[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012141011A - Turning ring bearing structure - Google Patents

Turning ring bearing structure Download PDF

Info

Publication number
JP2012141011A
JP2012141011A JP2010294139A JP2010294139A JP2012141011A JP 2012141011 A JP2012141011 A JP 2012141011A JP 2010294139 A JP2010294139 A JP 2010294139A JP 2010294139 A JP2010294139 A JP 2010294139A JP 2012141011 A JP2012141011 A JP 2012141011A
Authority
JP
Japan
Prior art keywords
ring
bearing
surface pressure
rigidity
slewing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010294139A
Other languages
Japanese (ja)
Other versions
JP5627450B2 (en
Inventor
Yoshitomo Noda
善友 野田
Kensuke Nishiura
謙佑 西浦
Tomohiro Numajiri
智裕 沼尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2010294139A priority Critical patent/JP5627450B2/en
Publication of JP2012141011A publication Critical patent/JP2012141011A/en
Application granted granted Critical
Publication of JP5627450B2 publication Critical patent/JP5627450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turning ring bearing structure which is configured to maintain excellent bearing performance by adjustment and change of rigidity which restrains an increase in weight to minimum in order to prevent contact pressure disturbance due to structural deformation from being adversely influenced to the bearing performance.SOLUTION: The turning ring bearing 10A of a roller bearing is so configured as to interpose rolling elements 13 between track rings 14, 15 formed on an inner ring 11 and an outer ring 12A and is used as a turning ring bearing structure which has in a peripheral direction region with a high bearing contact pressure, a rigidity reinforced part 20A which enhances the rigidities of the inner ring 11 and/or the outer ring 12A higher than those in the surroundings thereof.

Description

本発明は、たとえばナセルのヨー駆動装置や風車翼のピッチ駆動装置に好適な転がり軸受の旋回輪軸受構造に関する。   The present invention relates to a slewing ring bearing structure of a rolling bearing suitable for, for example, a nacelle yaw driving device and a wind turbine blade pitch driving device.

図14に示す風力発電装置(以下では「風車」とも呼ぶ)1は、風車翼5を備えたロータヘッド4が風力を受けて回転し、この回転を増速機により増速するなどして駆動される発電機により発電する装置である。
このような風力発電装置1において、風車翼5を備えたロータヘッド4は、タワー2の上部に設置されたナセル3内の増速機及び発電機と主軸を介して連結されているので、ロータヘッド4の向きを変動する風向きに合わせる(ロータ回転面を風向に正対させる)必要がある。
A wind power generator (hereinafter also referred to as “windmill”) 1 shown in FIG. 14 is driven by rotating a rotor head 4 having windmill blades 5 by receiving wind force, and increasing the speed of the rotation by a speed increaser. It is a device that generates electricity with a generator.
In such a wind turbine generator 1, the rotor head 4 provided with the wind turbine blades 5 is connected to the speed increaser and the generator in the nacelle 3 installed at the upper part of the tower 2 via the main shaft. It is necessary to match the direction of the head 4 with the changing wind direction (make the rotor rotation surface face the wind direction).

このため、たとえばアップウインド型の風力発電装置1には、ナセル3をタワー2上でヨー旋回(略水平面上で矢印Rnの方向に旋回)させてロータヘッド4の正面から風を受けるようにするため、すなわちタワー2に対してナセル3をヨー旋回させる装置として、ヨー駆動装置が設けられている。
また、各風車翼5は、風速等の変化に対応してピッチ角を変動させる必要があるため、ロータヘッド4に対して風車翼5を矢印Rwの方向に旋回させる装置として、風車翼毎にピッチ駆動装置が設けられている。
For this reason, for example, in the upwind type wind power generator 1, the nacelle 3 is yaw-turned on the tower 2 (turned in the direction of arrow Rn on a substantially horizontal plane) to receive wind from the front of the rotor head 4. For this reason, a yaw driving device is provided as a device for yawing the nacelle 3 with respect to the tower 2.
Further, since each wind turbine blade 5 needs to change the pitch angle in response to changes in wind speed or the like, as a device for turning the wind turbine blade 5 in the direction of the arrow Rw with respect to the rotor head 4, for each wind turbine blade. A pitch drive is provided.

上述したヨー駆動装置及びピッチ駆動装置では、ナセル3や風車翼5をそれぞれ旋回可能に支持する風車用旋回輪軸受として、たとえば図15の左側に示すように構成された旋回輪軸受10が採用されている。この旋回輪軸受10は、内輪11と外輪12との間に転動体13を配置した構成の転がり軸受であり、内輪11側及び外輪12側の相対的な回転を可能に支持する機械要素である。
また、風車用等の旋回輪軸受10は、最大面圧を基準にして設計される。そして、上述した風車用旋回輪軸受を含む一般的な旋回輪軸受10は、特に風車用旋回輪軸受のように大型の旋回輪軸受は、旋回輪軸受10を設置するタワー2、ナセル3及びロータヘッド4等の構造体において、内輪11や外輪12が構造体を構成する強度部材の一部としても使用されている。
In the yaw driving device and the pitch driving device described above, for example, the slewing ring bearing 10 configured as shown on the left side of FIG. 15 is adopted as the slewing ring bearing for the windmill that supports the nacelle 3 and the windmill blade 5 so as to be capable of turning. ing. The slewing ring bearing 10 is a rolling bearing having a configuration in which a rolling element 13 is disposed between an inner ring 11 and an outer ring 12, and is a mechanical element that supports relative rotation on the inner ring 11 side and the outer ring 12 side. .
Further, the slewing ring bearing 10 for wind turbines and the like is designed based on the maximum surface pressure. A general slewing ring bearing 10 including the above-described slewing ring bearing for windmills, particularly a large slewing ring bearing such as a slewing ring bearing for windmills, is a tower 2, a nacelle 3 and a rotor on which the slewing ring bearing 10 is installed. In the structure such as the head 4, the inner ring 11 and the outer ring 12 are also used as a part of the strength member constituting the structure.

このため、旋回輪軸受10が十分な剛性を有していないと、周囲の構造変形の影響を受けて面圧分布に乱れを生じるなど軸受性能にも悪影響が及ぶこととなる。
図16は、上下2段の転動体13を備えている旋回輪軸受について、構造変形の有無と面圧との関係を示したものである。この図によれば、構造変形がない場合の面圧分布は略半円の円弧形状を描いているが、構造変形がある場合には、略半円の円弧形状に大きな乱れを生じた面圧分布となっている。なお、図16の横軸は、周方向の角度であり、以下の説明において、転動体13の上下方向は、旋回輪軸受10をヨー駆動装置に用いる場合、上段がナセル3側で、かつ、下段がタワー2側となり、旋回輪軸受10をピッチ駆動装置に用いる場合、上段が風車翼5の翼先端側で、かつ、下段がロータヘッド4に取り付ける翼根元側となる。
For this reason, if the slewing ring bearing 10 does not have sufficient rigidity, the bearing performance is adversely affected, for example, the surface pressure distribution is disturbed by the influence of the surrounding structural deformation.
FIG. 16 shows the relationship between the presence / absence of structural deformation and the surface pressure of a slewing ring bearing provided with two upper and lower rolling elements 13. According to this figure, the surface pressure distribution when there is no structural deformation depicts a substantially semicircular arc shape, but when there is structural deformation, the surface pressure distribution that causes a large disturbance in the substantially semicircular arc shape. Distribution. The horizontal axis in FIG. 16 is the angle in the circumferential direction. In the following description, the vertical direction of the rolling element 13 is the upper stage on the nacelle 3 side when the slewing ring bearing 10 is used in a yaw drive device, and When the lower stage is the tower 2 side and the slewing wheel bearing 10 is used for the pitch drive device, the upper stage is the blade tip side of the wind turbine blade 5 and the lower stage is the blade root side attached to the rotor head 4.

また、図17は、旋回輪軸受10に外力を受けた場合の構造変形例を示しており、図中に矢印で示す外力Fの方向に応じて、内輪11及び外輪12が異なる変形をする。
なお、図17(a)は、内輪11及び外輪12が楕円状に変形する場合の外力入力例、図17(b)は内輪11及び外輪12が軸方向に撓む場合の外力入力例、図17(c)は内輪11及び外輪12の面間が広がる方向に変形する場合の外力入力例を示している。
FIG. 17 shows a structural modification example when the slewing ring bearing 10 receives an external force, and the inner ring 11 and the outer ring 12 are deformed differently depending on the direction of the external force F indicated by an arrow in the drawing.
17A is an external force input example when the inner ring 11 and the outer ring 12 are deformed into an elliptical shape, and FIG. 17B is an external force input example when the inner ring 11 and the outer ring 12 are bent in the axial direction. 17 (c) shows an external force input example when the inner ring 11 and the outer ring 12 are deformed in the direction in which the space between the inner ring 11 and the outer ring 12 widens.

