[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012036064A - Alumina-carbon unfired brick for lining molten metal holding furnace, method for producing the same, and furnace equipment and construction method using the same - Google Patents

Alumina-carbon unfired brick for lining molten metal holding furnace, method for producing the same, and furnace equipment and construction method using the same Download PDF

Info

Publication number
JP2012036064A
JP2012036064A JP2010180344A JP2010180344A JP2012036064A JP 2012036064 A JP2012036064 A JP 2012036064A JP 2010180344 A JP2010180344 A JP 2010180344A JP 2010180344 A JP2010180344 A JP 2010180344A JP 2012036064 A JP2012036064 A JP 2012036064A
Authority
JP
Japan
Prior art keywords
mass
raw material
alumina
spinel
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010180344A
Other languages
Japanese (ja)
Other versions
JP5448190B2 (en
Inventor
Masaaki Mishima
昌昭 三島
Toshiyuki Hokii
利之 保木井
Tamotsu Wakita
保 脇田
Koji Kono
幸次 河野
Hiroshi Imagawa
浩志 今川
Takeshi Matsui
剛 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2010180344A priority Critical patent/JP5448190B2/en
Publication of JP2012036064A publication Critical patent/JP2012036064A/en
Application granted granted Critical
Publication of JP5448190B2 publication Critical patent/JP5448190B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To inhibit a hydration reaction in a spinel added alumina-carbon unfired brick, to enhance corrosion resistance to various slags and hot strength, and to improve thermal conductivity maintaining characteristics so as to reduce heat loss by release from a molten metal holding furnace.SOLUTION: The alumina-carbon unfired brick for lining a molten metal holding furnace is provided which is obtained by adding an organic binder to a refractory raw material composition consisting of 6-25 mass% of a carbon raw material, 0.1-4 mass% of aluminum and/or aluminum alloy, 2-20 mass% of a spinel ultrafine powder and the balance essentially an alumina raw material, kneading these, molding and heat treating at ≤1,000°C. The spinel ultrafine powder in the refractory raw material composition has a particle size of <150 μm and an average particle diameter of 0.1-50 μm and consists of 25-50 mass% of MgO and the balance AlO.

Description

本発明は、溶融金属の保持炉例えば製鋼プロセスにおける溶銑輸送、あるいは脱珪、脱燐、脱硫などの溶銑予備処理を行う混銑車もしくは取鍋等の内張りに使用される、アルミナ−カーボンれんが、アルミナ−炭化珪素−カーボンれんが、アルミナ−マグネシア−カーボンれんが等のアルミナカーボン系不焼成れんが及びその製造方法に関する。また、アルミナカーボン系不焼成れんがを用いた窯炉設備及び施工方法に関する。   The present invention relates to an alumina-carbon brick used for a lining of a kneading wheel or a ladle for performing molten metal holding furnace such as hot metal transport in a steelmaking process or hot metal pretreatment such as desiliconization, dephosphorization, desulfurization, etc. -Silicon carbide-carbon brick, alumina-magnesia-carbon brick alumina carbon-based unfired brick, and its manufacturing method. Moreover, it is related with the kiln furnace equipment and construction method using an alumina carbon type non-baking brick.

アルミナカーボン系れんがは、アルミナ原料と炭素原料とを基本構成とする耐火原料配合物に、有機バインダーを結合剤として添加して混練し、成形後、熱処理することで製造され、カーボンボンドを有するアルミナ系の耐火物である。とくに1000℃以下の温度で熱処理される不焼成タイプは、低コストで製造可能でしかも耐用性に優れるため、現在は溶融金属保持炉の内張り用れんがの主流となっている。これら不焼成れんがの具備特性として、各種スラグに対する耐食性、耐熱衝撃性、熱間強度の他に、近年とくに必要性が高まっている省エネルギー及びCO削減対策として、溶融金属保持炉の外表面から放出される熱ロスを削減するため、長期間に渡って使用される炉の内張り用れんがには、稼働経過に伴って熱伝導率が増大しない特性(以下、熱伝導率維持特性という。)が求められている。 Alumina carbon bricks are manufactured by adding an organic binder as a binder to a refractory raw material composition consisting essentially of an alumina raw material and a carbon raw material, kneading, molding, and heat-treating. It is a refractory material. In particular, the non-fired type that is heat-treated at a temperature of 1000 ° C. or lower can be manufactured at low cost and has excellent durability, and is currently the mainstream of brick for lining of molten metal holding furnaces. In addition to corrosion resistance, thermal shock resistance, and hot strength for various slags, these non-fired bricks are released from the outer surface of a molten metal holding furnace as energy saving and CO 2 reduction measures that have become particularly important in recent years. In order to reduce the heat loss, furnace lining bricks that are used for a long period of time are required to have a characteristic that does not increase the thermal conductivity with the progress of operation (hereinafter referred to as a thermal conductivity maintaining characteristic). It has been.

このアルミナカーボン系不焼成れんがにおいてアルミナ原料と炭素原料以外にはその用途や使用条件によって様々な耐火原料が使用されている。例えば、取鍋の内張りとして使用されるれんがにはマグネシア(粗粒)やスピネル(粗粒)が、混銑車の内張り用れんがには炭化珪素が使用されている。また、耐酸化性改善を目的に金属粉、ホウ化物あるいはガラス等も耐火原料として使用される。   In this alumina carbon non-fired brick, various refractory raw materials are used in addition to the alumina raw material and the carbon raw material depending on the use and use conditions. For example, magnesia (coarse grain) and spinel (coarse grain) are used for bricks used as linings for ladle, and silicon carbide is used for bricks for linings of kneading cars. In addition, metal powder, boride or glass is also used as a refractory raw material for the purpose of improving oxidation resistance.

このアルミナカーボン系不焼成れんがにおいて、さらにスラグに対する耐食性向上や使用時の目地開き防止を目的とする場合には、マグネシアやスピネルの微粉を耐火原料として使用する場合がある。この考え方は、使用時の熱によって、れんが中のMgOやスピネル中のMgOがアルミナ原料と反応して耐スラグ性の強いスピネルを生成し、さらにスピネル生成時の膨張により組織を緻密化し耐食性を向上させようとするものである。   In this alumina carbon type non-fired brick, in order to further improve the corrosion resistance against slag and prevent joint opening during use, magnesia or spinel fine powder may be used as a refractory raw material. The idea is that MgO in the brick and MgO in the spinel react with the alumina raw material to generate strong slag-resistant spinel due to heat during use, and the structure is further refined by expansion during spinel generation to improve corrosion resistance. I will try to let you.

しかし、マグネシアは空気中の水分と反応して、水和し膨張する性質(消化)があり、とくに粒径100μm以下の微粉で使用した場合に問題になる。例えば築炉時、微粉マグネシアを添加したアルミナカーボン系れんがを炉内にライニングし、その後予熱するときに、このれんがの背面側で使用されたモルタルの水分から発生する水蒸気によって、れんが中のマグネシアが水和されて膨張し、れんが組織の破壊によって強度が大幅に低下してしまうことがある。このため、マグネシアを使用する場合は、消化しにくいマグネシアの粗粒とアルミナの微粉又は超微粉とを組み合わせて使用するのが一般的である。このためマグネシアを利用したスピネル形成反応は活性が低く、その耐食性向上効果には限界がある。なお、従来一般的に耐火原料の種別において粗粒とは粒径1mm以上、微粉とは10μm以上1mm未満、超微粉とは粒径10μm未満程度を意味する。ただし、後述する本発明のスピネル超微粉については、上記従来の種別に拘束されず、本発明による定義に従う。   However, magnesia has a property (digestion) that hydrates and expands by reacting with moisture in the air, and is particularly problematic when used in a fine powder having a particle size of 100 μm or less. For example, when building a furnace, lining an alumina carbon brick to which fine magnesia is added in the furnace and then preheating it, the steam generated from the water in the mortar used on the back side of the brick causes the magnesia in the brick to It may hydrate and expand, and the strength may be significantly reduced due to the destruction of the brick structure. For this reason, when using magnesia, it is common to use a combination of coarse magnesia particles that are difficult to digest and fine or ultra fine powders of alumina. For this reason, the spinel formation reaction using magnesia has low activity, and its effect of improving corrosion resistance is limited. Conventionally, in general types of refractory raw materials, coarse particles mean a particle size of 1 mm or more, fine powders mean 10 μm or more and less than 1 mm, and ultrafine powder means a particle size of less than 10 μm. However, the spinel ultrafine powder of the present invention, which will be described later, is not restricted by the above-described conventional type, and follows the definition of the present invention.

また、マグネシアの代わりに、MgOを含有し、しかも消化しにくいスピネルを使用すする場合もある。   In some cases, spinel containing MgO and difficult to digest may be used in place of magnesia.

例えば、特許文献1には、MgO/Alの質量比が50/50〜95/5でMgOとAlの合量が95質量%以上の電融マグネシア富化スピネル原料を10〜80質量%、カーボン質原料を3〜60質量%、及びアルミナ質原料を10〜85質量%配合してなるアルミナ−マグネシア富化スピネル−カーボンれんがが記載されている。このアルミナ−マグネシア富化スピネル−カーボンれんがは、スラグに含まれるCaO成分等と反応し難いため、耐スラグ性が向上し、さらに、スピネルの含有量が比較的少量でも適度な残存膨張率のれんがを得ることができると記載されている。 For example, Patent Document 1 discloses 10 electrofused magnesia-enriched spinel raw materials having a mass ratio of MgO / Al 2 O 3 of 50/50 to 95/5 and a total amount of MgO and Al 2 O 3 of 95% by mass or more. Alumina-magnesia-enriched spinel-carbon brick formed by blending -80% by mass, 3-60% by mass of carbonaceous material, and 10-85% by mass of alumina material is described. This alumina-magnesia-enriched spinel-carbon brick is less likely to react with the CaO component contained in the slag, so the slag resistance is improved, and even a relatively small amount of spinel remains, an appropriate residual expansion brick It is described that can be obtained.

また、特許文献2には、マグネシアかマグネシア富化スピネルの何れかの粒径100μm以下の微粉を、全配合量に対し、ペリクレースとして0.5〜4.0質量%添加して、マトリックス部をカーボン結合とスピネル結合の組織としたアルミナ−炭化珪素−カーボン質耐火物が記載されている。このマグネシアかマグネシア富化スピネルは1250℃以上でアルミナと反応し、スピネルを生成するため、分散性を上げるためにできるだけ微細な方がよい(好ましくは粒径50μm以下だが、耐火物原料としては粒径100μm以下)と記載されている。   In addition, in Patent Document 2, a fine powder having a particle size of 100 μm or less of either magnesia or magnesia-enriched spinel is added as a periclase in an amount of 0.5 to 4.0% by mass with respect to the total blending amount, and the matrix portion is added. An alumina-silicon carbide-carbonaceous refractory having a carbon bond and spinel bond structure is described. This magnesia or magnesia-enriched spinel reacts with alumina at 1250 ° C or higher to produce spinel, so it is better to be as fine as possible in order to increase dispersibility (preferably a particle size of 50 µm or less, but as a refractory raw material, The diameter is 100 μm or less).

また、特許文献3には、アルミナ質材料30〜90質量%、炭素材料3〜30質量%、粒径1mm以下のAl−MgO系スピネル質材料5〜50質量%、ガラス質材料を外掛けで0.1〜5質量%含む配合物に炭素系結合剤を添加して混練、成形、乾燥する炭素含有耐火物の製造方法が記載されている。この耐火物は、ガラス質材料の介在でスピネル粒同士が結合し耐火物使用中の稼働面にスピネル架橋層を形成することで、耐食性及び耐酸化性に優れた耐火物を得ることができると記載されている。 Patent Document 3 discloses an alumina material of 30 to 90% by mass, a carbon material of 3 to 30% by mass, an Al 2 O 3 —MgO-based spinel material having a particle diameter of 1 mm or less, and a glassy material. A method for producing a carbon-containing refractory is described in which a carbon-based binder is added to a composition containing 0.1 to 5% by mass as an outer shell, and is kneaded, shaped and dried. This refractory is obtained by combining spinel grains with a glassy material and forming a spinel cross-linking layer on the working surface during use of the refractory, thereby obtaining a refractory excellent in corrosion resistance and oxidation resistance. Are listed.

また、特許文献4には、Al含有量が95質量%以上、SiO含有量3質量%以下のアルミナ60〜95質量%、粒径75μm以下のAl・MgO系スピネル1〜25質量%、粒径が75μmを超えるAl・MgO系スピネル0〜5質量%、炭素1〜15質量%を含む耐火骨材100質量%と、外掛けでアルミニウム及び/又はアルミニウム合金0.5〜8質量%及び炭素質結合剤を含む配合物を成形後、加熱乾燥するスライディングノズル装置用上ノズルの製造方法が記載されている。 Patent Document 4 discloses that Al 2 O 3 .MgO spinel 1 having an Al 2 O 3 content of 95% by mass or more and an SiO 2 content of 3% by mass or less of 60 to 95% by mass of alumina and a particle size of 75 μm or less. 25% by mass, Al 2 O 3 .MgO-based spinel having a particle size of more than 75 μm 0-5% by mass, refractory aggregate 100% by mass containing 1-15% by mass of carbon, and aluminum and / or aluminum alloy as an outer shell A method for producing an upper nozzle for a sliding nozzle device is described in which a compound containing 0.5 to 8% by mass and a carbonaceous binder is molded and then heated and dried.

特開平5−238811号公報Japanese Patent Laid-Open No. 5-238811 特開昭59−3069号公報JP 59-3069 A 特開平9−25160号公報Japanese Patent Laid-Open No. 9-25160 特開平9−87011号公報Japanese Patent Laid-Open No. 9-87011

特許文献1のアルミナ−マグネシア富化スピネル−カーボンれんがは、マグネシア富化スピネル中のMgO含有量が多く、空気中の水分との反応で、フリーなMgOの水和反応が生じやすい問題がある。また、特許文献1の表2には、粒径1mm以下のスピネルを使用することが記載されているが、1mm以下という粒径の特定では、とりわけ粒径が大きい場合にその影響が顕著に現れるが、その使用量によってはスピネル結晶相の高熱膨張率に起因する熱衝撃抵抗性の低下、せり応力の増大による割れ、剥離等の問題が生じる場合がある。   The alumina-magnesia-enriched spinel-carbon brick of Patent Document 1 has a problem that the MgO content in the magnesia-enriched spinel is large, and a free hydration reaction of MgO tends to occur due to the reaction with moisture in the air. Further, in Table 2 of Patent Document 1, it is described that a spinel having a particle size of 1 mm or less is used. However, in the specification of the particle size of 1 mm or less, the influence appears particularly when the particle size is large. However, depending on the amount of use, problems such as a decrease in thermal shock resistance due to the high thermal expansion coefficient of the spinel crystal phase, cracking due to an increase in shear stress, and peeling may occur.

特許文献2の粒径100μm以下のマグネシア富化スピネルを使用したアルミナカーボン系れんがの場合、確かに耐食性の向上効果は見られるものの十分ではない。すなわち、実炉で使用される場合には、依然として耐食性がネックで寿命となっており、さらなる耐食性の向上が望まれている。また、詳細は後述するように、アルミニウム又はアルミニウム合金を使用していないため、熱伝導率維持特性との両立が困難である。また、特許文献2においても水和の問題が生じる場合がある。   In the case of an alumina carbon type brick using a magnesia-enriched spinel with a particle size of 100 μm or less as described in Patent Document 2, although an effect of improving corrosion resistance is certainly seen, it is not sufficient. That is, when used in an actual furnace, the corrosion resistance is still a life due to the bottleneck, and further improvement of the corrosion resistance is desired. Further, as will be described later in detail, since aluminum or an aluminum alloy is not used, it is difficult to achieve both heat conductivity maintaining characteristics. Also in Patent Document 2, there may be a problem of hydration.

特許文献3のアルミナ−スピネル−カーボン−ガラス系耐火物の場合、耐食性は向上するが、スピネル粒同士の結合を高温で軟化するガラス質材料によって形成しているため熱間強度が低く、また結合部分の耐食性が低いため、耐食性の改善効果には限界がある。   In the case of the alumina-spinel-carbon-glass refractory of Patent Document 3, the corrosion resistance is improved, but since the bonding between the spinel grains is made of a vitreous material that softens at a high temperature, the hot strength is low, and the bonding Since the corrosion resistance of the portion is low, the effect of improving the corrosion resistance is limited.

特許文献4は、上ノズル用の材料であり、本発明の溶融金属保持炉の内張り用とは用途が異なる。また、特許文献4の実施例によると後述する本発明と比較してアルミニウムの配合割合が多かったり、炭素原料の配合割合が少なかったりしているため、耐食性と熱伝導率維持特性との両立が困難である。特許文献4の実施例に開示された配合組成では稼働経過に伴って組織が緻密化し、熱伝導率が大幅に増大する。上ノズルのように耐火物を通しての熱ロスが非常に少ない用途では問題ないが、溶融金属保持炉の内張り用れんがとしては不適当である。   Patent document 4 is a material for the upper nozzle, and its use is different from that for the lining of the molten metal holding furnace of the present invention. Moreover, according to the Example of patent document 4, since the compounding ratio of aluminum is large compared with this invention mentioned later, or the compounding ratio of a carbon raw material is small, coexistence with corrosion resistance and a heat conductivity maintenance characteristic is possible. Have difficulty. In the compounding composition disclosed in the example of Patent Document 4, the structure becomes dense as the operation progresses, and the thermal conductivity is greatly increased. There is no problem in applications where the heat loss through the refractory is very small like the upper nozzle, but it is not suitable as a brick for lining a molten metal holding furnace.

そこで本発明が解決しようとする課題は、スピネルを添加したアルミナカーボン系不焼成れんがにおいて水和反応を抑制し、各種スラグに対する耐食性、熱間強度を向上させるとともに、溶融金属保持炉から放出される熱ロスを削減するために熱伝導率維持特性を改善することにある。また、このアルミナカーボン系不焼成れんがを用いた窯炉設備及び施工方法を提供することである。   Therefore, the problem to be solved by the present invention is to suppress the hydration reaction in the alumina carbon-based unfired brick to which spinel is added, to improve the corrosion resistance against various slags and the hot strength, and to be discharged from the molten metal holding furnace. The purpose is to improve the thermal conductivity maintaining characteristics in order to reduce heat loss. Moreover, it is providing the kiln equipment and construction method using this alumina carbon type | system | group unfired brick.

本発明者は、鋭意研究を行った結果、アルミナカーボン系不焼成れんがにおいて水和反応を抑制し、各種スラグに対する耐食性、熱間強度及び熱伝導率維持特性を改善するためには、耐火原料配合物に配合するスピネル原料について、(1)平均粒径、(2)MgO含有量、(3)耐火物原料配合物中の含有量(配合量)を特定し、さらに炭素原料とアルミニウム及び/又はアルミニウム合金の配合量を特定する必要があることを見出した。   As a result of diligent research, the present inventor has found that, in order to suppress the hydration reaction in alumina carbon-based unfired bricks and improve the corrosion resistance, hot strength and thermal conductivity maintenance characteristics for various slags, About the spinel raw material to be blended into the product, (1) the average particle diameter, (2) MgO content, (3) the content (blending amount) in the refractory raw material blend, and further the carbon raw material and aluminum and / or It has been found that it is necessary to specify the compounding amount of the aluminum alloy.

すなわち本発明の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがは、炭素原料を6質量%以上25質量%以下、アルミニウム及び/又はアルミニウム合金を0.1%以上4質量%以下、スピネル超微粉を2質量%以上20質量%以下、残部が主としてアルミナ原料からなる耐火原料配合物に有機バインダーを添加して混練し、成形後、1000℃以下で熱処理して得られる溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがであって、耐火原料配合物中のスピネル超微粉は、粒径が150μm未満で平均粒径が0.1〜50μm、MgO含有量が25〜50質量%で残部がAlからなることを特徴とする。 That is, the alumina carbon-based non-fired brick for lining the molten metal holding furnace of the present invention comprises 6% by mass to 25% by mass of carbon raw material, 0.1% to 4% by mass of aluminum and / or aluminum alloy, Addition of organic binder to refractory raw material composition consisting of 2% to 20% by weight of fine powder and the balance mainly consisting of alumina raw material, kneading, and forming and then heat-treating at 1000 ° C. or lower and then lining the molten metal holding furnace Alumina carbon-based non-fired bricks, the spinel ultrafine powder in the refractory raw material composition has a particle size of less than 150 μm, an average particle size of 0.1 to 50 μm, an MgO content of 25 to 50% by mass and the balance characterized in that made of al 2 O 3.

アルミナカーボン系不焼成れんがの耐火原料配合物にスピネル原料を配合する場合、上記特許文献2のようなアルミニウム及び/又はアルミニウム合金の添加なしに粒径100μm以下という特定では、二次スピネル生成反応が遅く、二次スピネル生成による耐食性向上の効果が小さい。二次スピネルの生成を増大させるためにはスピネルの配合量を増大させたり、スピネル中のMgOの含有量を増大させたりする手法があるが、これらの手法は耐消化性の低下をもたらすため実用上問題が多い。   When the spinel raw material is blended with the refractory raw material blend of the alumina carbon-based non-fired brick, the secondary spinel formation reaction is performed in the specific case where the particle size is 100 μm or less without the addition of aluminum and / or aluminum alloy as in Patent Document 2 above. Slow and less effective in improving corrosion resistance due to secondary spinel formation. In order to increase the formation of secondary spinel, there are methods to increase the amount of spinel and increase the content of MgO in the spinel, but these methods are practical because they cause a decrease in digestion resistance There are many problems.

これに対して本発明で使用するスピネル超微粉は、その平均粒径が0.1〜50μmであり比表面積が大きいため活性が非常に高いことに加えてMgO含有量が25〜50質量%であり、れんが内部を強い還元雰囲気としてさらにAlが共存することでスピネル超微粉を構成するMgOから気相Mgが容易に生成して、周囲のアルミナ骨材表面で再酸化されて、多孔質の二次スピネルを生成することを見出した。これらの結果として、れんがマトリックス組織及びアルミナ骨材表層は多孔質化するとともに骨材同士の結合が発達するために、熱伝導率の増大が抑えられるとともに熱間強度が増大する。 On the other hand, the spinel ultrafine powder used in the present invention has an average particle size of 0.1 to 50 μm and a large specific surface area, so that the activity is very high and the MgO content is 25 to 50% by mass. There is a strong reducing atmosphere inside the brick, and when Al further coexists, vapor phase Mg is easily generated from MgO constituting the spinel ultrafine powder, and is re-oxidized on the surface of the surrounding alumina aggregate. The next spinel was found to be generated. As a result, since the brick matrix structure and the alumina aggregate surface layer become porous and the bonding between the aggregates develops, an increase in thermal conductivity is suppressed and the hot strength increases.

さらに、各種スラグ、なかでも高塩基度スラグに対してはアルミナ骨材は容易にスラグへ溶解するが、スラグ中のAl濃度が上昇し、このようなスラグに接するれんが稼働面においてスピネル粒子が存在すると、そのスピネル粒子を起点にしてスラグと気相Mgからスピネル結晶の析出、成長が容易に始まる。結果として、れんが稼働面に連続したスピネル質保護層を形成する。このため耐食性が向上すると考えられる。このような過程は、スピネル超微粉のMgO含有量が25〜50質量%の場合に効果的に進行することを見出した。 Furthermore, for various slags, especially high basicity slag, alumina aggregate easily dissolves in the slag, but the concentration of Al 2 O 3 in the slag rises, and the brick that touches such slag is spinel in terms of operation. When particles are present, the spinel crystal starts to precipitate and grow easily from the slag and gas phase Mg starting from the spinel particles. As a result, the brick forms a continuous spinel protective layer on the working surface. For this reason, it is thought that corrosion resistance improves. It has been found that such a process proceeds effectively when the spinel ultrafine powder has an MgO content of 25 to 50% by mass.

なお、スピネル超微粉による上述の作用効果は、その粒径が150μm未満の場合にのみ顕著に奏される。したがって、本発明でいうスピネル超微粉とは、粒径が150μm未満であることを前提とし、さらに平均粒径が0.1〜50μmでMgO含有量が25〜50質量%で残部がAlであることを要件とする。粒径が150μm以上のスピネル原料については、本発明ではとくに限定されず、スピネル超微粉とともに配合してもよいし、配合しなくてもよい。 In addition, the above-mentioned effect by spinel ultrafine powder is notably show | played only when the particle size is less than 150 micrometers. Therefore, the spinel ultrafine powder referred to in the present invention is based on the premise that the particle diameter is less than 150 μm, and further the average particle diameter is 0.1 to 50 μm, the MgO content is 25 to 50 mass%, and the balance is Al 2 O. 3 is a requirement. The spinel raw material having a particle size of 150 μm or more is not particularly limited in the present invention, and may be blended with spinel ultrafine powder or may not be blended.

ここで、本発明において、粒子の粒径がd未満とは、その粒子がJIS−Z8801に規定する目開きdの篩を通過する粒度であることを意味し、粒子の粒径がd以上とは、その粒子が同篩上に残る粒度であること意味する。また、本発明において、平均粒径とは、レーザー回折散乱式粒度分布計で測定した粒径と質量割合をグラフにプロットし、積算割合が50%の場合の粒径を意味する。   Here, in the present invention, the particle size of the particle is less than d means that the particle has a particle size that passes through a sieve having an opening d defined in JIS-Z8801, and the particle size of the particle is d or more. Means that the particle size remains on the same sieve. In the present invention, the average particle diameter means the particle diameter when the particle diameter measured by a laser diffraction / scattering particle size distribution meter and the mass ratio are plotted on a graph and the integrated ratio is 50%.

図1は本発明及び従来例によるアルミナカーボン系不焼成れんがのスラグ侵食試験後の被食面付近の微構造の写真で、(a)が本発明、(b)が従来例である。図2は図1(a)の組織を模式的に示したもので、付着スラグ層3との境界のれんが1表面にスピネルを主成分とするスピネル質保護層2が形成されている。本発明はこのような作用により、マグネシア含有量が比較的少ないスピネルを多量に使用することなく二次スピネル(スピネル質保護層)を十分生成することが可能となる。これに対して従来例では図1(b)に示すように、二次スピネル(スピネル質保護層)は生成していない。   FIG. 1 is a photograph of the microstructure near the eroded surface after an slag erosion test of an alumina carbon-based unfired brick according to the present invention and the conventional example, where (a) is the present invention and (b) is the conventional example. FIG. 2 schematically shows the structure of FIG. 1 (a), and a spinel protective layer 2 mainly composed of spinel is formed on the surface of a brick at the boundary with the adhered slag layer 3. FIG. With such an action, the present invention can sufficiently produce a secondary spinel (spinel protective layer) without using a large amount of spinel with a relatively low magnesia content. On the other hand, in the conventional example, as shown in FIG. 1B, secondary spinel (spinel protective layer) is not generated.

また、本発明において気相Mgの抜けたスピネル粒子は微細な気孔を含むとともに、アルミナ原料表面に生成した二次スピネルの結晶粒間にも空隙が生成し、結果としてバインダーの揮発分以上に気孔率が増大し、多孔質化する。その結果、気孔率は増加するものの、生成した二次スピネルの結合により熱間強度が大幅に向上する一方で弾性率の増加が抑制され、耐熱衝撃性が向上する。さらには従来のアルミナ−カーボン系不焼成れんがで生じている稼働経過に伴う熱伝導率の大幅な増大が本発明のれんがでは大幅に抑制される。   Further, in the present invention, the spinel particles from which vapor phase Mg has been removed contain fine pores, and voids are also generated between the secondary spinel crystal grains formed on the surface of the alumina raw material. As a result, the pores exceed the volatile content of the binder. The rate increases and becomes porous. As a result, although the porosity increases, the hot spin strength is greatly improved by the coupling of the generated secondary spinel, while the increase in the elastic modulus is suppressed and the thermal shock resistance is improved. Furthermore, the significant increase in the thermal conductivity accompanying the operation process caused by the conventional alumina-carbon unfired brick is greatly suppressed in the brick of the present invention.

図3は本発明及び従来例による1500℃×7日間熱処理後のアルミナ骨材の表面の微構造の写真で、(a)が本発明、(b)が従来例である。図3(a)に示すように、本発明ではアルミナ骨材がスピネル化する過程でその表面に多孔質な二次スピネル(図中の丸囲み部分)を形成することで、熱間強度と熱伝導率維持特性の改善を達成することができる。これに対して従来例では図3(b)に示すように、アルミナ骨材表面は緻密で平滑な組織のままである。   FIG. 3 is a photograph of the microstructure of the surface of the alumina aggregate after heat treatment at 1500 ° C. for 7 days according to the present invention and the conventional example, where (a) is the present invention and (b) is the conventional example. As shown in FIG. 3 (a), in the present invention, a porous secondary spinel (circled portion in the figure) is formed on the surface of the alumina aggregate in the process of spineling, so that the hot strength and heat An improvement in conductivity maintenance characteristics can be achieved. On the other hand, in the conventional example, as shown in FIG. 3B, the surface of the alumina aggregate remains a dense and smooth structure.

本発明における上述のガス化反応による二次スピネル生成は、従来の粒径100μm以下という特定のスピネル原料のみでは生じにくく、平均粒径が0.1〜50μmでMgO含有量が25〜50質量%で残部がAlであるスピネル超微粉と6質量%以上の炭素原料及び0.1質量%以上のアルミニウム及び/又はアルミニウム合金を配合することによって顕著となる。 Secondary spinel formation by the above-described gasification reaction in the present invention hardly occurs only with a specific spinel raw material having a conventional particle size of 100 μm or less, and has an average particle size of 0.1 to 50 μm and an MgO content of 25 to 50% by mass. And the balance becomes remarkable by blending ultrafine spinel powder of Al 2 O 3 with 6% by mass or more of carbon raw material and 0.1% by mass or more of aluminum and / or aluminum alloy.

平均粒径が0.1μm未満では水和しやすくなり、50μmを超えると二次スピネルの生成量が少なくなるため、熱間強度、耐食性および熱伝導率維持特性の向上効果が低下する。二次スピネルの生成を促進するためにはスピネル超微粉の平均粒径は小さい方が好ましく、好ましくは30μm以下、より好ましくは15μm以下である。   When the average particle size is less than 0.1 μm, hydration tends to occur. When the average particle size exceeds 50 μm, the amount of secondary spinel produced decreases, so that the effect of improving the hot strength, corrosion resistance, and thermal conductivity maintaining properties decreases. In order to promote the formation of secondary spinel, the average particle diameter of the spinel ultrafine powder is preferably smaller, preferably 30 μm or less, more preferably 15 μm or less.

本発明で使用するスピネル超微粉の化学組成は、MgO含有量が25〜50質量%で残部がAlである(無論、不可避的な不純物は含まれる。)。スピネル超微粉のMgO含有量が25質量%未満では、いかに高温還元雰囲気中とはいえ気相Mgの生成が不十分であり、二次スピネル生成反応が不足であるとともに、多孔質化による熱伝導率増大の抑制も不十分である。一方、スピネル超微粉のMgO含有量が50質量%を超えると消化しやすくなるという問題が生じる。スピネル超微粉中のMgO含有量については30質量%以上45質量%以下が、二次スピネルの生成反応と耐消化性のバランスを考慮した場合より好ましい。 The chemical composition of the ultra fine spinel powder used in the present invention is 25 to 50% by mass of MgO and the balance is Al 2 O 3 (of course, inevitable impurities are included). When the MgO content of the spinel ultrafine powder is less than 25% by mass, the formation of gaseous Mg is insufficient even in a high-temperature reducing atmosphere, the secondary spinel formation reaction is insufficient, and the heat conduction due to the porous structure. The suppression of rate increase is also insufficient. On the other hand, if the MgO content of the spinel ultrafine powder exceeds 50% by mass, there arises a problem that digestion is easy. The MgO content in the spinel ultrafine powder is more preferably 30% by mass or more and 45% by mass or less than the case where the balance between the secondary spinel formation reaction and the digestion resistance is taken into consideration.

超微粉スピネルからのMgのガス化反応を促進するためには、れんが内を強い還元雰囲気に保持する必要がある。このためには炭素原料は6質量%以上必要である。6質量%未満ではれんが内雰囲気の還元性が弱く、ガス化反応が起こりにくい。ただし、25質量%を超えると耐食性の低下が顕著になり、また熱伝導率維持特性が優れていても熱伝導率自体が増大するため本発明が解決しようとする熱ロスの低減という課題に対しては不適当である。   In order to promote the gasification reaction of Mg from the ultrafine spinel, it is necessary to keep the inside of the brick in a strong reducing atmosphere. For this purpose, the carbon raw material needs to be 6% by mass or more. If the amount is less than 6% by mass, the reducing property of the brick inner atmosphere is weak, and the gasification reaction hardly occurs. However, when the amount exceeds 25% by mass, the corrosion resistance is remarkably reduced, and even if the thermal conductivity maintaining property is excellent, the thermal conductivity itself is increased. Is inappropriate.

また、さらにガス化反応を促進させるためにはアルミニウム及び/又はアルミニウム合金を0.1質量%以上配合する必要がある。アルミニウムはスピネル超微粉と反応してMgガスの放出を促進する。ただし、アルミニウム及び/又はアルミニウム合金の配合量は4質量%以下である必要がある。過剰に添加したアルミニウム及び/又はアルミニウム合金は炭素原料と例えばAlのような化合物を生成してフリーの炭素を消費するため、れんが内雰囲気の還元性が弱くなる。また、粒子間の結合が過剰となり組織が緻密になりすぎて耐熱衝撃性が大きく低下する。 Further, in order to further promote the gasification reaction, it is necessary to mix 0.1% by mass or more of aluminum and / or an aluminum alloy. Aluminum reacts with the spinel ultrafine powder to promote the release of Mg gas. However, the compounding quantity of aluminum and / or aluminum alloy needs to be 4 mass% or less. The excessively added aluminum and / or aluminum alloy generates a carbon raw material and a compound such as Al 4 C 3 to consume free carbon, so that the reducibility of the brick inner atmosphere is weakened. Further, the bonds between the particles become excessive, the structure becomes too dense, and the thermal shock resistance is greatly reduced.

スピネル超微粉は、耐火原料配合物中の含有量が2〜20質量%となるように配合する。2質量%未満では生成する二次スピネルの割合が少なく、耐食性や熱間強度の増大あるいは熱伝導率維持特性の改善効果が小さい。20質量%を超えると、消化しやすくなるとともに、れんがの熱膨張が大きくなって割れ損傷を引き起し、実用上の問題となる。   The spinel ultrafine powder is blended so that the content in the refractory raw material blend is 2 to 20% by mass. If it is less than 2% by mass, the proportion of secondary spinel produced is small, and the effect of improving corrosion resistance, hot strength or improving thermal conductivity is small. If it exceeds 20% by mass, it becomes easy to digest, and the thermal expansion of the brick increases, causing cracking damage, which is a practical problem.

また、本発明の耐火原料配合物の副原料として、炭化珪素原料を耐火原料配合物中の含有量が0.5〜10質量%となるように配合したり、消化抑制のため粒径が0.1mm以上のマグネシア原料を耐火原料配合物中の含有量が0.5〜25質量%となるように配合したりすることもできる。炭化珪素原料を配合した場合には、混銑車の内張り材として好適なアルミナカーボン系不焼成れんがとなる。マグネシア原料を配合した場合には、取鍋の内張り材として好適なアルミナカーボン系不焼成れんがとなる。   Further, as a secondary material of the refractory raw material composition of the present invention, a silicon carbide raw material is blended so that the content in the refractory raw material composition is 0.5 to 10% by mass, or the particle size is 0 for digestion inhibition. .1 mm or more of magnesia raw material may be blended so that the content in the refractory raw material blend is 0.5 to 25% by mass. When a silicon carbide raw material is blended, it becomes an alumina carbon type non-fired brick suitable as a lining material for a kneading vehicle. When a magnesia raw material is blended, it becomes an alumina carbon type non-fired brick suitable as a ladle lining material.

本発明においては、硼珪酸ガラスなどのガラス質原料の配合量は1.7質量%以下が好ましく、より好ましくは1質量%以下、最も好ましくは配合しないことである。ガラス質原料は生成した二次スピネル中に低融物を生成し、熱間強度及び耐食性の低下をもたらす。上記特許文献3においてはガラス質材料がスピネル粒同士を結合させるための必須成分となっており、粒径0.075mm以下のスピネル原料とアルミニウム又はアルミニウム合金を使用した実施例6、実施例8及び比較例2ではガラス質原料を外掛けで2〜4質量%(本発明でいう耐火原料配合物中に占める割合で1.8〜3.7質量%)配合しており、本発明と比較して熱間強度及び耐食性が低下していると考えられる。また、ガラス質原料は溶融してスピネル超微粉の表面を被覆しMgガスの発生を阻害するため、二次スピネルの生成にも悪影響を及ぼす場合がある。   In the present invention, the amount of the vitreous raw material such as borosilicate glass is preferably 1.7% by mass or less, more preferably 1% by mass or less, and most preferably not compounded. The glassy raw material produces a low melt in the produced secondary spinel, resulting in a decrease in hot strength and corrosion resistance. In the said patent document 3, glassy material is an essential component for bonding spinel grains, and Examples 6, 8 and 8 using a spinel raw material having a particle size of 0.075 mm or less and aluminum or an aluminum alloy are used. In Comparative Example 2, the glassy raw material is blended in an amount of 2 to 4% by mass (1.8 to 3.7% by mass in the ratio of the refractory raw material referred to in the present invention) and compared with the present invention. Therefore, it is considered that the hot strength and corrosion resistance are reduced. Further, since the glassy raw material melts and covers the surface of the spinel ultrafine powder and inhibits the generation of Mg gas, it may adversely affect the generation of secondary spinel.

本発明においては、上記アルミナカーボン系不焼成れんがを、溶融金属の保持炉の内張り用れんがとして、混銑車、取鍋のような各種窯炉設備に使用することができる。混銑車、取鍋のような各種窯炉設備に本発明のれんがを施工する際には、設備全体の内張り用れんがとして施工しても良いが、スラグラインや湯当たり部など耐食性や熱間強度が必要とされる部位を優先的に施工するのも好ましい。 In the present invention, the alumina carbon-based unfired brick can be used as a brick for lining a molten metal holding furnace in various kiln furnace facilities such as a kneading wheel and a ladle. When applying bricks of the present invention to various kiln facilities such as kneading cars and ladle, it may be applied as bricks for lining the entire equipment, but corrosion resistance and hot strength such as slag lines and hot water hitting parts It is also preferable to preferentially construct the site where the need is.

本発明のアルミナカーボン系不焼成れんがは、耐食性、熱間強度及び熱伝導率維持特性に優れている。また、耐熱衝撃性にも優れるため割れ剥離を抑制できる。このため、本発明のれんがを内張りした混銑車や取鍋などの窯炉設備の寿命が向上するとともに、窯炉設備の鉄皮外表面からの熱ロスを抑制することで省エネルギーやCO削減につながる。 The alumina carbon-based unfired brick of the present invention is excellent in corrosion resistance, hot strength and thermal conductivity maintaining characteristics. Moreover, since it is excellent also in thermal shock resistance, crack peeling can be suppressed. For this reason, the life of kiln furnace equipment such as a kneading car or ladle lined with the brick of the present invention is improved, and the heat loss from the outer surface of the iron skin of the kiln furnace equipment is suppressed, thereby saving energy and reducing CO 2 . Connected.

本発明及び従来例によるアルミナカーボン系不焼成れんがのスラグ侵食試験後の被食面付近の微構造の写真で、(a)が本発明、(b)が従来例である。FIG. 4 is a photograph of the microstructure near the eroded surface after the slag erosion test of an alumina carbon-based unfired brick according to the present invention and the conventional example, where (a) is the present invention and (b) is the conventional example. 図1(a)の本発明によるアルミナカーボン系不焼成れんがのスラグ侵食試験後の微構造の模式図である。It is the schematic diagram of the microstructure after the slag erosion test of the alumina carbon type | system | group unfired brick by this invention of Fig.1 (a). 本発明及び従来例による1500℃×7日間熱処理後のアルミナ骨材の表面の微構造の写真で、(a)が本発明、(b)が従来例である。It is a photograph of the microstructure of the surface of the alumina aggregate after heat treatment at 1500 ° C. for 7 days according to the present invention and the conventional example, (a) is the present invention, and (b) is the conventional example.

本発明で使用するアルミナ原料は、Alを90質量%以上含有する耐火原料であり、耐火物に一般的に使用されているアルミナ原料を使用することができる。例えば、電融アルミナ、焼結アルミナ、仮焼アルミナ、ボーキサイト、及びバン土頁岩のうち1種以上を使用することができる。 Alumina raw material used in the present invention, the Al 2 O 3 is a refractory raw material containing more than 90 wt%, it is possible to use an alumina material that is commonly used in the refractory. For example, one or more of electrofused alumina, sintered alumina, calcined alumina, bauxite, and bangshale shale can be used.

アルミナ原料は、耐食性に優れた原料として、粗粒から微粉にわたり耐火原料配合物中の主原料として使用し、その配合量は60〜80質量%程度である。ただし、二次スピネルを形成しやすい点から粒径100μm未満のものを15〜40質量%使用することがより好ましい。   The alumina raw material is used as a main raw material in the refractory raw material mixture ranging from coarse particles to fine powders as a raw material having excellent corrosion resistance, and its blending amount is about 60 to 80% by mass. However, it is more preferable to use 15 to 40% by mass of particles having a particle size of less than 100 μm from the viewpoint of easily forming secondary spinel.

炭素原料は、通常の耐火物に一般的に使用されているものであれば問題なく使用することができる。好ましくは、C含有量が90質量%以上の鱗状黒鉛、カーボンブラック、無煙炭、及びピッチ等のうち1種以上を使用する。炭素原料は、耐火原料配合物中に6〜25質量%配合する必要があり、より好ましくは8〜20質量%である。   The carbon raw material can be used without any problem as long as it is generally used for ordinary refractories. Preferably, one or more of scale-like graphite having a C content of 90% by mass or more, carbon black, anthracite, and pitch are used. The carbon raw material needs to be blended in an amount of 6 to 25% by mass, more preferably 8 to 20% by mass, in the refractory raw material composition.

アルミニウム及びアルミニウム合金は、通常の耐火物に一般的に使用されるものを問題なく使用することができる。アルミニウム合金としては、Al−Si合金、Al−Mg合金、Al−Si−Mg合金などを使用することができる。アルミニウム及びアルミニウム合金は、粉末状で粒径が100μm未満のような微細な粉末が好ましく、耐火原料配合物中に0.1〜4質量%配合する必要があり、より好ましくは0.3〜2質量%である。   As aluminum and aluminum alloys, those generally used for ordinary refractories can be used without problems. As the aluminum alloy, an Al—Si alloy, an Al—Mg alloy, an Al—Si—Mg alloy, or the like can be used. Aluminum and an aluminum alloy are preferably powders and fine powders having a particle size of less than 100 μm. It is necessary to add 0.1 to 4% by mass in the refractory raw material composition, and more preferably 0.3 to 2%. % By mass.

本発明で使用するスピネル超微粉は、化学組成としてMgO含有量が25〜50質量%で残部はAlであり、より好ましくはMgO含有量が30〜45質量%である。なお、不可避的な不純物成分は1質量%未満であることが好ましい。 Spinel ultrafine powder used in the present invention, the remainder of MgO content as a chemical composition 25 to 50 wt% is Al 2 O 3, more preferably from 30 to 45% by weight MgO content. The inevitable impurity component is preferably less than 1% by mass.

本発明で使用するスピネル超微粉は、電融法、焼結法、あるいは湿式合成法等の従来の製法で製造されたものを使用することができる。このうち、湿式合成法で製造されたものは活性が非常に高く、れんが組織中で二次スピネルを生成しやすいためより好ましい。   As the spinel ultrafine powder used in the present invention, those produced by a conventional production method such as an electrofusion method, a sintering method, or a wet synthesis method can be used. Among these, those produced by a wet synthesis method are more preferable because they have very high activity and easily generate secondary spinel in the brick structure.

湿式合成法としては、例えばマグネシウムとアルミニウムの混合酸性塩に塩基剤を加えてマグネシウムの化合物とアルミニウムの化合物を共沈させる化学湿式法、この混合溶液を高温雰囲気に噴霧して乾燥する噴霧乾燥法、あるいは混合溶液を噴霧して凍結させてから減圧して乾燥させる凍結乾燥法、マグネシウムとアルミニウムのアルコキシドを混合してから水和するアルコキシド法等が知られている。このような湿式合成法で得られた混合物を仮焼後、粉砕し、篩うことにより、粒径150μm未満で平均粒径0.1〜50μmに調整することができる。スピネル超微粉中のMgOとAlの割合は、どの製法でも出発原料の混合比によって任意の割合とすることが可能である。 As the wet synthesis method, for example, a chemical wet method in which a base compound is added to a mixed acidic salt of magnesium and aluminum to co-precipitate a magnesium compound and an aluminum compound, and a spray drying method in which this mixed solution is sprayed and dried in a high temperature atmosphere Alternatively, a freeze-drying method in which a mixed solution is sprayed to freeze and then dried under reduced pressure, an alkoxide method in which magnesium and aluminum alkoxides are mixed and then hydrated is known. The mixture obtained by such a wet synthesis method can be adjusted to an average particle size of less than 150 μm and an average particle size of 0.1 to 50 μm by calcination, sieving and sieving. The ratio of MgO and Al 2 O 3 in the spinel ultrafine powder can be set to an arbitrary ratio depending on the mixing ratio of the starting materials in any manufacturing method.

本発明では、アルミナ原料を主原料とし、炭素原料、アルミニウム及び/又はアルミニウム合金、並びにスピネル超微粉を含有する耐火原料配合物を使用するが、これらの原料以外に、副原料として炭化珪素、マグネシア、ジルコニア、ムライト、ジルコニアムライト、アルミナジルコニア、粘土、炭化硼素、及びガラス等のうち1種以上を組み合わせて使用することができる。   In the present invention, an alumina raw material is used as a main raw material, and a refractory raw material composition containing a carbon raw material, aluminum and / or an aluminum alloy, and spinel ultrafine powder is used. In addition to these raw materials, silicon carbide, magnesia are used as auxiliary raw materials. , Zirconia, mullite, zirconia mullite, alumina zirconia, clay, boron carbide, glass and the like can be used in combination.

具体的な耐火原料配合物の基本構成は、超微粉スピネル原料を2〜20質量%、炭素原料を6〜25質量%、並びにアルミニウム及び/又はアルミニウム合金を0.1〜4質量%含有し、残部が主としてアルミナ原料からなる。この耐火原料配合物は、前記基本構成のみとしてもよいが、その用途に応じてさらに副原料を0.5〜40質量%含有する構成とすることができる。   The basic composition of the specific refractory raw material composition contains 2 to 20% by mass of ultrafine spinel material, 6 to 25% by mass of carbon material, and 0.1 to 4% by mass of aluminum and / or aluminum alloy, The balance mainly consists of an alumina raw material. This refractory raw material composition may have only the above basic structure, but may further contain 0.5 to 40% by mass of an auxiliary material depending on its use.

例えば、混銑車の内張り用れんがとしての用途には、副原料として炭化珪素原料を0.5〜10質量%、及び/又はマグネシア原料を0.5〜25質量%添加することが好適である。炭化珪素は耐酸化性を向上させ、マグネシアは内張りされたれんが間の目地開きを防止したり耐食性を向上させたりする効果がある。このうちマグネシア原料の粒径は、消化防止のために0.1mm以上とすることが好ましい。   For example, it is preferable to add 0.5 to 10% by mass of a silicon carbide raw material and / or 0.5 to 25% by mass of a magnesia raw material as an auxiliary raw material for use as a brick for lining a kneading vehicle. Silicon carbide improves oxidation resistance, and magnesia has the effect of preventing joint opening between lined bricks and improving corrosion resistance. Of these, the particle size of the magnesia raw material is preferably 0.1 mm or more in order to prevent digestion.

本発明では、非常に活性の高いスピネル超微粉を使用するため、耐火原料中の低融点成分を形成するような不純物分を少なくすると耐食性が一段と向上する。したがってガラス質原料の配合量は1.7質量%以下が好ましく、より好ましくは1質量%以下、最も好ましくは配合しないことである。   In the present invention, since spinel ultrafine powder having a very high activity is used, the corrosion resistance is further improved by reducing the amount of impurities that form a low melting point component in the refractory raw material. Therefore, the blending amount of the glassy raw material is preferably 1.7% by mass or less, more preferably 1% by mass or less, and most preferably not blended.

上記の原料から成る耐火原料配合物にフェノール樹脂等の有機バインダーを添加して混練し、成形後、熱処理することで本発明のアルミナカーボン系不焼成れんがが得られる。成形は金型に混練物を充填してフリクションプレスやオイルプレス等によって行う。また、熱処理は1000℃以下好ましくは700℃以下で行う。なお、熱処理は、有機バインダーを硬化させることが主目的であるため、熱処理温度は100〜700℃でも十分である。   The alumina-carbon unfired brick of the present invention can be obtained by adding an organic binder such as a phenol resin to the refractory raw material composition composed of the above raw materials, kneading, molding, and heat-treating. Molding is performed by filling a kneaded material in a mold and using a friction press or an oil press. The heat treatment is performed at 1000 ° C. or less, preferably 700 ° C. or less. Since the main purpose of the heat treatment is to cure the organic binder, a heat treatment temperature of 100 to 700 ° C. is sufficient.

本発明のアルミナカーボン系不焼成れんがは、稼働時の受熱によってアルミニウムやスピネル超微粉などが反応することでさらなる結合組織を形成する。そして、本発明のアルミナカーボン系不焼成れんがは、稼働時の受熱により二次スピネルを形成し極めて耐食性に優れるとともに熱伝導率維持特性に優れたれんがとなるため、溶銑輸送、あるいは脱珪、脱燐、脱硫などの溶銑予備処理を行う混銑車もしくは取鍋の内張りれんがとして使用することで、混銑車や取鍋の寿命が飛躍的に向上するとともに省エネルギーにも大きく寄与する。   The alumina carbon-based unfired brick of the present invention forms a further connective structure by reaction of aluminum, ultrafine spinel powder, or the like due to heat reception during operation. The alumina carbon-based unfired brick of the present invention forms a secondary spinel by receiving heat during operation and is extremely excellent in corrosion resistance and heat conductivity maintaining properties, so that it is transported by hot metal, desiliconized or desiliconized. By using it as a kneading car or ladle lining brick that performs hot metal pretreatment such as phosphorus and desulfurization, the life of the kneading car and ladle is drastically improved and also contributes to energy saving.

以下、本発明の実施例及び比較例を示す。   Examples of the present invention and comparative examples are shown below.

表1は、本発明の実施例及び比較例で使用したスピネル超微粉の特性を示す。表2〜表6は、実施例及び比較例で使用した耐火原料配合物の組成と、試作したアルミナカーボン系不焼成れんがの特性試験結果を示す。   Table 1 shows the characteristics of the spinel ultrafine powder used in Examples and Comparative Examples of the present invention. Tables 2 to 6 show the composition of the refractory raw material composition used in the examples and comparative examples, and the result of the characteristic test of the trially produced alumina carbon-based unfired brick.

表2〜表6に示す耐火原料配合物にフェノール樹脂を添加して混練し、フリクションプレスで並形形状に成形後、250℃で熱処理することでアルミナカーボン系不焼成れんがを試作した。フェノール樹脂は有機溶剤で希釈して粘性を調整した液状タイプのものを使用し、その添加量は外掛けで3〜5質量%とした。   A phenolic resin was added to the refractory raw material blends shown in Tables 2 to 6 and kneaded, formed into a parallel shape with a friction press, and then heat treated at 250 ° C. to produce an alumina carbon-based unfired brick. The phenol resin used was a liquid type diluted with an organic solvent to adjust the viscosity, and the amount added was 3-5% by mass.

表1〜表6に示す各原料について説明する。スピネル原料は、湿式合成法で製造したものを仮焼処理後に微粉砕し、篩いで篩って、表1に示す平均粒径に調整した。なお、表1に示すスピネル原料の粒径はいずれも150μm未満である。スピネル原料のAlとMgOのそれぞれの含有量は表1に示すとおりで、不純物の合量が1質量%のものを使用した。表1中、スピネルB〜F及びスピネルH〜Lが本発明の規定を充足するスピネル超微粉である。 Each raw material shown in Tables 1 to 6 will be described. The spinel raw material prepared by the wet synthesis method was finely pulverized after calcination treatment, and sieved with a sieve to adjust the average particle size shown in Table 1. The particle diameters of the spinel raw materials shown in Table 1 are all less than 150 μm. The contents of each of the spinel raw materials Al 2 O 3 and MgO are as shown in Table 1, and the total amount of impurities was 1% by mass. In Table 1, spinel B to F and spinel H to L are spinel ultrafine powders that satisfy the provisions of the present invention.

電融アルミナはAlが95質量%のものを、炭化珪素はSiCが95質量%のものを、黒鉛はCが95質量%のものを、無煙炭はCが90質量%のものを、カーボンブラックはCが99質量%のものを、マグネシアはMgOが98質量%のものを、アルミニウムはAlが99質量%のものを、Al−Mg合金はAlが80質量%、Mgが20質量%のものを、ガラスはBが15質量%、NaOが5質量%の硼珪酸ガラスをそれぞれ使用した。 Fused alumina has 95% by mass of Al 2 O 3 , silicon carbide has 95% by mass of SiC, graphite has 95% by mass of C, anthracite has 90% by mass of C, Carbon black is 99% by mass of C, magnesia is 98% by mass of MgO, aluminum is 99% by mass of Al, Al-Mg alloy is 80% by mass of Al, and 20% by mass of Mg. The glass used was borosilicate glass containing 15% by mass of B 2 O 3 and 5% by mass of Na 2 O, respectively.

次に表2〜6に示すアルミナカーボン系不焼成れんがの特性評価の項目について説明する。   Next, the characteristics evaluation items of the alumina carbon unfired brick shown in Tables 2 to 6 will be described.

見掛け気孔率は、JIS R2205に準拠して測定した。見掛け気孔率については250℃熱処理後及び1400℃で3時間熱処理後について測定を行った。   The apparent porosity was measured according to JIS R2205. The apparent porosity was measured after heat treatment at 250 ° C. and after heat treatment at 1400 ° C. for 3 hours.

弾性率は超音波の伝播速度から算出する方法で測定した。 The elastic modulus was measured by a method calculated from the propagation speed of ultrasonic waves.

熱間曲げ強さは、JIS R2656に準拠し窒素流通の不活性雰囲気中、1400℃で測定した。   The hot bending strength was measured at 1400 ° C. in an inert atmosphere of nitrogen flow according to JIS R2656.

耐熱衝撃性は、1600℃の溶銑に90秒間浸漬し取り出して水冷を30秒間行った後空冷を30秒行う操作を、試験体(200×50×40mm)の一部が剥落するまで繰り返し、最高12回まで実施した。表には、剥落が発生した試験回数を表示した。数値が大きいほど耐熱衝撃性が良好であることを示す。なお、表中で「>12」と記載したものは、12回繰り返しても剥落しなかったことを示す。   For thermal shock resistance, the operation of immersing in hot metal at 1600 ° C. for 90 seconds, taking out water, performing water cooling for 30 seconds, and then air cooling for 30 seconds is repeated until a part of the specimen (200 × 50 × 40 mm) is peeled off. Up to 12 times. The table shows the number of tests in which peeling occurred. The larger the value, the better the thermal shock resistance. In addition, what was described as "> 12" in a table | surface shows that it did not peel even if it repeated 12 times.

なお、弾性率、熱間曲げ強さ、耐熱衝撃性について評価したサンプルは1400℃で3時間熱処理したものである。   The samples evaluated for the elastic modulus, hot bending strength, and thermal shock resistance were heat-treated at 1400 ° C. for 3 hours.

耐食性は、ASTM C874−77に記載の試験方法に沿って、回転スラグ試験法で実施した。塩基度(CaO/SiO)が6の合成スラグ(高炉スラグと石灰の混合物)を使用して、1650℃で行った。比較例1の溶損量を100として指数で表示した。この指数が小さい程耐食性が良好であることを示す。 Corrosion resistance was carried out by the rotating slag test method in accordance with the test method described in ASTM C874-77. It was performed at 1650 ° C. using synthetic slag (mixture of blast furnace slag and lime) having a basicity (CaO / SiO 2 ) of 6. The melt loss amount of Comparative Example 1 was taken as 100 and displayed as an index. The smaller the index, the better the corrosion resistance.

耐消化性は、学振法によるマグネシアクリンカーの消化性試験方法に準じてブリケットの圧縮強さ低下率で評価した。数値が小さいほど耐消化性は良好である。   The digestion resistance was evaluated by the rate of decrease in the compression strength of briquettes according to the digestibility test method of magnesia clinker according to the Gakushin method. The smaller the value, the better the digestion resistance.

熱伝導率は、定常法カロリーメーター方式装置を使い、測定温度600℃における熱伝導率を調査した。熱伝導率は稼働初期と長期経過後の熱伝導率の変化率を評価するため、稼働初期を想定して1500℃で1時間熱処理したサンプルと、長期経過後を想定して1500℃で7日間熱処理したサンプルについて熱伝導率をそれぞれ測定し、(1500℃×7日間熱処理後サンプルの熱伝導率)/(1500℃×1時間熱処理後サンプルの熱伝導率)にて熱伝導率維持特性を評価した。この比が1.0未満を◎、1.0以上1.2未満を○、1.2以上1.5未満を△、1.5以上を×と表中では表記した。数値が小さいほど長期経過後の熱伝導率の増大が抑制されていることを表すので、◎、○、△、×の順に良好であることを示す。   The thermal conductivity was investigated using a steady-state calorimeter type apparatus at a measurement temperature of 600 ° C. In order to evaluate the rate of change of the thermal conductivity after the initial operation and after a long period of time, the thermal conductivity is a sample heat-treated at 1500 ° C for 1 hour assuming the initial operation and 7 days at 1500 ° C assuming a long period of time. The thermal conductivity of each of the heat-treated samples was measured, and the thermal conductivity maintaining characteristics were evaluated by (1500 ° C. × 7 days heat-treated sample heat conductivity) / (1500 ° C. × 1 hour heat-treated sample heat conductivity). did. In this table, this ratio is indicated as ◎ when less than 1.0, ◯ when 1.0 or more and less than 1.2, Δ when 1.2 or more and less than 1.5, and × when 1.5 or more. A smaller numerical value indicates that the increase in thermal conductivity after a long period of time is suppressed, indicating that the order of 良好, ○, Δ, × is better.

表2は、スピネル原料の平均粒径と使用量に関して調査した結果を示す。実施例1〜5は平均粒径が本発明の範囲内にあるスピネル超微粉を使用したもので、熱間曲げ強さ、耐熱衝撃性、耐食性、熱伝導率維持特性のいずれも比較例1と比較して優れている。とくに平均粒径30μm以下の実施例2〜5においては諸特性の改善が顕著であり好ましい。さらに平均粒径15μm以下では耐食性改善効果がより顕著になりより好ましい。なお、実施例2〜5は耐消化性の点で比較例1よりも若干劣るが実使用上は問題ない。   Table 2 shows the results of an investigation regarding the average particle size and the amount used of the spinel raw material. Examples 1 to 5 use spinel ultrafine powder having an average particle size within the range of the present invention, and all of hot bending strength, thermal shock resistance, corrosion resistance, and thermal conductivity maintaining characteristics are the same as in Comparative Example 1. It is excellent in comparison. Particularly in Examples 2 to 5 having an average particle size of 30 μm or less, the improvement of various properties is remarkable, which is preferable. Furthermore, when the average particle size is 15 μm or less, the effect of improving corrosion resistance becomes more remarkable, which is more preferable. Although Examples 2 to 5 are slightly inferior to Comparative Example 1 in terms of digestion resistance, there is no problem in actual use.

これに対して、スピネル原料のMgO含有率が25〜50質量%の範囲内であっても平均粒径が50μmを超える場合には比較例1に示すとおり、熱処理後の弾性率と熱間曲げ強さがかなり低いことから、受熱時に二次スピネルの生成量が少ないことが推測され、その結果、実施例1〜5と比較すると、耐熱衝撃性、耐食性、熱伝導率維持特性が低くなっている。   On the other hand, when the average particle diameter exceeds 50 μm even if the MgO content of the spinel raw material is in the range of 25 to 50% by mass, as shown in Comparative Example 1, the elastic modulus after the heat treatment and the hot bending Since the strength is considerably low, it is presumed that the amount of secondary spinel produced is small at the time of heat reception, and as a result, the thermal shock resistance, corrosion resistance, and thermal conductivity maintaining characteristics are reduced as compared with Examples 1-5. Yes.

実施例6〜実施例9は、耐火原料配合物中のスピネル超微粉含有量が本発明の範囲内であり、いずれの特性も良好である。比較例2及び3は、スピネル超微粉含有量が本発明の下限を下回っており、実施例に比べて熱間曲げ強さ、耐食性、熱伝導率維持特性が低下している。また、比較例4は、スピネル超微粉含有量が本発明の上限を超えており耐熱衝撃性と耐消化性の低下が著しく実用には適さない。スピネル超微粉含有量が多すぎると、れんがの熱膨張が大きくなるため、耐熱衝撃性が低下するとともに耐消化性も低下する。   In Examples 6 to 9, the spinel ultrafine powder content in the refractory raw material composition is within the range of the present invention, and all the characteristics are good. In Comparative Examples 2 and 3, the spinel ultrafine powder content is lower than the lower limit of the present invention, and the hot bending strength, corrosion resistance, and thermal conductivity maintaining characteristics are lower than those of the Examples. In Comparative Example 4, the content of the ultrafine spinel powder exceeds the upper limit of the present invention, and the thermal shock resistance and the digestion resistance are remarkably lowered, which is not suitable for practical use. If the spinel ultrafine powder content is too large, the thermal expansion of the brick increases, so that the thermal shock resistance decreases and the digestion resistance also decreases.

表3は、異なる化学組成のスピネル超微粉を使用した例である。表3に示す実施例10〜14はスピネル超微粉の化学組成が本発明の範囲内であり、いずれの特性も良好である。比較例5は、MgO含有量が少ないスピネル超微粉を使用しているため、二次スピネルの生成が不十分であり、熱間曲げ強さ及び熱伝導率維持特性が良くない。比較例6はMgO含有量が多すぎる場合で、耐熱衝撃性と耐消化性が不良で実用には適さない。熱伝導率維持特性と耐消化性のバランスを考慮するとMgO含有量は30質量%以上45質量%以下がより好ましいことが分かる。   Table 3 is an example using spinel ultrafine powder having different chemical compositions. In Examples 10 to 14 shown in Table 3, the chemical composition of the spinel ultrafine powder is within the scope of the present invention, and all the characteristics are good. Since the comparative example 5 uses the spinel ultrafine powder with low MgO content, the production | generation of a secondary spinel is inadequate and hot bending strength and a heat conductivity maintenance characteristic are not good. Comparative Example 6 is a case where the MgO content is too high, and the thermal shock resistance and digestion resistance are poor and are not suitable for practical use. Considering the balance between the thermal conductivity maintaining characteristics and the digestion resistance, it is understood that the MgO content is more preferably 30% by mass or more and 45% by mass or less.

表4は、配合中の炭素原料の割合を変更した例である。実施例15〜19は炭素原料の配合割合が本発明の範囲であり、いずれの特性も良好である。比較例7は炭素原料の配合割合が少ないため耐熱衝撃性や熱伝導率維持特性に劣る。比較例8は炭素原料の配合割合が多いため、耐食性の低下が顕著であり実用に適さない。実施例の中では実施例16〜18が諸特性のバランスが良好であり、炭素原料の配合割合は8質量%〜20質量%がより好ましいことが分かる。   Table 4 is an example in which the ratio of the carbon raw material during blending was changed. In Examples 15 to 19, the mixing ratio of the carbon raw material is within the range of the present invention, and all the characteristics are good. Since Comparative Example 7 has a small blending ratio of the carbon raw material, it is inferior in thermal shock resistance and thermal conductivity maintaining characteristics. Since Comparative Example 8 has a large blending ratio of the carbon raw material, the corrosion resistance is remarkably lowered and is not suitable for practical use. Among the examples, it can be seen that Examples 16 to 18 have a good balance of various properties, and the blending ratio of the carbon raw material is more preferably 8% by mass to 20% by mass.

表5は、耐火原料配合物中のアルミニウムの割合を変更した例である。実施例20〜24はアルミニウムの配合割合が本発明の範囲であり、いずれの特性も良好である。比較例9はアルミニウムの配合割合が少ないため耐食性や熱伝導率維持特性に劣る。比較例10はアルミニウムの配合割合が多いため、耐熱衝撃性及び熱伝導率維持特性の低下が顕著であり実用に適さない。実施例の中では実施例21〜23が諸特性のバランスが良好であり、アルミニウムの配合割合は0.3質量%〜2質量%がより好ましいことが分かる。 Table 5 is an example in which the proportion of aluminum in the refractory raw material composition is changed. In Examples 20 to 24, the blending ratio of aluminum is within the range of the present invention, and all the characteristics are good. Comparative Example 9 is inferior in corrosion resistance and heat conductivity maintaining characteristics because of a small proportion of aluminum. Since Comparative Example 10 has a high aluminum blending ratio, the thermal shock resistance and the thermal conductivity maintaining characteristics are remarkably deteriorated, which is not suitable for practical use. Among the examples, it can be seen that Examples 21 to 23 have a good balance of various properties, and the blending ratio of aluminum is more preferably 0.3% by mass to 2% by mass.

表6中の実施例25〜29は、炭素原料として黒鉛以外も使用した例、マグネシアを添加した例、Al−Mg合金を使用した例を示す。いずれの例においても優れた特性を示していることが分かる。   Examples 25 to 29 in Table 6 show examples in which other than graphite was used as a carbon raw material, an example in which magnesia was added, and an example in which an Al-Mg alloy was used. It can be seen that all of the examples show excellent characteristics.

表6中の実施例30〜33はガラスを添加した例である。この表から明らかなように、ガラスの添加は1.7質量%以下が好ましく、1質量%以下がより好ましくいことが分かる。   Examples 30 to 33 in Table 6 are examples in which glass was added. As is apparent from this table, it is understood that the addition of glass is preferably 1.7% by mass or less, and more preferably 1% by mass or less.

また、本発明のアルミナカーボン系不焼成れんがを、実際に窯炉設備へ適用した実施例を以下に示す。実施例4の本発明品のれんがと、比較例2の従来品のれんがとを、容量250tonの混銑車のスラグラインに、比較のため隣り合わせに張り合わせて179ch使用した。その結果、実施例4のれんがの溶損厚みは、比較例2のれんがの溶損厚みの40%に止まり、非常に良好な耐食性を示した。回収したれんがの物性値を測定したところ、見掛気孔率は実施例4のれんがの方が比較例2のれんがよりも大きくなった。また、熱間曲げ強さも実施例4のれんがの方が比較例2のれんがより高い値となった。熱伝導率については、実施例4のれんがは、使用前と使用後でほぼ同じであったが、比較例2のれんがは、使用前に比較して使用後は約1.5倍に増大しており、本発明品は優れた耐食性を示すとともに、長期間使用後も熱伝導率の増加が少ないため、窯炉設備からの熱ロスを抑制する効果が大きいことが明らかになった。   Moreover, the Example which applied the alumina carbon type | system | group non-fired brick of this invention to kiln furnace equipment is shown below. The bricks of the present invention of Example 4 and the bricks of the conventional product of Comparative Example 2 were used together for 179 ch on the slag line of a chaotic vehicle having a capacity of 250 tons for comparison. As a result, the thickness of the brick of Example 4 was 40% of the thickness of the brick of Comparative Example 2 and showed very good corrosion resistance. When the physical properties of the collected brick were measured, the apparent porosity of the brick of Example 4 was larger than that of Comparative Example 2. Also, the hot bending strength of the brick of Example 4 was higher than that of Comparative Example 2. Regarding the thermal conductivity, the brick of Example 4 was almost the same before and after use, but the brick of Comparative Example 2 increased about 1.5 times after use compared to before use. Thus, the product of the present invention has excellent corrosion resistance and little increase in thermal conductivity even after long-term use. Therefore, it has been revealed that the effect of suppressing heat loss from the kiln equipment is great.

1 れんが
2 スピネル質保護層
3 付着スラグ層
1 Brick 2 Spinel protective layer 3 Adhering slag layer

Claims (9)

炭素原料を6質量%以上25質量%以下、アルミニウム及び/又はアルミニウム合金を0.1%以上4質量%以下、スピネル超微粉を2質量%以上20質量%以下、残部が主としてアルミナ原料からなる耐火原料配合物に有機バインダーを添加して混練し、成形後、1000℃以下で熱処理して得られる溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがであって、耐火原料配合物中のスピネル超微粉は、粒径が150μm未満で平均粒径が0.1〜50μm、MgO含有量が25〜50質量%で残部がAlからなる溶融金属保持炉の内張り用アルミナカーボン系不焼成れんが。 A refractory material composed of 6 to 25% by mass of carbon material, 0.1 to 4% by mass of aluminum and / or aluminum alloy, 2 to 20% by mass of spinel ultrafine powder, and the balance mainly composed of alumina material. Addition of organic binder to the raw material mixture, kneading, heat treatment at 1000 ° C. or lower after molding, alumina carbon-based non-fired brick for lining of molten metal holding furnace, super spinel in refractory raw material mixture The fine powder is an alumina carbon type non-fired brick for lining of a molten metal holding furnace having a particle size of less than 150 μm, an average particle size of 0.1 to 50 μm, an MgO content of 25 to 50% by mass and the balance of Al 2 O 3. . スピネル超微粉の平均粒径が0.1〜30μmである請求項1に記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんが。   The alumina carbon-based unfired brick for lining a molten metal holding furnace according to claim 1, wherein the average particle size of the spinel ultrafine powder is 0.1 to 30 µm. スピネル超微粉の平均粒径が0.1〜15μmである請求項1に記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんが。   The alumina carbon non-fired brick for lining a molten metal holding furnace according to claim 1, wherein the average particle size of the spinel ultrafine powder is 0.1 to 15 µm. 耐火原料配合物が、さらに、炭化珪素原料を0.5〜10質量%、及び/又は粒径が0.1mm以上のマグネシア原料を0.5〜25質量%含有する請求項1から3のいずれかに記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんが。   The refractory raw material composition further contains 0.5 to 10% by mass of a silicon carbide raw material and / or 0.5 to 25% by mass of a magnesia raw material having a particle size of 0.1 mm or more. An alumina carbon-based non-fired brick for lining a molten metal holding furnace as described above. 耐火原料配合物中のガラス質原料の含有量が1.7質量%以下である請求項1から請求項4のいずれかに記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんが。   The alumina carbon unfired brick for lining a molten metal holding furnace according to any one of claims 1 to 4, wherein the content of the glassy raw material in the refractory raw material composition is 1.7% by mass or less. 耐火原料配合物中のガラス質原料の含有量が1質量%以下である請求項1から請求項4のいずれかに記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんが。   The alumina carbon-based unfired brick for lining a molten metal holding furnace according to any one of claims 1 to 4, wherein the content of the glassy raw material in the refractory raw material composition is 1% by mass or less. 請求項1から請求項6のいずれかに記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがを内張りれんがとして使用した窯炉設備。   Kiln furnace equipment using the alumina carbon-based unfired brick for lining the molten metal holding furnace according to any one of claims 1 to 6 as lining brick. 請求項1から請求項6のいずれかに記載の溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがを溶融金属保持炉に内張りする施工方法。   A construction method of lining the alumina carbon-based unfired brick for lining the molten metal holding furnace according to any one of claims 1 to 6 in the molten metal holding furnace. 炭素原料を6質量%以上25質量%以下、アルミニウム及び/又はアルミニウム合金を0.1%以上4質量%以下、スピネル超微粉を2質量%以上20質量%以下、残部が主としてアルミナ原料からなる耐火原料配合物に有機バインダーを添加して混練し、成形後、1000℃以下で熱処理する溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがの製造方法において、耐火原料配合物中のスピネル超微粉は、粒径が150μm未満で平均粒径が0.1〜50μm、MgO含有量が25〜50質量%で残部がAlからなる溶融金属保持炉の内張り用アルミナカーボン系不焼成れんがの製造方法。 A refractory material composed of 6 to 25% by mass of carbon material, 0.1 to 4% by mass of aluminum and / or aluminum alloy, 2 to 20% by mass of spinel ultrafine powder, and the balance mainly composed of alumina material. In the manufacturing method of alumina carbon-based unfired brick for lining of a molten metal holding furnace where an organic binder is added to the raw material blend, kneaded, and heat-treated at 1000 ° C. or lower after molding, the spinel ultrafine powder in the refractory raw material blend is Production of alumina carbon-based unfired bricks for lining of molten metal holding furnaces having a particle size of less than 150 μm, an average particle size of 0.1 to 50 μm, an MgO content of 25 to 50% by mass and the balance of Al 2 O 3 Method.
JP2010180344A 2010-08-11 2010-08-11 Alumina-carbon unfired brick for lining of molten metal holding furnace and manufacturing method, kiln furnace equipment and construction method using the same Expired - Fee Related JP5448190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180344A JP5448190B2 (en) 2010-08-11 2010-08-11 Alumina-carbon unfired brick for lining of molten metal holding furnace and manufacturing method, kiln furnace equipment and construction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180344A JP5448190B2 (en) 2010-08-11 2010-08-11 Alumina-carbon unfired brick for lining of molten metal holding furnace and manufacturing method, kiln furnace equipment and construction method using the same

Publications (2)

Publication Number Publication Date
JP2012036064A true JP2012036064A (en) 2012-02-23
JP5448190B2 JP5448190B2 (en) 2014-03-19

Family

ID=45848481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180344A Expired - Fee Related JP5448190B2 (en) 2010-08-11 2010-08-11 Alumina-carbon unfired brick for lining of molten metal holding furnace and manufacturing method, kiln furnace equipment and construction method using the same

Country Status (1)

Country Link
JP (1) JP5448190B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387396A (en) * 2013-07-22 2013-11-13 东北大学 Magnesium-iron-carbon brick used for vanadium-extracting converter and preparation method thereof
JP2015189640A (en) * 2014-03-28 2015-11-02 黒崎播磨株式会社 Alumina-silicon carbide-carbonaceous brick
CN108453248A (en) * 2018-02-07 2018-08-28 唐山贝斯特高温材料有限公司 A kind of compound refractory brick and its forming method
JP2018184315A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Carbon-containing castable refractory and method for producing carbon-containing castable refractory
CN112456986A (en) * 2020-12-11 2021-03-09 马鞍山利尔开元新材料有限公司 Long-life ladle upper nozzle brick for calcium-treated steel and preparation method thereof
CN113237338A (en) * 2021-05-12 2021-08-10 郑州金河源耐火材料有限公司 Aluminum spinel corrosion-resistant brick and preparation method thereof
CN116693276A (en) * 2023-05-17 2023-09-05 北京科技大学 TiN-MgAlON-Al 2 O 3 Composite refractory material, preparation method and application
JP7469667B2 (en) 2020-09-18 2024-04-17 日本製鉄株式会社 Spinel-alumina-carbon bricks for vacuum degassing equipment and vacuum degassing equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215251A (en) * 1985-03-18 1986-09-25 日本鋼管株式会社 Alumina carbon refractories for sliding nozzle
JPH0365556A (en) * 1989-08-03 1991-03-20 Kurosaki Refract Co Ltd Carbon-containing refractory
JPH05105506A (en) * 1991-10-18 1993-04-27 Shinagawa Refract Co Ltd Slide valve plate brick
JPH08309515A (en) * 1995-05-18 1996-11-26 Harima Ceramic Co Ltd Production of porous refractories for gas blowing porous plug and gas blowing porous plug formed by using these porous refractories
JPH0925160A (en) * 1995-07-13 1997-01-28 Harima Ceramic Co Ltd Production of carbon-containing refractory
JPH0987011A (en) * 1995-09-29 1997-03-31 Harima Ceramic Co Ltd Production of upper nozzle for sliding nozzle device and upper nozzle produced by this method
WO2010095637A1 (en) * 2009-02-19 2010-08-26 黒崎播磨株式会社 Unburned alumina-carbon brick and kiln facility utilizing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215251A (en) * 1985-03-18 1986-09-25 日本鋼管株式会社 Alumina carbon refractories for sliding nozzle
JPH0365556A (en) * 1989-08-03 1991-03-20 Kurosaki Refract Co Ltd Carbon-containing refractory
JPH05105506A (en) * 1991-10-18 1993-04-27 Shinagawa Refract Co Ltd Slide valve plate brick
JPH08309515A (en) * 1995-05-18 1996-11-26 Harima Ceramic Co Ltd Production of porous refractories for gas blowing porous plug and gas blowing porous plug formed by using these porous refractories
JPH0925160A (en) * 1995-07-13 1997-01-28 Harima Ceramic Co Ltd Production of carbon-containing refractory
JPH0987011A (en) * 1995-09-29 1997-03-31 Harima Ceramic Co Ltd Production of upper nozzle for sliding nozzle device and upper nozzle produced by this method
WO2010095637A1 (en) * 2009-02-19 2010-08-26 黒崎播磨株式会社 Unburned alumina-carbon brick and kiln facility utilizing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103387396A (en) * 2013-07-22 2013-11-13 东北大学 Magnesium-iron-carbon brick used for vanadium-extracting converter and preparation method thereof
JP2015189640A (en) * 2014-03-28 2015-11-02 黒崎播磨株式会社 Alumina-silicon carbide-carbonaceous brick
JP2018184315A (en) * 2017-04-25 2018-11-22 Jfeスチール株式会社 Carbon-containing castable refractory and method for producing carbon-containing castable refractory
CN108453248A (en) * 2018-02-07 2018-08-28 唐山贝斯特高温材料有限公司 A kind of compound refractory brick and its forming method
JP7469667B2 (en) 2020-09-18 2024-04-17 日本製鉄株式会社 Spinel-alumina-carbon bricks for vacuum degassing equipment and vacuum degassing equipment
CN112456986A (en) * 2020-12-11 2021-03-09 马鞍山利尔开元新材料有限公司 Long-life ladle upper nozzle brick for calcium-treated steel and preparation method thereof
CN112456986B (en) * 2020-12-11 2022-12-27 马鞍山利尔开元新材料有限公司 Long-life ladle upper nozzle brick for calcium-treated steel and preparation method thereof
CN113237338A (en) * 2021-05-12 2021-08-10 郑州金河源耐火材料有限公司 Aluminum spinel corrosion-resistant brick and preparation method thereof
CN116693276A (en) * 2023-05-17 2023-09-05 北京科技大学 TiN-MgAlON-Al 2 O 3 Composite refractory material, preparation method and application
CN116693276B (en) * 2023-05-17 2024-05-28 北京科技大学 TiN-MgAlON-Al2O3Composite refractory material, preparation method and application

Also Published As

Publication number Publication date
JP5448190B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5448190B2 (en) Alumina-carbon unfired brick for lining of molten metal holding furnace and manufacturing method, kiln furnace equipment and construction method using the same
WO2010095637A1 (en) Unburned alumina-carbon brick and kiln facility utilizing same
CN102757241B (en) Stemming and purpose thereof
Otroj et al. Microstructure and phase evolution of alumina–spinel self-flowing refractory castables containing nano-alumina particles
CN108218408B (en) Al (aluminum)4SiC4Bonded Al2O3Preparation method of-SiC composite material
CN102838360B (en) Composite fireproof material and preparation method thereof
TW200938509A (en) Aluminum compound-bonded brick for furnace hearth
CN104557086A (en) Magnesium-enriched spinel carbon brick for slag-out side of wall of steel ladle and preparation method of magnesium-enriched spinel carbon brick
CN105693259A (en) Preparation technique of corundum spinel solid solution refractory material
CN106966739A (en) A kind of RH gunning refractories of improvement
JP2013072090A (en) Method for operating converter, magnesia carbon brick used in the converter, method for manufacturing the brick, and lining structure of the converter
JP2011241093A (en) Inner lining pouring material
Racher et al. Magnesium aluminate spinel raw materials for high performance refractories for steel ladles
US8986598B2 (en) Alumina-coated spinel-silicon carbide refractory composition with high corrosion resistance to coal slag and method for manufacturing the same
JP2003171170A (en) Magnesia-carbon brick
JP2008120635A (en) Hot spray repair material
JP2003171184A (en) SiC FOR MONOLITHIC REFRACTORY HAVING EXCELLENT CORROSION RESISTANCE, SPALLING RESISTANCE AND DRYNESS, PRODUCTION METHOD THEREFOR, AND RAW MATERIAL FOR THE MONOLITHIC REFRACTORY
JP2000178074A (en) Castable refractory for blast furnace tapping spout
EP1502905A1 (en) Monothilic refractory composition
CN112239353A (en) Lining brick for one-pot hot metal ladle and preparation process thereof
JPH08175877A (en) Castable refractory
CN111018496A (en) Carbon-free magnesium dolomite slide plate and preparation method and application thereof
JP2000335980A (en) Graphite-containing monolithic refractory
JP2004059390A (en) Castable refractory for blast furnace trough
JP3823132B2 (en) Amorphous refractory composition for lance pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131220

R150 Certificate of patent or registration of utility model

Ref document number: 5448190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees