[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012033386A - Electric wire, winding wire and electric component - Google Patents

Electric wire, winding wire and electric component Download PDF

Info

Publication number
JP2012033386A
JP2012033386A JP2010172029A JP2010172029A JP2012033386A JP 2012033386 A JP2012033386 A JP 2012033386A JP 2010172029 A JP2010172029 A JP 2010172029A JP 2010172029 A JP2010172029 A JP 2010172029A JP 2012033386 A JP2012033386 A JP 2012033386A
Authority
JP
Japan
Prior art keywords
insulating layer
winding
wire
electric wire
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010172029A
Other languages
Japanese (ja)
Inventor
Takashi Yamaya
孝志 山家
Masahiro Kondo
将寛 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2010172029A priority Critical patent/JP2012033386A/en
Publication of JP2012033386A publication Critical patent/JP2012033386A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Insulating Of Coils (AREA)
  • Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce, in a low-cost, high-performance electric wire, a problem of layer short-circuit between coil conductors.SOLUTION: An insulating layer, which forms a cross section in an interlayer direction when a conductor having a circular cross section or a substantially rectangular cross section is wound around for two or more layers as a winding wire, is provided in multiple layers or is configured to have a predetermined thickness so as to prevent layer short-circuit between the wires even if there are defects such as pinholes, while the other insulating layer is made thinner. The electric wire is then wound to obtain a winding wire.

Description

本発明は、導線に電流を通電して使用するリアクトル等の複合磁性素子など磁性体と巻き線とを内在する電気部品、それを構成する巻き線、及び巻き線とする導線に関する。   The present invention relates to an electrical component including a magnetic body such as a composite magnetic element such as a reactor and the like used by energizing a conductive wire and a winding, a winding constituting the same, and a conductive wire used as the winding.

電気部品の中には、導体に電流を通電して、生じる磁性を用いるものが有る。
磁性を用いる電気部品を例示すれば、磁性素子、トランス、モータなどが挙げられる。
これらの電気部品は、電磁気理論に基づき許容電圧や許容電流が設定され、その値に耐えうる設計がなされる。
Some electrical components use magnetism that is generated by passing a current through a conductor.
Examples of electrical components using magnetism include magnetic elements, transformers, and motors.
These electric components are designed to withstand the values set with allowable voltage and allowable current based on electromagnetic theory.

電気部品の設計では、構造、回路、抵抗値、インダクタンス、端子間電位差などに加え、各所の絶縁耐力の設定も重要となる。
例えば、磁性素子では、巻き線(コイル)とコア間や、巻き線と接地間の高い絶縁性はもちろんのこと、巻き線とする導線間の絶縁性も重要となる。これは、巻き線の導線間に絶縁破壊を生じることによって、性能低下や焼損、漏電などの問題を引き起こす為である。
In the design of electrical components, in addition to the structure, circuit, resistance value, inductance, potential difference between terminals, etc., it is important to set the dielectric strength at various locations.
For example, in a magnetic element, not only high insulation between a winding (coil) and a core, or between winding and ground, but also insulation between conductive wires serving as windings is important. This is because a dielectric breakdown occurs between the conductive wires of the windings, thereby causing problems such as performance degradation, burnout, and electric leakage.

また、巻き線の絶縁破壊に対しては、隣接する他層との間で生じるレイヤーショート(層間短絡)への配慮が重要である。   In addition, with respect to the dielectric breakdown of the winding, it is important to consider a layer short (interlayer short) that occurs between adjacent layers.

また、近年の環境配慮製品の急速な普及展望の必要条件として、電気部品の高効率化が求められている。加えて、低コスト化がより強く求められている。   In addition, as a necessary condition for the rapid spread prospect of environmentally friendly products in recent years, high efficiency of electrical components is required. In addition, cost reduction is strongly demanded.

磁性を用いる電気部品に関連する技術を例示すれば、特許文献1ないし4が挙げられる。   For example, Patent Documents 1 to 4 can be cited as examples of technologies related to electric parts using magnetism.

特許文献1には、コイル部品の導線の絶縁被覆を、既存の被覆に加えて、その外周にハンダ濡れ性が低い被覆で覆う発明が開示されている。このようにすることで、コイル部品の端子加熱時に、端子を介してのハンダの浸透を防止して、熱によって発生する被覆破壊を防止し、もって、コイルの導線間に発生するショートを防止している。   Patent Document 1 discloses an invention in which an insulating coating of a conductor wire of a coil component is covered with a coating having low solder wettability on the outer periphery in addition to an existing coating. In this way, when the coil parts are heated, the solder is prevented from penetrating through the terminals, thereby preventing the destruction of the coating caused by the heat, thereby preventing the short circuit between the coil conductors. ing.

特許文献2には、巻き線を絶縁物で有る樹脂の内部に設け、その絶縁性樹脂ごと磁性体粉末と樹脂とから成る磁心内部に埋設したコイル部品が開示されている。当該コイル部品では、上記構造によって、可聴周波数帯でのノイズを防止できる。また、特許文献2には、コイル部品に用いられる巻き線として、平角線のエッジワイズ巻き、および、丸線を巻き廻したものが開示されている。   Patent Document 2 discloses a coil component in which a winding is provided inside a resin that is an insulator, and is embedded in a magnetic core made of a magnetic powder and a resin together with the insulating resin. In the coil component, noise in the audible frequency band can be prevented by the above structure. Japanese Patent Application Laid-Open No. H10-228561 discloses a winding used for a coil component, which is an edgewise winding of a rectangular wire and a winding of a round wire.

特許文献3には、断面コーナー部の絶縁被覆層の厚みが断面平坦部の絶縁被覆層の厚みよりも厚肉になるような電着被覆を施したリング状絶縁コイル板が開示されている。また、上記リング状絶縁コイル板を積層してなる小型・軽量のトランス用コイルが開示されている。また、特許文献3には、電着被覆のボイド問題について開示されている。ボイド問題とは、絶縁層となる被覆内にボイドが内在し、ボイドを起点として絶縁破壊が生じる現象である。   Patent Document 3 discloses a ring-shaped insulating coil plate that has been subjected to electrodeposition coating so that the thickness of the insulating coating layer at the cross-sectional corner is thicker than the thickness of the insulating coating layer at the flat cross-sectional portion. Also disclosed is a small and lightweight transformer coil formed by laminating the ring-shaped insulating coil plates. Patent Document 3 discloses the void problem of electrodeposition coating. The void problem is a phenomenon in which a void is present in a coating serving as an insulating layer, and dielectric breakdown occurs from the void.

さらに特許文献4には先述、絶縁被覆層の厚みを均一とする技術が述べられている。   Further, Patent Document 4 describes a technique for making the thickness of the insulating coating layer uniform as described above.

特開2009−010235号公報JP 2009-010235 A 特開2006−004957号公報JP 2006-004957 A 特開2004−152622号公報JP 2004-152622 A 特開平03−159014号公報Japanese Patent Laid-Open No. 03-159014

特許文献1では、巻き線の絶縁被覆のハンダ熱による劣化を軽減し、導線間に生じるショートを緩和するものである。
しかしながら、多層巻き線構造を有する電気部品の製造に伴う設計上考慮すべきこととして、導線に施す被膜(被覆:絶縁層)のボイドやピンホールなどの欠陥をゼロとできないことが挙げられる。また、導線の欠陥を検査において排除することが完全ではないことも重要である。
In patent document 1, the deterioration by the solder heat | fever of the insulation coating of a winding is reduced, and the short circuit which arises between conducting wires is eased.
However, design considerations associated with the manufacture of electrical components having a multi-layer winding structure include that voids, pinholes, and the like in coatings (covering: insulating layers) applied to conductive wires cannot be made zero. It is also important that it is not complete to eliminate conductor defects in inspection.

このため、巻き線の導線間では、所定確率で被膜の無い、又は理論設計値よりも薄い箇所が対面することとなり、電気部品の構造と動作条件によってレイヤーショートが発生する可能性がある。   For this reason, there is a possibility that a layer short-circuit may occur depending on the structure and operating conditions of the electrical component between the conductors of the winding wire, where there is no coating or a thinner thickness than the theoretical design value with a predetermined probability.

例えば、図25に示すような一般的な多層巻き線の構造で電圧を加えた場合、レイヤーショートが発生する可能性を設計上排除できていない。   For example, when a voltage is applied in a general multilayer winding structure as shown in FIG. 25, the possibility that a layer short circuit occurs cannot be excluded in design.

図25の2層巻き線は、巻き軸を軸心とする円筒形状に上方から第1層の巻き線を形成した後、その外周に下方から第二層を重ねて巻いて作られている。
当該2層巻き線では、全巻き数を20ターン、端子間電圧を400Vとしているので、巻いた順に隣り合う個々の線間(例えば1ターンと2ターン)に発生する電位差は20V(400V/20ターン)程度である。
他方、巻き初めの1ターン目と巻き終わりの20ターン目が層間として構造上隣接しており、その層間(電線間)の電位差は400Vがかかる。
The two-layer winding shown in FIG. 25 is formed by forming a first-layer winding in a cylindrical shape with the winding axis as an axis from the top and then winding a second layer on the outer periphery from below.
In the two-layer winding, since the total number of turns is 20 turns and the voltage between terminals is 400V, the potential difference generated between adjacent lines (for example, 1 turn and 2 turns) in the winding order is 20V (400V / 20 Turn).
On the other hand, the first turn at the beginning of winding and the 20th turn at the end of winding are adjacent to each other as an interlayer, and the potential difference between the layers (between wires) is 400V.

ここで、大気中の放電電圧(略3000V/mm)を考慮すると、導線間に1V当たり概ね1/3μmあれば放電しないこととなる。導線に予め施されている絶縁被膜の厚みを仮に40μmとすると、導線間には2層で80μmの距離が確保されていることとなる。即ち、絶縁被膜のピンホールが対面する最悪の場合でも240V程度まで線間の放電は生じないこととなる。   Here, when the discharge voltage in the atmosphere (approximately 3000 V / mm) is taken into consideration, the discharge is not performed if approximately 1/3 μm per 1 V between the conductors. If the thickness of the insulating coating previously applied to the conducting wire is 40 μm, a distance of 80 μm is secured between the conducting wires in two layers. That is, even in the worst case where the pinholes of the insulating coating face each other, no discharge between the lines occurs up to about 240V.

これらのことからは、巻き順に隣り合う導線間に生じる20V程度の電圧に対しては皮膜にピンホールがあってもショートしないといえる。他方、巻き初めと巻き終わりの電線間に生じる400Vのように、240Vを超える電位差を有する層間ではレイヤーショートが起きる可能性がある。これは、設計上何ら対策がなされていない。   From these facts, it can be said that a voltage of about 20 V generated between adjacent conductors in the winding order does not cause a short circuit even if there is a pinhole in the film. On the other hand, a layer short circuit may occur between layers having a potential difference exceeding 240 V, such as 400 V generated between the wire at the beginning and end of winding. This is not designed in any way.

また、特許文献2にあるように巻き線を巻いた後に樹脂等の液状絶縁物で電線間を充填して硬化させるような構成にしたとしても、絶縁物が全電線間の細部にまで完全に充填されることは難しい。即ち、電線間を隙間なく樹脂で埋めて、ピンホールを無くせることを保証できない。また、それらを検査することは事実上困難であり、レイヤーショートの可能性を排除した設計とは言い難い。   Moreover, even if it is set as the structure which fills between electric wires with liquid insulators, such as resin, and makes it harden | cure as it exists in patent document 2, an insulator is completely to the detail between all the electric wires. It is difficult to be filled. That is, it cannot be guaranteed that the pinholes can be eliminated by filling the gaps between the wires with a resin. In addition, it is practically difficult to inspect them, and it is difficult to say that the design eliminates the possibility of a layer short.

特許文献3では、平角線のコーナー部の絶縁被膜の厚みが平坦部の厚みよりも厚いことにより、絶縁性能が向上することが述べられている。しかしながら、コーナー部の厚みが厚いということは、占積率(スペースロス)を計算する上で、平坦部も同様の厚さを有する場合と結果は同値になる。即ち、平角線の全周に厚い被膜を形成させた場合と占積率はなんら変わりはなく、巻き線としての性能が良くない。これらのことは、特許文献4にも同様に述べられている。   Patent Document 3 states that the insulating performance is improved when the thickness of the insulating coating at the corner portion of the flat wire is thicker than the thickness of the flat portion. However, when the corner portion is thick, the result is the same as that when the flat portion has the same thickness in calculating the space factor. That is, the space factor is the same as when a thick film is formed on the entire circumference of the flat wire, and the performance as a winding is not good. These are also described in Patent Document 4.

占積率については、例えば、図25に示した先述の巻き線では、400Vの電圧に耐えるためには片側で最低でも約66μmの絶縁層厚みが必要である。このような厚みの被膜をもつ電線を一層あたり10ターン巻き廻すことは、高さ方向の被膜厚みが1.3mm程度となる。導線径を約3mmとすると導線分の10ターンの高さ30mmに対し約4.3%ものロスが発生することと、被膜の熱伝導率は悪いことから放熱性も低下し、望ましくない。   With respect to the space factor, for example, the above-described winding shown in FIG. 25 requires an insulating layer thickness of at least about 66 μm on one side to withstand a voltage of 400V. When an electric wire having such a coating is wound 10 turns per layer, the coating thickness in the height direction is about 1.3 mm. If the conductor diameter is about 3 mm, a loss of about 4.3% is generated with respect to a height of 30 mm of 10 turns of the conductor, and the heat conductivity of the coating is poor, so heat dissipation is also lowered, which is not desirable.

なお、特許文献2にあるように平角線をエッジワイズ(平角線縦巻き)に1層で巻き廻した場合は全ての隣接する線間に発生する電圧は低く、レイヤーショートは設計上で問題ないといえるが、平角線の導線とコイリングのコストは高いため、現時点で低価格化を著しく阻害する要因となっている。   In addition, as disclosed in Patent Document 2, when a flat wire is wound edgewise (flat rectangular wire) in a single layer, the voltage generated between all adjacent wires is low, and a layer short is not a problem in design. However, since the cost of flat wire and coiling is high, it is a factor that significantly hinders price reduction at this time.

また、トランス等のデバイスにおいては巻き線工程の中で、層間にテープなどの絶縁物をはさみこむ技術が知られているが、コイリング途中にテーピングを施す工程費用が問題となる。また、発熱する巻き線間に熱伝導の低いテープ素材が介在することによる放熱性の低下が避けられない。   Further, in a device such as a transformer, a technique is known in which an insulating material such as a tape is sandwiched between layers in a winding process. However, a process cost for performing taping in the middle of coiling becomes a problem. In addition, a reduction in heat dissipation due to the presence of a tape material having low heat conductivity between the heat generating windings is unavoidable.

本発明の目的は、上記課題に鑑み、安価に導線間のレイヤーショートを低減する電線、巻き線、および電気部品を提供することである。   In view of the above problems, an object of the present invention is to provide an electric wire, a winding, and an electrical component that can reduce a layer short between conductive wires at low cost.

上記の課題を解決するために、本発明にかかる導線の表面に絶縁層を有する電線は、前記絶縁層が前記導線の線方向に対して直交する一方向に偏心状に厚く設けられ、当該偏心状に設けられた絶縁層の厚みが他方の絶縁層よりも厚いことを特徴としている。   In order to solve the above problems, an electric wire having an insulating layer on the surface of a conducting wire according to the present invention is such that the insulating layer is provided thick in an eccentric manner in one direction orthogonal to the wire direction of the conducting wire. The insulating layer provided in a shape is characterized in that it is thicker than the other insulating layer.

また、本発明にかかる多層に巻かれた巻き線は、巻かれた電線の層間に当たる絶縁層が他方向の絶縁層よりも厚く形成され、前記厚く形成された絶縁層は、前記他方の絶縁層の表面に、多層形成されていることを特徴とする。   Further, in the winding wound in multiple layers according to the present invention, the insulating layer corresponding to the layer of the wound electric wire is formed thicker than the insulating layer in the other direction, and the thick insulating layer is the other insulating layer. A multilayer structure is formed on the surface of

また、本発明にかかる電気部品は、上記巻き線によって作られたことを特徴とする。   Moreover, the electrical component according to the present invention is characterized by being made by the winding described above.

本発明によれば、巻き線の構造上生じる層間でのレイヤーショートが生じる可能性を設計的に低減した電線、巻き線、および電気部品を提供できる。また、本発明によれば、巻き軸方向の占積率を向上できる。   ADVANTAGE OF THE INVENTION According to this invention, the electric wire, winding, and electrical component which reduced the possibility that the layer short-circuit between the layers which arise on the structure of winding will arise can be provided. Moreover, according to this invention, the space factor of a winding axis direction can be improved.

実施形態1における導線の断面図である。2 is a cross-sectional view of a conducting wire in Embodiment 1. FIG. 実施形態1における巻き線の断面図である。FIG. 3 is a cross-sectional view of windings in the first embodiment. 実施形態2における導線の断面図である。6 is a cross-sectional view of a conducting wire in Embodiment 2. FIG. 実施形態2における巻き線の片側の断面図である。FIG. 6 is a cross-sectional view on one side of a winding in the second embodiment. 実施形態3における導線の断面図である。6 is a cross-sectional view of a conducting wire in Embodiment 3. FIG. 実施形態3における巻き線の片側の断面図である。FIG. 6 is a cross-sectional view on one side of a winding according to a third embodiment. 実施形態4における導線の断面図である。6 is a cross-sectional view of a conducting wire in Embodiment 4. FIG. 実施形態4における巻き線の片側の断面図である。It is sectional drawing of the one side of the winding in Embodiment 4. 実施形態5における導線の断面図である。10 is a cross-sectional view of a conducting wire in Embodiment 5. FIG. 実施形態5における巻き線の片側の断面図である。FIG. 10 is a cross-sectional view of one side of a winding according to a fifth embodiment. 実施形態6における導線の断面図である。10 is a cross-sectional view of a conducting wire in Embodiment 6. FIG. 実施形態6における巻き線の片側の断面図である。It is sectional drawing of the one side of the winding in Embodiment 6. 実施形態7における導線の断面図である。10 is a cross-sectional view of a conducting wire in Embodiment 7. FIG. 実施形態7における巻き線の片側の断面図である。FIG. 10 is a cross-sectional view on one side of a winding according to a seventh embodiment. 実施形態8における導線の断面図である。FIG. 10 is a cross-sectional view of a conducting wire in an eighth embodiment. 実施形態8における巻き線の片側の断面図である。FIG. 10 is a cross-sectional view of one side of a winding according to an eighth embodiment. 絶縁層形成プロセスにおける絶縁層材料を塗布する区間を示す説明図である。It is explanatory drawing which shows the area which applies the insulating layer material in an insulating layer formation process. 絶縁層形成プロセスにおける絶縁層材料を塗布する複数の区間を示す説明図である。It is explanatory drawing which shows the several area | region which apply | coats insulating layer material in an insulating layer formation process. 導線製作プロセスの一例を示す模式図である。It is a schematic diagram which shows an example of conducting wire manufacturing process. 導線製作プロセスの他の一例を示す模式図である。It is a schematic diagram which shows another example of conducting wire manufacturing process. 導線製作プロセスの他の一例を示す模式図である。It is a schematic diagram which shows another example of conducting wire manufacturing process. 形成される絶縁層を例示する電線の線方向の断面図である。It is sectional drawing of the line direction of the electric wire which illustrates the insulating layer formed. 線間を樹脂で固められた巻き線を示す断面図である。It is sectional drawing which shows the winding by which the space | interval was hardened with resin. 磁性体の注型法によって巻き線の磁芯を形成されている電気部品を示す断面図である。It is sectional drawing which shows the electrical component in which the magnetic core of the winding was formed by the casting method of a magnetic body. 2層巻き線の構造を示す断面図である。It is sectional drawing which shows the structure of a two-layer winding.

以下、本発明の実施の形態を図面に沿って説明する。
本発明における電線の断面の一例を図1に示す。また、その電線を用いてコイリングした巻き線の断面を図2に示す。
図1において、電線は、円形断面の導線1、表面の一方向に意図的に厚く設けられている絶縁層となる絶縁被膜2、導体の全面を覆う絶縁被膜3で構成されている。絶縁被膜3は、絶縁被膜2よりも薄い絶縁層として設けられている。なお、絶縁被膜2と絶縁被膜3は、製造時に別々に形成されてもよいし、同時的に形成されてもよい。なお、電線は、円形でなくとも略円や他形状でもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
An example of the cross section of the electric wire in this invention is shown in FIG. Moreover, the cross section of the coil coiled using the electric wire is shown in FIG.
In FIG. 1, the electric wire is composed of a conducting wire 1 having a circular cross section, an insulating coating 2 serving as an insulating layer intentionally thick in one direction on the surface, and an insulating coating 3 covering the entire surface of the conductor. The insulating film 3 is provided as an insulating layer thinner than the insulating film 2. Insulating film 2 and insulating film 3 may be formed separately at the time of manufacture, or may be formed simultaneously. Note that the electric wire may not be circular, but may have a substantially circular shape or other shapes.

絶縁被膜2は、図示するように、導線の線方向に対して直交する一方向に偏心状に厚く設けられ、他方よりも絶縁層の厚みを増すように形成されている。また、厚く設けられた絶縁層は、他方の絶縁層の表面に、追加的に形成されている。   As shown in the figure, the insulating coating 2 is formed thick in an eccentric manner in one direction orthogonal to the line direction of the conducting wire, and is formed so as to increase the thickness of the insulating layer more than the other. In addition, the thick insulating layer is additionally formed on the surface of the other insulating layer.

図2は、導線に絶縁層が厚く設けられている方向を外周となるように、電線をコイリングした巻き線を示す断面図である。
図2に示す巻き線は、各層の同一層を成す導線間には、薄い絶縁層(絶縁被膜3)が配設されている。また、各巻き線の層間には厚い絶縁層(絶縁被膜2)が配設されている。
このように絶縁層を偏心状に多層とすることによって、絶縁被膜2と絶縁被膜3の何れかにピンホール等が有ったとしても、レイヤーショートの発生の可能性を低減できる。
FIG. 2 is a cross-sectional view showing a winding obtained by coiling an electric wire so that the direction in which the insulating layer is thickly provided on the conducting wire is the outer periphery.
In the winding shown in FIG. 2, a thin insulating layer (insulating coating 3) is disposed between conductive wires forming the same layer. In addition, a thick insulating layer (insulating coating 2) is disposed between the layers of each winding.
By thus forming the insulating layer as an eccentric multilayer, even if there is a pinhole or the like in either of the insulating coating 2 and the insulating coating 3, the possibility of occurrence of a layer short can be reduced.

なお、偏心状に厚く設けられた絶縁被膜2の厚みは、当該電線を用いて作られる巻き線構造上の隣接する他層との間にかかる電圧値に耐えうるように設計されてもよい。例えば、導線1‐1と導線1‐2との間を成す絶縁被膜2の厚みは、導線1‐1と導線1‐2との間にかかる電位差によって、導線1‐1と導線1‐2との間に気中でショートしない空間を空けるだけの厚みである。なお、絶縁被膜3の厚さも加味する。即ち、各層の導線間の距離が、気中絶縁耐力の値と導線間の電圧値に基づいて算出される厚さ以上に設定すればよい。
このように厚さを設けることによって、絶縁被膜2と絶縁被膜3に、ピンホール等が有ったとしても、レイヤーショートを理論上生じないこととなる。
In addition, the thickness of the insulating coating 2 that is thickly provided in an eccentric shape may be designed so that it can withstand a voltage value applied between adjacent layers on a winding structure made using the electric wire. For example, the thickness of the insulating coating 2 formed between the conducting wire 1-1 and the conducting wire 1-2 depends on the potential difference between the conducting wire 1-1 and the conducting wire 1-2. It is thick enough to leave a space that is not short-circuited in the air. In addition, the thickness of the insulating coating 3 is also taken into consideration. That is, the distance between the conductors of each layer may be set to be equal to or greater than the thickness calculated based on the value of the air dielectric strength and the voltage value between the conductors.
By providing such a thickness, even if there are pinholes or the like in the insulating coating 2 and the insulating coating 3, a layer short circuit does not theoretically occur.

また、上記本発明にかかる電線を用いるので、絶縁被膜3を絶縁被膜2よりも薄く設計でき、同一容積に対する巻き線としての占積率の向上を図れる。   Further, since the electric wire according to the present invention is used, the insulating coating 3 can be designed to be thinner than the insulating coating 2, and the space factor as a winding for the same volume can be improved.

以下、他の実施形態を説明する。   Hereinafter, other embodiments will be described.

図3は、導線に、絶縁被膜3と偏心状に貼り付けられた絶縁層4とが設けられている電線の断面図である。電線に厚く設けられる絶縁層は、絶縁層4のように貼り付けられてもよい。
絶縁層4は、コイル化したときの導線間に加わる電位差に対する気中絶縁耐力の値に基づき定められる。
図4は、図3に示した電線を巻き廻した片側の断面図である。電線は、絶縁層4が巻き終えた電線の層間に当たるように、巻き廻されている。
FIG. 3 is a cross-sectional view of an electric wire in which a conductive wire is provided with an insulating coating 3 and an insulating layer 4 attached eccentrically. The insulating layer provided thick on the electric wire may be attached like the insulating layer 4.
The insulating layer 4 is determined based on the value of the dielectric strength in the air against the potential difference applied between the conductors when coiled.
4 is a cross-sectional view of one side around which the electric wire shown in FIG. 3 is wound. The electric wire is wound so that the insulating layer 4 hits between the layers of the electric wire that has been wound.

このように貼り付けられた絶縁層4によって、レイヤーショートを生ずる可能性を低減又は排除できる。加えて、このような電線を用いるので、絶縁被膜3を絶縁層4よりも薄く設計でき、同一容積に対する巻き線としての占積率の向上を図れる。   The possibility of causing a layer short can be reduced or eliminated by the insulating layer 4 pasted in this way. In addition, since such an electric wire is used, the insulating coating 3 can be designed to be thinner than the insulating layer 4, and the space factor as a winding for the same volume can be improved.

なお、絶縁層4は、導線のねじりが加えられた後に(例えばコイリング直前、送りロールで保持後)で貼付を行うことにより、導線のねじれへの配慮が不要とできる。   Note that the insulating layer 4 can be attached after twisting of the conductive wire (for example, immediately before coiling or after being held by a feed roll), thereby making it unnecessary to consider the twist of the conductive wire.

図5から図8は、上記電線の偏心状に設けられた絶縁層の厚い部分を、導線断面の両端に分けて設けられた場合を示す。
このように電線を形成することで、導線間に必要な空間距離を、両電線の絶縁層が受持ち、一層あたりの厚みが半分で済む。また、層間となる絶縁層を両電線がそれぞれ受持つので、片方の電線の絶縁層にピンホールなどが有ったとしても、もう片方の電線の絶縁層がレイヤーショートの防止に役立つ。また、電線製造時の生産性に優れる。
5 to 8 show the case where the thick portion of the insulating layer provided in an eccentric shape of the electric wire is provided separately at both ends of the conductor cross section.
By forming the electric wires in this manner, the insulating layer of both electric wires takes care of the necessary spatial distance between the conductive wires, and the thickness per layer can be halved. In addition, since both electric wires handle the insulating layer as an interlayer, even if there is a pinhole or the like in the insulating layer of one electric wire, the insulating layer of the other electric wire helps to prevent a layer short circuit. Moreover, it is excellent in productivity at the time of electric wire manufacture.

図9から図16は、導体断面に略平面を有する平角線(略四角形状線)に、絶縁層を設けた場合を示す。
平角線は、電線を送りながら電線のねじれを矯正し、絶縁層の厚い部分を一定として容易にコイリングできるため、丸線や楕円線の場合よりもねじれに対する生産性がよい。
9 to 16 show a case where an insulating layer is provided on a flat wire (substantially rectangular line) having a substantially flat surface in the conductor cross section.
The flat wire can correct the twist of the wire while feeding the wire, and can be easily coiled while keeping the thick portion of the insulating layer constant. Therefore, the productivity with respect to the twist is better than that of the round wire or the elliptic wire.

なお、絶縁層(特に偏心状の絶縁層)は、送りロール等により電線のねじれがそれ以降の工程で生じない位置で形成すると、良好にコイリングできる。   The insulating layer (especially the eccentric insulating layer) can be well coiled when formed at a position where the twist of the electric wire does not occur in the subsequent steps by a feed roll or the like.

また、絶縁層(特に偏心状の絶縁層)は、UV(Ultraviolet)硬化樹脂を塗布し、紫外線を照射することで瞬間的に厚み調整しながら硬化させて導線上に形成してもよいし、他の方法で設けてもよい。   Also, the insulating layer (particularly the eccentric insulating layer) may be formed on the lead wire by applying UV (Ultraviolet) curable resin and curing it by irradiating ultraviolet rays while instantaneously adjusting the thickness. You may provide by another method.

また、偏心状の絶縁層は、UV硬化樹脂を塗布し、送りロール等により電線のねじれがそれ以降の工程で生じない位置で、UVを照射することで瞬間的に硬化させ、そのままコイリングしてもよい。   The eccentric insulating layer is coated with UV curable resin, and is cured instantaneously by irradiating UV at a position where the twisting of the electric wire does not occur in the subsequent process by a feed roll or the like, and then coiled as it is. Also good.

また、巻き線の構造上、全線間に同じ線間電圧が生じるわけではないので、高電圧(高電位差)となる位置に巻かれる絶縁層の厚みや形成回数を電位差に合わせて調整してもよい。
例えば、図1に示す電線であれば、図17に示すように、厚く設けられる絶縁層の塗布区間を絶縁被膜3のみの厚さでは許容できない範囲を受持つ導線の範囲に設定すればよい。また、図18に示すように、塗布区間での絶縁被膜2の厚みを複数段又はリニア的に調整するようにしてもよい。なお、図18では、絶縁被膜3の厚みのみで層間にかかる電位差を許容できなくなる前(塗布区間1の開始点)から第1の厚みの絶縁被膜の形成を開始する。また、絶縁被膜3の厚みと絶縁被膜2の厚み(第1の厚み)で層間にかかる電位差を許容できなくなる前(塗布区間2の開始点)から第2の厚み(第2の厚み>第1の厚み)の絶縁被膜の形成を開始する。また、絶縁被膜3の厚みと絶縁被膜2の厚み(第2の厚み)で層間にかかる電位差を許容できなくなる前(塗布区間3の開始点)から第3の厚み(第3の厚み>第2の厚み)の絶縁被膜の形成を開始し、絶縁被膜3の厚みのみで層間にかかる電位差を許容できる位置(電線の折り返しなど)の後に、第3の厚みの絶縁被膜の形成を停止する。即ち、絶縁被膜2の厚みは、塗布区間1<塗布区間2<塗布区間3と3段階で変化する。
In addition, because of the winding structure, the same line voltage is not generated between all the wires, so the thickness and number of formations of the insulating layer wound at a position where a high voltage (high potential difference) can be adjusted according to the potential difference. Good.
For example, in the case of the electric wire shown in FIG. 1, as shown in FIG. 17, the thickly provided insulating layer coating section may be set to the range of the conducting wire that is not allowed by the thickness of the insulating coating 3 alone. Moreover, as shown in FIG. 18, you may make it adjust the thickness of the insulating film 2 in an application | coating area in multiple steps | paragraphs or linearly. In FIG. 18, the formation of the insulating film having the first thickness is started before the potential difference between the layers becomes unacceptable only by the thickness of the insulating film 3 (starting point of the coating section 1). In addition, the second thickness (second thickness> first) from before the potential difference between the layers becomes unacceptable between the thickness of the insulating coating 3 and the thickness of the insulating coating 2 (first thickness) (starting point of the coating section 2). The formation of the insulating film of the thickness of In addition, the third thickness (third thickness> second) before the potential difference between the layers becomes unacceptable between the thickness of the insulating coating 3 and the thickness of the insulating coating 2 (second thickness) (starting point of the coating section 3). The formation of the insulating coating of the third thickness is stopped after a position where the potential difference between the layers can be allowed only by the thickness of the insulating coating 3 (such as folding of the electric wire). That is, the thickness of the insulating coating 2 varies in three stages: application section 1 <application section 2 <application section 3.

即ち、巻き線の構造上定まる印加される電線間電圧値を許容するように、電線間に当てる絶縁層の厚みを可変させながら絶縁被膜2を電線に形成させてもよい。
このように絶縁被膜2を生成すれば、それぞれの電線間で生ずる可能性が有るレイヤーショートを防止できる。加えて、絶縁被膜とする材料の削減と共に、コイル化に伴い課題となる熱伝導率の向上などが図れる。
That is, the insulating coating 2 may be formed on the electric wire while varying the thickness of the insulating layer applied between the electric wires so as to allow the applied inter-wire voltage value determined by the winding structure.
When the insulating coating 2 is generated in this way, it is possible to prevent a layer short circuit that may occur between the respective electric wires. In addition, it is possible to reduce the material for the insulating coating and improve the thermal conductivity, which becomes a problem with the coiling.

なお、導線断面の一部に塗装被膜を厚く形成する方法としては、部分浸積(図19参照)、ロール転写(図20参照)、スプレー(図21参照)などにより導線の一部に塗料を付着させ、加熱、溶剤揮発、UV照射などによって硬化させる。ここで行われる硬化は、できるだけ短時間な方が加熱炉長を短くでき望ましい。
また、加熱硬化後にロールに巻き取らず、そのままコイリングしてもよい。
導線の2面に塗装被膜を形成する場合は、単純に2度繰り返してもよいし、一度に2面とも同時的に形成してもよい。
As a method of forming a thick coating film on a part of the conductor cross section, paint is applied to a part of the conductor by partial immersion (see FIG. 19), roll transfer (see FIG. 20), spray (see FIG. 21), or the like. Adhere and cure by heating, solvent volatilization, UV irradiation, etc. It is desirable that the curing performed here be as short as possible because the heating furnace length can be shortened.
Further, it may be coiled as it is without being wound on a roll after heat curing.
When forming a paint film on two surfaces of a conducting wire, it may simply be repeated twice, or both surfaces may be formed simultaneously.

図22は、導線に形成される絶縁層を説明する模式図である。(a)に示す電線断面図は、図17に示したように塗布区間を限定した電線を示す。(b)に示す電線断面図は、塗布厚をリニア的に増加させた電線を示す。
(c)に示す電線断面図は、2面に塗布すると共に、それぞれの面に加わる電位差に対応させてリニア的に絶縁層厚を増加させた電線を示す。また、全周を覆う絶縁層と偏心状に設けられる絶縁層とが同時的に形成された電線の例で有る。
FIG. 22 is a schematic diagram for explaining an insulating layer formed on a conducting wire. The cross-sectional view of the electric wire shown in (a) shows the electric wire in which the coating section is limited as shown in FIG. The electric wire sectional view shown in (b) shows an electric wire in which the coating thickness is linearly increased.
The cross-sectional view of the electric wire shown in (c) shows an electric wire which is applied to two surfaces and linearly increases the insulating layer thickness corresponding to the potential difference applied to each surface. Moreover, it is an example of the electric wire in which the insulating layer covering the entire circumference and the insulating layer provided eccentrically are formed simultaneously.

上記の多層に巻き廻される電線は、電線に厚く設けられている絶縁層を、巻き終えた電線の層間に当たるように磁芯などに巻かれて多層コイルとされる。巻き終えられた多層コイルは、線間に絶縁性の樹脂を充填して硬化するようにしてもよい。   An electric wire wound in multiple layers is wound into a multilayer coil by winding an insulating layer provided thick on the electric wire around a magnetic core or the like so as to be in contact with the layers of the wound electric wire. The wound multi-layer coil may be cured by filling an insulating resin between the wires.

また、図23に示すように、巻き線は、熱伝導率が一般の樹脂よりも高められたフィラー等を含む熱伝導樹脂を用いて充填硬化させてもよい。このとき、空芯状としてもよいし、鉄芯などと共に充填硬化させてもよい。   Further, as shown in FIG. 23, the winding may be filled and cured using a heat conductive resin containing a filler having a heat conductivity higher than that of a general resin. At this time, it may be an air core or may be filled and cured together with an iron core.

また、図24に示すように、巻き線は、空芯コイルとして作成され、線間に樹脂を充填して硬化され、その周りに磁性体を含む樹脂(複合磁性体)で磁芯を形成して磁性素子に作りあげてもよい。   Further, as shown in FIG. 24, the winding is formed as an air-core coil, filled with resin between the wires and cured, and a magnetic core is formed with a resin (composite magnetic material) containing a magnetic material around the winding. It may be made into a magnetic element.

磁性体としては、例えば金属系の磁性粉末と熱硬化性の液状の樹脂を混合しスラリー状としたものを用いることができる。熱硬化性の樹脂は、スラリーとしたときの流動性が十分であるよう低粘度のものが好ましく、例えばエポキシ樹脂などを用いることができる。ここで磁性粉末としてはFe-Si6.5%材のガスアトマイズ粉末等のダスト粉末を用いることができる。これらを樹脂と混合してスラリー状とする際に、アルミナ粉末、シリカ粉末などを同時に配合し、磁性体であるダスト粉末の占積率を下げて透磁率を調整してもよい。この手順により配合した磁性スラリーを、巻き線に樹脂5を充填し硬化後に型にセットしたものに注型し加熱硬化させることで複合磁性体6を得ることができる。   As the magnetic body, for example, a slurry obtained by mixing a metallic magnetic powder and a thermosetting liquid resin can be used. The thermosetting resin is preferably a low-viscosity resin so as to have sufficient fluidity when made into a slurry. For example, an epoxy resin can be used. Here, dust powder such as gas atomized powder of Fe-Si 6.5% material can be used as the magnetic powder. When these are mixed with a resin to form a slurry, alumina powder, silica powder, or the like may be blended at the same time to reduce the space factor of the dust powder, which is a magnetic material, and adjust the magnetic permeability. The composite magnetic body 6 can be obtained by casting and magnetically curing the magnetic slurry blended by this procedure into a wound wire filled with the resin 5 and set in a mold after curing.

なお、上記説明では、偏心状の絶縁層を付加的に設ける又は電線間(層間)に加わる電位差と気中(大気:空気)の絶縁耐力の値に基づいて絶縁層の厚さを定めると説明した。これは、レイヤーショートを生ずるピンホールやボイドなどで生まれる空間に空気が入りこんだ状態で電気部品に電気が加えられると考えるからである。
そこで、電気部品を空気よりも絶縁耐力の高い絶縁性気体(希ガスやSF6など)下で密封するように作ることによって、絶縁層の厚みを更に薄くできる。
即ち、電気部品に用いる巻き線の層間に当たる絶縁層の形成回数や厚みを、絶縁性気体の有する絶縁耐力の値を参照しながら定められる。図23を用いて例示すれば、層間に当たる絶縁層と樹脂5の形成時に絶縁性気体下で巻き線の層間を密閉すればよい効果が得られる。このとき、必要に応じて真空引きや脱湿なども行うとなおよい。むろん、隣接する巻き線間の絶縁層厚も、気中絶縁耐力に変えて絶縁性気体の絶縁耐力に基づく値によって薄くできる。
In the above description, an eccentric insulating layer is additionally provided, or the thickness of the insulating layer is determined based on the potential difference applied between the wires (interlayer) and the dielectric strength value in the air (atmosphere: air). did. This is because it is considered that electricity is applied to the electrical component in a state where air enters a space created by a pinhole or void that causes a layer short.
Therefore, the thickness of the insulating layer can be further reduced by making the electrical component sealed under an insulating gas (rare gas, SF6, etc.) having a higher dielectric strength than air.
That is, the number of formations and the thickness of the insulating layer that falls between the layers of the windings used for the electrical component are determined with reference to the value of the dielectric strength of the insulating gas. For example, with reference to FIG. 23, it is possible to obtain the effect of sealing the winding layers under an insulating gas when forming the insulating layer corresponding to the layers and the resin 5. At this time, it is better to perform evacuation or dehumidification as necessary. Of course, the insulating layer thickness between adjacent windings can also be reduced by a value based on the dielectric strength of the insulating gas instead of the dielectric strength in the air.

上記説明したように、巻き順に隣り合う線間よりも層間として隣り合う方向の導線の絶縁層を厚くすることにより、設計的にレイヤーショートを低減しつつ小容積である電線を提供できる。また、巻き順に隣り合う線間が層間となる面の絶縁層の厚みよりも薄い、安価かつ高効率な巻き線、および電気部品を得られる。   As described above, by increasing the insulating layer of the conductive wires in the direction adjacent to each other as the interlayer rather than between the adjacent wires in the winding order, it is possible to provide an electric wire having a small volume while reducing the layer short in design. In addition, an inexpensive and highly efficient winding and electrical component can be obtained that is thinner than the thickness of the insulating layer on the surface between the adjacent wires in the winding order.

なお、電気部品としてのモータやトランスなどは、時間と共に電線間の層間電位差が変化する。この場合においても、何れの電位差であってもレイヤーショートの確率を低減させた絶縁層を、導線に付与すればよい。   Note that the interlayer potential difference between the wires of a motor, a transformer, or the like as an electrical component changes with time. In this case as well, an insulating layer with a reduced probability of layer shorting may be applied to the conducting wire for any potential difference.

次に、実施例1を用いて、本発明にかかる巻き線に設ける絶縁層の選定について説明する。   Next, selection of the insulating layer provided in the winding according to the present invention will be described using Example 1.

下記表1では、厚く設けられる絶縁層の形成回数によって生ずる多層コイルとする電線の各特性を示している。   Table 1 below shows each characteristic of the electric wire that is a multilayer coil that is generated depending on the number of formations of the thick insulating layer.

Figure 2012033386
Figure 2012033386

数値は上記表に示すとおりである。塗装回数を増やす毎に、付与厚みが増加する。電線の付与厚みが増加する毎に、電線径も比例して増加し、コイル化したときの巻き線外径が増大する。   The numerical values are as shown in the above table. Each time the number of coatings is increased, the applied thickness increases. Each time the applied thickness of the electric wire increases, the electric wire diameter also increases proportionally, and the outer diameter of the winding when coiled increases.

他方、付加的に絶縁層を設けているにもかかわらず、占積率の大幅な低下を防止できている。同様に、全面を覆う被膜を厚くした場合よりも、絶縁層の厚みの増加に対するインダクタンスの減少も限定的である。   On the other hand, although the insulating layer is additionally provided, a significant decrease in the space factor can be prevented. Similarly, the decrease in the inductance with respect to the increase in the thickness of the insulating layer is more limited than in the case where the film covering the entire surface is thickened.

なお、塗装回数は、1回塗布することによって、ピンホールなどが重なる確率を低下でき、その回数を増やすことによって指数状的に多層コイルがレイヤーショートを起す確率を低減できる。   In addition, the coating frequency can reduce the probability that a pinhole etc. will overlap by apply | coating once, and can reduce the probability that a multilayer coil will cause a layer short circuit exponentially by increasing the frequency | count.

また、塗布回数は、所望する電線の特性を参照して定めればよい。塗布回数は、おおむね5回以下が望ましい。これは、占積率、インダクタンスの低下率が10%を超えて悪化するためである。また、塗布角度は、電線表面の1/6から1/2未満程度が望ましい。   Moreover, what is necessary is just to determine the frequency | count of application | coating with reference to the characteristic of the desired electric wire. The number of times of application is preferably about 5 times or less. This is because the space factor and the rate of decrease in inductance are worse than 10%. The application angle is preferably about 1/6 to less than 1/2 of the surface of the electric wire.

以上説明したように、本発明によれば、巻き線の構造上生じる層間でのレイヤーショートが生じる可能性を設計的に低減した電線、巻き線、および電気部品を提供できる。また、本発明によれば、巻き軸方向の占積率を向上できる。   As described above, according to the present invention, it is possible to provide an electric wire, a winding, and an electrical component that are designed to reduce the possibility of causing a layer short between layers generated in the structure of the winding. Moreover, according to this invention, the space factor of a winding axis direction can be improved.

また、付与厚みを本発明にかかるように増加させることによって、層間電圧に対する高い絶縁性能を発揮する一方、既存の電線よりも占積率およびインダクタンス特性が優れた電線を得られる。   Further, by increasing the applied thickness so as to be according to the present invention, it is possible to obtain an electric wire that exhibits high insulation performance with respect to the interlayer voltage and has an excellent space factor and inductance characteristics as compared with existing electric wires.

また、層間電圧に対して同等の絶縁特性を有する電線を提供するにあたり、隣接する導線(=ほとんど電位差が生じない導線)と接触する部分の電線の絶縁層厚をより薄くすることを可能とできる。
換言すれば、本発明に係る電線は、既存の電線(層間に当たる絶縁層の厚みと同一厚みの絶縁層を全周に有する電線)に対して、巻き線化後に同等の絶縁耐力を得る為に必要な容積を削減できている。またこのことは、電気部品としての同一容積内に多くの導線のターン数を確保できることとなる。また、電気部品としての同等性能を少ないターン数の導線で行える。即ち、導線に必要以上に付与されていた絶縁層を減じることで、巻き線に用いる高性能な電線を得られる。
Further, in providing an electric wire having equivalent insulation characteristics with respect to the interlayer voltage, it is possible to make the insulating layer thickness of a portion of the electric wire in contact with an adjacent conducting wire (= the conducting wire that hardly causes a potential difference) thinner. .
In other words, the electric wire according to the present invention has an equivalent electric strength after winding with respect to an existing electric wire (an electric wire having an insulating layer having the same thickness as that of the insulating layer between the layers). The required volume has been reduced. In addition, this means that a large number of turns of the conducting wire can be secured in the same volume as the electric component. In addition, equivalent performance as an electrical component can be achieved with a small number of turns. That is, a high-performance electric wire used for winding can be obtained by reducing the insulating layer applied to the conductor more than necessary.

本発明は、巻き線を有する電気部品全般に利用できる。また、本発明は、巻き線を有する電気部品全般の巻き線内で生ずるレイヤーショートを低減しつつ、高性能な電気部品を得ることに使用できる。電気部品としては、モータ、トランス、 チョークコイル、リアクトルなどに好適である。   The present invention can be used for all electrical components having windings. In addition, the present invention can be used to obtain a high-performance electric component while reducing a layer short circuit that occurs in the winding of all electric components having a winding. As electrical parts, it is suitable for motors, transformers, choke coils, reactors, and the like.

1 導線
2 絶縁被膜
3 絶縁被膜
4 絶縁層
5 樹脂
6 複合磁性体
DESCRIPTION OF SYMBOLS 1 Conductor 2 Insulating film 3 Insulating film 4 Insulating layer 5 Resin 6 Composite magnetic body

Claims (18)

導線の表面に絶縁層を有する電線において、
前記絶縁層は、前記導線の線方向に対して直交する一方向に偏心状に厚く設けられ、当該偏心状に設けられた絶縁層の厚みが他方の絶縁層よりも厚い
ことを特徴とする電線。
In an electric wire having an insulating layer on the surface of the conducting wire,
The insulating layer is thickly provided in an eccentric shape in one direction orthogonal to the wire direction of the conducting wire, and the insulating layer provided in the eccentric shape is thicker than the other insulating layer. .
請求項1記載の電線であって、
前記偏心状に厚く設けられた絶縁層は、前記他方の絶縁層の表面に、追加的に形成される
ことを特徴とする電線。
The electric wire according to claim 1,
The electric wire characterized in that the eccentrically thick insulating layer is additionally formed on the surface of the other insulating layer.
請求項2記載の電線であって、
前記偏心状に厚く設けられた絶縁層の厚みは、当該電線を用いて作られる巻き線構造上の隣接する他層との間にかかる電圧値に耐えうるように、各層の導線間の距離が気中絶縁耐力の値と前記電圧値に基づいて定められる厚さ以上に設定される
ことを特徴とする電線。
The electric wire according to claim 2,
The thickness of the insulating layer provided thick in the eccentric shape is such that the distance between the conductors of each layer is such that it can withstand the voltage value applied between adjacent layers on the winding structure made using the electric wire. An electric wire characterized in that it is set to have a thickness that is determined based on the value of air dielectric strength and the voltage value.
多層に巻かれた巻き線であって、
巻かれた電線の層間に当たる絶縁層は、他方向の絶縁層よりも厚く形成され、
前記厚く形成された絶縁層は、前記他方の絶縁層の表面に、多層形成されている
ことを特徴とする巻き線。
A winding wound in multiple layers,
The insulating layer that hits the layers of the wound wire is formed thicker than the insulating layer in the other direction,
The winding, wherein the thick insulating layer is formed in multiple layers on the surface of the other insulating layer.
請求項4記載の巻き線であって、
前記厚く形成された絶縁層厚は、前記層間に加わる層間電圧値に対する気中絶縁耐力の値に基づき定められ、
前記他方向に形成された絶縁層厚は、隣接する巻き線との気中絶縁耐力の値に基づき定められている
ことを特徴とする巻き線。
The winding according to claim 4,
The thickness of the insulating layer formed thick is determined based on the value of the dielectric strength in the air with respect to the interlayer voltage value applied between the layers,
The insulating layer thickness formed in the other direction is determined based on the value of the air dielectric strength with the adjacent winding.
請求項4又は5に記載の巻き線であって、
前記絶縁層は、塗装被膜で作られていることを特徴とする巻き線。
The winding according to claim 4 or 5,
The winding, wherein the insulating layer is made of a paint film.
請求項4又は5に記載の巻き線であって、
前記絶縁層は、貼り付け部材で作られていることを特徴とする巻き線。
The winding according to claim 4 or 5,
The winding, wherein the insulating layer is made of a pasting member.
請求項4ないし7の何れか一項に記載の巻き線であって、
前記電線は、線方向と直交する断面が円又は略円であることを特徴とする巻き線。
A winding according to any one of claims 4 to 7,
The said electric wire is a winding characterized by the cross section orthogonal to a line direction being a circle or a substantially circle.
請求項4ないし7の何れか一項に記載の巻き線であって、
前記電線は、線方向と直交する断面が平角状であることを特徴とする巻き線。
A winding according to any one of claims 4 to 7,
The wire has a flat cross section perpendicular to the wire direction.
請求項4ないし9の何れか一項に記載の巻き線であって、
前記巻き線は、空芯コイルとして巻き廻した後、線間に絶縁性の樹脂または熱伝導率が前記樹脂よりも高いフィラーを含む樹脂を充填して硬化されていることを特徴とする巻き線。
A winding according to any one of claims 4 to 9,
The winding is wound as an air-core coil and then cured by filling an insulating resin between the wires or a resin containing a filler having a higher thermal conductivity than the resin. .
請求項10記載の巻き線であって、
前記電線の層間に当たる絶縁層の厚みを、空気よりも絶縁性に富む絶縁性気体の有する絶縁耐力の値に基づいて定められ、
前記絶縁性気体下で前記樹脂により巻き線の層間を密閉されている
ことを特徴とする巻き線。
The winding according to claim 10,
The thickness of the insulating layer that falls between the layers of the electric wires is determined based on the value of the dielectric strength of the insulating gas that is more insulative than air,
Winding, wherein the winding layer is sealed with the resin under the insulating gas.
請求項4ないし11の何れか一項に記載の巻き線であって、
巻き線の構造上定まる印加される電線間電圧値を許容するように、前記電線間に当てる絶縁層の厚みを可変させながら偏心状に絶縁層を形成された電線で構成されている
ことを特徴とする巻き線。
The winding according to any one of claims 4 to 11,
It is composed of an electric wire in which an insulating layer is formed eccentrically while varying the thickness of the insulating layer applied between the electric wires so as to allow an applied electric wire voltage value determined by the winding structure. And winding.
導線の表面に、前記導線の線方向に対して直交する一方向に偏心状に厚く設けられ、当該偏心状に設けられた絶縁層の厚みが他方の絶縁層よりも厚い絶縁層を有する電線を巻き廻した巻き線を有することを特徴とする電気部品。   An electric wire having a thick insulating layer on one surface orthogonal to the wire direction of the conductive wire and having an insulating layer with a thicker insulating layer than the other insulating layer. An electrical component having a wound winding. 請求項13記載の電気部品であって、
前記偏心状に厚く設けられた絶縁層は、前記他方の絶縁層の表面に、多層形成されている
ことを特徴とする電気部品。
The electrical component according to claim 13,
The electrical component, wherein the eccentrically thick insulating layer is formed in a multilayer on the surface of the other insulating layer.
請求項14記載の電気部品であって、
前記偏心状に厚く設けられた絶縁層の厚みは、当該電線を用いて作られる巻き線構造上の隣接する他層との間にかかる電圧値に耐えうるように、各層の導線間の距離が気中絶縁耐力の値と前記電圧値に基づいて定められる厚さ以上に設定されている
ことを特徴とする電気部品。
The electrical component according to claim 14,
The thickness of the insulating layer provided thick in the eccentric shape is such that the distance between the conductors of each layer is such that it can withstand the voltage value applied between adjacent layers on the winding structure made using the electric wire. An electrical component, wherein the electrical component is set to have a thickness determined based on a value of an air dielectric strength and the voltage value.
請求項4ないし12の何れか一項に記載の巻き線によって作られたことを特徴とする電気部品。   An electrical component made by the winding according to any one of claims 4 to 12. 請求項16記載の電気部品であって、
前記巻き線の磁芯とする磁性体を注型法によって形成されていることを特徴とする電気部品。
The electrical component according to claim 16, wherein
An electrical component, wherein a magnetic material serving as a magnetic core of the winding is formed by a casting method.
多層に巻き廻される平角状導線の一面に、巻かれた後の導線層間に加わる層間電圧値に対応した厚みを有する絶縁層が設けられ、他方の絶縁層の厚みが前記厚みよりも薄く設けられている電線を用いて、
前記電線を多層に巻き廻して多層コイルとするときに、前記電線に厚く設けられている絶縁層を、巻き終えた電線の層間に当たるように配置して空芯状に巻き廻し、
前記空芯の多層コイルの隣接導線間を熱伝導率を向上させるフィラーを含む樹脂で充填硬化し、
前記樹脂で線間を固定された多層コイルに、磁性体を含む樹脂で磁芯を形成した
形状であることを特徴とする電気部品。
An insulating layer having a thickness corresponding to an interlayer voltage value applied between the wound conductive wire layers is provided on one surface of the rectangular conductive wire wound in multiple layers, and the thickness of the other insulating layer is provided to be thinner than the above thickness. Using the wire
When the electric wire is wound in multiple layers to form a multilayer coil, an insulating layer provided thick on the electric wire is arranged so as to hit the layer of the wound electric wire and wound in an air-core shape,
Filling and curing with a resin containing a filler that improves thermal conductivity between adjacent conductors of the air-core multilayer coil,
An electric component having a shape in which a magnetic core is formed of a resin containing a magnetic material on a multilayer coil in which a line is fixed with the resin.
JP2010172029A 2010-07-30 2010-07-30 Electric wire, winding wire and electric component Pending JP2012033386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010172029A JP2012033386A (en) 2010-07-30 2010-07-30 Electric wire, winding wire and electric component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010172029A JP2012033386A (en) 2010-07-30 2010-07-30 Electric wire, winding wire and electric component

Publications (1)

Publication Number Publication Date
JP2012033386A true JP2012033386A (en) 2012-02-16

Family

ID=45846584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010172029A Pending JP2012033386A (en) 2010-07-30 2010-07-30 Electric wire, winding wire and electric component

Country Status (1)

Country Link
JP (1) JP2012033386A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225730A (en) * 2014-05-26 2016-01-06 上海顺潮工业有限公司 For the waterproof low noise film bag rectangular aluminum twisted wire of reactor
CN105551583A (en) * 2014-10-24 2016-05-04 三菱综合材料株式会社 Flat coil flat insulated electric wire and manufacturing method for same
JP2017037896A (en) * 2015-08-07 2017-02-16 住友電気工業株式会社 Wire for coil
JP2017152515A (en) * 2016-02-24 2017-08-31 株式会社東芝 Mold coil, transformer, reactance, and manufacturing method of mold coil
JP2019160706A (en) * 2018-03-15 2019-09-19 古河電気工業株式会社 Electrical connection unit material and electrical connection unit material set
JP2020025023A (en) * 2018-08-07 2020-02-13 東芝Itコントロールシステム株式会社 Winding device
JP2021158297A (en) * 2020-03-30 2021-10-07 株式会社村田製作所 Coil component and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121620U (en) * 1984-01-27 1985-08-16 三菱電機株式会社 coil conductor
JPS63245914A (en) * 1987-03-31 1988-10-13 Toshiba Corp Self-cooled gas insulated transformer
JPH08264349A (en) * 1995-03-20 1996-10-11 Hitachi Ltd Dry-type transformer winding
JPH11250737A (en) * 1998-02-27 1999-09-17 Hitachi Ltd Insulating material and electrical coil
JP2002110414A (en) * 2000-10-04 2002-04-12 Hitachi Ltd Insulating material and transformer using the same
JP2003272916A (en) * 2002-03-15 2003-09-26 Totoku Electric Co Ltd Edgewise coil with resin insulation coating, its manufacturing method, flat electric wire with resin insulation coating, and manufacturing method of the same
JP2008028315A (en) * 2006-07-25 2008-02-07 Nec Tokin Corp Winding coil and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121620U (en) * 1984-01-27 1985-08-16 三菱電機株式会社 coil conductor
JPS63245914A (en) * 1987-03-31 1988-10-13 Toshiba Corp Self-cooled gas insulated transformer
JPH08264349A (en) * 1995-03-20 1996-10-11 Hitachi Ltd Dry-type transformer winding
JPH11250737A (en) * 1998-02-27 1999-09-17 Hitachi Ltd Insulating material and electrical coil
JP2002110414A (en) * 2000-10-04 2002-04-12 Hitachi Ltd Insulating material and transformer using the same
JP2003272916A (en) * 2002-03-15 2003-09-26 Totoku Electric Co Ltd Edgewise coil with resin insulation coating, its manufacturing method, flat electric wire with resin insulation coating, and manufacturing method of the same
JP2008028315A (en) * 2006-07-25 2008-02-07 Nec Tokin Corp Winding coil and its manufacturing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105225730A (en) * 2014-05-26 2016-01-06 上海顺潮工业有限公司 For the waterproof low noise film bag rectangular aluminum twisted wire of reactor
CN105551583A (en) * 2014-10-24 2016-05-04 三菱综合材料株式会社 Flat coil flat insulated electric wire and manufacturing method for same
CN105551583B (en) * 2014-10-24 2019-04-19 三菱综合材料株式会社 Edgewise coil flat insulating electric wire and its manufacturing method
JP2017037896A (en) * 2015-08-07 2017-02-16 住友電気工業株式会社 Wire for coil
JP2017152515A (en) * 2016-02-24 2017-08-31 株式会社東芝 Mold coil, transformer, reactance, and manufacturing method of mold coil
JP2019160706A (en) * 2018-03-15 2019-09-19 古河電気工業株式会社 Electrical connection unit material and electrical connection unit material set
JP7079124B2 (en) 2018-03-15 2022-06-01 古河電気工業株式会社 Electrical connection unit material set
JP2020025023A (en) * 2018-08-07 2020-02-13 東芝Itコントロールシステム株式会社 Winding device
JP7175126B2 (en) 2018-08-07 2022-11-18 東芝Itコントロールシステム株式会社 Winding device
JP2021158297A (en) * 2020-03-30 2021-10-07 株式会社村田製作所 Coil component and manufacturing method thereof
JP7184063B2 (en) 2020-03-30 2022-12-06 株式会社村田製作所 Coil component and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2012033386A (en) Electric wire, winding wire and electric component
US8686820B2 (en) Reactor
EP2695174B1 (en) Cable and electromagnetic device comprising the same
KR101981615B1 (en) Coil component
US20160141088A1 (en) Magnetic component
CN107039159A (en) Electric winding, the dry-type transformer with electric winding and the method for manufacturing electric winding
RU2535838C2 (en) Inductance coil and method of its fabrication
JP2012079951A (en) Reactor device
CN108364749B (en) Laminated electronic component
US3602814A (en) Encapsulated electric coil having barrier layer
US20150130577A1 (en) Insulation planar inductive device and methods of manufacture and use
CN108682545B (en) High-voltage-resistant multi-winding transformer
WO2013150688A1 (en) Reactor, method for producing reactor, converter, and power conversion device
JP6452312B2 (en) Coil parts
JPS6222244B2 (en)
CN205122361U (en) Electromagnetic type voltage transformer
CN1326157C (en) Corona-proof conductor
CN101699726A (en) Method for manufacturing coil winding of magnetic conducting and electric conducting body
KR20160134633A (en) Wire wound inductor and manufacturing method thereof
JP2016039322A (en) Coil and coil component
JP2002033213A (en) Coil and insulating method thereof
JP2008210978A (en) Wire-wound electronic component
JP6400277B2 (en) Coils and reactors
JP6116335B2 (en) Rotating electric machine
US20200118707A1 (en) Electrically insulated electric conductor strip, in particular for electric motors and transformers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140625