このような旋回輪軸受(転がり軸受)10においては、たとえば下記の特許文献1に開示されているように、外力による変形を防止して面圧の均一化を維持するため、軸受の固定部分を増やして剛性を上げる技術が提案されている。   In such a slewing ring bearing (rolling bearing) 10, for example, as disclosed in Patent Document 1 below, in order to prevent deformation due to external force and maintain uniform surface pressure, a fixed portion of the bearing is used. Techniques have been proposed to increase the rigidity.

特開2010−23665号公報JP 2010-23665 A

ところで、上述した風車用等の旋回輪軸受10は、荷重を受けた際、周辺の構造変形による影響で内輪11や外輪12にも変形が生じると、転動体13に作用する面圧分布の乱れを生じ、面圧の一部分のみが局所的に高くなる場合もある。たとえば図16に示した面圧分布においては、上下2段に配設された転動体13の一方である上段ベアリングについて構造変形有り及び構造変形無しの場合を比較すると、略半円の円弧形状となる構造変形無しの最大面圧より角度90度の付近で構造変形有りの最大面圧が高くなっている。   By the way, when the above-described slewing ring bearing 10 for a windmill or the like receives a load, if the inner ring 11 or the outer ring 12 is also deformed by the influence of the surrounding structural deformation, the surface pressure distribution acting on the rolling element 13 is disturbed. In some cases, only a part of the surface pressure is locally increased. For example, in the surface pressure distribution shown in FIG. 16, when comparing the case of the upper stage bearing, which is one of the rolling elements 13 arranged in the upper and lower stages, with structural deformation and without structural deformation, a substantially semicircular arc shape is obtained. The maximum surface pressure with structural deformation is higher in the vicinity of an angle of 90 degrees than the maximum surface pressure without structural deformation.

このような面圧分布の乱れを解消する対策としては、たとえば図15の右側に示す旋回輪軸受10´のように、剛性を確保するため内輪11´や外輪12´の体格を大きくすることが考えられる。しかし、風力発電装置1のヨー駆動装置やピッチ駆動装置に使用される旋回輪軸受10の場合、タワー2の上部に設置される部品であることから、体格を大きくすることは重量増加の原因になるため好ましくない。特に、近年の風力発電装置1は、大出力を得るため大型化する傾向にあり、従って、タワー2の負担を軽減するためにも旋回輪軸受10を含むナセル3やロータヘッド4等の軽量化が大きな課題となっている。   As a measure for eliminating such disturbance of the surface pressure distribution, for example, a slewing ring bearing 10 ′ shown on the right side of FIG. 15 may increase the size of the inner ring 11 ′ and the outer ring 12 ′ in order to ensure rigidity. Conceivable. However, in the case of the slewing ring bearing 10 used in the yaw drive device or pitch drive device of the wind power generator 1, since it is a component installed on the upper part of the tower 2, increasing the physique causes the increase in weight. Therefore, it is not preferable. In particular, the recent wind power generators 1 tend to be large in order to obtain a large output. Therefore, in order to reduce the burden on the tower 2, the weight of the nacelle 3 and the rotor head 4 including the swivel bearing 10 can be reduced. Has become a major issue.

本発明は、上記の課題を解決するためになされたもので、その目的とするところは、構造変形に伴う面圧分布の乱れが軸受性能に悪影響を及ぼすことを防止するため、重量の増大を最小限に抑えた剛性の調整及び変化により、良好な軸受性能を維持できるようにした旋回輪軸受構造を提供することにある。   The present invention has been made in order to solve the above-described problems, and the object of the present invention is to increase the weight in order to prevent the disturbance of the surface pressure distribution accompanying the structural deformation from adversely affecting the bearing performance. An object of the present invention is to provide a slewing ring bearing structure capable of maintaining good bearing performance by adjusting and changing rigidity to a minimum.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明の請求項1に係る旋回輪軸受構造は、内輪及び外輪に形成した軌道輪間に転動体を挟持してなる転がり軸受の旋回輪軸受構造であって、前記内輪及び/または前記外輪の剛性を周囲より高めた剛性強化部を軸受面圧の高い周方向領域に設けたことを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
A slewing ring bearing structure according to claim 1 of the present invention is a slewing ring bearing structure of a rolling bearing in which rolling elements are sandwiched between race rings formed on an inner ring and an outer ring, and the inner ring and / or the outer ring The present invention is characterized in that a rigidity-enhanced portion having higher rigidity than the surroundings is provided in a circumferential region where the bearing surface pressure is high.

このような旋回輪軸受構造によれば、内輪及び/または外輪の剛性を周囲より高めた剛性強化部を軸受面圧の高い周方向領域に設けたので、内輪や外輪の剛性を軸受面圧に応じて周方向に変化させることで、重量の増加を必要最小限に抑えて面圧分布に生じる乱れを解消できる。すなわち、内輪や外輪の剛性強化部は、軸受面圧が高く変形しやすい周方向の領域に対して剛性を部分的に高く設定したものであるから、周方向において強度的に余裕のある領域には重量増加の原因となる剛性強化部がなく、従って、軸受性能を維持しつつ旋回輪軸受全体の重量を抑えることが可能になる。   According to such a slewing ring bearing structure, since the rigidity-enhanced portion in which the rigidity of the inner ring and / or outer ring is increased from the surroundings is provided in the circumferential region where the bearing surface pressure is high, the rigidity of the inner ring and outer ring is changed to the bearing surface pressure. Accordingly, by changing in the circumferential direction, it is possible to minimize the increase in weight and to eliminate the disturbance in the surface pressure distribution. In other words, the rigidity-enhanced portion of the inner ring or outer ring is set to have a partly high rigidity with respect to the circumferential region where the bearing surface pressure is high and is easily deformed. Has no rigidity-enhancing portion that causes an increase in weight. Therefore, it is possible to suppress the weight of the entire slewing ring bearing while maintaining the bearing performance.

上記の旋回輪軸受構造において、前記剛性強化部は、前記内輪の内径及び/または前記外輪の外径を非真円にした幅広部であることが好ましい。すなわち、内輪の幅広部は、内径を小さくすることにより平面視の内輪幅を増した(断面積を大きくした)剛性強化部であり、外輪の幅広部は、外径を大きくすることにより平面視の外輪幅を増した(断面積を大きくした)剛性強化部である。
この場合、前記幅広部は、台形状の軸方向断面形状を有しているものでもよい。すなわち、幅広部の断面形状は、軸受面圧を受ける上面側の辺が長く、上面側と平行な下面側の辺を短くした台形状とすれば、重量の増加を必要最小限に抑えて剛性(断面積)を増し、面圧分布に生じる乱れを解消することができる。
In the above-described slewing ring bearing structure, it is preferable that the rigidity enhancing portion is a wide portion in which the inner diameter of the inner ring and / or the outer diameter of the outer ring is a non-circular shape. In other words, the wide part of the inner ring is a rigidity-enhanced part in which the inner ring width in plan view is increased (the cross-sectional area is increased) by reducing the inner diameter, and the wide part of the outer ring is viewed in plan view by increasing the outer diameter. This is a rigidity-enhanced part in which the outer ring width is increased (the cross-sectional area is increased).
In this case, the wide part may have a trapezoidal axial cross-sectional shape. In other words, the cross-sectional shape of the wide part is rigid with a minimum increase in weight if it is trapezoidal with a long side on the top side that receives bearing surface pressure and a short side on the bottom side parallel to the top side. (Cross sectional area) can be increased, and the disturbance generated in the surface pressure distribution can be eliminated.

上記の旋回輪軸受構造において、前記剛性強化部は、前記外輪の外周面及び/または前記内輪の内周面に取り付けられた補強部材を備えているものでもよい。このような補強部材は、内輪や外輪の剛性を軸受面圧に応じて周方向に変化させることができ、従って、重量の増加を必要最小限に抑えて面圧分布に生じる乱れを解消できる。
上述した補強部材としては、たとえば外輪の外周面や内輪の内周面に設けたリブや補強板等がある。なお、補強板の断面形状は、軸受面圧に応じて板圧を変化させたものでもよい。
また、上述した補強部材は、軸受面圧を受ける上面側の剛性を増すように、上下方向の上面側に対して部分的に取り付けたものでもよい。
In the slewing ring bearing structure, the rigidity reinforcing portion may include a reinforcing member attached to the outer peripheral surface of the outer ring and / or the inner peripheral surface of the inner ring. Such a reinforcing member can change the rigidity of the inner ring and the outer ring in the circumferential direction in accordance with the bearing surface pressure. Therefore, it is possible to eliminate the disturbance generated in the surface pressure distribution while minimizing the increase in weight.
Examples of the reinforcing member described above include a rib and a reinforcing plate provided on the outer peripheral surface of the outer ring and the inner peripheral surface of the inner ring. Note that the cross-sectional shape of the reinforcing plate may be one in which the plate pressure is changed according to the bearing surface pressure.
Further, the reinforcing member described above may be partially attached to the upper surface side in the vertical direction so as to increase the rigidity of the upper surface side that receives the bearing surface pressure.

本発明の請求項5に係る旋回輪軸受構造は、内輪及び外輪に形成した軌道輪間に転動体を挟持してなる転がり軸受の旋回輪軸受構造であって、無負荷時に前記転動体が前記軌道輪の表面に接する初期接触角を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したことを特徴とするものである。   A slewing ring bearing structure according to a fifth aspect of the present invention is a slewing ring bearing structure of a rolling bearing in which a rolling element is sandwiched between race rings formed on an inner ring and an outer ring, and the rolling element is not loaded when the load is applied. The initial contact angle in contact with the surface of the raceway is set by changing in the circumferential direction so as to reduce the maximum surface pressure during load application and structural deformation.

このような旋回輪軸受構造によれば、無負荷時に転動体が軌道輪の表面に接する初期接触角を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したので、負荷を受けた際に接触角が大きく変化することにより、接触楕円がエッジ部分に乗り上がることで面圧が急上昇することを防止できる。すなわち、周方向に一定であった初期接触角は、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化しているので、運転時の負荷を受けても接触楕円がエッジ部分に載り上がることはなく、従って、接触角の変化を小さく抑えて面圧の急上昇を防止することが可能になる。   According to such a slewing ring bearing structure, the initial contact angle at which the rolling element contacts the surface of the raceway ring when no load is applied is set by changing in the circumferential direction so as to reduce the load load and the maximum surface pressure during structural deformation. Therefore, when the contact angle changes greatly upon receiving a load, it is possible to prevent the contact ellipse from climbing on the edge portion and causing the surface pressure to rapidly increase. That is, the initial contact angle, which was constant in the circumferential direction, changes in the circumferential direction so as to reduce the maximum surface pressure during load application and structural deformation, so that the contact ellipse is edged even when subjected to a load during operation. Therefore, it is possible to prevent a sudden increase in the contact pressure by suppressing the change in the contact angle to be small.

本発明の請求項6に係る旋回輪軸受構造は、内輪及び外輪に形成した軌道輪間に転動体を挟持してなる転がり軸受の旋回輪軸受構造であって、前記軌道輪の溝半径を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したことを特徴とするものである。   A slewing ring bearing structure according to claim 6 of the present invention is a slewing ring bearing structure of a rolling bearing in which a rolling element is sandwiched between raceways formed on an inner ring and an outer ring, and a groove radius of the raceway ring is set as follows. It is characterized in that it is set by changing in the circumferential direction so as to reduce the maximum surface pressure at the time of load load and structural deformation.

このような旋回輪軸受構造によれば、軌道輪の溝半径を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したので、最大面圧発生部分の面圧を抑え、かつ、軸受トルクの上昇を最小限に抑えることができる。すなわち、周方向に一定であった軌道輪の溝半径は、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化しているので、運転時の負荷を受けた場合において転動体の直径と軌道輪の溝半径との関係(比)が最適化され、最大面圧及び軸受トルクの抑制が可能になる。   According to such a slewing ring bearing structure, the groove radius of the bearing ring is set by changing in the circumferential direction so as to reduce the maximum surface pressure during load application and structural deformation. The pressure can be suppressed, and the increase in bearing torque can be minimized. In other words, the groove radius of the bearing ring, which was constant in the circumferential direction, has changed in the circumferential direction so as to reduce the load load and the maximum surface pressure during structural deformation. The relationship (ratio) between the diameter of the moving body and the groove radius of the race is optimized, and the maximum surface pressure and bearing torque can be suppressed.

上述した本発明の旋回輪軸受構造によれば、重量の増大を最小限に抑えた剛性の調整及び変化により、構造変形に伴う面圧分布の乱れが軸受性能に悪影響を及ぼすことを防止して良好な軸受性能を維持できる。
また、初期接触角や軌道輪の溝半径を周方向に適宜変化させて最適化することにより、面圧の急上昇防止、あるいは、最大面圧及び軸受トルクの抑制が可能になる。
According to the above-described slewing ring bearing structure of the present invention, by adjusting and changing the rigidity while minimizing the increase in weight, it is possible to prevent the disturbance of the surface pressure distribution accompanying the structural deformation from adversely affecting the bearing performance. Good bearing performance can be maintained.
Further, by optimizing the initial contact angle and the groove radius of the bearing ring by appropriately changing them in the circumferential direction, it becomes possible to prevent the surface pressure from rapidly increasing or to suppress the maximum surface pressure and the bearing torque.

本発明に係る旋回輪軸受構造について第1の実施形態を示す図で、(a)は平面図、(b)は(a)のA−A断面図である。It is a figure which shows 1st Embodiment about the turning ring bearing structure which concerns on this invention, (a) is a top view, (b) is AA sectional drawing of (a). 第1の実施形態に係る旋回輪軸受構造の第1変形例を示す図で、(a)は平面図、(b)は(a)のB−B断面図である。It is a figure which shows the 1st modification of the turning ring bearing structure which concerns on 1st Embodiment, (a) is a top view, (b) is BB sectional drawing of (a). 第1の実施形態に係る旋回輪軸受構造の第2変形例を示す図で、(a)は平面図、(b)は(a)のC−C断面図である。It is a figure which shows the 2nd modification of the turning ring bearing structure which concerns on 1st Embodiment, (a) is a top view, (b) is CC sectional drawing of (a). 第1の実施形態に係る旋回輪軸受構造の第3変形例を示す図で、(a)は平面図、(b)は(a)のD−D断面図である。It is a figure which shows the 3rd modification of the turning ring bearing structure which concerns on 1st Embodiment, (a) is a top view, (b) is DD sectional drawing of (a). 第1の実施形態に係る旋回輪軸受構造の第4変形例を示す図で、(a)は平面図、(b)は(a)のE−E断面図である。It is a figure which shows the 4th modification of the turning ring bearing structure which concerns on 1st Embodiment, (a) is a top view, (b) is EE sectional drawing of (a). 第1の実施形態に係る旋回輪軸受構造の第5変形例を示す図で、(a)は平面図、(b)は(a)のF−F断面図、(c)は補強部材の第1変形例である。It is a figure which shows the 5th modification of the turning ring bearing structure which concerns on 1st Embodiment, (a) is a top view, (b) is FF sectional drawing of (a), (c) is the 1st of a reinforcement member. This is a modification. 図6に示した第6変形例の旋回輪軸受構造について、第2変形例の補強部材を取り付けた断面図である。It is sectional drawing which attached the reinforcement member of the 2nd modification about the turning ring bearing structure of the 6th modification shown in FIG. 軌道輪間に挟持された転動体の接触角について、標準状態を示す説明用の断面図である。It is sectional drawing for description which shows a standard state about the contact angle of the rolling element clamped between the bearing rings. 通常の初期接触角に起因する問題を説明するための図であり、(a)は正常な状態の接触楕円及び面圧分布を示し、(b)は構造変形の影響を受けた状態の接触楕円及び面圧分布を示している。It is a figure for demonstrating the problem resulting from a normal initial contact angle, (a) shows the contact ellipse and surface pressure distribution of a normal state, (b) is the contact ellipse of the state which received the influence of structural deformation. And the surface pressure distribution. 本発明に係る旋回輪軸受構造について第2の実施形態を示す図であり、初期接触角を周方向へ変化させた設定例を示す説明図である。It is a figure which shows 2nd Embodiment about the turning ring bearing structure which concerns on this invention, and is explanatory drawing which shows the example of a setting which changed the initial contact angle to the circumferential direction. 通常の初期接触角に設定した場合及び初期接触角を周方向へ変化させた場合について、最大面圧の抑制効果を示す説明図である。It is explanatory drawing which shows the suppression effect of the maximum surface pressure about the case where it sets to a normal initial contact angle, and the case where an initial contact angle is changed to the circumferential direction. 本発明に係る旋回輪軸受構造について第3の実施形態を示す図であり、曲率を周方向へ変化させた設定例を示す説明図である。It is a figure which shows 3rd Embodiment about the turning ring bearing structure which concerns on this invention, and is explanatory drawing which shows the example of a setting which changed the curvature to the circumferential direction. 通常の溝曲率に設定した場合及び溝曲率を周方向へ変化させた場合について、最大面圧の抑制効果を示す説明図である。It is explanatory drawing which shows the suppression effect of the maximum surface pressure about the case where it sets to a normal groove curvature, and the case where a groove curvature is changed to the circumferential direction. 風力発電装置の概要を示す斜視図である。It is a perspective view which shows the outline | summary of a wind power generator. 従来の旋回輪軸受(転がり軸受)構造及び体格変更による剛性確保を示す説明図である。It is explanatory drawing which shows the rigidity ensuring by the conventional slewing ring bearing (rolling bearing) structure and physique change. 構造変形の有無による面圧分布(周方向角度に応じて変化する面圧)の違いを示す図である。It is a figure which shows the difference in the surface pressure distribution (surface pressure which changes according to the circumferential direction angle) by the presence or absence of structural deformation. 旋回輪に外力を受けた場合の構造変形例を示しており、(a)は内輪及び外輪が楕円形に変形する場合の外力入力例、(b)は内輪及び外輪が軸方向に撓む場合の外力入力例、(c)は内輪及び外輪の面間が広がる方向に変形する場合の外力入力例を示している。The structural modification example when an external force is applied to the turning wheel is shown, (a) is an external force input example when the inner ring and the outer ring are deformed into an ellipse, and (b) is a case where the inner ring and the outer ring are bent in the axial direction. (C) shows an external force input example in the case of deformation in the direction in which the space between the inner ring and the outer ring expands.

以下、本発明に係る旋回輪軸受構造の一実施形態を図面に基づいて説明する。
本実施形態に係る旋回輪軸受構造は、たとえば図14に示すような風力発電装置1において、ヨー駆動装置やピッチ駆動装置に適用される転がり軸受である。転がり軸受は、内輪及び外輪の対向面にそれぞれ略半円形の断面形状を有する軌道輪を形成し、両軌道輪の間にベアリング等の転動体を挟持した構成の機械要素である。
Hereinafter, an embodiment of a slewing ring bearing structure according to the present invention will be described with reference to the drawings.
The slewing ring bearing structure according to the present embodiment is a rolling bearing applied to a yaw driving device or a pitch driving device in a wind power generator 1 as shown in FIG. 14, for example. A rolling bearing is a mechanical element having a configuration in which raceways having a substantially semicircular cross-sectional shape are formed on opposing surfaces of an inner ring and an outer ring, and rolling elements such as bearings are sandwiched between the raceways.

風力発電装置1のヨー駆動装置は、ロータヘッド4の正面から風を受けるようにするため、タワー2の上端部でナセル3を風向に応じて旋回させる装置である。すなわち、ヨー駆動装置においては、タワー2の上端部とナセル3の下面との間に介在させた旋回輪軸受が、タワー2の上端部でナセル3をヨー旋回可能に支持している。この場合、旋回輪軸受における上段側はナセル3側、下段側はタワー2側であり、従って、旋回輪軸受の上下方向が軸方向となり、左右方向が径方向となる。
風力発電装置1のピッチ駆動装置は、ロータヘッド4に取り付けられた各風車翼5のピッチ角を風速等の変化に対応して調整するため、風車翼5をロータヘッド4に対して旋回させる装置である。すなわち、ピッチ駆動装置においては、風車翼5の根元(下端部)とロータヘッド4との間に介在させた旋回輪軸受が、ロータヘッド4に対して風車翼5を旋回(ピッチ角調整)可能に支持している。この場合、旋回輪軸受における上段側は風車翼5の先端側、下段側は風車翼5の根元側(ロータヘッド4側)であり、従って、旋回輪軸受の上下方向が軸方向となり、左右方向が径方向となる。
The yaw drive device of the wind turbine generator 1 is a device that turns the nacelle 3 according to the wind direction at the upper end of the tower 2 so as to receive wind from the front of the rotor head 4. That is, in the yaw drive device, a swirl ring bearing interposed between the upper end portion of the tower 2 and the lower surface of the nacelle 3 supports the nacelle 3 at the upper end portion of the tower 2 so as to be capable of yaw turning. In this case, the upper stage side of the slewing ring bearing is the nacelle 3 side, and the lower stage side is the tower 2 side. Therefore, the vertical direction of the slewing ring bearing is the axial direction, and the horizontal direction is the radial direction.
The pitch driving device of the wind turbine generator 1 is a device for turning the wind turbine blade 5 with respect to the rotor head 4 in order to adjust the pitch angle of each wind turbine blade 5 attached to the rotor head 4 in accordance with changes in wind speed or the like. It is. In other words, in the pitch driving device, the swirl ring bearing interposed between the root (lower end) of the wind turbine blade 5 and the rotor head 4 can swivel (pitch angle adjustment) the wind turbine blade 5 with respect to the rotor head 4. I support it. In this case, the upper stage side of the slewing ring bearing is the tip side of the wind turbine blade 5 and the lower stage side is the base side (rotor head 4 side) of the wind turbine blade 5. Is the radial direction.

<第1の実施形態>
図1に示す実施形態の旋回輪軸受10Aは、内輪11及び外輪12Aに形成された軌道輪14,15を備え、対向する軌道輪14,15間に転動体13を挟持してなる転がり軸受である。図示の旋回輪軸受10Aでは、軌道輪14,15が上下に2組形成され、転動体13が上下2段に配設された構成とされるが、特に限定されることはない。
<First Embodiment>
A slewing ring bearing 10A of the embodiment shown in FIG. 1 is a rolling bearing that includes race rings 14 and 15 formed on an inner ring 11 and an outer ring 12A, and a rolling element 13 is sandwiched between the opposed race rings 14 and 15. is there. In the illustrated slewing ring bearing 10 </ b> A, two sets of the race rings 14 and 15 are formed vertically and the rolling elements 13 are arranged in two upper and lower stages, but there is no particular limitation.

そして、本実施形態の旋回輪軸受10Aでは、外輪の剛性を周囲より高めた剛性強化部20Aが軸受面圧の高い周方向領域に設けられている。なお、軸受面圧の分布については、事前の計算により求めることができる。
図示の剛性強化部20は、外輪12Aの外径を非真円にして外側に拡幅した幅広部である。すなわち、外輪12Aの剛性強化部20Aは、左右方向(A−A断面)の外輪幅taを上下方向の外輪幅tbより大(ta>tb)として幅広とした領域である。換言すれば、外輪12Aの平面視において、軸受面圧の高い領域になる左右方向の外輪幅taを最大とし、軸受面圧が低く最小幅となる上下方向の外輪幅tbまで、徐々に外輪幅を変化させた形状となっている。
In the slewing ring bearing 10A of the present embodiment, the rigidity reinforcing portion 20A in which the rigidity of the outer ring is increased from the surroundings is provided in the circumferential direction region where the bearing surface pressure is high. Note that the distribution of bearing surface pressure can be obtained by a prior calculation.
The illustrated rigidity-enhancing portion 20 is a wide portion that is widened outwardly with the outer diameter of the outer ring 12A being a non-perfect circle. That is, the rigidity-enhancing portion 20A of the outer ring 12A is a region where the outer ring width ta in the left-right direction (A-A cross section) is wider than the outer ring width tb in the vertical direction (ta> tb). In other words, in the plan view of the outer ring 12A, the outer ring width ta in the left-right direction where the bearing surface pressure is high is maximized, and gradually increases to the outer ring width tb in the vertical direction where the bearing surface pressure is low and the minimum width. The shape is changed.

このような旋回輪軸受10Aの構造によれば、周方向において軸受面圧の高い領域に対して、外輪12Aの剛性を周囲より高めた剛性強化部20Aを設けたので、剛性強化部20Aを設けた外輪の剛性は、軸受面圧の高い領域で高くなるよう周方向に変化する。このような外輪12Aの剛性向上は、旋回輪軸受10A全体の剛性を同様に向上させることになるので、重量の増加を必要最小限に抑えて面圧分布に生じる乱れを解消し、全周にわたって略均一な面圧分布を実現できる。   According to the structure of the slewing ring bearing 10A, since the rigidity reinforcing portion 20A in which the rigidity of the outer ring 12A is increased from the surroundings is provided in the region where the bearing surface pressure is high in the circumferential direction, the rigidity reinforcing portion 20A is provided. The rigidity of the outer ring changes in the circumferential direction so as to increase in a region where the bearing surface pressure is high. Such an improvement in the rigidity of the outer ring 12A improves the rigidity of the entire slewing ring bearing 10A in the same manner. Therefore, the increase in weight is minimized and the disturbance generated in the surface pressure distribution is eliminated, and the entire circumference is reduced. A substantially uniform surface pressure distribution can be realized.

すなわち、外輪12Aの剛性強化部20Aは、軸受面圧が高く変形しやすい周方向の領域に対して部分的に剛性を高く設定したものであり、周方向において強度的に余裕のある領域については、重量増加の原因となる剛性強化部20Aが設けられていない。従って、本実施形態の旋回輪軸受10Aは、面圧分布を均一化して軸受性能を維持しつつ、旋回輪軸受10Aの全体重量を抑えることが可能になる。
なお、図示の旋回輪軸受10Aは、左右方向に幅広の外輪幅taにして剛性強化部20Aを形成しているが、剛性強化部20Aの周方向領域は、軸受面圧の領域に応じて適宜変更可能なことはいうまでもない。
That is, the rigidity-enhancing portion 20A of the outer ring 12A is set with a partly high rigidity with respect to the circumferential region where the bearing surface pressure is high and easily deformed. The rigidity reinforcing portion 20A that causes an increase in weight is not provided. Therefore, the slewing ring bearing 10A of the present embodiment can suppress the overall weight of the slewing ring bearing 10A while maintaining the bearing performance by making the surface pressure distribution uniform.
In the illustrated swivel ring bearing 10A, the rigidity-enhancing portion 20A is formed with the outer ring width ta wide in the left-right direction, but the circumferential direction region of the rigidity-enhancing portion 20A is appropriately set according to the region of the bearing surface pressure. Needless to say, it can be changed.

図2に示す旋回輪軸受10Bは、上述した外輪12Aの剛性強化部20Aに代えて、内輪11Aに剛性強化部20Bを設けた第1変形例を示している。なお、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図示の剛性強化部20Bは、内輪11Aの内径を非真円にして内側に拡幅した幅広部である。すなわち、内輪11の剛性強化部20Bは、左右方向(B−B断面)の内輪幅を上下方向の内輪幅より大として幅広とした領域である。換言すれば、内輪11Aの平面視において、軸受面圧の高い領域になる左右方向の内輪幅を最大とし、軸受面圧が低く最小幅となる上下方向の内輪幅まで、徐々に外輪幅を変化させた形状となっている。
A slewing ring bearing 10B shown in FIG. 2 shows a first modified example in which a rigidity enhancing portion 20B is provided on the inner ring 11A in place of the rigidity enhancing portion 20A of the outer ring 12A described above. In addition, the same code | symbol is attached | subjected to the part similar to embodiment mentioned above, and the detailed description is abbreviate | omitted.
The illustrated rigidity-enhanced portion 20B is a wide portion that is widened inward by making the inner diameter of the inner ring 11A a non-perfect circle. That is, the rigidity reinforcing portion 20B of the inner ring 11 is a region in which the inner ring width in the left-right direction (BB cross section) is wider than the inner ring width in the up-down direction. In other words, in the plan view of the inner ring 11A, the inner ring width in the left-right direction where the bearing surface pressure is high is maximized, and the outer ring width is gradually changed to the inner ring width in the vertical direction where the bearing surface pressure is low and the minimum width. The shape is

このような旋回輪軸受10Bの構造によれば、周方向において軸受面圧の高い領域に対して、内輪11Aの剛性を周囲より高めた剛性強化部20Bを設けたので、剛性強化部20Bを設けた内輪の剛性は、軸受面圧の高い領域で高くなるよう周方向に変化する。このような内輪11Aの剛性向上は、上述した実施形態と同様に、旋回輪軸受10B全体の剛性を同様に向上させることになるので、重量の増加を必要最小限に抑えて面圧分布に生じる乱れを解消し、全周にわたって略均一な面圧分布を実現できる。
なお、上述した内輪11Aの剛性強化部20B及び外輪12Aの剛性強化部20Aは、各々単独で採用するだけでなく、両方を組み合わせた構成も可能である。
According to such a structure of the slewing ring bearing 10B, the rigidity reinforcing portion 20B in which the rigidity of the inner ring 11A is increased from the surroundings is provided in the region where the bearing surface pressure is high in the circumferential direction. The rigidity of the inner ring changes in the circumferential direction so as to increase in a region where the bearing surface pressure is high. Such an improvement in the rigidity of the inner ring 11A improves the rigidity of the entire slewing ring bearing 10B in the same manner as in the above-described embodiment, so that an increase in weight is suppressed to a necessary minimum and a surface pressure distribution is generated. Disturbances can be eliminated and a substantially uniform surface pressure distribution can be realized over the entire circumference.
In addition, the rigidity reinforcement | strengthening part 20B of the inner ring | wheel 11A mentioned above and the rigidity reinforcement | strengthening part 20A of the outer ring | wheel 12A not only employ | adopt each independently, but the structure which combined both is also possible.

また、上述した実施形態及び第1変形例は、いずれも矩形断面の剛性強化部20A,20Bとしたが、たとえば図3に示す第2変形例及び図4に示す第3変形例のように、断面形状を台形形状とした剛性強化部20C,20Dとしてもよい。
図3に示す第2変形例において、旋回輪軸受10Cの軸方向断面形状は、図1に示した外輪12Aの剛性強化部20Aについて、軸受面圧を受ける上面側の辺が長く、上面側と平行な下面側の辺を短くした台形状が採用されている。すなわち、剛性強化部20Cは、外輪12A′に幅広部を形成する外周面の下方が内周方向へ絞られた傾斜面となっている。
Moreover, although both embodiment mentioned above and the 1st modification were set as rigid reinforcement | strengthening part 20A, 20B of a rectangular cross section, for example like the 2nd modification shown in FIG. 3, and the 3rd modification shown in FIG. It is good also as the rigidity reinforcement parts 20C and 20D which made the cross-sectional shape trapezoid shape.
In the second modification shown in FIG. 3, the axial cross-sectional shape of the slewing ring bearing 10C is such that the side on the upper surface side that receives the bearing surface pressure is long with respect to the rigidity-enhancing portion 20A of the outer ring 12A shown in FIG. A trapezoidal shape in which the sides on the parallel lower surface side are shortened is adopted. That is, the rigidity reinforcing portion 20C is an inclined surface in which the lower part of the outer peripheral surface forming the wide portion in the outer ring 12A ′ is narrowed in the inner peripheral direction.

一方、図4に示す第3変形例において、旋回輪軸受10Dの軸方向断面形状は、図2に示した内輪11Aの剛性強化部20Bについて、軸受面圧を受ける上面側の辺が長く、上面側と平行な下面側の辺を短くした台形状が採用されている。すなわち、剛性強化部20Dは、内輪11A′に幅広部を形成する内周面の下方が外周方向へ絞られた傾斜面となっている。
このように、幅広部が台形状の断面形状を有している剛性強化部20C,20Dは、軸受面圧を受ける上面側の辺が長く、上面側と平行な下面側の辺を短くした台形状であるから、重量の増加を必要最小限に抑えて効率よく断面積及び剛性を増し、面圧分布に生じる乱れを解消することができる。
On the other hand, in the third modification shown in FIG. 4, the axial cross-sectional shape of the slewing ring bearing 10 </ b> D has a long side on the upper surface side that receives the bearing surface pressure with respect to the rigidity reinforcing portion 20 </ b> B of the inner ring 11 </ b> A shown in FIG. A trapezoidal shape with a shorter side on the lower side parallel to the side is employed. In other words, the rigidity reinforcing portion 20D is an inclined surface in which the lower part of the inner peripheral surface forming the wide portion in the inner ring 11A ′ is narrowed in the outer peripheral direction.
As described above, the rigidity-enhanced portions 20C and 20D in which the wide portion has a trapezoidal cross-sectional shape have a long upper surface side receiving the bearing surface pressure and a lower surface side parallel to the upper surface side. Since it is a shape, it is possible to efficiently increase the cross-sectional area and rigidity while minimizing the increase in weight, and to eliminate the disturbance that occurs in the surface pressure distribution.

また、上述した本実施形態の旋回輪軸受10Aに代えて、すなわち幅広部を形成する剛性強化部20に代えて、補強部材を取り付ける構成としてもよい。
図5に示す第4変形例の旋回輪軸受10Eは、外輪12の外周面に補強部材のリブ30を取り付けた剛性補強部20Eとなる。このリブ30は、周方向において軸受面圧の高い領域の外輪12に対して、複数枚が溶接等により取り付けられている。このようなリブ30を取り付ける外周面の領域は、上述した剛性強化部20Aの幅広部と略同じである。この場合、リブ30を取り付ける周方向のピッチは、等ピッチにしてもよいし、あるいは、軸受面圧の高い領域ほど密にしてもよい。
Moreover, it is good also as a structure which replaces with 10 A of turning ring bearings of this embodiment mentioned above, ie, replaces the rigidity reinforcement part 20 which forms a wide part, and attaches a reinforcement member.
A slewing ring bearing 10E of the fourth modification shown in FIG. 5 is a rigid reinforcing portion 20E in which a rib 30 of a reinforcing member is attached to the outer peripheral surface of the outer ring 12. A plurality of ribs 30 are attached to the outer ring 12 in a region where the bearing surface pressure is high in the circumferential direction by welding or the like. The region of the outer peripheral surface to which such a rib 30 is attached is substantially the same as the wide portion of the rigidity reinforcing portion 20A described above. In this case, the pitches in the circumferential direction for attaching the ribs 30 may be equal pitches, or may be denser as the bearing surface pressure is higher.

図6に示す第5変形例の旋回輪軸受10Fは、外輪12の外周面に補強部材の補強板31を取り付けた剛性補強部20Fとなる。この補強板31は、周方向において軸受面圧の高い領域の外輪12に対して溶接等により取り付けられている。このような補強板31を取り付ける外周面の領域は、上述した剛性強化部20Aの幅広部と略同じである。
この場合、補強板31の板厚は、たとえば図6(a)、(b)に示すように、全体を同一にしてもよいが、たとえば6(c)に示すように、軸受面圧の高い領域ほど厚くした補強板31Aを取り付けてもよい。
A slewing ring bearing 10F of the fifth modification shown in FIG. 6 is a rigid reinforcing portion 20F in which a reinforcing plate 31 of a reinforcing member is attached to the outer peripheral surface of the outer ring 12. The reinforcing plate 31 is attached to the outer ring 12 in a region where the bearing surface pressure is high in the circumferential direction by welding or the like. The region of the outer peripheral surface to which such a reinforcing plate 31 is attached is substantially the same as the wide portion of the rigidity reinforcing portion 20A described above.
In this case, the plate thickness of the reinforcing plate 31 may be the same as shown in FIGS. 6A and 6B, for example, but the bearing surface pressure is high as shown in 6C for example. You may attach the reinforcement board 31A thickened as the area | region.

また、上述した補強部材は、たとえば図7に示す第6変形例のように、軸受面圧を受ける上面側の剛性を増すように、上下方向の上面側に対して部分的に取り付けたものでもよい。すなわち、図示の第6変形例では、外輪12の外周面に対して上部の略半面にのみ補強板31Bが取り付けられた剛性補強部20Gとなっている。このような補強板31Bを取り付けた剛性補強部20Gは、外輪12A′に形成した幅広部の断面形状が台形状である第2変形例(図3参照)の剛性強化部20Cと同様の作用効果を得ることができる。
この場合の補強板31Bは、板厚が同一のものでもよいし、あるいは、軸受面圧の高い領域ほど板厚を厚くしたものでもよい。なお、補強板31Bに代えて、第4変形例(図5参照)に示すようなリブを採用してもよい。
Further, the above-described reinforcing member may be partially attached to the upper surface side in the vertical direction so as to increase the rigidity of the upper surface side that receives the bearing surface pressure, for example, as in the sixth modification shown in FIG. Good. That is, in the illustrated sixth modified example, the rigid reinforcing portion 20G is provided with the reinforcing plate 31B attached only to the upper half of the outer peripheral surface of the outer ring 12. The rigid reinforcing portion 20G to which such a reinforcing plate 31B is attached has the same effect as the rigid reinforcing portion 20C of the second modified example (see FIG. 3) in which the cross-sectional shape of the wide portion formed on the outer ring 12A ′ is trapezoidal. Can be obtained.
In this case, the reinforcing plate 31B may have the same plate thickness, or may have a plate thickness that is increased in a region where the bearing surface pressure is higher. Instead of the reinforcing plate 31B, ribs as shown in the fourth modification (see FIG. 5) may be employed.

また、上述した第4変形例〜第6変形例においては、外輪12の外周面に補強部材のリブ30や補強板31,31A,31Bを取り付けていたが、同様の補強部材を内輪11の内周面に取り付けることも可能である。
このような補強部材による剛性強化部20E,20F,20Gの形成は、内輪11や外輪12の剛性を軸受面圧に応じて周方向に変化させることができ、従って、重量の増加を必要最小限に抑えて面圧分布に生じる乱れを解消できる。
Further, in the fourth to sixth modifications described above, the rib 30 of the reinforcing member and the reinforcing plates 31, 31 </ b> A, 31 </ b> B are attached to the outer peripheral surface of the outer ring 12. It can also be attached to the peripheral surface.
The formation of the rigidity-enhanced portions 20E, 20F, and 20G by such a reinforcing member can change the rigidity of the inner ring 11 and the outer ring 12 in the circumferential direction according to the bearing surface pressure, and therefore, the increase in weight is minimized. The disturbance generated in the surface pressure distribution can be eliminated.

<第2の実施形態>
次に、本発明に係る旋回輪軸受構造について、第2の実施形態を図8〜図11に基づいて説明する。なお、図8〜図9は要部の曲率等を誇張し図であり、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図8は、内輪11の軌道輪14と外輪12の軌道輪15との間に挟持された球状の転動体13について、接触角θが正常な状態にある標準状態を示している。このような標準状態では、水平軸及び垂直軸からそれぞれ45度となる初期接触角と接触角θとが一致しており、合計4箇所の接触位置Tが形成されている。なお、転動体13の半径はr、軌道輪14,15の曲面は半径Rの円弧である。
<Second Embodiment>
Next, a second embodiment of the slewing ring bearing structure according to the present invention will be described with reference to FIGS. 8 to 9 are drawings exaggerating the curvature and the like of the main part. The same reference numerals are given to the same parts as those in the above-described embodiment, and the detailed description thereof will be omitted.
FIG. 8 shows a standard state where the contact angle θ is in a normal state with respect to the spherical rolling element 13 sandwiched between the race ring 14 of the inner ring 11 and the race ring 15 of the outer ring 12. In such a standard state, the initial contact angle and the contact angle θ which are 45 degrees from the horizontal axis and the vertical axis respectively coincide with each other, and a total of four contact positions T are formed. In addition, the radius of the rolling element 13 is r, and the curved surfaces of the races 14 and 15 are arcs of radius R.

図8に示す標準状態では、図9(a)に示すように、45度の初期接触角と一致する接触角θの方向で玉荷重Fが作用しており、この接触角θを中心にして左右対称の接触楕円及び面圧分布が形成されている。
通常の転がり軸受において、図11の左側に示す「通常」のように、破線で示す初期接触角の45度は、周方向に一定となるように製作されている。そして、運転時の接触角θは、荷重の状況や構造変形量によって、たとえば図11に実線で示すサインカーブのように変化する。このため、図9(b)に示すように、接触角θがθ1まで大きく変化した場合には、接触楕円がエッジ部分に載り上がるので、エッジ載り上げにより面圧を急上昇させることになる。なお、この場合のエッジ部分は、軌道輪15の端部15aとなる。
In the standard state shown in FIG. 8, as shown in FIG. 9A, the ball load F acts in the direction of the contact angle θ that coincides with the initial contact angle of 45 degrees, and the contact angle θ is the center. A symmetrical contact ellipse and surface pressure distribution are formed.
A normal rolling bearing is manufactured so that the initial contact angle indicated by a broken line of 45 degrees is constant in the circumferential direction as “normal” shown on the left side of FIG. Then, the contact angle θ during operation changes, for example, like a sine curve indicated by a solid line in FIG. 11 depending on the load condition and the amount of structural deformation. For this reason, as shown in FIG. 9B, when the contact angle θ is greatly changed to θ1, the contact ellipse is placed on the edge portion, so that the surface pressure is rapidly increased by the edge placement. In addition, the edge part in this case becomes the edge part 15a of the bearing ring 15. FIG.

そこで、本実施形態では、内輪11及び外輪12に形成した軌道輪14,15間に転動体13を挟持してなる転がり軸受において、無負荷時に転動体13が軌道輪14,15の表面に接する初期接触角を、荷重負荷及び構造変形時の最大面圧を低下させるように、周方向へ変化させて設定する。すなわち、図10及び図11の「初期接触角を変化」に示すように、破線表示の初期接触角を、実線表示の運転時接触角と位相をずらして上下のピークが逆のサインカーブとなるように周方向へ変化させている。
この場合、破線で示す初期接触角のピークは、図10に示すように、下のピークθaが標準の初期接触角45度より小さく、上野ピークθbが標準の初期接触角45度より大きくなっている。
Therefore, in this embodiment, in the rolling bearing in which the rolling elements 13 are sandwiched between the bearing rings 14 and 15 formed on the inner ring 11 and the outer ring 12, the rolling elements 13 are in contact with the surfaces of the bearing rings 14 and 15 when there is no load. The initial contact angle is set by changing it in the circumferential direction so as to reduce the maximum surface pressure during load application and structural deformation. That is, as shown in “change the initial contact angle” in FIGS. 10 and 11, the initial contact angle indicated by the broken line is shifted in phase from the contact angle during operation indicated by the solid line, and the sine curve is reversed in the upper and lower peaks. It is changed in the circumferential direction.
In this case, as shown in FIG. 10, the peak of the initial contact angle indicated by the broken line is such that the lower peak θa is smaller than the standard initial contact angle of 45 degrees and the upper field peak θb is larger than the standard initial contact angle of 45 degrees. Yes.

このような旋回輪軸受構造によれば、無負荷時に転動体13が軌道輪14,15の表面に接する初期接触角の設定が、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化して製作されているので、荷重負荷及び構造変形時に接触角θが大きく変化するようなことはなく、従って、接触楕円がエッジ部分に載り上がることで面圧が急上昇することを防止できる。すなわち、運転時接触角が大きくなる周方向角度では予め初期設定角度を小さく設定しておき、反対に、運転時接触角が小さくなる周方向角度では予め初期設定角度を大きく設定しておくので、負荷を受けた際に変化する接触角θは、通常の初期接触角である45度から大きく離れた値まで変化することを防止できる。   According to such a slewing ring bearing structure, the setting of the initial contact angle at which the rolling elements 13 contact the surfaces of the race rings 14 and 15 at no load reduces the load so that the maximum surface pressure at the time of structural deformation is reduced. Since the contact angle θ does not change greatly during load loading and structural deformation, it prevents the contact pressure from rising rapidly due to the contact ellipse resting on the edge part. it can. That is, since the initial setting angle is set small in advance in the circumferential direction angle where the driving contact angle is large, on the contrary, the initial setting angle is set large in advance in the circumferential direction angle where the driving contact angle is small. The contact angle θ that changes when a load is applied can be prevented from changing to a value far from the normal initial contact angle of 45 degrees.

こうして荷重負荷及び構造変形時における接触角θの変化を抑制すると、接触角θの変化に起因して接触楕円がエッジ部分に載り上がり、面圧が急上昇することを防止できる。すなわち、周方向に一定であった初期接触角は、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化して設けられているので、運転時の負荷を受けても接触楕円がエッジ部分に載り上がることはなく、従って、接触角θの変化を小さく抑えて面圧の急上昇を防止することが可能になる。具体的には、図11に示すように、運転時接触角の変化が小さくなったことにより、換言すれば、運転時接触角が通常の初期接触角である45度に近づいたことにより、面圧の最大値はΔPだけ低減している。   If the change in the contact angle θ during load loading and structural deformation is suppressed in this way, it is possible to prevent the contact ellipse from being placed on the edge portion due to the change in the contact angle θ and the surface pressure from rapidly increasing. In other words, the initial contact angle, which was constant in the circumferential direction, is provided to change in the circumferential direction so as to reduce the maximum surface pressure when the load is applied and the structure is deformed. The ellipse does not ride on the edge portion, and therefore it is possible to prevent a sudden increase in surface pressure by suppressing a change in the contact angle θ. Specifically, as shown in FIG. 11, the change in the driving contact angle is reduced, in other words, the driving contact angle approaches the normal initial contact angle of 45 degrees. The maximum value of pressure is reduced by ΔP.

<第3の実施形態>
最後に、本発明に係る旋回輪軸受構造について、第3の実施形態を図8及び図12、図13に基づいて説明する。なお、図12は要部の曲率等を誇張し図であり、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
滑り軸受の軸受内面圧は、転動体13の直径及び軌道輪14,15の溝半径により、すなわち、転動体13の半径r及び軌道輪14,15を形成する円弧の溝半径Rとの比(溝曲率=R/2r)により変動する。具体的には、溝曲率が50%に近い値となり、転動体13の直径2rと軌道輪14,15の溝半径Rとが近いほど、面圧は小さくなる。
但し、転動体13の直径と溝半径Rとが近い値になると、転動体13の接触面積が増加するため、滑り軸受の軸受トルク(軸受回転に必要な力)が大きくなり、発熱によるパワーロスが増大する。
<Third Embodiment>
Finally, a third embodiment of the slewing ring bearing structure according to the present invention will be described with reference to FIGS. 8, 12, and 13. Note that FIG. 12 is an exaggerated view of the curvature and the like of essential parts, and the same reference numerals are given to the same parts as those in the above-described embodiment, and the detailed description thereof is omitted.
The bearing inner pressure of the sliding bearing depends on the diameter of the rolling element 13 and the groove radius of the races 14 and 15, that is, the ratio of the radius r of the rolling element 13 and the groove radius R of the arc forming the races 14 and 15 ( It varies depending on the groove curvature = R / 2r). More specifically, the groove curvature becomes a value close to 50%, and the surface pressure decreases as the diameter 2r of the rolling element 13 and the groove radius R of the races 14 and 15 are closer.
However, when the diameter of the rolling element 13 and the groove radius R become close to each other, the contact area of the rolling element 13 increases, so that the bearing torque (force required for bearing rotation) of the sliding bearing increases and the power loss due to heat generation increases. Increase.

そこで、本実施形態の旋回輪軸受構造では、内輪12及び外輪13に形成した軌道輪14,15間に転動体13を挟持してなる転がり軸受において、たとえば図12に示すように、軌道輪14,15の溝半径Rを、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定する。すなわち、通常は周方向に一定である溝半径Rを、本実施形態では、最大面圧を低下させるように、周方向で事前に変化させて製作する。   Therefore, in the slewing ring bearing structure of the present embodiment, in the rolling bearing in which the rolling elements 13 are sandwiched between the bearing rings 14 and 15 formed on the inner ring 12 and the outer ring 13, for example, as shown in FIG. , 15 is set by changing it in the circumferential direction so as to reduce the maximum surface pressure during load application and structural deformation. That is, the groove radius R, which is normally constant in the circumferential direction, is manufactured by changing in advance in the circumferential direction so as to reduce the maximum surface pressure in this embodiment.

図12に示す具体例において、軌道輪15の溝半径Rが軌道輪14の溝半径R′より小さい(R<R′)断面部分では、非接触時に内輪11側の軌道輪14に対して転動体13が接触していない。しかし、転動体13の接触時には、運転時の負荷により内輪11が移動または変形することにより、内輪11側の軌道輪14にも転動体13が接触する。この結果、図13に示すように、「通常」時に一定の溝曲率は、「溝曲率を軸受製作時に周方向へ変化」させることにより、面圧の最大値がΔPだけ低減されている。   In the specific example shown in FIG. 12, the groove radius R of the bearing ring 15 is smaller than the groove radius R ′ of the bearing ring 14 (R <R ′). The moving body 13 is not in contact. However, when the rolling element 13 is in contact, the inner ring 11 is moved or deformed by a load during operation, so that the rolling element 13 is also in contact with the race ring 14 on the inner ring 11 side. As a result, as shown in FIG. 13, the constant groove curvature at the “normal” time is “change the groove curvature in the circumferential direction when the bearing is manufactured”, thereby reducing the maximum value of the surface pressure by ΔP.

このような本実施形態の旋回輪軸受構造によれば、軌道輪14,15の溝半径を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したので、最大面圧発生部分の面圧を抑え、かつ、軸受トルクの上昇を最小限に抑えることができる。すなわち、周方向に一定であった軌道輪14,15の溝半径Rは、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化しているので、運転時の負荷を受けた場合において転動体13の直径と軌道輪14,15の溝半径との関係(比)である溝曲率が最適化され、最大面圧及び軸受トルクの抑制が可能になる。   According to the slewing ring bearing structure of this embodiment, since the groove radii of the race rings 14 and 15 are set in the circumferential direction so as to reduce the load load and the maximum surface pressure during structural deformation, It is possible to suppress the surface pressure at the portion where the maximum surface pressure is generated and to suppress the increase in bearing torque to a minimum. In other words, the groove radius R of the races 14 and 15 that is constant in the circumferential direction changes in the circumferential direction so as to reduce the load surface and the maximum surface pressure at the time of structural deformation. In this case, the groove curvature, which is the relationship (ratio) between the diameter of the rolling element 13 and the groove radius of the races 14 and 15, is optimized, and the maximum surface pressure and bearing torque can be suppressed.

以上説明したように、上述した各実施形態の旋回輪軸受構造によれば、転がり軸受の重量増大を最小限に抑えた剛性の調整及び変化により、構造変形に伴う面圧分布の乱れが軸受性能に悪影響を及ぼすことを防止して良好な軸受性能を維持できる。
また、初期接触角や軌道輪の溝半径を周方向に適宜変化させて最適化することにより、面圧の急上昇防止、あるいは、最大面圧及び軸受トルクの抑制が可能になる。
この結果、面圧の最大値を抑え、同一寸法の転がり軸受に対して、使用限界をあげることができる。
As described above, according to the slewing ring bearing structure of each of the embodiments described above, the disturbance in the surface pressure distribution due to the structural deformation is caused by the bearing performance due to the rigidity adjustment and change that minimizes the increase in the weight of the rolling bearing. It is possible to maintain a good bearing performance by preventing adverse effects on the bearing.
Further, by optimizing the initial contact angle and the groove radius of the bearing ring by appropriately changing them in the circumferential direction, it becomes possible to prevent the surface pressure from rapidly increasing or to suppress the maximum surface pressure and the bearing torque.
As a result, the maximum value of the surface pressure can be suppressed, and the use limit can be raised for rolling bearings having the same dimensions.

そして、上述した転がり軸受を風力発電装置1のヨー駆動装置やピッチ駆動装置の旋回輪軸受として採用すれば、タワー2の上部構造体を軽量化して荷重負担を軽減することができる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
And if the rolling bearing mentioned above is employ | adopted as a turning wheel bearing of the yaw drive device of the wind power generator 1, or a pitch drive device, the upper structure of the tower 2 can be reduced in weight and a load burden can be reduced.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

1 風力発電装置
2 タワー
3 ナセル
4 ロータヘッド
5 風車翼
10,10A〜10G 旋回輪軸受(転がり軸受)
11,11A′ 内輪
12,12A′ 外輪
13 転動体
14,15 軌道輪
20A〜20G 剛性強化部
30 リブ(補強部材)
31,31A,31B 補強板
DESCRIPTION OF SYMBOLS 1 Wind power generator 2 Tower 3 Nacelle 4 Rotor head 5 Windmill blade 10, 10A-10G Slewing ring bearing (rolling bearing)
11, 11A ′ Inner ring 12, 12A ′ Outer ring 13 Rolling element 14, 15 Track ring 20A-20G Rigidity strengthening portion 30 Rib (reinforcing member)
31, 31A, 31B Reinforcing plate

Claims (6)

内輪及び外輪に形成した軌道輪間に転動体を挟持してなる転がり軸受の旋回輪軸受構造であって、
前記内輪及び/または前記外輪の剛性を周囲より高めた剛性強化部を軸受面圧の高い周方向領域に設けたことを特徴とする旋回輪軸受構造。
A rolling ring slewing ring bearing structure in which a rolling element is sandwiched between race rings formed on an inner ring and an outer ring,
A slewing ring bearing structure characterized in that a rigidity-enhancing portion in which the rigidity of the inner ring and / or the outer ring is increased from the periphery is provided in a circumferential region where the bearing surface pressure is high.
前記剛性強化部は、前記内輪の内径及び/または前記外輪の外径を非真円にした幅広部であることを特徴とする請求項1に記載の旋回輪軸受構造。   2. The slewing ring bearing structure according to claim 1, wherein the rigidity reinforcing portion is a wide portion in which an inner diameter of the inner ring and / or an outer diameter of the outer ring is a non-circular shape. 前記幅広部が台形状の軸方向断面形状を有していることを特徴とする請求項2に記載の旋回輪軸受構造。   The slewing ring bearing structure according to claim 2, wherein the wide portion has a trapezoidal axial cross-sectional shape. 前記剛性強化部は、前記外輪の外周面及び/または前記内輪の内周面に取り付けられた補強部材を備えていることを特徴とする請求項1に記載の旋回輪軸受構造。   The slewing wheel bearing structure according to claim 1, wherein the rigidity reinforcing portion includes a reinforcing member attached to an outer peripheral surface of the outer ring and / or an inner peripheral surface of the inner ring. 内輪及び外輪に形成した軌道輪間に転動体を挟持してなる転がり軸受の旋回輪軸受構造であって、
無負荷時に前記転動体が前記軌道輪の表面に接する初期接触角を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したことを特徴とする旋回輪軸受構造。
A rolling ring slewing ring bearing structure in which a rolling element is sandwiched between race rings formed on an inner ring and an outer ring,
A slewing ring bearing characterized in that an initial contact angle at which the rolling element contacts the surface of the raceway when no load is applied is set by changing in a circumferential direction so as to reduce the maximum surface pressure during load application and structural deformation. Construction.
内輪及び外輪に形成した軌道輪間に転動体を挟持してなる転がり軸受の旋回輪軸受構造であって、
前記軌道輪の溝半径を、荷重負荷及び構造変形時の最大面圧を低下させるように周方向へ変化させて設定したことを特徴とする旋回輪軸受構造。
A rolling ring slewing ring bearing structure in which a rolling element is sandwiched between race rings formed on an inner ring and an outer ring,
A slewing ring bearing structure characterized in that a groove radius of the bearing ring is set to be changed in a circumferential direction so as to reduce a load load and a maximum surface pressure at the time of structural deformation.
JP2010294139A 2010-12-28 2010-12-28 Slewing ring bearing structure Expired - Fee Related JP5627450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010294139A JP5627450B2 (en) 2010-12-28 2010-12-28 Slewing ring bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010294139A JP5627450B2 (en) 2010-12-28 2010-12-28 Slewing ring bearing structure

Publications (2)

Publication Number Publication Date
JP2012141011A true JP2012141011A (en) 2012-07-26
JP5627450B2 JP5627450B2 (en) 2014-11-19

Family

ID=46677475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010294139A Expired - Fee Related JP5627450B2 (en) 2010-12-28 2010-12-28 Slewing ring bearing structure

Country Status (1)

Country Link
JP (1) JP5627450B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002173U (en) * 2021-03-03 2022-09-14 양승훈 Tilting reinforcement structure of slewing drive

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132030A (en) * 1985-12-04 1987-06-15 デルタ−ドライブ,テヒニク・ナツハ・デム・グライトカイルプリンチプ・ゲ−エムベ−ハ− Arrangement of rolling member
JP2003314562A (en) * 2002-04-18 2003-11-06 Nsk Ltd Bearing and bearing unit fitted with bearing
JP2007177993A (en) * 2005-11-30 2007-07-12 Coo Space Co Ltd Rolling device and its manufacturing method
JP2010149596A (en) * 2008-12-24 2010-07-08 Nsk Ltd Electric power steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132030A (en) * 1985-12-04 1987-06-15 デルタ−ドライブ,テヒニク・ナツハ・デム・グライトカイルプリンチプ・ゲ−エムベ−ハ− Arrangement of rolling member
JP2003314562A (en) * 2002-04-18 2003-11-06 Nsk Ltd Bearing and bearing unit fitted with bearing
JP2007177993A (en) * 2005-11-30 2007-07-12 Coo Space Co Ltd Rolling device and its manufacturing method
JP2010149596A (en) * 2008-12-24 2010-07-08 Nsk Ltd Electric power steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220002173U (en) * 2021-03-03 2022-09-14 양승훈 Tilting reinforcement structure of slewing drive
KR200496769Y1 (en) * 2021-03-03 2023-04-19 양승훈 Tilting reinforcement structure of slewing drive

Also Published As

Publication number Publication date
JP5627450B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
WO2010150367A1 (en) Wind-driven generator device
US9797447B2 (en) Bearing for vertical axis windmill and vertical axis wind power generator
ES2673855T3 (en) Large bearing, especially a main bearing for a wind turbine, as well as a wind turbine with such a large bearing
US9181982B2 (en) Blade bearing with support structure having non-uniform stiffness and method manufacture
EP3742010B1 (en) Wind turbine with a slewing ring bearing and method for assembling a slewing ring bearing with a predetermined preload
JP2009097525A (en) Rolling bearing with cage
CA2787163A1 (en) Double row tapered bearing assembly and wind turbine
CN106523304B (en) Reinforced bearing for a wind turbine
JP5627450B2 (en) Slewing ring bearing structure
US11530684B2 (en) Wind turbine and pitch bearing of the wind turbine
WO2013047617A1 (en) Rotating ring bearing structure for wind wheel and method for replacing rotating ring bearing structure for wind wheel
JP5951877B2 (en) Bearing structure and wind power generator
WO2018194025A1 (en) Slewing bearing and processing method thereof
JP6075946B2 (en) Spherical roller bearing
JP2012092816A (en) Wind power generator
TWI527962B (en) Wind power plant
CN107191340A (en) A kind of self-aligning roller bearing and wind driven generator principal shaft supporting construction
WO2022051878A1 (en) Self-aligning roller bearing of asymmetric structure
CN218760960U (en) Become oar bearing and wind generating set
CN217300786U (en) Sliding slewing bearing for wind generating set
JP2013227866A (en) Wind power generation system
JP2010038049A (en) Blade for wind power generation, and wind power generator
JP5719416B2 (en) Design method for vertical axis wind turbine bearings
CN117685294A (en) Ball-column combined variable-pitch bearing
WO2015057127A1 (en) A wind turbine comprising a multi row bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140930

R151 Written notification of patent or utility model registration

Ref document number: 5627450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees