode provided on the fourth semiconductor layer and electrically connected to the first semiconductor region;
A second main electrode provided on the other surface of the first semiconductor layer;
A power semiconductor device comprising:
請求項1に記載の電力用半導体装置であって、
前記第1の半導体領域は、前記2つのトレンチゲートの両外側に設けたことを特徴とする電力用半導体装置。
The power semiconductor device according to claim 1,
The power semiconductor device, wherein the first semiconductor region is provided on both outer sides of the two trench gates.
請求項1または2のいずれか1項に記載の電力用半導体装置であって、
前記電力用半導体装置は、さらに前記第4の半導体層の表面から前記第3の半導体層内にその底部が達するようにして設けられた、トレンチと、このトレンチの内面に設けられた絶縁膜と、この絶縁膜の内部を埋めるように設けられ前記第1の主電極と電気的に接続されたダミー電極からなるダミートレンチを備えたことを特徴とする電力用半導体装置。
The power semiconductor device according to claim 1, wherein:
The power semiconductor device further includes a trench provided so that a bottom portion thereof reaches from the surface of the fourth semiconductor layer into the third semiconductor layer, and an insulating film provided on an inner surface of the trench, A power semiconductor device comprising a dummy trench comprising a dummy electrode provided so as to fill the inside of the insulating film and electrically connected to the first main electrode.
第1導電型の第1の半導体層、
前記第1の半導体層の一方面上に設けられた第2導電型の第2の半導体層、
前記第2の半導体層上に設けられた第2導電型の第3の半導体層、
前記第3の半導体層上に設けられた第1導電型の第4の半導体層、
前記第4の半導体層の表面から前記第3の半導体層内にその底部が達するようにして設けられた、トレンチと、このトレンチの内面に設けられたゲート絶縁膜と、このゲート絶縁膜の内部を埋めるように設けられたゲート電極からなるトレンチゲート、
前記トレンチゲートの片側のみに隣接して前記第4の半導体層の表面内に設けられた第2導電型の第1の半導体領域、
前記第4の半導体層上に設けられ、かつ前記第1の半導体領域と電気的に接続された第1の主電極、
前記第1の半導体層の他方面上に設けられた第2の主電極、
を備えたことを特徴とする電力用半導体装置。
A first semiconductor layer of a first conductivity type;
A second semiconductor layer of a second conductivity type provided on one surface of the first semiconductor layer;
A third semiconductor layer of a second conductivity type provided on the second semiconductor layer;
A fourth semiconductor layer of a first conductivity type provided on the third semiconductor layer;
A trench provided so that the bottom of the fourth semiconductor layer reaches the inside of the third semiconductor layer; a gate insulating film provided on an inner surface of the trench; and an interior of the gate insulating film Trench gate consisting of a gate electrode provided to fill
A first semiconductor region of a second conductivity type provided in the surface of the fourth semiconductor layer adjacent to only one side of the trench gate;
A first main electrode provided on the fourth semiconductor layer and electrically connected to the first semiconductor region;
A second main electrode provided on the other surface of the first semiconductor layer;
A power semiconductor device comprising:
請求項4に記載の電力用半導体装置であって、
前記第1の半導体領域は、前記トレンチゲートの延設方向に所定の長さを有し、かつ前記延設方向に対して交互に設けたことを特徴とする電力用半導体装置。
The power semiconductor device according to claim 4,
The power semiconductor device, wherein the first semiconductor region has a predetermined length in the extending direction of the trench gate and is alternately provided in the extending direction.
請求項4または5のいずれか1項に記載に電力用半導体装置であって、
前記電力用半導体装置は、さらに前記第4の半導体層の表面から前記第3の半導体層内にその底部が達するようにして設けられた、トレンチと、このトレンチの内面に設けられた絶縁膜と、この絶縁膜の内部を埋めるように設けられ前記第1の主電極と電気的に接続されたダミー電極からなるダミートレンチを備えたことを特徴とする電力用半導体装置。
A power semiconductor device according to any one of claims 4 and 5,
The power semiconductor device further includes a trench provided so that a bottom portion thereof reaches from the surface of the fourth semiconductor layer into the third semiconductor layer, and an insulating film provided on an inner surface of the trench, A power semiconductor device comprising a dummy trench comprising a dummy electrode provided so as to fill the inside of the insulating film and electrically connected to the first main electrode.
JP2012100787A 2012-04-26 2012-04-26 Power semiconductor device Pending JP2012142628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100787A JP2012142628A (en) 2012-04-26 2012-04-26 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100787A JP2012142628A (en) 2012-04-26 2012-04-26 Power semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006267137A Division JP5128100B2 (en) 2006-09-29 2006-09-29 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2012142628A true JP2012142628A (en) 2012-07-26

Family

ID=46678510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100787A Pending JP2012142628A (en) 2012-04-26 2012-04-26 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP2012142628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236160A (en) * 2013-06-04 2014-12-15 ローム株式会社 Semiconductor device
CN111613667A (en) * 2019-02-25 2020-09-01 富士电机株式会社 Insulated gate semiconductor device and method for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316479A (en) * 1995-03-14 1996-11-29 Mitsubishi Electric Corp Insulated-gate type semiconductor device and manufacture thereof
WO2002058160A1 (en) * 2001-01-19 2002-07-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2005150426A (en) * 2003-11-17 2005-06-09 Fuji Electric Device Technology Co Ltd Manufacturing method and testing method of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08316479A (en) * 1995-03-14 1996-11-29 Mitsubishi Electric Corp Insulated-gate type semiconductor device and manufacture thereof
WO2002058160A1 (en) * 2001-01-19 2002-07-25 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2005150426A (en) * 2003-11-17 2005-06-09 Fuji Electric Device Technology Co Ltd Manufacturing method and testing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014236160A (en) * 2013-06-04 2014-12-15 ローム株式会社 Semiconductor device
CN111613667A (en) * 2019-02-25 2020-09-01 富士电机株式会社 Insulated gate semiconductor device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP5128100B2 (en) Power semiconductor device
CN103022095B (en) There is the semiconductor device of lateral direction element
JP6356803B2 (en) Insulated gate bipolar transistor
JP2004363327A (en) Semiconductor device
JP7327672B2 (en) semiconductor equipment
WO2010125639A9 (en) Power semiconductor device
JP2022143238A (en) Semiconductor device
JP7325301B2 (en) Semiconductor device and its manufacturing method
US20180342604A1 (en) Semiconductor device
JP7061954B2 (en) Semiconductor device
JP5957171B2 (en) Semiconductor device and manufacturing method thereof
JP2022108230A (en) Semiconductor device
JP2012142628A (en) Power semiconductor device
JP2018006360A (en) Semiconductor device
US11569373B2 (en) Semiconductor device and method for manufacturing semiconductor device
US20140159105A1 (en) Power semiconductor device
US11967643B2 (en) Semiconductor device
JP5884772B2 (en) Semiconductor device
JP2015050386A (en) Semiconductor device
JP4846400B2 (en) Semiconductor device
TW201336071A (en) Semiconductor structure and method for forming the same
US11257937B2 (en) Semiconductor device
JP7201005B2 (en) semiconductor equipment
JP5696715B2 (en) Semiconductor device
JP2016192440A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304