JP2012140675A - Case-hardening steel excellent in cold-workability, and high fatigue-resistant strength carburized material - Google Patents
Case-hardening steel excellent in cold-workability, and high fatigue-resistant strength carburized material Download PDFInfo
- Publication number
- JP2012140675A JP2012140675A JP2010293900A JP2010293900A JP2012140675A JP 2012140675 A JP2012140675 A JP 2012140675A JP 2010293900 A JP2010293900 A JP 2010293900A JP 2010293900 A JP2010293900 A JP 2010293900A JP 2012140675 A JP2012140675 A JP 2012140675A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- case
- steel
- carburizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 38
- 239000010959 steel Substances 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title claims description 22
- 238000005255 carburizing Methods 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 229910000760 Hardened steel Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 11
- 239000002344 surface layer Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 18
- 238000010438 heat treatment Methods 0.000 abstract description 14
- 229910052719 titanium Inorganic materials 0.000 abstract description 4
- 229910052710 silicon Inorganic materials 0.000 abstract description 3
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 2
- 229910052787 antimony Inorganic materials 0.000 abstract 1
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 150000001247 metal acetylides Chemical class 0.000 description 23
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 17
- 238000012360 testing method Methods 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 229910001566 austenite Inorganic materials 0.000 description 7
- 238000005452 bending Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000005496 tempering Methods 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000004453 electron probe microanalysis Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000009661 fatigue test Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000005539 carbonized material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、主に産業機器や自動車の分野にて機械構造用材料に供する、冷間加工性に優れかつ浸炭により高い耐疲労特性を付与し得る肌焼鋼および優れた耐疲労特性を有する浸炭材に関するものである。 The present invention is mainly used for machine structural materials in the fields of industrial equipment and automobiles. Case-hardened steel that has excellent cold workability and can impart high fatigue resistance by carburizing, and carburization having excellent fatigue resistance. It relates to materials.
例えば、自動車等の部品素材は、棒鋼を冷間成形して製造される場合が多く、従って、高い冷間成形性が要求される。そのため、球状化熱処理を施して炭化物を球状化し、冷間加工性、とりわけ冷間鍛造性を高めることが行われている。 For example, parts materials such as automobiles are often manufactured by cold forming steel bars, and therefore high cold formability is required. Therefore, spheroidizing heat treatment is performed to spheroidize carbides to improve cold workability, particularly cold forgeability.
また、鋼の成分組成の観点からは、変形抵抗に大きく影響するSiを低減するなどの提案もなされている。更に、Bの焼入れ性を有効活用した鋼の提案もある。
例えば、特許文献1には、Bの焼入れ性向上の効果分だけ他の合金元素を減量することによって、焼ならし工程から硬さを低くし、従来鋼に対して歯切り性を飛躍的に向上させた、浸炭歯車用鋼が提案されている。
In addition, from the viewpoint of the composition of steel, proposals have been made to reduce Si, which greatly affects deformation resistance. Furthermore, there is a proposal of steel that effectively uses the hardenability of B.
For example, in
さらに、特許文献2では、固溶強化元素であるSiおよびMnを低減して焼入れ性をBで確保する成分系と、製造条件との組み合わせにより、冷間加工性を確保する肌焼鋼が提案されている。
Furthermore,
一方、近年、自動車等に用いられる歯車等には、省エネルギー化による車体の軽量化に伴って、サイズの小型化が要求され、また、エンジンの高出力化に伴って歯車にかかる負荷も増大している。歯車の耐久性は、主に歯元曲げ疲労破壊並びに歯面の面圧疲労破壊によってきまる。歯元曲げ疲労破壊強度については、浸炭時に表層に生じる不完全焼入れ層の低減や、旧オーステナイト粒径の微細化が有効とされている。また、面圧疲労強度の向上については、焼戻し軟化抵抗性との関連が指摘され、Si量を高めた成分や、Moを添加した成分、または浸炭表層に微細な炭化物を分散させた鋼が、それぞれ提案されている。 On the other hand, in recent years, gears used in automobiles and the like have been required to be reduced in size as the vehicle body has become lighter due to energy savings, and the load on the gears has increased as the engine output has increased. ing. The durability of the gear is determined mainly by the root bending fatigue failure and the tooth surface fatigue failure. Regarding the root bending fatigue fracture strength, it is considered effective to reduce the incompletely hardened layer generated on the surface layer during carburizing and to refine the prior austenite grain size. In addition, regarding the improvement of surface fatigue strength, the relationship with temper softening resistance has been pointed out, and components with increased Si content, components with Mo added, or steel with fine carbides dispersed in the carburized surface layer, Each has been proposed.
例えば、特許文献3には、旧オーステナイト粒径を7μm以下にすることによって、疲労強度と靭性を改善した浸炭用鋼が提案されている。また、特許文献4には、表面の浸炭層に炭化物を分散させた鋼が、それぞれ提案されている。 For example, Patent Document 3 proposes a steel for carburizing in which fatigue strength and toughness are improved by setting the prior austenite grain size to 7 μm or less. Patent Document 4 proposes steels in which carbides are dispersed in a carburized layer on the surface.
また、浸炭熱処理では、鋼材表面の炭素濃度が非処理材の形状の影響を大きく受ける。すなわち、処理材の平坦部では、狙い通りの硬さや組織が得られても、角部では浸炭が過剰となり、粗大炭化物の生成に伴う耐疲労特性の低下が懸念されている。特に、近年、用いられるようになってきた真空浸炭では、この傾向が顕著になっている。そこで、炭素の侵入拡散や炭化物の生成挙動に与える影響を考慮した成分組成の提案がなされている。 Further, in the carburizing heat treatment, the carbon concentration on the steel material surface is greatly influenced by the shape of the non-treated material. That is, even if the desired hardness and structure are obtained in the flat portion of the treated material, carburization is excessive in the corner portion, and there is a concern that the fatigue resistance characteristics are reduced due to the formation of coarse carbides. In particular, this tendency is remarkable in vacuum carburizing that has come to be used in recent years. In view of this, component compositions have been proposed in consideration of the effects on the intrusion diffusion of carbon and the formation behavior of carbides.
