[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012025163A - Photocatalyst supporting structure - Google Patents

Photocatalyst supporting structure Download PDF

Info

Publication number
JP2012025163A
JP2012025163A JP2011195337A JP2011195337A JP2012025163A JP 2012025163 A JP2012025163 A JP 2012025163A JP 2011195337 A JP2011195337 A JP 2011195337A JP 2011195337 A JP2011195337 A JP 2011195337A JP 2012025163 A JP2012025163 A JP 2012025163A
Authority
JP
Japan
Prior art keywords
photocatalyst
adhesive layer
layer
colloidal silica
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011195337A
Other languages
Japanese (ja)
Inventor
Kazunori Saito
一徳 齋藤
Shuntaro Kinoshita
俊太郎 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2011195337A priority Critical patent/JP2012025163A/en
Publication of JP2012025163A publication Critical patent/JP2012025163A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst supporting structure including a photocatalyst layer, an adhesive layer and a carrier, wherein the adhesive layer and the photocatalyst layer are provided on the carrier sequentially, and the adhesive layer contains silica combined in a long and thin shape.SOLUTION: A photocatalyst supporting structure includes a photocatalyst layer, an adhesive layer and a carrier, wherein the adhesive layer and the photocatalyst layer are provided on the carrier sequentially, and the adhesive layer contains silica combined in a long and thin shape. Preferably, the adhesive layer contains 0.1-60 wt.% of the silica combined in a long and thin shape.

Description

本発明は、浄水、脱臭、防汚、殺菌、排水処理、藻の成育抑制、及び各種化学反応等に用いられる光触媒を担持した構造体、特に透明性に優れた屋外環境下でも十分な耐久性を有する光触媒担持構造体、及び接着層形成用塗布液に関する。   The present invention is a structure carrying a photocatalyst used for water purification, deodorization, antifouling, sterilization, wastewater treatment, growth control of algae, various chemical reactions, etc., particularly durability sufficient even in an outdoor environment with excellent transparency. The present invention relates to a photocatalyst carrying structure having an adhesive layer and a coating liquid for forming an adhesive layer.

従来から、光触媒の作用により抗菌、防黴性や有害物質の分解を意図して、光触媒を担体(基材又は基板)上に担持させてなる光触媒担持構造体が知られている。かかる光触媒担持構造体は、通常、光触媒成分を含有する光触媒層形成用塗布液を担体表面に塗布、硬化させることによって光触媒層を形成させることにより製造されている。   Conventionally, there has been known a photocatalyst-supporting structure in which a photocatalyst is supported on a carrier (base material or substrate) for the purpose of antibacterial, antifungal and decomposition of harmful substances by the action of the photocatalyst. Such a photocatalyst-supporting structure is usually produced by forming a photocatalyst layer by applying and curing a photocatalyst layer-forming coating solution containing a photocatalyst component on the surface of a carrier.

しかし、担体上に直接光触媒層(光触媒を含有する被膜または層)を形成させると、光触媒の強い酸化作用によって、担体が劣化、変色等する問題や、光触媒層が担体から剥離する問題などが生じるおそれがあった。そのため、担体と光触媒層の間に、バインダー層(難分解性の中間層:接着層)を備えている光触媒構造が知られている(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5、特許文献6)。そのようなバインダー層として、シリカゾルが多く用いられてきた。   However, when a photocatalyst layer (a film or layer containing a photocatalyst) is formed directly on the carrier, problems such as deterioration of the carrier and discoloration due to the strong oxidizing action of the photocatalyst, and a problem that the photocatalyst layer is peeled off from the carrier occur. There was a fear. Therefore, a photocatalyst structure having a binder layer (hardly decomposable intermediate layer: adhesive layer) between the carrier and the photocatalyst layer is known (Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4). Patent Document 5 and Patent Document 6). Silica sol has been frequently used as such a binder layer.

しかしながら、そのような光触媒担持構造体を屋外で使用すると、温度、湿度等の環境の変化に長期間にわたってさらされ、バインダー層及び光触媒層の透明性が劣化してしまうという問題があった。特に、担体の透明性や、担体の色や模様が重要な構造体の場合は、バインダー層及び光触媒層の透明性の劣化は大きな問題であった。   However, when such a photocatalyst carrying structure is used outdoors, there has been a problem that the transparency of the binder layer and the photocatalyst layer is deteriorated by being exposed to environmental changes such as temperature and humidity over a long period of time. In particular, in the case of a structure in which the transparency of the carrier and the color and pattern of the carrier are important, deterioration of the transparency of the binder layer and the photocatalyst layer has been a serious problem.

一方、特許文献7は、粒状、鎖状シリカ等の微粒子シリカの表面を改質したシリカ組成物を樹脂モノマーに添加することにより、樹脂部材の弾性率を向上させ、かつ、熱膨張率を低減させ得ることを開示している。しかし、鎖状シリカ等として、細長い形状に結合したシリカを利用することによって、光触媒用の光触媒層及び接着層の透明性がより長期にわたって保持され得るということは知られていなかった。   On the other hand, Patent Document 7 discloses that the elastic modulus of a resin member is improved and the coefficient of thermal expansion is reduced by adding a silica composition in which the surface of fine particle silica such as granular or chain silica is modified to a resin monomer. It is disclosed that it can be made. However, it has not been known that the transparency of the photocatalyst layer for the photocatalyst and the adhesive layer can be maintained for a longer period by using silica bonded in an elongated shape as chain silica or the like.

特開2005−137977号公報JP 2005-137777 A 特開2004−351365号公報JP 2004-351365 A 特開平8−131842号公報JP-A-8-131842 特開2005−61156号公報JP 2005-61156 A 特開平10−278168号公報Japanese Patent Laid-Open No. 10-278168 WO2003−033144号パンフレットWO2003-033144 pamphlet 特開2003−286306号公報JP 2003-286306 A

本発明の課題は、光触媒層と接着層と担体とを備え、担体上に接着層、光触媒層が順次設けられた構造体であって、光触媒層及び接着層の透明性がより長期にわたって保持される光触媒担持構造体を提供することにある。   An object of the present invention is a structure in which a photocatalyst layer, an adhesive layer, and a carrier are provided, and the adhesive layer and the photocatalyst layer are sequentially provided on the carrier, and the transparency of the photocatalyst layer and the adhesive layer is maintained for a longer period of time. An object of the present invention is to provide a photocatalyst carrying structure.

本発明者らは、細長い形状に結合したシリカ、特に、球状コロイダルシリカ粒子の連結物、棒状コロイダルシリカ、又はそれらの混合物を接着層に利用することによって、光触媒層及び接着層の透明性がより長期にわたって保持されることを見い出し、本発明を完成するに至った。   The present inventors have made the photocatalyst layer and the adhesive layer more transparent by using, as the adhesive layer, silica bonded in an elongated shape, in particular, a combination of spherical colloidal silica particles, rod-shaped colloidal silica, or a mixture thereof. It was found that it was retained for a long time, and the present invention was completed.

すなわち本発明は、(1)光触媒層と接着層と担体とを備え、担体上に接着層、光触媒層が順次設けられた構造体であって、接着層が、細長い形状に結合したシリカを含有することを特徴とする光触媒担持構造体や、(2)細長い形状に結合したシリカが、接着層に0.1〜60重量%含有されることを特徴とする上記(1)記載の光触媒担持構造体や、(3)細長い形状に結合したシリカが、球状コロイダルシリカ粒子の連結物、棒状コロイダルシリカ、又はそれらの混合物であることを特徴とする上記(1)又は(2)記載の光触媒担持構造体や、(4)球状コロイダルシリカ粒子の粒径が10〜50nmの範囲であることを特徴とする上記(3)記載の光触媒担持構造体や、(5)球状コロイダルシリカ粒子の連結物が、3個以上のコロイダルシリカが連結したものであることを特徴とする上記(3)又は(4)の光触媒担持構造体や、(6)球状コロイダルシリカ粒子の連結物が、その短辺の長さが10〜50nmの範囲であり、その長辺の長さが50〜400nmの範囲であることを特徴とする上記(3)〜(5)のいずれか記載の光触媒担持構造体や、(7)棒状コロイダルシリカが、その短辺の長さが10〜50nmの範囲であり、その長辺の長さが50〜400nmの範囲であることを特徴とする上記(3)〜(6)のいずれか記載の光触媒担持構造体や、(8)細長い形状に結合したシリカが、動的光錯乱法による測定粒子径(D1)と窒素ガス吸着法による測定粒子径(D2)の比D1/D2が5以上であって、このD1は40〜300nmであり、5〜20nmの範囲内の太さで一平面内のみの伸長を有する非晶質コロイダルシリカであることを特徴とする上記(1)〜(7)のいずれか記載の光触媒担持構造体や、(9)ジルコニウム化合物、アルミニウム化合物及びシリコン化合物からなる群から選ばれる少なくとも1種以上を、担体以外の部分にさらに含有することを特徴とする上記(1)〜(8)のいずれか記載の光触媒担持構造体や、(10)ジルコニウム化合物が、ジルコニウムの酸化物、酸化水酸化物、水酸化物、オキシ硝酸塩、オキシ炭酸塩、炭素数1〜4のアルコキシド、及び該アルコキシドの加水分解物からなる群から選ばれる1種または2種以上の混合物であることを特徴とする上記(9)記載の光触媒担持構造体に関する。   That is, the present invention is (1) a structure comprising a photocatalyst layer, an adhesive layer, and a carrier, wherein the adhesive layer and the photocatalyst layer are sequentially provided on the carrier, and the adhesive layer contains silica bonded in an elongated shape. The photocatalyst-supporting structure according to (1) above, wherein (2) 0.1 to 60% by weight of silica bonded in an elongated shape is contained in the adhesive layer The photocatalyst-supporting structure according to (1) or (2) above, wherein (3) the silica bonded in an elongated shape is a connected product of spherical colloidal silica particles, rod-shaped colloidal silica, or a mixture thereof. The photocatalyst-supporting structure according to (3) above, wherein (4) spherical colloidal silica particles have a particle size in the range of 10 to 50 nm, 3 or more colloids The photocatalyst-supporting structure according to the above (3) or (4), wherein the silica is connected, and (6) a connection product of spherical colloidal silica particles having a short side length of 10 to 50 nm. The photocatalyst-supporting structure according to any one of the above (3) to (5), wherein the long side length is in the range of 50 to 400 nm, and (7) rod-shaped colloidal silica, The photocatalyst carrying structure according to any one of (3) to (6) above, wherein the short side has a length in the range of 10 to 50 nm and the long side has a length in the range of 50 to 400 nm. And (8) silica bonded in an elongated shape has a ratio D1 / D2 of the measured particle diameter (D1) measured by the dynamic light scattering method and the measured particle diameter (D2) measured by the nitrogen gas adsorption method is 5 or more, This D1 is 40 to 300 nm and ranges from 5 to 20 nm. A photocatalyst-supporting structure according to any one of the above (1) to (7), wherein the photocatalyst-supporting structure is an amorphous colloidal silica having an extension within only one plane with a thickness within a range, (9) a zirconium compound, The photocatalyst-supporting structure according to any one of the above (1) to (8), further containing at least one selected from the group consisting of an aluminum compound and a silicon compound in a portion other than the carrier, 10) The zirconium compound is one selected from the group consisting of zirconium oxide, oxide hydroxide, hydroxide, oxynitrate, oxycarbonate, alkoxide having 1 to 4 carbon atoms, and hydrolyzate of the alkoxide. Or it is a mixture of 2 or more types, It is related with the photocatalyst carrying structure of said (9) description characterized by the above-mentioned.