例えば、特許文献5には、炭化物の生成抑制効果のある、Si、CuおよびNiを増加させ、逆に炭化物を増大させやすいCr量を減らすことによって、過剰浸炭による耐疲労特性の低下を抑制することが提案されている。 For example, Patent Document 5 suppresses deterioration of fatigue resistance due to excessive carburization by increasing the amount of Si, Cu, and Ni, which are effective in suppressing the formation of carbides, and reducing the amount of Cr that tends to increase carbides. It has been proposed.
しかしながら、上述した特許文献1および2に記載の技術では、冷間加工性や衝撃特性の向上は認められるが、疲労特性は従来鋼と同等である。
特許文献3および4に記載の技術では、Nb、TiおよびVなどの炭化物生成元素を多量に使用し、微細析出した場合に加工時の変形抵抗を著しく上昇させる等の問題があった。
特許文献5に記載された技術では、Siを多量に添加しているため、冷間加工性の低下が懸念され、またガス浸炭の場合には粒界酸化の問題が生じる。さらに、Crの低減に伴って強度を確保するためのCuおよびNiを添加せざるを得ず、合金コストが高くなることも問題である。
However, in the techniques described in
In the techniques described in Patent Documents 3 and 4, there is a problem that, when a large amount of carbide forming elements such as Nb, Ti and V are used and finely precipitated, deformation resistance during processing is remarkably increased.
In the technique described in Patent Document 5, since a large amount of Si is added, there is a concern about a decrease in cold workability, and in the case of gas carburization, a problem of grain boundary oxidation occurs. Furthermore, Cu and Ni for securing the strength must be added along with the reduction of Cr, which raises a problem that the alloy cost increases.
本発明は、上記の実情に鑑み開発されたものであり、冷間加工性に優れるのみならず、浸炭の熱処理条件によることなく過剰な浸炭が抑制され、浸炭処理後に高い耐疲労特性を有する肌焼鋼およびこれを用いた浸炭材を提供することにある。 The present invention was developed in view of the above circumstances, and not only has excellent cold workability, but also suppresses excessive carburization without depending on the heat treatment conditions of carburization, and has high fatigue resistance after carburization. It is to provide a hardened steel and a carburized material using the same.
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、以下に述べる知見を得た。
まず、耐疲労特性を向上するために、肌焼鋼の浸炭表層において、粗大な炭化物の生成を抑制して炭化物を微細に分散させるための方途を鋭意究明した。
ここで、図1に、肌焼鋼の浸炭表層における、炭化物の最大粒径に及ぼすAl、BおよびTi量の関係を示す。同図からわかるように、粗大な炭化物の生成を抑制して炭化物を微細に分散させるためには、AlおよびB量の制御とTi添加量の抑制とが重要である。図1には、一部の鋼に関して面疲労強度を測定した結果についても示したが、粗大な炭化物の生成の抑制により、高い面疲労強度が得られることもわかる。
As a result of intensive studies to solve the above problems, the present inventors have obtained the following knowledge.
First, in order to improve fatigue resistance, the inventors have intensively studied ways to finely disperse carbides by suppressing the formation of coarse carbides in the carburized surface layer of case-hardened steel.
Here, in FIG. 1, the relationship of the amount of Al, B, and Ti which affects the maximum particle size of the carbide in the carburized surface layer of the case hardening steel is shown. As can be seen from the figure, in order to suppress the formation of coarse carbides and finely disperse the carbides, it is important to control the amounts of Al and B and to suppress the amount of Ti added. FIG. 1 also shows the results of measuring the surface fatigue strength of some steels, but it can also be seen that high surface fatigue strength can be obtained by suppressing the formation of coarse carbides.
なお、図1に結果を示す実験は、0.2質量%C−0.1質量%Si−0.6質量%Mn−1.5質量%Cr−0.02質量%Nb鋼を基本として、この基本組成に種々の含有量のAlおよびBを添加した鋼素材を準備し、これら鋼素材に以下の条件の処理を施した後の、炭化物の最大粒子径(μm)および面疲労強度(MPa)を評価したものである。
すなわち、鋼素材より、25mm径の丸棒を加工し、カーボンポテンシャル2%、950℃で5時間の高濃度浸炭を行い、一旦600℃に冷却した後、再度850℃で30分間保持し、次いで60℃にて油冷後170℃で2時間の焼戻し処理を行った。この処理を行ったサンプルを切断した後、切断面をピラクール液で腐食し、表面から30μm深さまでの領域を走査型電子顕微鏡で6000μm2にわたって観察し、画像解析により炭化物の最大粒子径を求めた。また、上記丸棒よりローラーピッチング試験片を採取し、これに上述の高濃度浸炭から焼戻し処理までの各処理を施したサンプルに対し、すべり率40%および油温80℃の条件でローラーピッチング試験を行い、107回強度(試験片表面にピッチングが発生する限界強度)を、面疲労強度として評価した。
In addition, the experiment which shows a result in FIG. 1 is based on 0.2 mass% C-0.1 mass% Si-0.6 mass% Mn-1.5 mass% Cr-0.02 mass% Nb steel. The steel materials to which B and B are added are prepared, and the maximum particle diameter (μm) and the surface fatigue strength (MPa) of the carbides after these steel materials are treated under the following conditions are evaluated.
That is, from a steel material, a 25 mm diameter round bar is processed, carburized at a high carbon concentration of 2% at 950 ° C for 5 hours, once cooled to 600 ° C, held again at 850 ° C for 30 minutes, and then After oil cooling at 60 ° C., a tempering treatment was performed at 170 ° C. for 2 hours. After cutting the sample subjected to this treatment, the cut surface was corroded with Piracool liquid, the region from the surface to a depth of 30 μm was observed over a scanning electron microscope over 6000 μm 2, and the maximum particle size of the carbide was determined by image analysis. . In addition, a roller pitching test piece was collected from the round bar, and a roller pitching test was performed on the samples subjected to the above-described high-concentration carburization to tempering treatment at a sliding rate of 40% and an oil temperature of 80 ° C. Then, the strength 10 7 times (the limit strength at which pitting occurs on the surface of the test piece) was evaluated as the surface fatigue strength.