また本発明は、(11)アルミニウム化合物が、アルミニウムの酸化物、酸化水酸化物、水酸化物、オキシ硝酸塩、オキシ炭酸塩、炭素数1〜4のアルコキシド、及び該アルコキシドの加水分解物からなる群から選ばれる1種または2種以上の混合物であることを特徴とする上記(9)又は(10)に記載の光触媒担持構造体や、(12)シリコン化合物が、シリコン樹脂、ポリシロキサン及びコロイダルシリカからなる群から選ばれる少なくとも1種以上であることを特徴とする上記(9)〜(11)のいずれか記載の光触媒担持構造体や、(13)ジルコニウム化合物及び/又はアルミニウム化合物が、150℃で乾燥後の比表面積が100m/g以上の多孔質ゲル状であることを特徴とする上記(9)〜(12)のいずれか記載の光触媒担持構造体や、(14)光触媒層が、酸化物に換算して、ジルコニウム化合物を5〜60重量%、アルミニウム化合物を20〜90重量%、酸化チタンを5〜60重量%、シリコン化合物を5〜50重量%含有することを特徴とする上記(9)〜(13)のいずれか記載の光触媒担持構造体や、(15)細長い形状に結合したシリカを、光触媒層にさらに含有することを特徴とする上記(1)〜(14)のいずれか記載の光触媒担持構造体や、(16)光触媒層及び接着層を合わせた塗膜のヘイズ率が3%以下であることを特徴とする上記(1)〜(15)のいずれか記載の光触媒担持構造体や、(17)沸騰イオン交換水中で1時間煮沸した後での、光触媒層及び接着層を合わせた塗膜のヘイズ率が3%以下であることを特徴とする上記(16)記載の光触媒担持構造体や、(18)担体が、外壁用であることを特徴とする上記(1)〜(17)のいずれか記載の光触媒担持構造体に関する。 In the present invention, (11) the aluminum compound comprises an oxide of aluminum, an oxide hydroxide, a hydroxide, an oxynitrate, an oxycarbonate, an alkoxide having 1 to 4 carbon atoms, and a hydrolyzate of the alkoxide. The photocatalyst-supporting structure according to (9) or (10), wherein the photocatalyst-supporting structure according to the above (9) or (10) is selected from the group, or (12) the silicon compound is a silicon resin, polysiloxane, or colloidal 150 or more photocatalyst-supporting structures according to any one of the above (9) to (11), and (13) a zirconium compound and / or an aluminum compound, which are at least one selected from the group consisting of silica, ℃ a specific surface area after drying above (9) to which is a 100 m 2 / g or more porous gel according to any one of (12) The catalyst-supporting structure and (14) photocatalyst layer are converted into oxides, 5 to 60% by weight of zirconium compound, 20 to 90% by weight of aluminum compound, 5 to 60% by weight of titanium oxide, and silicon compound. The photocatalyst layer further contains the photocatalyst-supporting structure according to any one of the above (9) to (13), and (15) silica bonded in an elongated shape. The photocatalyst-supporting structure according to any one of (1) to (14) above, or (16) the haze ratio of the coating film formed by combining the photocatalyst layer and the adhesive layer is 3% or less The haze ratio of the photocatalyst carrying structure according to any one of (1) to (15) and (17) a coating film comprising the photocatalyst layer and the adhesive layer after boiling for 1 hour in boiling ion-exchanged water is 3%. Characterized by the following The photocatalyst carrying structure according to (16) and (18) the photocatalyst carrying structure according to any one of (1) to (17) above, wherein the carrier is for an outer wall.

さらに本発明は、(19)光触媒担持構造体における接着層を形成するために用いられる塗布液であって、細長い形状に結合したシリカを含有することを特徴とする接着層形成用塗布液や、(20)細長い形状に結合したシリカを、固形分として酸化物換算で、0.01〜12.0重量%含有することを特徴とする上記(19)記載の接着層形成用塗布液や、(21)細長い形状に結合したシリカが、球状コロイダルシリカ粒子の連結物、棒状コロイダルシリカ、又はそれらの混合物であることを特徴とする上記(19)又は(20)記載の接着層形成用塗布液や、(22)球状コロイダルシリカ粒子の粒径が10〜50nmの範囲であることを特徴とする上記(21)記載の接着層形成用塗布液や、(23)球状コロイダルシリカ粒子の連結物が、3個以上のコロイダルシリカが連結したものであることを特徴とする上記(21)又は(22)記載の接着層形成用塗布液や、(24)球状コロイダルシリカ粒子の連結物が、その短辺の長さが10〜50nmの範囲であり、その長辺の長さが50〜400nmの範囲であることを特徴とする上記(21)〜(23)のいずれか記載の接着層形成用塗布液や、(25)棒状コロイダルシリカが、その短辺の長さが10〜50nmの範囲であり、その長辺の長さが50〜400nmの範囲であることを特徴とする上記(21)〜(24)のいずれか記載の接着層形成用塗布液や、(26)細長い形状に結合したシリカが、動的光錯乱法による測定粒子径(D1)と窒素ガス吸着法による測定粒子径(D2)の比D1/D2が5以上であって、このD1は40〜300nmであり、5〜20nmの範囲内の太さで一平面内のみの伸長を有する非晶質コロイダルシリカであることを特徴とする上記(19)〜(25)のいずれか記載の接着層形成用塗布液や、(27)シリコンを2〜60重量%含有するシリコン変性樹脂、コロイダルシリカを5〜40重量%含有する樹脂、ポリシロキサンを3〜60重量%含有する樹脂からなる群から選ばれる樹脂の少なくとも1種以上を、さらに含有することを特徴とする上記(19)〜(26)のいずれか記載の接着層形成用塗布液や、(28)アクリル−シリコン樹脂、ポリシロキサンを含有するシリコン変性樹脂、コロイダルシリカを含有するシリコン変性樹脂からなる群から選ばれるシリコン変性樹脂の少なくとも1種以上を、さらに含有することを特徴とする上記(19)〜(26)のいずれか記載の接着層形成用塗布液に関する。   Furthermore, the present invention is (19) a coating solution used for forming an adhesive layer in a photocatalyst-supporting structure, which contains silica bonded in an elongated shape, (20) A coating liquid for forming an adhesive layer as described in (19) above, containing 0.01 to 12.0% by weight of silica bonded to an elongated shape in terms of oxide as a solid content, 21) The coating liquid for forming an adhesive layer according to the above (19) or (20), wherein the silica bonded in an elongated shape is a linked product of spherical colloidal silica particles, rod-shaped colloidal silica, or a mixture thereof. (22) The particle size of the spherical colloidal silica particles is in the range of 10 to 50 nm, the coating solution for forming an adhesive layer according to the above (21), and (23) a series of spherical colloidal silica particles. The product is an adhesive layer-forming coating solution as described in (21) or (22) above, wherein 3 or more colloidal silicas are connected, and (24) a connected product of spherical colloidal silica particles, The length of the short side is in the range of 10 to 50 nm, and the length of the long side is in the range of 50 to 400 nm. The adhesive layer formation according to any one of the above (21) to (23), The above-mentioned (21) characterized in that the coating liquid for coating and (25) rod-shaped colloidal silica have a short side length of 10 to 50 nm and a long side length of 50 to 400 nm. The coating liquid for forming an adhesive layer according to any of (24) to (24) and (26) silica bonded in an elongated shape are measured particle diameter (D1) by a dynamic light scattering method and measured particle diameter by a nitrogen gas adsorption method. The ratio D1 / D2 of (D2) is 5 or more D1 is 40 to 300 nm, and is an amorphous colloidal silica having a thickness in the range of 5 to 20 nm and extending only in one plane, wherein the above (19) to (25) Any one of the coating solutions for forming an adhesive layer, (27) a silicon-modified resin containing 2 to 60% by weight of silicon, a resin containing 5 to 40% by weight of colloidal silica, and 3 to 60% by weight of polysiloxane The coating liquid for forming an adhesive layer according to any one of the above (19) to (26), further comprising at least one resin selected from the group consisting of resins, and (28) acrylic-silicon At least one or more of a silicon-modified resin selected from the group consisting of a resin, a silicon-modified resin containing polysiloxane, and a silicon-modified resin containing colloidal silica; The adhesive layer-forming coating solution according to any one of (19) to (26) above, which is contained.

本発明の光触媒層と接着層と担体とを備えた光触媒担持構造体は、光触媒層と接着層の透明性がより長期にわたって保持される。   In the photocatalyst carrying structure including the photocatalyst layer, the adhesive layer, and the carrier of the present invention, the transparency of the photocatalyst layer and the adhesive layer is maintained for a longer period.

本発明の光触媒担持構造体は、光触媒層と接着層と担体とを備え、担体上に接着層、光触媒層が順次設けられた光触媒担持構造体であって、接着層が、細長い形状に結合したシリカを含有することを特徴とする。なお、本発明の光触媒担持構造体は、光触媒層と接着層と担体とを備え、担体上に接着層、光触媒層が順次設けられてさえいれば、それ以外の部分に他の構成をさらに有していてもよい。他の構成は特に制限されないが、例えば、光触媒層上にさらに存在するコーティング層、光触媒層と接着層の間にさらに存在する中間層、接着層と担体の間にさらに存在する印刷層等の層などが挙げられる。   The photocatalyst carrying structure of the present invention is a photocatalyst carrying structure comprising a photocatalyst layer, an adhesive layer, and a carrier, wherein the adhesive layer and the photocatalyst layer are sequentially provided on the carrier, and the adhesive layer is bonded in an elongated shape. It contains silica. The photocatalyst-supporting structure of the present invention includes a photocatalyst layer, an adhesive layer, and a carrier. As long as the adhesive layer and the photocatalyst layer are sequentially provided on the carrier, the other parts further have other configurations. You may do it. Other configurations are not particularly limited. For example, a layer such as a coating layer further present on the photocatalyst layer, an intermediate layer further present between the photocatalyst layer and the adhesive layer, and a printed layer further present between the adhesive layer and the carrier. Etc.

本発明における接着層は、細長い形状に結合したシリカを含有している限り、特に制限されない。光触媒層と担体の間にこのような接着層を設けると、下地である担体が光触媒層中の光触媒の光触媒作用によって劣化することを防止することができ、光触媒層を担体に、より強固に接着させることができる上、光触媒層と接着層の透明性が長期にわたって保持され得る。   The adhesive layer in the present invention is not particularly limited as long as it contains silica bonded in an elongated shape. By providing such an adhesive layer between the photocatalyst layer and the carrier, it is possible to prevent the base carrier from deteriorating due to the photocatalytic action of the photocatalyst in the photocatalyst layer, and to adhere the photocatalyst layer to the carrier more firmly. In addition, the transparency of the photocatalyst layer and the adhesive layer can be maintained over a long period of time.

本発明における、細長い形状に結合したシリカには、例えば、球状のシリカ粒子が連結して細長い形状になったもの、棒状のシリカそれ自体、又はそれらの混合物が含まれ、中でも、球状コロイダルシリカ粒子の連結物、棒状コロイダルシリカ、又はそれらの混合物が、光触媒層や接着層の透明度のより長期にわたる保持性の観点から好ましい。   In the present invention, the silica bonded in an elongated shape includes, for example, those obtained by connecting spherical silica particles into an elongated shape, rod-like silica itself, or a mixture thereof. Among them, spherical colloidal silica particles From the viewpoint of long-term retention of the transparency of the photocatalyst layer and the adhesive layer, the ligated product, rod-shaped colloidal silica, or a mixture thereof is preferable.

本発明の球状コロイダルシリカ粒子の連結物とは、球状のコロイダルシリカ粒子が連結したものを意味する。ここで「球状のコロイダルシリカ粒子」とは、その粒径が1〜1000nm、好ましくは1〜100nm、より好ましくは10〜50nmの範囲内にあるコロイダルシリカ粒子を意味する。また、本発明における球状のコロイダルシリカ粒子は、厳密な意味での球状に限られず、カプセル状、ラグビーボール状等の、長径と短径が異なる形状も含まれる。本発明においてコロイダルシリカ粒子が連結しているとは、コロイダルシリカ粒子同士が結合していることを意味する。ここで結合しているとは、直接的であるか間接的であるかを問わない。   The connected product of spherical colloidal silica particles of the present invention means a product in which spherical colloidal silica particles are connected. Here, “spherical colloidal silica particles” mean colloidal silica particles having a particle diameter in the range of 1 to 1000 nm, preferably 1 to 100 nm, and more preferably 10 to 50 nm. In addition, the spherical colloidal silica particles in the present invention are not limited to a spherical shape in a strict sense, but also include shapes having a different major axis and minor axis, such as a capsule shape and a rugby ball shape. In the present invention, that the colloidal silica particles are connected means that the colloidal silica particles are bonded to each other. The term “coupled” here does not matter whether it is direct or indirect.

本発明における球状コロイダルシリカ粒子の連結物としては、球状のコロイダルシリカ粒子が3個以上連結したものを例示することができる。また、球状コロイダルシリカ粒子の連結物は、その連結物の短辺の長さが10〜50nmの範囲であり、その長辺の長さが50〜400nmの範囲であることが、光触媒層や接着層の透明度のより長期にわたる保持性の観点から好ましい。
ここで、球状コロイダルシリカ粒子の連結物の短辺とは、連結している球状コロイダルシリカ粒子のうち、最も粒径が小さい球状コロイダルシリカ粒子の粒径又は短径を意味し、球状コロイダルシリカ粒子の連結物の長辺とは、球状コロイダルシリカ粒子の連結物の最も長い一辺を意味する。また、本発明における球状コロイダルシリカ粒子の連結物の中でも、ある球状のコロイダルシリカ粒子を起点に、別の球状コロイダルシリカ粒子が2次元方向に(一平面内に)連結しているものが、光触媒層や接着層の透明度のより長期にわたる保持性の観点から好ましい。
Examples of the connected product of spherical colloidal silica particles in the present invention include those in which three or more spherical colloidal silica particles are connected. In addition, the linked product of spherical colloidal silica particles has a short side length of 10 to 50 nm and a long side length of 50 to 400 nm. From the viewpoint of long-term retention of the transparency of the layer, it is preferable.
Here, the short side of the connected product of spherical colloidal silica particles means the particle diameter or short diameter of the smallest spherical colloidal silica particles among the connected spherical colloidal silica particles, and the spherical colloidal silica particles The long side of the connected product means the longest side of the connected product of spherical colloidal silica particles. Among the connected spherical colloidal silica particles in the present invention, a photocatalyst is one in which another spherical colloidal silica particle is connected in a two-dimensional direction (in one plane) starting from a certain spherical colloidal silica particle. From the viewpoint of the long-term retention of transparency of the layer or adhesive layer, it is preferable.

球状コロイダルシリカ粒子の連結物における球状コロイダルシリカ粒子の粒径又は短径は、それぞれ異なっていてもよいが、透明度のより長期にわたる保持性の観点から、最も大きい粒径と、最も小さい粒径との差、又は最も大きい短径と、最も小さい短径との差が20nmの範囲に含まれることが好ましく、10nmの範囲に含まれることが好ましい。本発明における球状コロイダルシリカ粒子の連結物の形状は特に制限されず、直鎖状、分岐した形状及びそれらが屈曲した形状等であってもよい。   The spherical colloidal silica particles may have different particle diameters or short diameters in the connection of spherical colloidal silica particles, but from the viewpoint of long-term retention of transparency, the largest particle diameter and the smallest particle diameter Or the difference between the largest minor axis and the smallest minor axis is preferably included in the range of 20 nm, and is preferably included in the range of 10 nm. The shape of the connected product of spherical colloidal silica particles in the present invention is not particularly limited, and may be a linear shape, a branched shape, a bent shape, or the like.

本発明における棒状コロイダルシリカとは、その短辺の長さに対する、その長辺の長さが少なくとも2倍以上であるコロイダルシリカを意味する。ここで、棒状コロイダルシリカの短辺とは、棒状コロイダルシリカの最も細い部分の直径を意味し、長辺とは、棒状コロイダルシリカの最も長い一辺を意味する。また、棒状コロイダルシリカは、その短辺の長さが10〜50nmの範囲であり、その長辺の長さが50〜400nmの範囲であることが、光触媒層や接着層の透明度のより長期にわたる保持性の観点から好ましい。   The rod-shaped colloidal silica in the present invention means colloidal silica whose long side is at least twice as long as the short side. Here, the short side of the rod-shaped colloidal silica means the diameter of the thinnest portion of the rod-shaped colloidal silica, and the long side means the longest side of the rod-shaped colloidal silica. Further, the rod-shaped colloidal silica has a short side length in the range of 10 to 50 nm, and the long side length in the range of 50 to 400 nm is longer in the transparency of the photocatalyst layer and the adhesive layer. It is preferable from the viewpoint of retention.

本発明における棒状コロイダルシリカの太さは、全体にわたって等しくなくてもよいが、光触媒層や接着層の透明度のより長期にわたる保持性の観点から、最も太い部分の直径と最も細い部分の直径の差が20nmの範囲に含まれることが好ましく、10nmの範囲に含まれることが好ましい。本発明における棒状コロイダルシリカの形状は特に制限されず、棒状コロイダルシリカを一部に含んだ形状も含まれる。例えば、棒状のコロイダルシリカと球状コロイダルシリカが連結していてもよいし、棒状のコロイダルシリカが分岐していてもよいし、屈曲していてもよい。   The thickness of the rod-shaped colloidal silica in the present invention may not be equal throughout, but the difference between the diameter of the thickest part and the diameter of the thinnest part from the viewpoint of long-term retention of the transparency of the photocatalyst layer or adhesive layer. Is preferably included in the range of 20 nm, and is preferably included in the range of 10 nm. The shape of the rod-shaped colloidal silica in the present invention is not particularly limited, and includes a shape partially containing the rod-shaped colloidal silica. For example, rod-shaped colloidal silica and spherical colloidal silica may be linked, or rod-shaped colloidal silica may be branched or bent.

なお、球状コロイダルシリカ粒子の連結物又は棒状コロイダルシリカが、屈曲した形状である場合は、直線状に伸ばした状態を基準にして、最も長い一辺及び最も細い部分の直径を測定する。また、球状コロイダルシリカ粒子の連結物又は棒状コロイダルシリカが分岐している場合は、最も長い一辺が最も長くなるような状態を基準にして、最も長い一辺及び最も細い部分の直径を測定する。   In addition, when the connection thing of spherical colloidal silica particle or rod-shaped colloidal silica is a bent shape, the diameter of the longest one side and the narrowest part is measured on the basis of the state extended linearly. Moreover, when the connection thing of spherical colloidal silica particle or rod-shaped colloidal silica is branched, the diameter of the longest one side and the thinnest part is measured on the basis of the state where the longest one side becomes the longest.

本発明における細長い形状に結合したシリカとして、具体的には、動的光散乱法による測定粒子径(D1)と窒素ガス吸着法による測定粒子径(D2)の比D1/D2が5以上であって、このD1は40〜300nmであり、そして電子顕微鏡観察による5〜20nmの範囲内の太さで一平面内のみの伸長を有する細長い形状の非晶質コロイダルシリカを例示することができる。このようなコロイダルシリカが分散したゾルの製造方法として、特開平1−317115号公報、特開平7−118008号公報に記載されている方法を例示することができる。   Specifically, the silica bonded in an elongated shape in the present invention has a ratio D1 / D2 of 5 or more as measured particle diameter (D1) measured by dynamic light scattering method and measured particle diameter (D2) measured by nitrogen gas adsorption method. The D1 is 40 to 300 nm, and an elongate amorphous colloidal silica having a thickness in the range of 5 to 20 nm by electron microscope observation and extending only in one plane can be exemplified. As a method for producing such a sol in which colloidal silica is dispersed, the methods described in JP-A-1-317115 and JP-A-7-118008 can be exemplified.

本発明における接着層に含まれる細長い形状に結合したシリカの含有量は、光触媒層と接着層の透明性が長期にわたって保持されるという本発明の効果が得られる限り特に制限されないが、接着層に対して、酸化物に換算して0.1〜60重量%であることが好ましく、1〜30重量%であることがより好ましく、1〜15重量%であることがさらに好ましい。   The content of the silica bonded to the elongated shape contained in the adhesive layer in the present invention is not particularly limited as long as the effect of the present invention that the transparency of the photocatalyst layer and the adhesive layer is maintained over a long period of time can be obtained. On the other hand, it is preferably 0.1 to 60% by weight in terms of oxide, more preferably 1 to 30% by weight, and further preferably 1 to 15% by weight.

本発明における接着層は、より優れた接着力、及び光触媒作用による劣化防止作用が得られることから細長い形状に結合したシリカに加えて、樹脂を含有することが好ましく、細長い形状に結合したシリカが樹脂にほぼ均一に複合していることがより好ましい。本発明における接着層における樹脂の含有量は特に制限されないが、接着層全量に対して、固形分として30〜90重量%であることが好ましく、60〜80重量%であることがより好ましい。   The adhesive layer in the present invention preferably contains a resin in addition to the silica bonded in an elongated shape because a superior adhesive force and a deterioration preventing effect due to photocatalytic action are obtained. More preferably, the resin is almost uniformly composited. The content of the resin in the adhesive layer in the present invention is not particularly limited, but is preferably 30 to 90% by weight, more preferably 60 to 80% by weight as solid content with respect to the total amount of the adhesive layer.

そのような樹脂としては、担体を光触媒作用による劣化から保護し、さらに光触媒層を固定できるものであれば特に制限されないが、例えば、(1)シリコン含有量が固形物として酸化物に換算して2〜60重量%のシリコン変性樹脂(アクリル−シリコン樹脂、エポキシシリコン樹脂、ポリエステルシリコン樹脂等)、(2)ポリシロキサンを固形物として酸化物に換算して3〜60重量%含有する樹脂(ポリシロキサンを含有するシリコン変性樹脂等)、又は(3)コロイダルシリカを固形物として酸化物に換算して5〜40重量%含有した樹脂(コロイダルシリカを含有するシリコン変性樹脂)を好ましく使用することができる。これらの樹脂は光触媒を強固に接着し、担体を光触媒から保護することができる。   Such a resin is not particularly limited as long as it can protect the carrier from deterioration due to photocatalysis and can fix the photocatalyst layer. For example, (1) the silicon content is converted into an oxide as a solid. 2 to 60% by weight of silicon-modified resin (acrylic-silicone resin, epoxy silicone resin, polyester silicone resin, etc.), (2) Resin containing 3 to 60% by weight of polysiloxane converted to oxide as a solid (polyethylene (Silicon-modified resin containing siloxane, etc.) or (3) Resin containing 5 to 40% by weight of colloidal silica as an oxide in the form of solid (silicon-modified resin containing colloidal silica) is preferably used. it can. These resins can firmly adhere the photocatalyst and protect the carrier from the photocatalyst.

シリコン、ポリシロキサン又はコロイダルシリカを上記範囲で含むと、光触媒層に対する接着力と、担体に対する密着性とのバランスがよい。   When silicon, polysiloxane, or colloidal silica is contained in the above range, the balance between the adhesion to the photocatalyst layer and the adhesion to the carrier is good.

またシリコンを導入する樹脂は特に制限されないが、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、アルキド樹脂、ウレタン樹脂等を例示することができる。これらの内、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂が、成膜性、強靭性、担体との密着性の点で特に好ましい。これらの樹脂は、溶液状であってもエマルジョンタイプであってもどちらでも使用することができる。また、これらの樹脂には、架橋剤等の添加物が含まれていてもよい。   The resin into which silicon is introduced is not particularly limited, and examples thereof include acrylic resins, epoxy resins, polyester resins, alkyd resins, and urethane resins. Among these, acrylic resins, epoxy resins, and polyester resins are particularly preferable in terms of film formability, toughness, and adhesion to the carrier. These resins can be used in either a solution form or an emulsion type. These resins may contain additives such as a crosslinking agent.

接着層の樹脂にポリシロキサンが含まれている場合、ポリシロキサンが、炭素数1〜5のアルコキシ基を有するシリコンアルコキシドの加水分解物又は該加水分解物生成物であると、より優れた接着性及び耐久性が得られるため好ましい。また、部分的に塩素を含んだシリコンアルコキシドを加水分解したポリシロキサンを使用することもできる。   When the polysiloxane is contained in the resin of the adhesive layer, the polysiloxane is a hydrolyzate of the silicon alkoxide having an alkoxy group having 1 to 5 carbon atoms or the hydrolyzate product, so that more excellent adhesiveness is obtained. And durability is preferred. In addition, polysiloxane obtained by hydrolyzing silicon alkoxide partially containing chlorine can be used.

かかるシリコンアルコキシドとしては、例えば、後述の式(IV)で表されるシリコンアルコキシド又はその加水分解生成物を好ましく使用することができる。
式(IV)で表されるシリコンアルコキシドの好ましい具体例としては、Si(OCH、Si(OC、Si(OC、Si(OC、Si(OC11、Si(OC13、SiCH(OCH、SiCH(OC、SiCH(OC、SiCH(OC、SiCH(OC、SiCl(OCH、SiCl(OC、SiCl(OC、SiCl(OC、SiCl(OC13、SiCl(OH)(OCH、SiCl(OH)(OC、SiCl(OH)(OC、SiCl(OH)(OC、SiCl(OCH、SiCl(OC等を挙げることができる。
As such a silicon alkoxide, for example, a silicon alkoxide represented by the following formula (IV) or a hydrolysis product thereof can be preferably used.
Preferable specific examples of the silicon alkoxide represented by the formula (IV) include Si (OCH 3 ) 4 , Si (OC 2 H 5 ) 4 , Si (OC 3 H 7 ) 4 , Si (OC 4 H 9 ) 4 , Si (OC 5 H 11 ) 4 , Si (OC 6 H 13 ) 4 , SiCH 3 (OCH 3 ) 3 , SiCH 3 (OC 2 H 5 ) 3 , SiCH 3 (OC 3 H 7 ) 3 , SiCH 3 ( OC 3 H 7 ) 3 , SiCH 3 (OC 4 H 9 ) 3 , SiCl (OCH 3 ) 3 , SiCl (OC 2 H 5 ) 3 , SiCl (OC 3 H 7 ) 3 , SiCl (OC 4 H 9 ) 3 , SiCl (OC 6 H 13 ) 3 , SiCl (OH) (OCH 3 ) 2 , SiCl (OH) (OC 2 H 5 ) 2 , SiCl (OH) (OC 3 H 7 ) 2 , SiCl (OH) (OC 4 H 9 ) 2 , SiCl 2 (OCH 3 ) 2 , SiCl 2 (OC 2 H 5 ) 2 and the like.

これらシリコン変性樹脂にシリコンを導入する方法は、特に制限されない。そのような方法として、例えば、エステル交換反応、シリコンマクロマーや反応性シリコンモノマーを用いたグラフト反応、ヒドロシリル化反応、ブロック共重合法等が挙げられる。
例えば、ポリシロキサンを樹脂に導入する、より具体的な方法としては、(1)シリコンアルコキシドをモノマーの状態で樹脂溶液と混合し、接着層形成時に空気中の水分で加水分解させる方法、(2)予めシリコンアルコキシドの部分加水分解物を樹脂と混合し、更に、接着剤層形成時に空気中の水分で加水分解する方法等を挙げることができる。なお、シリコンアルコキシドの加水分解速度を調整するために、酸や塩基触媒を少量添加してもよい。ポリシロキサンの樹脂への添加量は、担体に光触媒層をより強固に接着させる観点から、樹脂全量に対して、酸化物に換算して3〜90重量%であることが好ましい。
The method for introducing silicon into these silicon-modified resins is not particularly limited. Examples of such methods include transesterification, grafting reaction using silicon macromers and reactive silicon monomers, hydrosilylation reaction, block copolymerization method, and the like.
For example, as a more specific method for introducing polysiloxane into a resin, (1) a method in which silicon alkoxide is mixed with a resin solution in a monomer state and hydrolyzed with moisture in the air when forming an adhesive layer, (2 ) A method in which a partial hydrolyzate of silicon alkoxide is mixed with a resin in advance and further hydrolyzed with moisture in the air when forming the adhesive layer. In order to adjust the hydrolysis rate of silicon alkoxide, a small amount of acid or base catalyst may be added. The amount of polysiloxane added to the resin is preferably 3 to 90% by weight in terms of oxide, based on the total amount of the resin, from the viewpoint of more firmly bonding the photocatalyst layer to the carrier.

ポリシロキサンを導入させる樹脂は特に制限されないが、例えば、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂、ウレタン樹脂、アルキド樹脂等を例示することができる。これらのうち、アクリル樹脂、エポキシ樹脂、ポリエステル樹脂又はこれらの混合樹脂を用いると、ポリシロキサンを導入させた場合に、優れた耐久性が得られるので好ましい。   The resin into which polysiloxane is introduced is not particularly limited, and examples thereof include acrylic resins, epoxy resins, polyester resins, urethane resins, alkyd resins, and the like. Among these, it is preferable to use an acrylic resin, an epoxy resin, a polyester resin, or a mixed resin thereof because excellent durability can be obtained when polysiloxane is introduced.

接着層に用いる樹脂が、コロイダルシリカを含む樹脂である場合、コロイダルシリカの粒径は特に制限されないが、光触媒作用に対する耐久性、光触媒層との接着性の観点から、粒径が50nm以下であることが好ましい。
コロイダルシリカを樹脂に導入する方法は特に制限されないが、樹脂溶液とコロイダルシリカ溶液を混合後、塗布−乾燥して保護膜を形成する方法が最も簡便な方法の一つとして挙げられる他、コロイダルシリカを分散した状態で樹脂を重合させる方法も挙げることができる。また、コロイダルシリカと樹脂との接着性および分散性を良くするために、シランカップリング剤で処理されたコロイダルシリカを用いることもできる。
コロイダルシリカの樹脂への添加量は、担体に光触媒層をより強固に接着させる観点から、樹脂全量に対して、酸化物に換算して5〜90重量%であることが好ましい。
When the resin used for the adhesive layer is a resin containing colloidal silica, the particle diameter of the colloidal silica is not particularly limited, but the particle diameter is 50 nm or less from the viewpoint of durability against photocatalysis and adhesion to the photocatalyst layer. It is preferable.
The method for introducing the colloidal silica into the resin is not particularly limited. One of the simplest methods is a method of forming a protective film by mixing the resin solution and the colloidal silica solution and then applying and drying. A method of polymerizing a resin in a state where is dispersed is also mentioned. Moreover, in order to improve the adhesiveness and dispersibility of colloidal silica and resin, colloidal silica treated with a silane coupling agent can also be used.
The amount of colloidal silica added to the resin is preferably 5 to 90% by weight in terms of oxide with respect to the total amount of the resin from the viewpoint of more firmly bonding the photocatalyst layer to the carrier.

コロイダルシリカを導入する樹脂は特に制限されないが、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル樹脂、アルキド樹脂等を挙げることができる。これらのうち、アクリル樹脂、エポキシ樹脂及びポリエステル樹脂を用いると、コロイダルシリカを導入した場合に、優れた耐久性が得られるので好ましい。
コロイダルシリカの製造方法は特に制限されないが、例えば、珪酸ナトリウム水溶液を陽イオン交換する方法や、シリコンアルコキシドを加水分解する方法などが挙げられる。
The resin into which the colloidal silica is introduced is not particularly limited, and examples thereof include an acrylic resin, an epoxy resin, a urethane resin, a polyester resin, and an alkyd resin. Of these, acrylic resins, epoxy resins, and polyester resins are preferred because excellent durability can be obtained when colloidal silica is introduced.
Although the manufacturing method in particular of colloidal silica is not restrict | limited, For example, the method of carrying out cation exchange of the sodium silicate aqueous solution, the method of hydrolyzing a silicon alkoxide, etc. are mentioned.

さらに本発明においては、ポリシロキサン及びコロイダルシリカの両方を含有する樹脂を接着層として使用することができる。その場合、ポリシロキサン及びコロイダルシリカの樹脂への添加量の合計は、より優れた接着力が得られることから、樹脂全量に対して、酸化物に換算して5〜90重量%であることが好ましい。   Furthermore, in the present invention, a resin containing both polysiloxane and colloidal silica can be used as the adhesive layer. In this case, the total amount of polysiloxane and colloidal silica added to the resin is 5 to 90% by weight in terms of oxide, based on the total amount of the resin, because better adhesive strength can be obtained. preferable.

接着層に使用する樹脂がコロイダルシリカを含有する樹脂及び/又はポリシロキサンを含有する樹脂の場合、そのコロイダルシリカやポリシロキサンの粒径は特に制限されないが、より優れた分散性及び接着層の透光性が得られることから、それぞれ50nm以下が望ましい。   When the resin used for the adhesive layer is a resin containing colloidal silica and / or a resin containing polysiloxane, the particle size of the colloidal silica or polysiloxane is not particularly limited, but more excellent dispersibility and transparency of the adhesive layer. Since light property is obtained, 50 nm or less is desirable respectively.

なお、接着層樹脂には光触媒作用による劣化を抑える目的で、光安定化剤及び/又は紫外線吸収剤をさらに添加することができる。光安定化剤は特に制限されないが、ヒンダードアミン系の光安定化剤を好ましく用いることができる。また、紫外線吸収剤は特に制限されないが、トリアゾール系の紫外線吸収剤等を使用することができる。光安定化剤及び紫外線吸収剤の添加量は特に制限されないが、それぞれ接着層樹脂に対して、好ましくは0.005重量%〜10重量%、より好ましくは0.01重量%〜5重量%とすることができる。   In addition, a light stabilizer and / or an ultraviolet absorber can be further added to the adhesive layer resin for the purpose of suppressing deterioration due to photocatalytic action. The light stabilizer is not particularly limited, but a hindered amine light stabilizer can be preferably used. The ultraviolet absorber is not particularly limited, but a triazole ultraviolet absorber or the like can be used. The addition amount of the light stabilizer and the ultraviolet absorber is not particularly limited, but is preferably 0.005 wt% to 10 wt%, more preferably 0.01 wt% to 5 wt%, respectively, with respect to the adhesive layer resin. can do.

また、光触媒層に接する側の接着層の表面を、例えば、シラン系もしくはチタン系カップリング剤で処理することにより、光触媒層との接着性を高めることもできる。   Moreover, the adhesiveness with a photocatalyst layer can also be improved by processing the surface of the adhesive layer on the side in contact with the photocatalyst layer with, for example, a silane-based or titanium-based coupling agent.

接着層を担体表面に形成する方法は特に制限されないが、例えば、印刷法、シート成形法、スプレー吹き付け法、ディップコーティング法、スピンコーティング法等の方法で、後述の接着層形成用塗布液を担体表面にコートし、乾燥・硬化させる方法を例示することができる。乾燥・硬化させる際の温度は、溶媒や樹脂の種類によっても異なるが、一般的に50℃〜300℃程度であることが好ましい。   The method for forming the adhesive layer on the surface of the carrier is not particularly limited. For example, the coating liquid for forming the adhesive layer described below is used as the carrier by a printing method, a sheet molding method, a spray spraying method, a dip coating method, a spin coating method, or the like. A method of coating the surface and drying / curing can be exemplified. The temperature for drying and curing varies depending on the type of solvent and resin, but is generally preferably about 50 ° C to 300 ° C.

接着層の厚さは特に制限されないが、光触媒層との良好な接着を得るためには0.1μm〜20μm程度であることが好ましい。接着層の厚みが薄すぎると光触媒層に対する接着力が十分ではない場合がある一方、厚くし過ぎてもメリットは少ない。   The thickness of the adhesive layer is not particularly limited, but is preferably about 0.1 μm to 20 μm in order to obtain good adhesion with the photocatalyst layer. If the thickness of the adhesive layer is too thin, the adhesive force to the photocatalyst layer may not be sufficient, but if it is too thick, there are few merits.

本発明における光触媒とは、光触媒活性を有する物質(以下、「光触媒」という)を含んでいれば特に制限はない。光触媒として、具体的にはTiO、ZnO、SrTiO、CdS、GaP、InP、GaAs、BaTiO、KNbO、Fe、Ta、WO、SnO、Bi、NiO、CuO、SiC、SiO、MoS、InPb、RuO、CeO等を例示することができ、さらにこれらの光触媒にPt、Rh、RuO、Nb、Cu、Sn、Ni、Fe等の金属もしくは金属酸化物を添加したものを使用することができる。これらの内、耐久性、コスト、光触媒活性を考慮すると酸化チタン(TiO)を主成分とするものが特に好ましく、さらに、光触媒活性を考慮するとアナターゼ型酸化チタンがより好ましい。また、太陽光のような紫外線を多く含む光で触媒活性を示す酸化チタンのみならず、貴金属をドープ等して紫外線の少ない室内光においても触媒活性を示す酸化チタンを用いることができる。
本発明の光触媒層は、光触媒を1種のみ含有してもよいが、2種以上含有してもよい。
The photocatalyst in the present invention is not particularly limited as long as it contains a substance having photocatalytic activity (hereinafter referred to as “photocatalyst”). Specifically, as a photocatalyst, TiO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , KNbO 3 , Fe 2 O 3 , Ta 2 O 5 , WO 3 , SnO 2 , Bi 2 O 3 , NiO, Cu 2 O, SiC, SiO 2 , MoS 2 , InPb, RuO 2 , CeO 2 and the like can be exemplified, and furthermore, these photocatalysts are Pt, Rh, RuO 2 , Nb, Cu, Sn, Ni, Fe The thing which added metals or metal oxides, such as, can be used. Of these, those containing titanium oxide (TiO 2 ) as the main component are particularly preferred in consideration of durability, cost, and photocatalytic activity, and anatase-type titanium oxide is more preferred in consideration of photocatalytic activity. Moreover, not only titanium oxide that shows catalytic activity with light containing a lot of ultraviolet rays such as sunlight, but also titanium oxide that shows catalytic activity even in room light with little ultraviolet rays by doping a noble metal or the like can be used.
Although the photocatalyst layer of this invention may contain only 1 type of photocatalysts, it may contain 2 or more types.

また、本発明の光触媒層は、接着層との接着性の向上、及び透明度のより長期にわたる保持性の観点から、光触媒に加えて、さらに、ジルコニウム化合物、アルミニウム化合物及びシリコン化合物からなる群から選ばれる少なくとも1種以上を含有することが好ましい。   Further, the photocatalyst layer of the present invention is selected from the group consisting of a zirconium compound, an aluminum compound and a silicon compound in addition to the photocatalyst, from the viewpoint of improvement in adhesion to the adhesive layer and longer-term retention of transparency. It is preferable to contain at least one selected from the above.

光触媒は、粉末状、ゾル状、溶液状など、乾燥・硬化したときに接着層と固着して光触媒活性を示すものであればいずれも使用することができる。特にゾル状で粒径が50nm以下、好ましくは20nm以下のものを使用すると、光触媒層の透明性が向上し平行光線透過率が高くなるため、透明性が要求されるガラス基板やプラスチック成形体に塗布する場合に好ましい。また、色や模様が付された担体を用いる場合は、こうした透明な光触媒層を利用すると下地の色や柄を損なうことが少ないため好ましい。50nm以上の粒径の光触媒を用いると、50nm以下の粒径の光触媒を用いた場合に比べて、平行光線透過率が減少し、ヘイズ率が高くなる。ここで、ヘイズ率とは、ヘイズ率=(全光線透過率−平行光線透過率)×100/全光線透過率という関係式で求められる値である。例えば、トイレの窓ガラスは、外部の太陽光を十分に透過してトイレ内が明るくなるように全光線透過率の高いものであり、かつ、トイレ内部が外部からはっきりと見えてはいけないのでヘイズ率が高いものである必要がある。   Any photocatalyst can be used as long as it is fixed to the adhesive layer when dried / cured and exhibits photocatalytic activity, such as powder, sol, and solution. In particular, when a sol-like particle having a particle size of 50 nm or less, preferably 20 nm or less is used, the photocatalyst layer is improved in transparency and has a high parallel light transmittance. It is preferable when applied. Further, when a carrier with a color or pattern is used, it is preferable to use such a transparent photocatalyst layer because the base color or pattern is less likely to be damaged. When a photocatalyst having a particle size of 50 nm or more is used, the parallel light transmittance is reduced and the haze ratio is increased as compared with the case of using a photocatalyst having a particle size of 50 nm or less. Here, the haze ratio is a value obtained by a relational expression of haze ratio = (total light transmittance−parallel light transmittance) × 100 / total light transmittance. For example, toilet window glass has high total light transmittance so that the outside sunlight can be sufficiently transmitted and the inside of the toilet becomes bright, and the interior of the toilet should not be clearly visible from the outside. The rate needs to be high.

光触媒層中の光触媒の合計の含有量は、光触媒層に対して、酸化物に換算して0.1〜60重量%が好ましく、10〜40重量%がより好ましい。また、光触媒が酸化チタンの場合も同様の範囲が好ましい範囲として挙げられる。このような範囲で用いると、接着層との接着性、及び光触媒活性の観点からバランスの良い光触媒層が得られる。
また、本発明の光触媒層がジルコニウム化合物を含有する場合、ジルコニウム化合物の含有量は、光触媒層に対して、好ましくは5〜60重量%、より好ましくは、10〜30重量%である。また、本発明の光触媒層がアルミニウム化合物を含有する場合、アルミニウム化合物の含有量は、光触媒層に対して、好ましくは20〜90重量%、より好ましくは、20〜40重量%である。また、本発明の光触媒層がシリコン化合物を含有する場合、シリコン化合物の含有量は、光触媒層に対して、好ましくは5〜50重量%、より好ましくは、20〜40重量%である。これらの範囲であると、接着層との接着性、透明度のより長期にわたる保持性の観点からバランスのよい光触媒層が得られる。
また、光触媒層が、ジルコニウム化合物、アルミニウム化合物及びシリコン化合物からなる群から選ばれるいずれか2つ以上の化合物を含有する場合は、それらの化合物の合計は、光触媒層に対して、好ましくは40〜95重量%、より好ましくは、60〜90重量%である。これらの範囲であると、接着層との接着性、透明度のより長期にわたる保持性、光触媒活性の観点からバランスのよい光触媒層が得られる。
The total content of the photocatalyst in the photocatalyst layer is preferably 0.1 to 60% by weight and more preferably 10 to 40% by weight in terms of oxide with respect to the photocatalyst layer. Moreover, the same range is mentioned as a preferable range also when a photocatalyst is a titanium oxide. When used in such a range, a well-balanced photocatalyst layer can be obtained from the viewpoint of adhesion to the adhesive layer and photocatalytic activity.
Moreover, when the photocatalyst layer of this invention contains a zirconium compound, content of a zirconium compound becomes like this. Preferably it is 5-60 weight% with respect to a photocatalyst layer, More preferably, it is 10-30 weight%. Moreover, when the photocatalyst layer of this invention contains an aluminum compound, content of an aluminum compound becomes like this. Preferably it is 20 to 90 weight% with respect to a photocatalyst layer, More preferably, it is 20 to 40 weight%. Moreover, when the photocatalyst layer of this invention contains a silicon compound, content of a silicon compound becomes like this. Preferably it is 5-50 weight% with respect to a photocatalyst layer, More preferably, it is 20-40 weight%. Within these ranges, a well-balanced photocatalyst layer can be obtained from the viewpoints of adhesion to the adhesive layer and long-term retention of transparency.
Moreover, when the photocatalyst layer contains any two or more compounds selected from the group consisting of a zirconium compound, an aluminum compound, and a silicon compound, the total of these compounds is preferably 40 to It is 95 weight%, More preferably, it is 60 to 90 weight%. Within these ranges, a well-balanced photocatalyst layer can be obtained from the viewpoints of adhesion to the adhesive layer, longer transparency retention, and photocatalytic activity.

ジルコニウム化合物としては、特に制限されないが、ジルコニウムの酸化物、酸化水酸化物、水酸化物、硝酸塩、オキシ硝酸塩、炭酸塩、オキシ炭酸塩、蓚酸塩、オキシ蓚酸塩、酢酸塩、オキシ酢酸塩、炭素数1〜6のアルコキシド及び該アルコキシドの加水分解生成物からなる群から選ばれた1種又は2種以上の混合物のゲルが好ましく、酸化ジルコニウム、オキシ硝酸ジルコニウム、オキシ塩化ジルコニウム、水和酸化ジルコニウム、オキシ水酸化ジルコニウム、水和硝酸ジルコニウム、水和オキシ塩化ジルコニウム、蓚酸ジルコニウム、酢酸ジルコニウム、ジルコニウムテトライソプロポキシド、ジルコニウムテトラブトキシド、ジルコニウムジブトキシドアセチルアセトナート、ジルコニウムジブトキシドラクテート、ジルコニウムブトキシドの加水分解生成物、ジルコニウムイソプロポキシドの加水分解生成物が特に好ましい。   Zirconium compound is not particularly limited, but zirconium oxide, oxide hydroxide, hydroxide, nitrate, oxynitrate, carbonate, oxycarbonate, oxalate, oxyoxalate, acetate, oxyacetate, Preferred is a gel of one or a mixture of two or more selected from the group consisting of alkoxides having 1 to 6 carbon atoms and hydrolysis products of the alkoxides, zirconium oxide, zirconium oxynitrate, zirconium oxychloride, hydrated zirconium oxide , Zirconium oxyhydroxide, hydrated zirconium nitrate, hydrated zirconium oxychloride, zirconium oxalate, zirconium acetate, zirconium tetraisopropoxide, zirconium tetrabutoxide, zirconium dibutoxide acetylacetonate, zirconium dibutoxide lactate, zirconium Hydrolysis products of Tokishido, hydrolysis products of zirconium isopropoxide is particularly preferred.

アルミニウム化合物としては、特に制限されないが、アルミニウムの酸化物、酸化水酸化物、水酸化物、硝酸塩、オキシ硝酸塩、炭酸塩、オキシ炭酸塩、蓚酸塩、オキシ蓚酸塩、酢酸塩、オキシ酢酸塩、炭素数1〜6のアルコキシド、及び該アルコキシドの加水分解生成物からなる群から選ばれた1種又は2種以上の混合物が好ましく、酸化アルミニウム、酸化水酸化アルミニウム、水酸化アルミニウム、水和酸化アルミニウム、ベーマイト、硝酸アルミニウム、オキシ硝酸アルミニウム、炭酸アルミニウム、オキシ炭酸アルミニウム、蓚酸アルミニウム、オキシ蓚酸アルミニウム、酢酸アルミニウム、オキシ酢酸アルミニウム、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシド、アルミニウムブトキシドアセチルアセトナート、アルミニウムブトキシドラクテート、アルミニウムブトキシドの加水分解生成物、アルミニウムイソプロポキシドの加水分解生成物等が特に好ましい。   The aluminum compound is not particularly limited, but aluminum oxide, oxide hydroxide, hydroxide, nitrate, oxynitrate, carbonate, oxycarbonate, oxalate, oxysuccinate, acetate, oxyacetate, One or a mixture of two or more selected from the group consisting of alkoxides having 1 to 6 carbon atoms and hydrolysis products of the alkoxides are preferred, and aluminum oxide, aluminum oxide hydroxide, aluminum hydroxide, hydrated aluminum oxide Boehmite, Aluminum nitrate, Aluminum oxynitrate, Aluminum carbonate, Aluminum oxycarbonate, Aluminum oxalate, Aluminum oxyoxalate, Aluminum acetate, Aluminum oxyacetate, Aluminum triisopropoxide, Aluminum tributoxide, Aluminum butoxide acetylacetona DOO, aluminum butoxy Doraku Tate, hydrolysis products of aluminum butoxide, hydrolysis products of aluminum isopropoxide are particularly preferred.

本発明におけるジルコニウム化合物及びアルミニウム化合物の粒径については特に制限されないが、粒径が2nm〜50nm、好ましくは2nm〜20nmのゾルを使用することが好ましい。このような粒径のものを使用すると、光触媒層の透明性が向上し平行光線透過率が高くなるため、透明性が要求されるガラス基板やプラスチック成形体に塗布する場合に好ましい。また、色や模様が付された担体を用いる場合は、こうした透明な光触媒層を利用すると下地の色や柄を損なうことが少ないため好ましい。50nm以上の粒径の光触媒を用いると、50nm以下の粒径の光触媒を用いた場合に比べて、平行光線透過率が減少し、ヘイズ率が高くなる。   The particle diameter of the zirconium compound and aluminum compound in the present invention is not particularly limited, but it is preferable to use a sol having a particle diameter of 2 nm to 50 nm, preferably 2 nm to 20 nm. Use of a particle having such a particle size improves the transparency of the photocatalyst layer and increases the parallel light transmittance, which is preferable when it is applied to a glass substrate or plastic molded product that requires transparency. Further, when a carrier with a color or pattern is used, it is preferable to use such a transparent photocatalyst layer because the base color or pattern is less likely to be damaged. When a photocatalyst having a particle size of 50 nm or more is used, the parallel light transmittance is reduced and the haze ratio is increased as compared with the case of using a photocatalyst having a particle size of 50 nm or less.

本発明において、ジルコニウム又はアルミニウムの酸化物、酸化水酸化物、水酸化物を用いる場合は、150℃で60分乾燥後の比表面積が100m/g以上の多孔質ゲル状のものを使用することが好ましい。多孔質ゲルは吸着性を有しており、光触媒活性を高める効果を有する。 In the present invention, when a zirconium or aluminum oxide, oxide hydroxide or hydroxide is used, a porous gel having a specific surface area of 100 m 2 / g or more after drying at 150 ° C. for 60 minutes is used. It is preferable. The porous gel has adsorptivity and has an effect of enhancing photocatalytic activity.

ゾル状の光触媒、ジルコニウム化合物及び/または又はアルミニウム化合物を用いる場合は、安定化のために光触媒形成用塗布液中へ、酸やアルカリの解膠剤を添加することもできる。またゾル懸濁液中に、接着性や操作性を向上させるために光触媒に対して5重量%以下の界面活性剤を添加することもできる。   In the case of using a sol-like photocatalyst, zirconium compound and / or aluminum compound, an acid or alkali peptizer can be added to the photocatalyst-forming coating solution for stabilization. In addition, a surfactant of 5% by weight or less can be added to the sol suspension with respect to the photocatalyst in order to improve adhesion and operability.

本発明におけるシリコン化合物としては、特に制限されないが、シリコン樹脂、ポリシロキサン等が例示され、より具体的には、例えば、
式(I)
Although it does not restrict | limit especially as a silicon compound in this invention, Silicon resin, polysiloxane, etc. are illustrated, More specifically, for example,
Formula (I)

Figure 2012025163
Figure 2012025163

(式中、Rは、炭素数1〜20の置換基を有してもよいアルキル基を示し、X、X及びXは、それぞれ独立して塩素原子、水素原子、水酸基又は炭素数1〜8のアルコキシ基を示す。)で表されるシリコン化合物、
式(II)
(In the formula, R 1 represents an alkyl group which may have a substituent having 1 to 20 carbon atoms, and X 1 , X 2 and X 3 are each independently a chlorine atom, a hydrogen atom, a hydroxyl group or carbon; A silicon compound represented by the following formula (1):
Formula (II)

Figure 2012025163
Figure 2012025163

(式中、R及びRは、それぞれ独立して炭素数1〜20の置換基を有してもよいアルキル基を示し、X及びXは、それぞれ独立して塩素原子、水素原子、水酸基又は炭素数1〜8のアルコキシ基を示す。)で表されるシリコン化合物、及び
式(III)
(In the formula, R 1 and R 2 each independently represent an alkyl group which may have a substituent having 1 to 20 carbon atoms, and X 1 and X 2 each independently represent a chlorine atom or a hydrogen atom. , A hydroxyl group or an alkoxy group having 1 to 8 carbon atoms.), And a formula (III)

Figure 2012025163
Figure 2012025163

(式中、R、R及びRは、それぞれ独立して炭素数1〜20の置換基を有してもよいアルキル基を示し、Xは、塩素原子、水素原子、水酸基又は炭素数1〜8のアルコキシ基を示す。)で表されるシリコン化合物並びにそれらの加水分解生成物からなる群から選ばれる1種以上のシリコン化合物が挙げられる。 (Wherein R 1 , R 2 and R 3 each independently represents an alkyl group which may have a substituent having 1 to 20 carbon atoms, and X 1 represents a chlorine atom, a hydrogen atom, a hydroxyl group or carbon. And a silicon compound represented by formula (1) to (8), and one or more silicon compounds selected from the group consisting of hydrolysis products thereof.

ここで、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、オクタデシル基などが挙げられる。また、X1、X2及びX3は、塩素原子、水素原子、水酸基又は炭素数1〜8のアルコキシ基を示す。この際、X1、X2及びX3は、同一であっても、異なっていてもよい。ここで、炭素数1〜8のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2−エチルヘキシルオキシ基、オクチルオキシ基などが挙げられる。 Here, as the alkyl group having 1 to 20 carbon atoms, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group Hexyl group, heptyl group, octyl group, decyl group, dodecyl group, octadecyl group and the like. X 1 , X 2 and X 3 represent a chlorine atom, a hydrogen atom, a hydroxyl group or an alkoxy group having 1 to 8 carbon atoms. At this time, X 1 , X 2 and X 3 may be the same or different. Here, as the alkoxy group having 1 to 8 carbon atoms, methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group , 2-ethylhexyloxy group, octyloxy group and the like.

より具体的には、上記シリコン化合物のうち、式(I)で表される1置換アルキルのシリコン化合物として、n−ブチルトリクロロシラン、n−ブチルトリメトキシシラン、n−デシルトリクロロシラン、n−デシルトリエトキシシラン、ジメトキシメチルクロロシラン、n−ドデシルトリクロロシラン、n−ドデシルトリエトキシシラン、エチルトリクロロシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、n−ヘプチルトリクロロシラン、n−ヘキサデシルトリクロロシラン、n−ヘキサデシルトリメトキシシラン、n−ヘキシルトリクロロシラン、n−ヘキシルトリエトキシシラン、n−ヘキシルトリメトキシシラン、メチルトリクロロシラン、メチルトリエトキシシラン、n−オクタデシルトリクロロシラン、n−オクタデシルトリエトキシシラン、n−オクタデシルトリメトキシシラン、n−プロピルトリクロロシラン、n−プロピルトリエトキシシラン、n−プロピルトリメトキシシランなどが挙げられる。   More specifically, among the above silicon compounds, the monosubstituted alkyl silicon compounds represented by the formula (I) include n-butyltrichlorosilane, n-butyltrimethoxysilane, n-decyltrichlorosilane, and n-decyl. Triethoxysilane, dimethoxymethylchlorosilane, n-dodecyltrichlorosilane, n-dodecyltriethoxysilane, ethyltrichlorosilane, ethyltriethoxysilane, ethyltrimethoxysilane, n-heptyltrichlorosilane, n-hexadecyltrichlorosilane, n- Hexadecyltrimethoxysilane, n-hexyltrichlorosilane, n-hexyltriethoxysilane, n-hexyltrimethoxysilane, methyltrichlorosilane, methyltriethoxysilane, n-octadecyltrichlorosilane, n-o Data decyl triethoxysilane, n- octadecyl trimethoxysilane, n- propyl trichlorosilane, n- propyl triethoxysilane, etc. n- propyl trimethoxy silane.

また、式(II)で表される2置換アルキルのシリコン化合物としては、n−ブチルメチルジクロロシラン、n−デシルメチルジクロロシラン、ジ−n−ブチルジクロロシラン、ジエチルジクロロシラン、ジエチルジエトキシシラン、ジ−n−ヘキシルジクロロシラン、ジメチルジクロロシラン、ジメチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジプロポキシシラン、ジメチルメトキシクロロシラン、ジ−n−オクチルジクロロシラン、ドコシルメチルジクロロシラン、ドデシルメチルジクロロシラン、ドデシルメチルジエトキシシラン、エチルメチルジクロロシラン、n−ヘプチルメチルジクロロシラン、n−ヘキシルメチルジクロロシラン、メチルペンチルジクロロシラン、n−オクタデシルメトキシジクロロシラン、n−オクタデシルメチルジクロロシラン、プロピルメチルジクロロシランなどが挙げられる。   Examples of the disubstituted alkyl silicon compound represented by the formula (II) include n-butylmethyldichlorosilane, n-decylmethyldichlorosilane, di-n-butyldichlorosilane, diethyldichlorosilane, diethyldiethoxysilane, Di-n-hexyldichlorosilane, dimethyldichlorosilane, dimethyldiethoxysilane, dimethyldimethoxysilane, dimethyldipropoxysilane, dimethylmethoxychlorosilane, di-n-octyldichlorosilane, docosylmethyldichlorosilane, dodecylmethyldichlorosilane, dodecyl Methyldiethoxysilane, ethylmethyldichlorosilane, n-heptylmethyldichlorosilane, n-hexylmethyldichlorosilane, methylpentyldichlorosilane, n-octadecylmethoxydichlorosilane, n Octadecyl methyl dichlorosilane, and propyl methyl dichlorosilane, and the like.

また、式(III)で表される3置換アルキルのシリコン化合物としては、n−デシルジメチルクロロシラン、エチルジメチルクロロシラン、n−オクタデシルジメチルクロロシラン、n−オクタデシルジメチルメトキシシラン、n−オクチルジメチルクロロシラン、n−プロピルジメチルクロロシラン、トリメチルクロロシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチル−n−プロポキシシラン、トリ−n−プロピルクロロシランなどが挙げられる。   Examples of the trisubstituted alkyl silicon compound represented by the formula (III) include n-decyldimethylchlorosilane, ethyldimethylchlorosilane, n-octadecyldimethylchlorosilane, n-octadecyldimethylmethoxysilane, n-octyldimethylchlorosilane, n- Examples thereof include propyldimethylchlorosilane, trimethylchlorosilane, trimethylethoxysilane, trimethylmethoxysilane, trimethyl-n-propoxysilane, and tri-n-propylchlorosilane.

なお、式(I)で表されるシリコン化合物、式(II)で表されるシリコン化合物、式(III)で表されるシリコン化合物における、R、R、及びRは、置換基を有していてよく、かつ、分岐を有していてもよい。置換基としては、例えば、アミノ基、カルボキシル基、塩素原子等が挙げられる。また、R、R及びRは、それぞれ独立して炭素数1〜8の置換基を有してもよいアルキル基であってもよい。 In the silicon compound represented by the formula (I), the silicon compound represented by the formula (II), and the silicon compound represented by the formula (III), R 1 , R 2 , and R 3 represent a substituent. It may have and may have a branch. Examples of the substituent include an amino group, a carboxyl group, and a chlorine atom. R 1 , R 2 and R 3 may each independently be an alkyl group which may have a substituent having 1 to 8 carbon atoms.

また、上記の本発明におけるシリコン化合物の中でも、
式(IV):SiCln(OH)n(OR)n
で表されるシリコンアルコキシド又はその加水分解生成物であることが好ましい。ここで、Rはメチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、ヘキシル、オクチル、アミノメチル、アミノエチル、カルボキシメチル、カルボキシエチル、クロロメチル、クロロエチル、クロロプロピル基等の(アミノ基、カルボキシル基又は塩素原子で置換されていてもよい)炭素数1〜8のアルキル基を表す。
は、メチル、エチル、プロピル、イソプロピル、ブチル、s−ブチル、t−ブチル、ヘキシル基等の炭素数1〜8のアルキル基、又はメトキシメチル、エトキシメチル、プロポキシメチル、イソプロポキシメチル、ブトキシメチル、メトキシエチル、エトキシメチル、プロポキシエチル、メトキシプロピル、メトキシブチル基等のアルコキシ基で置換された炭素数1〜8のアルキル基を表す。またn、n及びnは0、1又は2を表し、nは2から4の整数を表し、かつn+n+n+n=4である。
Among the silicon compounds in the present invention described above,
Formula (IV): SiCln 1 (OH) n 2 R 4 n 3 (OR 5 ) n 4
It is preferable that it is a silicon alkoxide represented by these, or its hydrolysis product. Here, R 4 is methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl, octyl, aminomethyl, aminoethyl, carboxymethyl, carboxyethyl, chloromethyl, chloroethyl, chloropropyl group, etc. An alkyl group having 1 to 8 carbon atoms (which may be substituted with an amino group, a carboxyl group or a chlorine atom).
R 5 is an alkyl group having 1 to 8 carbon atoms such as methyl, ethyl, propyl, isopropyl, butyl, s-butyl, t-butyl, hexyl group or the like, or methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxy An alkyl group having 1 to 8 carbon atoms substituted with an alkoxy group such as methyl, methoxyethyl, ethoxymethyl, propoxyethyl, methoxypropyl, or methoxybutyl group. N 1 , n 2 and n 3 represent 0, 1 or 2, n 4 represents an integer of 2 to 4, and n 1 + n 2 + n 3 + n 4 = 4.

式(IV)で表されるシリコンアルコキシドの好ましい具体例としては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等を挙げることができる。   Preferable specific examples of the silicon alkoxide represented by the formula (IV) include tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane and the like.

本発明におけるシリコン化合物は、球状コロイダルシリカ粒子の連結物又は棒状コロイダルシリカでなくてもよいが、光触媒層の透明度をより長期にわたって維持させ得ることから、球状コロイダルシリカ粒子の連結物、棒状コロイダルシリカ又はそれらの混合物を光触媒層に含有させることが好ましい。この球状コロイダルシリカ粒子の連結物又は棒状コロイダルシリカ及びそれらの好ましい態様は、上述の接着層における球状コロイダルシリカ粒子の連結物又は棒状コロイダルシリカと同様である。   The silicon compound in the present invention may not be a linked product of spherical colloidal silica particles or a rod-shaped colloidal silica, but since the transparency of the photocatalyst layer can be maintained for a longer period of time, a connected product of spherical colloidal silica particles, a rod-shaped colloidal silica Or it is preferable to contain a mixture thereof in the photocatalyst layer. The connected product of spherical colloidal silica particles or rod-shaped colloidal silica and preferred embodiments thereof are the same as the connected product of spherical colloidal silica particles or the colloidal silica material of the above-mentioned adhesive layer.

光触媒層を接着層表面に形成する方法は特に制限されないが、例えば、印刷法、シート成形法、スプレー吹き付け法、ディップコーティング法、スピンコーティング法等の方法で、後述の光触媒層形成用塗布液を接着層表面にコートし、乾燥・硬化させる方法を例示することができる。乾燥・硬化させる際の温度は、担体材質及び接着層中の樹脂材質によっても異なるが、通常50℃〜300℃程度であることが好ましい。   The method for forming the photocatalyst layer on the surface of the adhesive layer is not particularly limited. For example, the photocatalyst layer forming coating liquid described below can be prepared by a printing method, a sheet forming method, a spray spraying method, a dip coating method, a spin coating method, or the like. Examples of the method include coating on the surface of the adhesive layer, drying and curing. The temperature during drying and curing varies depending on the carrier material and the resin material in the adhesive layer, but is usually preferably about 50 ° C to 300 ° C.

本発明における光触媒層の厚さは特に制限はされないが、0.1〜20μmの範囲内であることが好ましい。ある特定の光触媒層形成用塗布液を用いて光触媒層を形成させた場合、光触媒層を厚くするほど、得られる光触媒活性が高くなる傾向がみられるが、光触媒層の厚さが20μmを越えると光触媒活性はほぼ飽和する一方で、実際の塗布工程が困難となる場合が多く、また光触媒層の光透過率が低下してしまう。一方、光触媒の厚さが0.1μm未満の場合、透光性は良いものの、光触媒が光触媒作用を発揮する際に利用する紫外線も、その多くが光触媒層を透過してしまうため、優れた光触媒活性が得られない場合がある。   The thickness of the photocatalyst layer in the present invention is not particularly limited, but is preferably in the range of 0.1 to 20 μm. When a photocatalyst layer is formed using a specific photocatalyst layer-forming coating solution, the photocatalytic activity obtained tends to increase as the photocatalyst layer becomes thicker, but when the photocatalyst layer thickness exceeds 20 μm. While the photocatalytic activity is almost saturated, the actual coating process is often difficult, and the light transmittance of the photocatalytic layer is lowered. On the other hand, when the thickness of the photocatalyst is less than 0.1 μm, although the light transmissivity is good, most of the ultraviolet rays used when the photocatalyst exerts the photocatalytic action passes through the photocatalyst layer. Activity may not be obtained.

本発明の光触媒担持構造体は、光触媒層と接着層を合わせた塗膜における波長550nmの全光線透過率が80%未満であるか、又はヘイズ率が2%より高くてもよいが、光触媒層と接着層を合わせた塗膜における波長550nmの全光線透過率が80%以上であって、かつヘイズ率が2%以下であることが好ましい。このような光触媒担持構造体は、例えば、光触媒層の厚さを0.1〜20μmの範囲内とし、しかも平均粒子が50nm以下の光触媒粒子、及びアルミニウムの酸化物又は水酸化物のゲルを用いること等によって得られるが、光触媒層と接着層を合わせた塗膜における波長550nmの全光線透過率が80%以上であって、かつヘイズ率が2%以下である限り、そのような光触媒担持構造体に限定されるものではない。該光触媒層及び接着層を、透明な担体に利用した場合は、その光触媒層、接着層、担体からなる光触媒担持構造体を透過した可視光線を照明として利用でき、また不透明な担体に利用した場合でも、その担体上の柄や模様を損なうことがないので装飾性の上でも優れた光触媒担持構造体が得られる。   In the photocatalyst carrying structure of the present invention, the total light transmittance at a wavelength of 550 nm in the coating film including the photocatalyst layer and the adhesive layer may be less than 80%, or the haze ratio may be higher than 2%. It is preferable that the total light transmittance at a wavelength of 550 nm in the coating film combined with the adhesive layer is 80% or more and the haze ratio is 2% or less. Such a photocatalyst-supporting structure uses, for example, a photocatalyst layer having a thickness of the photocatalyst layer in the range of 0.1 to 20 μm and an average particle size of 50 nm or less, and an aluminum oxide or hydroxide gel. As long as the total light transmittance at a wavelength of 550 nm in the coating film including the photocatalyst layer and the adhesive layer is 80% or more and the haze ratio is 2% or less, such a photocatalyst-supporting structure is obtained. It is not limited to the body. When the photocatalyst layer and the adhesive layer are used as a transparent carrier, visible light transmitted through the photocatalyst supporting structure composed of the photocatalyst layer, the adhesive layer and the carrier can be used as illumination, and when used as an opaque carrier. However, since the handle or pattern on the carrier is not damaged, a photocatalyst-supporting structure excellent in decorativeness can be obtained.

また、本発明の光触媒担持構造体は、沸騰イオン交換水中で1時間煮沸した後での接着層及び光触媒層を合わせた塗膜のヘイズ率が3%より高くてもよいが、3%以下であることが好ましい。このような光触媒担持構造体は、例えば、光触媒層の厚さを0.1〜20μmの範囲内とし、しかも平均粒子が50nm以下の光触媒粒子、及びアルミニウムの酸化物又は水酸化物のゲルを用いること等によって得られるが、沸騰イオン交換水中で1時間煮沸した後での接着層及び光触媒層を合わせた塗膜のヘイズ率が3%以下である限り、そのような光触媒担持構造体に限定されるものではない。   Further, the photocatalyst-supporting structure of the present invention may have a haze ratio of 3% or less, although the coating layer including the adhesive layer and the photocatalyst layer after boiling for 1 hour in boiling ion-exchanged water may be higher than 3%. Preferably there is. Such a photocatalyst-supporting structure uses, for example, a photocatalyst layer having a thickness of the photocatalyst layer in the range of 0.1 to 20 μm and an average particle size of 50 nm or less, and an aluminum oxide or hydroxide gel. However, it is limited to such a photocatalyst-supporting structure as long as the haze ratio of the coating film including the adhesive layer and the photocatalyst layer after boiling in boiling ion exchange water for 1 hour is 3% or less. It is not something.

また、本発明の光触媒担持構造体は、紫外線強度3mW/cmのブラックライトの光を、温度40℃、相対湿度90%の下で500時間照射した後での接着層及び光触媒層を合わせた塗膜のヘイズ率が3%より高くてもよいが、3%以下であることが好ましい。このような光触媒担持構造体は、例えば、光触媒層の厚さを0.1〜20μmの範囲内とし、しかも平均粒子が50nm以下の光触媒粒子、及びアルミニウムの酸化物又は水酸化物のゲルを用いること等によって得られるが、紫外線強度3mW/cmのブラックライトの光を、温度40℃、相対湿度90%の下で500時間照射した後での接着層及び光触媒層を合わせた塗膜のヘイズ率が3%以下である限り、そのような光触媒担持構造体に限定されるものではない。 In addition, the photocatalyst carrying structure of the present invention was obtained by combining the adhesive layer and the photocatalyst layer after irradiating the light of black light having an ultraviolet intensity of 3 mW / cm 2 for 500 hours at a temperature of 40 ° C. and a relative humidity of 90%. The haze ratio of the coating film may be higher than 3%, but is preferably 3% or less. Such a photocatalyst-supporting structure uses, for example, a photocatalyst layer having a thickness of the photocatalyst layer in the range of 0.1 to 20 μm and an average particle size of 50 nm or less, and an aluminum oxide or hydroxide gel. The haze of the coating film obtained by combining the adhesive layer and the photocatalyst layer after irradiating the light of a black light with an ultraviolet intensity of 3 mW / cm 2 at a temperature of 40 ° C. and a relative humidity of 90% for 500 hours. As long as the rate is 3% or less, it is not limited to such a photocatalyst carrying structure.

本発明の光触媒担持構造体は、建築用塗料、壁紙、窓ガラス、ブラインド、カーテン、カーペット、照明器具、照明灯、道路灯、トンネル照明灯、高速道や新幹線の遮音壁、ブラックライト、船底・漁網防汚塗料、水処理用充填剤、農ビフィルム、防草シート、包装資材等に使用できる。特に高温多湿の環境下や屋外の環境下で使用される場合に、その優れた耐久性や、透明性の優れた保持性などの特性を発揮する。   The photocatalyst-supporting structure of the present invention includes architectural paint, wallpaper, window glass, blinds, curtains, carpets, lighting fixtures, lighting lights, road lights, tunnel lighting lights, sound barriers for expressways and bullet trains, black lights, ship bottoms and fishing nets. It can be used for antifouling paints, water treatment fillers, agricultural films, herbicidal sheets, packaging materials, and the like. In particular, when used in a high-temperature and high-humidity environment or in an outdoor environment, it exhibits characteristics such as excellent durability and excellent retention properties.

本発明における担体は、その材質、形状、厚さ等、特に制限されない。担体の材質としては、例えば、セラミックス;無機質材料;有機質材料;などであってもよく、さらに、担体材質が熱をかけられない有機高分子体;熱や水等により酸化腐食し易い金属;などであってもよい。また、担体の形状としては、例えば、フィルム状、シート状、板状、管状、繊維状、網状等どのような複雑な形状であっても使用することができる。担体の厚さは、光触媒層及び接着層を強固に担持することができることから、10μm以上のものであることが好ましい。さらに、担体と接着層との密着性を良くするために、放電処理やプライマー処理等の易接着処理を表面に施した担体を用いることもできる。
また、本発明における担体は、外壁用であることが好ましい。
There are no particular limitations on the material, shape, thickness, etc. of the carrier in the present invention. The material of the carrier may be, for example, ceramics; inorganic materials; organic materials; and the like, and further, an organic polymer in which the carrier material cannot be heated; a metal that is easily oxidized and corroded by heat, water, etc. It may be. Moreover, as a shape of a support | carrier, it can be used even if it is any complicated shape, such as a film form, a sheet form, a plate form, a tubular form, a fiber form, and a net form. The thickness of the carrier is preferably 10 μm or more because the photocatalyst layer and the adhesive layer can be firmly supported. Furthermore, in order to improve the adhesion between the carrier and the adhesive layer, a carrier that has been subjected to easy adhesion treatment such as discharge treatment or primer treatment on the surface can also be used.
The carrier in the present invention is preferably for an outer wall.

本発明の接着層形成用塗布液の調製方法は特に制限されないが、例えば、溶媒中で、球状コロイダルシリカ粒子の連結物、棒状コロイダルシリカ、又はそれらの混合物と、樹脂とを混合する方法等が例示される。   The method for preparing the coating solution for forming an adhesive layer of the present invention is not particularly limited. For example, a method of mixing a spherical colloidal silica particle linked product, rod-shaped colloidal silica, or a mixture thereof with a resin in a solvent. Illustrated.

本発明の接着層形成用塗布液に含まれる細長い形状に結合したシリカの含有量は、光触媒層と接着層の透明性が長期にわたって保持されるという本発明の効果が得られる限り特に制限されないが、接着層形成用塗布液に対して、酸化物に換算して0.01〜12.0重量%であることが好ましい。   The content of silica bonded in an elongated shape contained in the adhesive layer forming coating solution of the present invention is not particularly limited as long as the effect of the present invention that the transparency of the photocatalyst layer and the adhesive layer is maintained over a long period of time can be obtained. The content is preferably 0.01 to 12.0% by weight in terms of oxide with respect to the coating solution for forming the adhesive layer.

用いられる溶媒としては、例えば、水、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブタノール、t−ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等のケトン類、ジエチルエーテル、メチルセルソルブ、テトラヒドロフラン等のエーテル類、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ジクロロメタン、クロロホルム等のハロゲン化炭化水素、サクサンエチル、酢酸プロピル、酢酸ブチル等のエステル類、ペンタン、ヘキサン、シクロヘキサン等の飽和炭化水素等を挙げることができる。   Examples of the solvent used include alcohols such as water, methanol, ethanol, propyl alcohol, isopropyl alcohol, butanol and t-butanol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone and cyclohexanone, diethyl ether, methyl Cellsolve, ethers such as tetrahydrofuran, aromatic hydrocarbons such as benzene, toluene, xylene, halogenated hydrocarbons such as dichloromethane and chloroform, esters such as saxane ethyl, propyl acetate, butyl acetate, pentane, hexane, cyclohexane, etc. Of saturated hydrocarbons.

光触媒層形成用塗布液の調製方法としては、特に制限されないが、例えば、溶媒中で、光触媒とジルコニウム化合物、アルミニウム化合物及びシリコン化合物を混合する方法等が例示される。溶媒は、接着層形成用塗布液における溶媒と同様のものを挙げることができる。   The method for preparing the photocatalyst layer forming coating solution is not particularly limited, and examples thereof include a method of mixing a photocatalyst with a zirconium compound, an aluminum compound, and a silicon compound in a solvent. Examples of the solvent include the same solvents as those in the adhesive layer forming coating solution.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

1)光触媒担持構造体の製造
以下のようにして、下記の表1に示す構成を有する実施例1〜6、及び比較例1〜3の光触媒担持体構造体を製造した。
1) Manufacture of photocatalyst carrying structure The photocatalyst carrying structure of Examples 1-6 which have the structure shown in following Table 1 and Comparative Examples 1-3 was manufactured as follows.

(1)接着層
シリコン変性樹脂等(PS−1)、樹脂溶液(J−1)、コロイダルシリカ(KS−1、KS−2)を混合し、濃度を調製した接着層形成用溶液を得た。
この溶液をディッピング法で、ソーダライムガラス担体(TA)上に塗工形成した。室温、60分乾燥して厚み1μmで接着層を形成した。
(PS−1):ポリエトキシシロキサン(コルコート製、商品名エチルシリケート40)
(J−1):アクリルシリコン樹脂キシレン溶液(シリコン含有量3重量%)
尚、シリコン含有量は樹脂固形分中のSiO2に換算して表示した。
(KS−1):コロイダルシリカ(日産化学製、商品名スノーテックスPS-S、ネックレス状)
(KS−2): コロイダルシリカ(触媒化成工業製、商品名カタロイドSI−350、粒状)
(1) Adhesive layer Silicone-modified resin or the like (PS-1), resin solution (J-1), colloidal silica (KS-1, KS-2) were mixed to obtain an adhesive layer forming solution whose concentration was adjusted. .
This solution was applied and formed on a soda lime glass carrier (TA) by dipping. It was dried at room temperature for 60 minutes to form an adhesive layer having a thickness of 1 μm.
(PS-1): Polyethoxysiloxane (manufactured by Colcoat, trade name: ethyl silicate 40)
(J-1): Acrylic silicone resin xylene solution (silicon content 3% by weight)
The silicon content was expressed in terms of SiO 2 in the resin solid content.
(KS-1): Colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex PS-S, necklace)
(KS-2): Colloidal silica (manufactured by Catalyst Kasei Kogyo, trade name Cataloid SI-350, granular)

(2)光触媒層
下記に示す光触媒、シリカゾル、アルミニウム化合物及びジルコニウム化合物を混合し、pH1.5〜9の適当な範囲に調製後、所定量の界面活性剤を加えて光触媒複合体溶液(光触媒層形成用組成物)を得た。
得られた光触媒複合体溶液をディッピング法で、上記接着層上に塗工形成した。光触媒層は、接着層を乾燥するのと同じ温度で乾燥して、厚み1μmで形成した。
光触媒、シリカゾル、アルミニウム化合物、ジルコニウム化合物は次のものを使用した。
(T−1):硝酸酸性酸化チタンゾル(結晶粒子径8nm)
(KS−1):コロイダルシリカ(日産化学製、商品名スノーテックスPS-S、ネックレス状)
(A−1):アルミニウム化合物(日産化学製、商品名アルミナゾル−520)
(Z−1):ジルコニウム化合物(オキシ硝酸ジルコニウム6水和物ジルコニウム化合物(和光純薬製、試薬特級)を水に溶解して10%水溶液とした後、12時間加熱して半量の水を除去して得られた液をオキシ硝酸ジルコニウム液とした)。
(2) Photocatalyst layer The photocatalyst, silica sol, aluminum compound and zirconium compound shown below are mixed, adjusted to an appropriate range of pH 1.5 to 9, and then added with a predetermined amount of a surfactant to form a photocatalyst complex solution (photocatalyst layer). Forming composition).
The obtained photocatalyst complex solution was applied and formed on the adhesive layer by dipping. The photocatalyst layer was formed at a thickness of 1 μm by drying at the same temperature as that for drying the adhesive layer.
The following were used for the photocatalyst, silica sol, aluminum compound, and zirconium compound.
(T-1): Nitric acid acidic titanium oxide sol (crystal particle diameter: 8 nm)
(KS-1): Colloidal silica (manufactured by Nissan Chemical Co., Ltd., trade name Snowtex PS-S, necklace)
(A-1): Aluminum compound (manufactured by Nissan Chemical Co., Ltd., trade name: Alumina sol-520)
(Z-1): Zirconium compound (zirconium oxynitrate hexahydrate zirconium compound (manufactured by Wako Pure Chemicals, reagent special grade) was dissolved in water to make a 10% aqueous solution, and then heated for 12 hours to remove half of the water. The liquid obtained was used as a zirconium oxynitrate liquid).

Figure 2012025163
Figure 2012025163

2)光触媒担持構造体の性能試験
上記1)で得られた光触媒担持構造体を用いて以下の性能評価試験を行った。
(1)光触媒活性の評価試験
上記1)で得られた光触媒担持構造体を用いて、大きさ70mm×70mmの試験体を切り出し、容量4Lのパイレックス(登録商標)製ガラス容器中に設置した。この容器中に空気とアルデヒドの混合ガスをアルデヒド濃度を2000ppmに調整し、次いで、該試料に紫外線強度2mW/cm2のブラックライト(FL15BLB、東芝ライテック製)の光を3時間照射後、容器内部のアルデヒドガス濃度をガスクロマトグラフィーにより測定し、その減少量により光触媒活性を評価した。
その結果、実施例1〜6及び比較例1〜3の光触媒担持構造体は、100ppm以上のアルデヒドガスの減少をそれぞれ示したことから、いずれの光触媒担持構造体も優れた光触媒活性を示すことが分かった。
2) Performance test of photocatalyst carrying structure The following performance evaluation test was conducted using the photocatalyst carrying structure obtained in 1) above.
(1) Photocatalytic activity evaluation test Using the photocatalyst-supporting structure obtained in 1) above, a test piece having a size of 70 mm x 70 mm was cut out and placed in a 4 L Pyrex (registered trademark) glass container. The mixed gas of air and aldehyde was adjusted to 2000 ppm in this container, and then the sample was irradiated with light of black light (FL15BLB, manufactured by Toshiba Lighting & Technology) with an ultraviolet intensity of 2 mW / cm 2 for 3 hours, and then inside the container The aldehyde gas concentration was measured by gas chromatography, and the photocatalytic activity was evaluated by the amount of decrease.
As a result, since the photocatalyst carrying structures of Examples 1 to 6 and Comparative Examples 1 to 3 each showed a decrease in aldehyde gas of 100 ppm or more, any photocatalyst carrying structure may exhibit excellent photocatalytic activity. I understood.

(2)ヘイズ率の測定
ヘイズ率の測定を濁度計(日本電色工業製 NDH 300A)で測定した。空気をリファレンスとして測定した。ヘイズ率(%)は、「(全光線透過率−平行光線透過率)×100/全光線透過率」の数式より算出した。測定結果を下記の表2に示す。
(2) Measurement of haze ratio The haze ratio was measured with a turbidimeter (NDH 300A manufactured by Nippon Denshoku Industries Co., Ltd.). Air was measured as a reference. The haze ratio (%) was calculated from the formula “(total light transmittance−parallel light transmittance) × 100 / total light transmittance”. The measurement results are shown in Table 2 below.

(3)テープ剥離試験
各試料表面に、切り傷によって2mmの間隔で25個のマス目を形成し、JISK5400に規定する碁盤目テープ法試験により付着性の評価を行った。剥離しなかったものを○、少しでも剥離したものを×として評価した。評価結果を下記の表2に示す。
(3) Tape peeling test On the surface of each sample, 25 squares were formed at intervals of 2 mm by cuts, and adhesion was evaluated by a cross-cut tape method test defined in JISK5400. Evaluation was made as ○ for those that did not peel, and × for those that did not peel. The evaluation results are shown in Table 2 below.

(4)指摩擦試験
試料表面を指で摩擦し、剥離しなかったものを○、少しでも剥離したものを×として評価した。評価結果を下記の表2に示す。
(4) Finger Friction Test A sample surface was rubbed with a finger, and the sample that was not peeled off was evaluated as ○, and the sample that was peeled off was evaluated as ×. The evaluation results are shown in Table 2 below.

(5)耐久性試験
試料表面に、ブラックライトで紫外線強度3mW/cm2の光を、温度40℃、相対湿度90%の恒温恒湿槽内で2000時間照射後、テープ剥離試験及び指摩擦試験をして耐久性の評価とした。結果を下記の表2に示す。
(5) Durability test The sample surface was irradiated with light of ultraviolet light intensity of 3 mW / cm 2 with black light in a constant temperature and humidity chamber at a temperature of 40 ° C. and a relative humidity of 90% for 2000 hours, and then a tape peeling test and a finger friction test. The durability was evaluated. The results are shown in Table 2 below.

Figure 2012025163
Figure 2012025163

表2より、実施例1〜6の光触媒担持構造体は、促進耐候性試験においても低いヘイズ率を維持し優れた耐候性を有していた。それに比して、コロイダルシリカを添加しない接着層形成用溶液から形成された接着層を有する比較例1は、密着性には優れていたがヘイズ率において耐候性が劣る結果が得られた。光触媒とシリカゾルのみで形成された光触媒複合体溶液を用いた光触媒層を有する比較例2は、ヘイズ率及び密着性において耐候性が劣る結果であった。球状のコロイダルシリカを添加した接着層形成用溶液から形成された接着層を有する比較例3は、ヘイズ率及び密着性において耐候性が劣る結果であった。   From Table 2, the photocatalyst carrying structure of Examples 1-6 maintained the low haze rate also in the accelerated weather resistance test, and had the outstanding weather resistance. In contrast, Comparative Example 1 having an adhesive layer formed from a solution for forming an adhesive layer to which no colloidal silica was added was excellent in adhesion but had a poor weather resistance in haze ratio. The comparative example 2 which has a photocatalyst layer using the photocatalyst composite solution formed only with the photocatalyst and silica sol was a result in which weather resistance is inferior in haze rate and adhesiveness. The comparative example 3 which has the contact bonding layer formed from the solution for contact bonding layer formation which added spherical colloidal silica was a result in which a weather resistance is inferior in haze rate and adhesiveness.

本発明の光触媒担持構造体は、光触媒活性が高く、透明性に優れるものであり、光触媒が担体に強固に接着されており、光触媒作用により担体が劣化したり、光触媒が脱離することがない。また、光照射下でも長時間使用できるものであり、高温多湿の環境下や屋外の環境下で使用することができる。   The photocatalyst-supporting structure of the present invention has high photocatalytic activity and excellent transparency, and the photocatalyst is firmly bonded to the carrier, so that the carrier is not deteriorated by the photocatalytic action and the photocatalyst is not detached. . Further, it can be used for a long time even under light irradiation, and can be used in a hot and humid environment or an outdoor environment.

Claims (2)

光触媒層と接着層と担体とを備え、担体上に接着層、光触媒層が順次設けられた構造体であって、光触媒層が、酸化物に換算して、ジルコニウム化合物を5〜60重量%、アルミニウム化合物を20〜90重量%、酸化チタンを5〜60重量%、シリコン化合物を5〜50重量%含有し、接着層が、短辺の長さが10〜50nmの範囲であり、長辺の長さが50〜400nmの範囲である球状コロイダルシリカ粒子の連結物もしくは棒状コロイダルシリカ、又はそれらの混合物である細長い形状に結合したシリカ、及び、シリコンを2〜60重量%含有するシリコン変性樹脂並びにポリシロキサンを3〜60重量%含有する樹脂からなる群から選ばれる樹脂の少なくとも1種以上を含有することを特徴とする光触媒担持構造体。   A structure comprising a photocatalyst layer, an adhesive layer, and a carrier, wherein the adhesive layer and the photocatalyst layer are sequentially provided on the carrier, and the photocatalyst layer is converted to an oxide in an amount of 5 to 60% by weight of a zirconium compound, 20 to 90% by weight of aluminum compound, 5 to 60% by weight of titanium oxide, 5 to 50% by weight of silicon compound, the adhesive layer has a short side length of 10 to 50 nm, A silica-modified resin containing 2-60% by weight of silica, and a silica-bonded or colloidal colloidal silica particle having a length in the range of 50 to 400 nm, or a mixture thereof and an elongated shape, and silicon. A photocatalyst-supporting structure comprising at least one resin selected from the group consisting of resins containing 3 to 60% by weight of polysiloxane. 光触媒担持構造体における接着層を形成するために用いられる塗布液であって、短辺の長さが10〜50nmの範囲であり、長辺の長さが50〜400nmの範囲である球状コロイダルシリカ粒子の連結物もしくは棒状コロイダルシリカ、又はそれらの混合物である細長い形状に結合したシリカ、及び、シリコンを2〜60重量%含有するシリコン変性樹脂並びにポリシロキサンを3〜60重量%含有する樹脂からなる群から選ばれる樹脂の少なくとも1種以上を含有することを特徴とする接着層形成用塗布液。   Spherical colloidal silica, which is a coating liquid used for forming an adhesive layer in a photocatalyst-supporting structure, having a short side length of 10 to 50 nm and a long side length of 50 to 400 nm. It is composed of silica bonded to an elongated shape which is a connected particle or rod-shaped colloidal silica, or a mixture thereof, a silicon-modified resin containing 2 to 60% by weight of silicon, and a resin containing 3 to 60% by weight of polysiloxane. A coating solution for forming an adhesive layer, comprising at least one resin selected from the group.
JP2011195337A 2011-09-07 2011-09-07 Photocatalyst supporting structure Withdrawn JP2012025163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195337A JP2012025163A (en) 2011-09-07 2011-09-07 Photocatalyst supporting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195337A JP2012025163A (en) 2011-09-07 2011-09-07 Photocatalyst supporting structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005246679A Division JP4971608B2 (en) 2005-08-26 2005-08-26 Photocatalyst carrying structure

Publications (1)

Publication Number Publication Date
JP2012025163A true JP2012025163A (en) 2012-02-09

Family

ID=45778669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195337A Withdrawn JP2012025163A (en) 2011-09-07 2011-09-07 Photocatalyst supporting structure

Country Status (1)

Country Link
JP (1) JP2012025163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148347A1 (en) * 2013-03-19 2014-09-25 国立大学法人信州大学 Method for forming porous surface, method for manufacturing photochemical reactor, and photochemical reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148347A1 (en) * 2013-03-19 2014-09-25 国立大学法人信州大学 Method for forming porous surface, method for manufacturing photochemical reactor, and photochemical reactor

Similar Documents

Publication Publication Date Title
EP1849835B1 (en) Organic-inorganic composite body
EP0866101B1 (en) Photocatalytic coating composition and photocatalyst-bearing structure
JP5635402B2 (en) Coating liquid, cured film and resin laminate, and method for producing the cured film and resin laminate
KR100870213B1 (en) Photocatalytic composition for anti-reflection and the glass substrate coated with the composition
JP5784481B2 (en) Coating composition and use thereof
JPH09310039A (en) Photocatalyst coating agent
EP2442906B1 (en) Photocatalytic nanocomposite structured with boron
WO2000018504A1 (en) Photocatalyst article, article prevented from fogging and fouling, and process for producing article prevented from fogging and fouling
WO2009051271A1 (en) Photocatalytic film, method for production of photocatalytic film, article, and hydrophilization method
EP2373748A1 (en) Self-cleaning coating composition
JP4017389B2 (en) Method for producing photocatalyst body
JP4971608B2 (en) Photocatalyst carrying structure
JP4879839B2 (en) Photocatalyst layer forming composition
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
JP4663065B2 (en) Photocatalyst coating agent and photocatalyst carrying structure
JP4693949B2 (en) Photocatalyst layer forming coating solution, photocatalyst complex, and photocatalyst structure
JP4884646B2 (en) Adhesive layer forming composition and photocatalyst carrying structure
JP4693965B2 (en) Photocatalyst carrying structure and photocatalyst layer forming composition
JP4869578B2 (en) Film forming coating composition for snow sliding, snow coating film and snow sliding member
JP4868636B2 (en) Structure comprising a photocatalyst
JP2012025163A (en) Photocatalyst supporting structure
JP2009119462A (en) Photocatalytic coated body and photocatalytic coating liquid for the same
JP4482338B2 (en) Photocatalyst carrying structure
JP3995633B2 (en) Photocatalyst paint
Subasri et al. Applications of sol–gel coatings: past, present, and future

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120411