さらに、鋼材表面からの過剰な炭素の侵入そして拡散を抑制する作用を有する元素として、Sbに着目した。すなわち、鋼中にSbを添加することによって、角部での過剰浸炭を防止し、平坦部と角部での炭素量の差を軽減することができるとの知見を得た。また、Sbを0.035質量%まで添加した場合においても、図1に示した結果と同様の結果が得られることを確認した。 Furthermore, we focused on Sb as an element that has the effect of suppressing excessive carbon intrusion and diffusion from the steel surface. That is, by adding Sb to steel, it was found that excessive carburization at the corners can be prevented and the difference in carbon content between the flat and corners can be reduced. Further, it was confirmed that the same result as that shown in FIG. 1 was obtained even when Sb was added to 0.035 mass%.
本願発明は、以上の知見に基づいて成されたものであり、その要旨構成は次のとおりである。
(1)C:0.10〜0.35質量%、
Si:0.01〜0.50質量%、
Mn:0.40〜1.50質量%、
P:0.02質量%以下、
S:0.03質量%以下、
Al:0.04〜0.10質量%、
Cr:0.5〜2.5質量%、
Sb:0.002〜0.035質量%、
B:0.0005〜0.0050質量%、
Ti:0.003質量%以下および
N:0.0080質量%未満
を含有し、残部はFe及び不可避不純物の成分組成になる冷間加工性に優れた肌焼鋼。
The present invention has been made on the basis of the above knowledge, and the gist of the present invention is as follows.
(1) C: 0.10 to 0.35 mass%,
Si: 0.01 to 0.50 mass%,
Mn: 0.40-1.50 mass%,
P: 0.02 mass% or less,
S: 0.03 mass% or less,
Al: 0.04 to 0.10% by mass,
Cr: 0.5 to 2.5% by mass,
Sb: 0.002 to 0.035 mass%,
B: 0.0005-0.0050 mass%,
Case-hardened steel excellent in cold workability containing Ti: 0.003 mass% or less and N: less than 0.0080 mass%, with the balance being a component composition of Fe and inevitable impurities.
(2)前記成分組成に加えて、更に、
Nb:0.06質量%以下、
Cu:1.0質量%以下、
Ni:0.5質量%以下、
Mo:0.5質量%以下および
V:0.5質量%以下
のうちから選ばれる1種または2種以上を含有する前記(1)に記載の冷間加工性に優れた肌焼鋼。
(2) In addition to the above component composition,
Nb: 0.06% by mass or less,
Cu: 1.0 mass% or less,
Ni: 0.5% by mass or less,
The case-hardened steel having excellent cold workability according to (1), containing one or more selected from Mo: 0.5% by mass or less and V: 0.5% by mass or less.
(3)前記成分組成に加えて、更に、
Ca:0.0005〜0.0050質量%および
Mg:0.0002〜0.0020質量%
のうちから選ばれる1種または2種を含有する前記(1)または(2)に記載の冷間加工性に優れた肌焼鋼。
(3) In addition to the above component composition,
Ca: 0.0005 to 0.0050 mass% and
Mg: 0.0002 to 0.0020 mass%
The case hardening steel excellent in cold workability as described in said (1) or (2) containing 1 type or 2 types chosen from these.
(4)前記(1)乃至(3)のいずれかに記載の肌焼鋼に対して浸炭を施して成る、浸炭材であって、その表面から0.4mmまでの表層域における炭化物の最大径が10μm以下かつ平均粒子径が4μm以下である高疲労強度浸炭材。 (4) A carburized material obtained by carburizing the case-hardened steel according to any one of (1) to (3), wherein the maximum diameter of carbide in the surface layer region from the surface to 0.4 mm is A high fatigue strength carburized material having an average particle size of 10 μm or less and an average particle size of 4 μm or less.
本発明によれば、冷間加工性に優れるだけでなく、浸炭の熱処理条件によらずに過剰な浸炭は抑制され、浸炭処理後に優れた耐疲労特性を有する肌焼鋼および、これを用いた浸炭材を提供できるため、工業上非常に有用である。 According to the present invention, not only excellent cold workability but also excessive carburization is suppressed regardless of the heat treatment conditions of carburizing, and a case-hardened steel having excellent fatigue resistance after carburizing treatment, and the same are used. Since a carburized material can be provided, it is very useful industrially.
以下、本発明の肌焼鋼を具体的に説明する。
まず、本発明において、鋼の成分組成を上記の範囲に限定した理由について、成分元素毎に詳しく説明する。なお、各元素の含有量に関する「%」表示は、特に断らない限り「質量%」を意味するものとする。
Hereinafter, the case-hardened steel of the present invention will be specifically described.
First, the reason why the component composition of steel is limited to the above range in the present invention will be described in detail for each component element. In addition, unless otherwise indicated, the "%" display regarding content of each element shall mean "mass%".
C:0.10〜0.35%
Cは、浸炭熱処理後の焼入れにより被処理材芯部(中心部)の硬度を高めるために、0.10%以上の含有量が必要になるが、含有量が0.35%を超えると芯部の靭性が低下するため、C量は0.10〜0.35%の範囲に限定した。好ましくは、0.3%以下の範囲である。
C: 0.10 to 0.35%
C requires a content of 0.10% or more in order to increase the hardness of the core part (center part) to be treated by quenching after the carburizing heat treatment, but if the content exceeds 0.35%, the toughness of the core part is increased. Since it falls, C amount was limited to 0.10 to 0.35% of range. Preferably, it is 0.3% or less of range.
Si:0.01〜0.50%
Siは、脱酸剤として必要であり、少なくとも0.01%の添加が必要である。しかしながら、Siは浸炭表層で優先的に酸化し、粒界酸化を促進する元素である。また、フェライトを固溶強化して変形抵抗を高めて冷間加工性を劣化させるため、上限を0.50%とする。好ましくは、0.03〜0.35%である。
Si: 0.01-0.50%
Si is necessary as a deoxidizing agent, and it is necessary to add at least 0.01%. However, Si is an element that preferentially oxidizes in the carburized surface layer and promotes grain boundary oxidation. In addition, the upper limit is set to 0.50% in order to enhance the solid solution strengthening of the ferrite to increase the deformation resistance and deteriorate the cold workability. Preferably, it is 0.03 to 0.35%.
Mn:0.40〜1.50%
Mnは、焼入性に有効な元素で有り、少なくとも0.40%の添加を必要とする。しかし、Mnは粒界酸化を引き起こしやすく、また過剰な添加は残留オーステナイトを増加させ、表面硬さの低下を招くことから、上限を1.50%とする。好ましくは、0.45〜1.40%の範囲である。
Mn: 0.40 to 1.50%
Mn is an element effective for hardenability and needs to be added at least 0.40%. However, Mn tends to cause grain boundary oxidation, and excessive addition increases residual austenite and causes a decrease in surface hardness. Therefore, the upper limit is made 1.50%. Preferably, it is 0.45 to 1.40% of range.
P:0.02%以下
Pは、結晶粒界に偏析し、靱性を低下させるため、その混入は低いほど望ましいが、0.02%までは許容される。好ましくは、0.018%以下である。
P: 0.02% or less P is segregated at the grain boundaries and lowers the toughness. Therefore, the lower the content, the better, but 0.02% is acceptable. Preferably, it is 0.018% or less.
S:0.03%以下
Sは、硫化物系介在物として存在し、被削性の向上に有効な元素である。しかしながら、過剰な添加は耐疲労特性の低下を招くため、上限を0.03%とした。
S: 0.03% or less S is an element that exists as sulfide inclusions and is effective in improving machinability. However, excessive addition causes a decrease in fatigue resistance, so the upper limit was made 0.03%.
Al:0.04〜0.10%
Alは、鋼中のNをAlNとして固定することによって、Bの焼入れ効果を得るための重要な元素である。この効果を得るためには、少なくとも0.04%の添加が必要である。しかしながら、含有量が0.10%を超えると、耐疲労特性に対して有害なAl2O3介在物の生成を助長するため、0.04〜0.10%の範囲に限定した。
Al: 0.04-0.10%
Al is an important element for obtaining the quenching effect of B by fixing N in steel as AlN. In order to obtain this effect, it is necessary to add at least 0.04%. However, when the content exceeds 0.10%, the formation of Al 2 O 3 inclusions harmful to fatigue resistance is promoted, so the content is limited to 0.04 to 0.10%.
Cr:0.5〜2.5%
Crは、焼入れ性のみならず、焼戻し軟化抵抗の向上に寄与し、さらには炭化物の球状化促進にも有用な元素であるが、含有量が0.5%に満たないとその添加効果に乏しく、一方、2.5%を超えると浸炭部での残留オーステナイトの生成を促進し、耐疲労特性に悪影響を与える場合がある。よってCr量は0.5〜2.5%の範囲に限定した。好ましくは、0.6〜2.0%の範囲である。
Cr: 0.5-2.5%
Cr is an element that contributes not only to hardenability but also improves resistance to temper softening and is also useful for promoting the spheroidization of carbides. However, if its content is less than 0.5%, its addition effect is poor. If it exceeds 2.5%, the formation of retained austenite in the carburized part is promoted, and the fatigue resistance may be adversely affected. Therefore, the Cr content is limited to a range of 0.5 to 2.5%. Preferably, it is 0.6 to 2.0% of range.
Sb:0.002〜0.035%
Sbは、本発明において特に重要な元素である。Sbは、鋼材表面から過剰な炭素の侵入並びに拡散を抑制し、平坦部と角部での炭素量の差を軽減することが可能である。この効果を発揮するためには、0.002%以上の添加が必要である。一方、過剰な添加は、鍛造性などの低下を招くことから上限を0.035%とした。さらに、好ましくは、0.003〜0.025%である。
Sb: 0.002 to 0.035%
Sb is a particularly important element in the present invention. Sb can suppress the intrusion and diffusion of excessive carbon from the steel material surface, and can reduce the difference in carbon content between the flat portion and the corner portion. In order to exhibit this effect, addition of 0.002% or more is necessary. On the other hand, excessive addition causes a decrease in forgeability and the like, so the upper limit was made 0.035%. Further, it is preferably 0.003 to 0.025%.
B:0.0005〜0.0050%
Bは、本発明において最も重要な元素である。Bは、焼入れ熱処理時にオーステナイト粒界に偏析することにより焼入れ性を高め、素材の硬度上昇に寄与する。この効果により、他の強化元素を削減でき、その結果、変形抵抗の低下による冷間加工性の向上が得られる。この効果を発揮するためには、少なくとも0.0005%以上の添加が必要である。一方、過剰な添加は、靭性や加工性(鍛造性)などの低下を招くことから、上限を0.0050%とした。さらに、好ましくは、0.0007〜0.0040%である。
B: 0.0005-0.0050%
B is the most important element in the present invention. B segregates at the austenite grain boundaries during the quenching heat treatment, thereby improving the hardenability and contributing to an increase in the hardness of the material. By this effect, other strengthening elements can be reduced, and as a result, an improvement in cold workability due to a decrease in deformation resistance can be obtained. In order to exert this effect, it is necessary to add at least 0.0005% or more. On the other hand, excessive addition causes a decrease in toughness and workability (forgeability), so the upper limit was made 0.0050%. Furthermore, Preferably, it is 0.0007 to 0.0040%.
Ti:0.003%以下
Tiは、鋼中への混入を極力回避することが好ましい成分である。Tiは、Nと結合して粗大なTiNを形成しやすい。かように、浸炭表層の炭化物の粗大化や耐疲労特性の低下を招くため、上限を0.003%とする。
Ti: 0.003% or less
Ti is a component that preferably avoids mixing into steel as much as possible. Ti is easy to combine with N to form coarse TiN. In this way, the upper limit is made 0.003% in order to cause coarsening of the carbide on the carburized surface layer and decrease in fatigue resistance.
N:0.008%未満
Nは、鋼中への混入を極力回避することが好ましい成分である。従って、Nは、Bの焼入れ性を確保することと、TiNの形成を抑制するために、0.008%未満とした。
N: Less than 0.008% N is a component that preferably avoids mixing into steel as much as possible. Therefore, N is made less than 0.008% in order to ensure the hardenability of B and to suppress the formation of TiN.
本発明では、焼入れ性を高めるために上記の基本成分に、更にNb:0.06%以下、Cu:1.0%以下、Ni:0.5%以下、Mo:0.50%以下およびV:0.5%以下から選ばれる1種または2種以上を含有することができる。
Nb:0.06%以下
Nbは、焼入れ性向上に加えて、鋼中でNbCを形成し、浸炭熱処理時のオーステナイト粒径の粗粒化をピン止め効果により抑制する。そのためには、0.010%以上で添加することが好ましい。一方、0.06%を超えて添加すると、粗大なNbCの析出による粗粒化抑制能の低下や耐疲労特性の劣化をまねく、おそれがあるため、0.06%以下とする。より好ましくは、0.045%以下である。
In the present invention, in order to improve hardenability, the above basic components are further selected from Nb: 0.06% or less, Cu: 1.0% or less, Ni: 0.5% or less, Mo: 0.50% or less, and V: 0.5% or less. It can contain seeds or two or more.
Nb: 0.06% or less
In addition to improving hardenability, Nb forms NbC in steel and suppresses the coarsening of the austenite grain size during the carburizing heat treatment due to the pinning effect. For that purpose, it is preferable to add at 0.010% or more. On the other hand, if added over 0.06%, there is a risk of reducing the coarsening suppression ability due to coarse NbC precipitation and deterioration of fatigue resistance, so 0.06% or less. More preferably, it is 0.045% or less.
Cu:1.0%以下
Cuは、焼入れ性の向上に有効な元素であり、0.1%以上で添加することが好ましいが、多量の添加は鋼材の表面性状の劣化や合金コストの増加を招くため、上限を1.0%とした。
Cu: 1.0% or less
Cu is an element effective for improving hardenability and is preferably added at 0.1% or more. However, the addition of a large amount causes deterioration of the surface properties of the steel material and increase of the alloy cost, so the upper limit was set to 1.0%. .
Ni:0.5%以下
Mo:0.5%以下
V:0.5%以下
Ni、MoおよびVは、焼入れ性や靭性の向上に有効な元素であり、それぞれ0.1%以上、0.05%以上および0.02%以上で添加することが好ましいが、高価であるため、上限をそれぞれ0.5%とした。
Ni: 0.5% or less
Mo: 0.5% or less V: 0.5% or less
Ni, Mo, and V are effective elements for improving hardenability and toughness, and are preferably added in amounts of 0.1% or more, 0.05% or more, and 0.02% or more, respectively. It was.
また、本発明は、硫化物の形態を制御し、被削性や冷間加工性を高めるために上記成分に、更にCa:0.0005〜0.0050%およびMg:0.0002〜0.0020%から選ばれる1種または2種を添加することができる。CaおよびMgによる上記効果を得るには、各々、少なくとも0.0005%の添加を行うことが好ましい。一方、過剰に添加した場合には、粗大な介在物を形成し、耐疲労特性に悪影響を与えるため、CaおよびMgについてそれぞれ上限を0.0050%および0.0020%とした。 In addition, the present invention controls the form of the sulfide, and in order to improve the machinability and cold workability, the above component is further added to one of the elements selected from Ca: 0.0005 to 0.0050% and Mg: 0.0002 to 0.0020%. Two types can be added. In order to obtain the above effects by Ca and Mg, it is preferable to add at least 0.0005% each. On the other hand, when excessively added, coarse inclusions are formed and the fatigue resistance is adversely affected. Therefore, the upper limits of Ca and Mg are set to 0.0050% and 0.0020%, respectively.
以上に説明した成分組成に従う肌焼鋼に対して、冷間加工を施して部品形状とした後、浸炭処理を施すことによって、浸炭材を得ることができる。この浸炭処理を経た浸炭材は、その表面下0.4mmまでの表層域において、炭素量は0.80質量%以上であり、ここに形成される炭化物の最大径は10μm以下かつ平均粒子径は4μm以下であることが、特に好ましい。この範囲内であれば、特に面疲労強度の向上に効果がある。逆に、炭化物の最大径または平均粒子径が、この範囲を超えると、面疲労強度の向上は期待できない。 A carburized material can be obtained by subjecting the case-hardened steel according to the component composition described above to a carburizing treatment after cold working to form a part shape. The carburized material that has undergone this carburizing treatment has a carbon content of 0.80% by mass or more in the surface layer region up to 0.4 mm below the surface, and the maximum diameter of the carbide formed here is 10 μm or less and the average particle size is 4 μm or less. It is particularly preferred that there is. Within this range, the surface fatigue strength is particularly improved. Conversely, if the maximum diameter or average particle diameter of the carbide exceeds this range, improvement in surface fatigue strength cannot be expected.
すなわち、前記表層域での炭素量が0.80%未満では、十分な量の炭化物が得られず面疲労強度の向上が図れない。また、炭化物の最大径が10μmを超えると、粗大な炭化物が疲労亀裂の起点になる等により、疲労寿命が低下する。平均粒子径が4μmを超える場合においても同様に、疲労寿命の低下をまねく。
ちなみに、表層域での炭素量の上限は、過剰な残留オーステナイトの生成を抑制する観点から、1.8%以下であることが好ましい。
That is, when the amount of carbon in the surface layer region is less than 0.80%, a sufficient amount of carbide cannot be obtained and the surface fatigue strength cannot be improved. On the other hand, if the maximum diameter of the carbide exceeds 10 μm, the fatigue life is reduced due to the coarse carbide becoming the starting point of the fatigue crack. Similarly, when the average particle diameter exceeds 4 μm, the fatigue life is reduced.
Incidentally, the upper limit of the amount of carbon in the surface layer region is preferably 1.8% or less from the viewpoint of suppressing the formation of excessive retained austenite.
なお、上記した規定に従う炭化物を得るには、浸炭熱処理を、次の条件下に行うことが好ましい。
すなわち、カーボンポテンシャル1.5%以上、900〜1050℃で2〜10時間程度保持し、一旦700℃以下に冷却した後に、再度800〜900℃で30分間以上保持してから油冷する。その後、焼戻しを施すことが好ましく、その際の焼戻し温度は170〜200℃の範囲が好ましい。
In addition, in order to obtain the carbide | carbonized_material according to above-mentioned prescription | regulation, it is preferable to perform carburizing heat processing on the following conditions.
That is, hold at carbon potential 1.5% or more and 900 to 1050 ° C. for about 2 to 10 hours, once cool to 700 ° C. or less, and then hold again at 800 to 900 ° C. for 30 minutes or more and then oil cooling. Thereafter, tempering is preferably performed, and the tempering temperature is preferably in the range of 170 to 200 ° C.
次に、本発明の実施例について説明する。
まず、供試鋼として表1に示す成分組成の鋼を溶製し、一旦1150℃以上に加熱した後、170mm×170mm角断面の中間素材とし、更に(Ar3+100℃)以上に加熱した後、熱間圧延により直径60mmの丸棒に成形した。得られた丸棒について、冷間加工性および耐疲労特性の評価を行った。
Next, examples of the present invention will be described.
First, steels with the composition shown in Table 1 were melted as test steels, heated once to 1150 ° C or higher, then used as an intermediate material with a 170 mm x 170 mm square cross section, and further heated to (Ar 3 + 100 ° C) or higher Then, it was formed into a round bar having a diameter of 60 mm by hot rolling. The obtained round bar was evaluated for cold workability and fatigue resistance.
ここに、冷間加工性は、限界据え込み率および変形抵抗の2項目で評価した。
すなわち、変形抵抗は、圧延ままの棒鋼の直径の1/4深さ位置から、直径10mmおよび高さ15mmの試験片を採取し、300tプレス機を用いて、60%据え込み時の圧縮荷重を測定し、日本塑性加工学会が提唱している端面拘束圧縮により、変形抵抗測定方法を用いて求めた。また、限界据え込み率は、変形抵抗を測定した方法で圧縮加工を行い、端部に割れが入ったときの据え込み率を限界据え込み率とした。
なお、変形抵抗値が899MPa以下および限界割れ率が74%以上であれば、冷間加工性(冷間鍛造性)は良好であるといえる。
Here, the cold workability was evaluated by two items of the limit upsetting rate and the deformation resistance.
In other words, the deformation resistance was measured by taking a test piece with a diameter of 10 mm and a height of 15 mm from a 1/4 depth position of the diameter of the rolled steel bar, and using a 300-ton press to apply a compression load at 60% upsetting. It measured and calculated | required using the deformation resistance measuring method by the end surface restraint compression which the Japan Society for Technology of Plasticity advocated. Further, the limit upsetting rate was defined as the upsetting rate when the end portion was cracked by compressing by a method of measuring deformation resistance.
If the deformation resistance value is 899 MPa or less and the critical crack rate is 74% or more, it can be said that the cold workability (cold forgeability) is good.
また、表1の供試鋼より、図2に示す角部(角度:120°)を持つ試験片を採取し、図3に示す熱履歴に従って平坦部における有効硬化深さ(Hv≧550となる表面からの深さ)が1.2mm狙いとした、浸炭熱処理を施し、該浸炭熱処理を施した後の試験片の角部1および平坦部2の炭素濃度および炭化物の測定を行った。
この炭化物の測定は、ピクラール液でエッチング後に、表面から30μm深さまでの領域を走査型電子顕微鏡で6000μm2にわたって観察し、画像解析にて炭化物の最大径および平均径を求めた。すなわち、円相当径の最大値をもって最大径とし、また円相当径の平均値をもって平均径とした。なお、表面から0.4mmまでの他の深さ領域についても、炭化物の観察を行ったが、表面から30μm深さまでが最大径並びに平均径ともに最も大きいことを確認した。ここで、炭化物の観察では、円相当径が0.5μm以上のものが炭化物として識別可能である。
なお、炭素濃度の測定は、表面から深さ0.4μmまでをEPMAライン分析することにより行った。
Further, a test piece having a corner (angle: 120 °) shown in FIG. 2 is taken from the test steel shown in Table 1, and the effective hardening depth (Hv ≧ 550) in the flat portion is obtained according to the thermal history shown in FIG. Carburizing heat treatment was performed with a target depth of 1.2 mm from the surface, and the carbon concentration and carbides of the
The carbide was measured by etching with a Picral solution and then observing a region from the surface to a depth of 30 μm over a scanning electron microscope over 6000 μm 2 and obtaining the maximum and average diameters of the carbide by image analysis. That is, the maximum value of the equivalent circle diameter was defined as the maximum diameter, and the average value of the equivalent circle diameter was defined as the average diameter. Carbides were also observed in other depth regions from the surface to 0.4 mm, and it was confirmed that the maximum diameter and the average diameter were the largest from the surface to a depth of 30 μm. Here, in the observation of carbides, those having an equivalent circle diameter of 0.5 μm or more can be identified as carbides.
The carbon concentration was measured by EPMA line analysis from the surface to a depth of 0.4 μm.
さらに、耐疲労特性は、回転曲げ疲労と面疲労の2項目にて評価した。
すなわち、上記の棒鋼の直径の1/4深さ位置から、回転曲げ試験片とローラーピッチング試験片を採取し、これらの試験片に、通常浸炭と炭化物を多く生成させるための高濃度浸炭との2種類の熱処理を行った。
通常浸炭は、930℃および7時間、カーボンポテンシャル1.1質量%の条件で浸炭を実施後、850℃に30分間保持し、60℃で油冷し、170℃、2時間の焼戻し処理を施した。
一方、高濃度浸炭は、950℃および5時間、カーボンポテンシャル2質量%の条件で保持し、一旦600℃に冷却した後、再度850℃に30分間保持し、60℃で油冷後、170℃、2時間の焼戻し処理を施した。
上記浸炭後の各試験片につき、回転曲げ疲労試験およびローラーピッチング試験を行った。まず、回転曲げ疲労試験は、回転数3500rpmにて実施し、107回の耐疲労強度にて評価した。また、ローラーピッチング試験は、すべり率40%、油温80℃の条件にて107回強度(試験片表面にピッチングが発生する限界強度)にて評価した。
Furthermore, the fatigue resistance was evaluated by two items, that is, rotational bending fatigue and surface fatigue.
That is, from the position of the 1/4 depth of the diameter of the steel bar, rotating bending specimens and roller pitching specimens are collected, and these specimens are usually subjected to carburization and high-concentration carburizing to generate a large amount of carbides. Two types of heat treatment were performed.
In normal carburizing, carburizing was performed at 930 ° C. and 7 hours under a carbon potential of 1.1% by mass, then held at 850 ° C. for 30 minutes, oil-cooled at 60 ° C., and tempered at 170 ° C. for 2 hours.
On the other hand, high-concentration carburization is held at 950 ° C for 5 hours under the condition of 2% by mass of carbon potential, once cooled to 600 ° C, then again held at 850 ° C for 30 minutes, oil-cooled at 60 ° C, and 170 ° C A tempering treatment for 2 hours was performed.
A rotating bending fatigue test and a roller pitching test were performed on each test piece after carburization. First, the rotating bending fatigue test was carried out at a rotational speed of 3500 rpm and evaluated with a fatigue strength of 10 7 times. Further, the roller pitting test, the slip ratio of 40% was evaluated by 10 7 times the intensity at oil temperature 80 ° C. conditions (limit strength pitching occurs in the test piece surface).
以上の各評価結果を、表2に示すように、本発明に従う発明例はいずれも、冷間加工性に優れ、部材の形状によらず安定した浸炭処理がなされ、かつ耐疲労特性にも優れていることがわかる。 As shown in Table 2, the above evaluation results are shown in Table 2. All the inventive examples according to the present invention are excellent in cold workability, stable carburizing treatment is performed regardless of the shape of the member, and excellent in fatigue resistance. You can see that
また、表1の供試鋼より、図2に示す角部(角度:120°)を持つ試験片を採取し、図3に示す熱履歴に従って平坦部における有効硬化深さ(Hv≧550となる表面からの深さ)が1.2mm狙いとした、浸炭熱処理を施し、該浸炭熱処理を施した後の試験片の角部1および平坦部2の炭素濃度および炭化物の測定を行った。
この炭化物の測定は、ピクラール液でエッチング後に、表面から30μm深さまでの領域を走査型電子顕微鏡で6000μm2にわたって観察し、画像解析にて炭化物の最大径および平均径を求めた。すなわち、円相当径の最大値をもって最大径とし、また円相当径の平均値をもって平均径とした。なお、表面から0.4mmまでの他の深さ領域についても、炭化物の観察を行ったが、表面から30μm深さまでが最大径並びに平均径ともに最も大きいことを確認した。ここで、炭化物の観察では、円相当径が0.5μm以上のものが炭化物として識別可能である。
なお、炭素濃度の測定は、表面から深さ0.4mmまでをEPMAライン分析することにより行った。
Further, a test piece having a corner (angle: 120 °) shown in FIG. 2 is taken from the test steel shown in Table 1, and the effective hardening depth (Hv ≧ 550) in the flat portion is obtained according to the thermal history shown in FIG. Carburizing heat treatment was performed with a target depth of 1.2 mm from the surface, and the carbon concentration and carbides of the
The carbide was measured by etching with a Picral solution and then observing a region from the surface to a depth of 30 μm over a scanning electron microscope over 6000 μm 2 and obtaining the maximum and average diameters of the carbide by image analysis. That is, the maximum value of the equivalent circle diameter was defined as the maximum diameter, and the average value of the equivalent circle diameter was defined as the average diameter. Carbides were also observed in other depth regions from the surface to 0.4 mm, and it was confirmed that the maximum diameter and the average diameter were the largest from the surface to a depth of 30 μm. Here, in the observation of carbides, those having an equivalent circle diameter of 0.5 μm or more can be identified as carbides.
The carbon concentration was measured by EPMA line analysis from the surface to a depth of 0.4 mm .
Claims (4)
Si:0.01〜0.50質量%、
Mn:0.40〜1.50質量%、
P:0.02質量%以下、
S:0.03質量%以下、
Al:0.04〜0.10質量%、
Cr:0.5〜2.5質量%、
Sb:0.002〜0.035質量%、
B:0.0005〜0.0050質量%、
Ti:0.003質量%以下および
N:0.0080質量%未満
を含有し、残部はFe及び不可避不純物の成分組成になる冷間加工性に優れた肌焼鋼。 C: 0.10 to 0.35 mass%,
Si: 0.01 to 0.50 mass%,
Mn: 0.40-1.50 mass%,
P: 0.02 mass% or less,
S: 0.03 mass% or less,
Al: 0.04 to 0.10% by mass,
Cr: 0.5 to 2.5% by mass,
Sb: 0.002 to 0.035 mass%,
B: 0.0005-0.0050 mass%,
Case-hardened steel excellent in cold workability containing Ti: 0.003 mass% or less and N: less than 0.0080 mass%, with the balance being a component composition of Fe and inevitable impurities.
Nb:0.06質量%以下、
Cu:1.0質量%以下、
Ni:0.5質量%以下、
Mo:0.5質量%以下および
V:0.5質量%以下
のうちから選ばれる1種または2種以上を含有する請求項1に記載の冷間加工性に優れた肌焼鋼。 In addition to the component composition,
Nb: 0.06% by mass or less,
Cu: 1.0 mass% or less,
Ni: 0.5% by mass or less,
The case-hardening steel excellent in cold workability according to claim 1, comprising one or more selected from Mo: 0.5% by mass or less and V: 0.5% by mass or less.
Ca:0.0005〜0.0050質量%および
Mg:0.0002〜0.0020質量%
のうちから選ばれる1種または2種を含有する請求項1または2に記載の冷間加工性に優れた肌焼鋼。 In addition to the component composition,
Ca: 0.0005 to 0.0050 mass% and
Mg: 0.0002 to 0.0020 mass%
The case hardening steel excellent in cold workability of Claim 1 or 2 containing 1 type or 2 types chosen from these.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293900A JP5707938B2 (en) | 2010-12-28 | 2010-12-28 | Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010293900A JP5707938B2 (en) | 2010-12-28 | 2010-12-28 | Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012140675A true JP2012140675A (en) | 2012-07-26 |
JP5707938B2 JP5707938B2 (en) | 2015-04-30 |
Family
ID=46677231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010293900A Active JP5707938B2 (en) | 2010-12-28 | 2010-12-28 | Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5707938B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015029308A1 (en) * | 2013-08-30 | 2015-03-05 | Jfeスチール株式会社 | Mechanical structural component and method for manufacturing same |
JP2016023360A (en) * | 2014-07-24 | 2016-02-08 | Jfeスチール株式会社 | Method for manufacturing cold worked article |
WO2016121371A1 (en) * | 2015-01-27 | 2016-08-04 | Jfeスチール株式会社 | Case hardened steel |
JP2017020065A (en) * | 2015-07-09 | 2017-01-26 | Jfeスチール株式会社 | Gear component and manufacturing method of gear component |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04235251A (en) * | 1990-12-11 | 1992-08-24 | Kawasaki Steel Corp | High strength carburizing steel |
JPH05171262A (en) * | 1991-12-18 | 1993-07-09 | Kawasaki Steel Corp | Manufacture of wire rod or bar steel for case hardened product |
JP2002266053A (en) * | 2001-03-08 | 2002-09-18 | Sanyo Special Steel Co Ltd | Carburizing steel |
JP2009127095A (en) * | 2007-11-26 | 2009-06-11 | Sumitomo Metal Ind Ltd | Case-hardening steel for power transmission component |
JP2009263763A (en) * | 2008-03-31 | 2009-11-12 | Jfe Steel Corp | Method for manufacturing steel material to be carburized |
-
2010
- 2010-12-28 JP JP2010293900A patent/JP5707938B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04235251A (en) * | 1990-12-11 | 1992-08-24 | Kawasaki Steel Corp | High strength carburizing steel |
JPH05171262A (en) * | 1991-12-18 | 1993-07-09 | Kawasaki Steel Corp | Manufacture of wire rod or bar steel for case hardened product |
JP2002266053A (en) * | 2001-03-08 | 2002-09-18 | Sanyo Special Steel Co Ltd | Carburizing steel |
JP2009127095A (en) * | 2007-11-26 | 2009-06-11 | Sumitomo Metal Ind Ltd | Case-hardening steel for power transmission component |
JP2009263763A (en) * | 2008-03-31 | 2009-11-12 | Jfe Steel Corp | Method for manufacturing steel material to be carburized |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101820255B1 (en) * | 2013-08-30 | 2018-01-18 | 제이에프이 스틸 가부시키가이샤 | Mechanical structural component and method for manufacturing same |
US10618101B2 (en) | 2013-08-30 | 2020-04-14 | Jfe Steel Corporation | Mechanical structural component and method for manufacturing same |
WO2015029308A1 (en) * | 2013-08-30 | 2015-03-05 | Jfeスチール株式会社 | Mechanical structural component and method for manufacturing same |
JP2016023360A (en) * | 2014-07-24 | 2016-02-08 | Jfeスチール株式会社 | Method for manufacturing cold worked article |
EP3252182A4 (en) * | 2015-01-27 | 2018-01-24 | JFE Steel Corporation | Case hardening steel |
TWI596218B (en) * | 2015-01-27 | 2017-08-21 | Jfe Steel Corp | Forged steel |
KR20170106462A (en) * | 2015-01-27 | 2017-09-20 | 제이에프이 스틸 가부시키가이샤 | Case hardening steel |
CN107532252A (en) * | 2015-01-27 | 2018-01-02 | 杰富意钢铁株式会社 | Case-hardened steel |
JPWO2016121371A1 (en) * | 2015-01-27 | 2017-04-27 | Jfeスチール株式会社 | Case-hardened steel |
US20180030563A1 (en) * | 2015-01-27 | 2018-02-01 | Jfe Steel Corporation | Case hardening steel |
KR101984041B1 (en) * | 2015-01-27 | 2019-05-30 | 제이에프이 스틸 가부시키가이샤 | Case hardening steel |
CN107532252B (en) * | 2015-01-27 | 2019-12-31 | 杰富意钢铁株式会社 | Case hardening steel |
WO2016121371A1 (en) * | 2015-01-27 | 2016-08-04 | Jfeスチール株式会社 | Case hardened steel |
US11702716B2 (en) * | 2015-01-27 | 2023-07-18 | Jfe Steel Corporation | Case hardening steel |
JP2017020065A (en) * | 2015-07-09 | 2017-01-26 | Jfeスチール株式会社 | Gear component and manufacturing method of gear component |
Also Published As
Publication number | Publication date |
---|---|
JP5707938B2 (en) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5760453B2 (en) | Carburized material | |
JP5777090B2 (en) | Steel for machine structural use with excellent surface fatigue strength | |
JP4050829B2 (en) | Carburized material with excellent rolling fatigue characteristics | |
JP5608145B2 (en) | Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance | |
JP5385656B2 (en) | Case-hardened steel with excellent maximum grain reduction characteristics | |
JP4941252B2 (en) | Case-hardened steel for power transmission parts | |
JP5707938B2 (en) | Case-hardened steel with excellent cold workability and carburizing material with high fatigue strength | |
JP5503170B2 (en) | Case-hardened steel with excellent maximum grain reduction characteristics | |
JP4291941B2 (en) | Soft nitriding steel with excellent bending fatigue strength | |
JP4847681B2 (en) | Ti-containing case-hardened steel | |
JP2001192765A (en) | Steel for carburizing and carbo-nitriding | |
JP4581966B2 (en) | Induction hardening steel | |
JP5630978B2 (en) | Mechanical structural steel with excellent toughness | |
JP5146063B2 (en) | High strength steel with excellent internal fatigue damage resistance and method for producing the same | |
JP2009068065A (en) | Case hardening steel excellent in bearing fatigue-strength, impact strength and bending fatigue-strength | |
JP2012237052A (en) | Case-hardened steel excellent in cold forgeability and suppressing ability of crystal grain coarsening, and method for manufacturing the same | |
JP2005042188A (en) | Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment | |
JP2004238702A (en) | Carburized component excellent in low-cycle impact fatigue resistance | |
JP5177517B2 (en) | Hardened steel for shafts with excellent low cycle torsional fatigue strength | |
JP5672740B2 (en) | Manufacturing method of high fatigue strength case hardening steel | |
JP2020041186A (en) | Case hardened steel for gas carburization, and gas carburization | |
JP4618189B2 (en) | High strength case hardening steel pipe for ball cage | |
JP2630670B2 (en) | Steel with high fatigue strength for carburized gears | |
JP4430559B2 (en) | High strength bolt steel and high strength bolt with excellent delayed fracture resistance | |
WO2008075889A1 (en) | Ultra high strength carburizing steel with high fatigue resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130823 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150203 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5707938 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |