[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012015052A - Lighting device and illuminating device - Google Patents

Lighting device and illuminating device Download PDF

Info

Publication number
JP2012015052A
JP2012015052A JP2010152974A JP2010152974A JP2012015052A JP 2012015052 A JP2012015052 A JP 2012015052A JP 2010152974 A JP2010152974 A JP 2010152974A JP 2010152974 A JP2010152974 A JP 2010152974A JP 2012015052 A JP2012015052 A JP 2012015052A
Authority
JP
Japan
Prior art keywords
current
output
circuit unit
lighting device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010152974A
Other languages
Japanese (ja)
Other versions
JP5501124B2 (en
Inventor
Shinsuke Funayama
信介 船山
Shinichi Shibahara
信一 芝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010152974A priority Critical patent/JP5501124B2/en
Publication of JP2012015052A publication Critical patent/JP2012015052A/en
Application granted granted Critical
Publication of JP5501124B2 publication Critical patent/JP5501124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/56Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving measures to prevent abnormal temperature of the LEDs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/59Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits for reducing or suppressing flicker or glow effects

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lighting device capable of stably lighting a light-emitting diode even at a low temperature by restricting a capacity drop of an electrolytic capacitor at a low temperature using a simple method to prevent blinking or flickering of the light-emitting diode.SOLUTION: A lighting device is provided, in which: a timer circuit section 180 detects the lapse of a predetermined initial time which is set as a time for sufficiently recovering a capacitance drop of an electrolytic capacitor C1 at a low temperature by the heat generation of the electrolytic capacitor C1; and a lighting control circuit section 170 allows a lighting circuit section 140 to output an initial amount of current smaller than a target amount of current until the initial time elapses, and thereafter allows the lighting circuit section 140 to output the target amount of current so as to light a light-emitting diode section 160. The initial amount of current is determined so that a voltage applied to the light-emitting diode section 160 is not lower than a forward drop voltage thereof even when the capacitance of the electrolytic capacitor C1 drops at a low temperature.

Description

本発明は、例えば、低温環境で光源を点灯する点灯装置および照明装置に関するものである。   The present invention relates to a lighting device and a lighting device that light a light source in a low temperature environment, for example.

従来、発光ダイオード点灯装置は、サーミスタから取得される温度情報に基づいて温度が高くなると発光ダイオードに印加する電圧を低くし、温度が低くなると発光ダイオードに印加する電圧を高くするように電圧制御していた。これにより、発光ダイオードの色温度と輝度とが安定する(例えば、特許文献1)。   Conventionally, a light emitting diode lighting device performs voltage control so that the voltage applied to the light emitting diode is lowered when the temperature is increased based on the temperature information acquired from the thermistor, and the voltage applied to the light emitting diode is increased when the temperature is lowered. It was. This stabilizes the color temperature and luminance of the light emitting diode (for example, Patent Document 1).

近年、発光ダイオード照明の普及に伴い、冷凍倉庫等における低温下での使用を可能とした発光ダイオードなどの光源を用いた点灯装置が要求されるようになった。これは、低温下での光束の立ち上がり特性が良い発光ダイオードなどの光源が増えてきたためである。   In recent years, with the widespread use of light-emitting diode lighting, a lighting device using a light source such as a light-emitting diode that can be used at a low temperature in a freezer warehouse or the like has been required. This is because the number of light sources such as light emitting diodes with good rising characteristics of light beams at low temperatures has increased.

国際公開第2010/044300号パンフレットInternational Publication No. 2010/044300 Pamphlet

発光ダイオード点灯装置の内部には電解コンデンサが使用されることが多く、電解コンデンサは低温下で内部の電解液が凍結して容量低下を起こすことが知られている。
このため、低温下での電解コンデンサの容量低下により、発光ダイオードが点滅したり、ちらついたりしてしまう、という課題があった。
また、バックコンバータ方式の点灯回路においては入力側の電解コンデンサの容量が低下してリップル電圧が増加することにより、点灯回路の出力側と入力側とで電位が逆転し、電流が逆流して回路が故障する、という課題があった。
An electrolytic capacitor is often used inside the light emitting diode lighting device, and it is known that the electrolytic capacitor freezes at low temperatures, causing a decrease in capacity.
For this reason, the subject that the light emitting diode blinks or flickers by the capacity | capacitance fall of the electrolytic capacitor under low temperature occurred.
Also, in the buck converter type lighting circuit, the capacitance of the electrolytic capacitor on the input side decreases and the ripple voltage increases, so that the potential is reversed between the output side and the input side of the lighting circuit, and the current flows backward. There was a problem that would break down.

本発明は、例えば、簡潔な方法により低温下での電解コンデンサの容量低下に対処し、発光ダイオードの点滅やちらつきを防止し、低温下でも安定して発光ダイオードを点灯できるようにすることを目的とする。   An object of the present invention is to cope with a decrease in the capacity of an electrolytic capacitor at a low temperature, for example, by a simple method, to prevent the light emitting diode from blinking and flickering, and to stably light the light emitting diode even at a low temperature. And

本発明の点灯装置は、光源を点灯する点灯装置において、
交流電流を入力し、入力した交流電流を整流して脈流電流を出力する整流回路部と、
温度に応じて静電容量が変化し、前記整流回路部から出力される脈流電流を直流電流に平滑する電解コンデンサと、
前記電解コンデンサにより得られた直流電流を入力し、所定の目標電流量の出力電流を光源に出力する点灯回路部であって、前記整流回路部に交流電流が入力されてから前記電解コンデンサの温度が上昇して前記電解コンデンサの静電容量が所定量に達するための所定の初期時間が経過するまで前記目標電流量より小さい出力電流を光源に出力し、前記初期時間の経過後に前記目標電流量の出力電流を光源に出力する点灯回路部と
を備える。
The lighting device of the present invention is a lighting device for lighting a light source.
A rectifier circuit that inputs an alternating current, rectifies the input alternating current, and outputs a pulsating current;
An electrolytic capacitor that changes capacitance according to temperature and smoothes a pulsating current output from the rectifier circuit unit into a direct current;
A lighting circuit unit that inputs a direct current obtained by the electrolytic capacitor and outputs an output current of a predetermined target current amount to a light source, and the temperature of the electrolytic capacitor after the alternating current is input to the rectifier circuit unit The output current smaller than the target current amount is output to the light source until a predetermined initial time for the capacitance of the electrolytic capacitor to reach a predetermined amount elapses, and the target current amount is passed after the initial time has elapsed. A lighting circuit unit that outputs the output current of the output to the light source.

本発明によれば、例えば、電解コンデンサが温まるまで目標電流量より小さい初期電流量を光源の発光ダイオードに流すことにより、発光ダイオードの点滅やちらつきを防止し、低温下でも安定して発光ダイオードを点灯させることができる。   According to the present invention, for example, by flowing an initial current amount smaller than the target current amount to the light emitting diode of the light source until the electrolytic capacitor is warmed, the light emitting diode is prevented from blinking and flickering, and the light emitting diode is stably stabilized even at a low temperature. Can be lit.

実施の形態1における低温用LED点灯装置100の回路ブロック図。FIG. 3 is a circuit block diagram of low-temperature LED lighting device 100 according to the first embodiment. 実施の形態1における点灯回路部140の出力電流制御を示すグラフ。3 is a graph showing output current control of a lighting circuit unit 140 in the first embodiment. 電解コンデンサの静電容量およびインピーダンスの温度特性を示すグラフ。The graph which shows the temperature characteristic of the electrostatic capacitance and impedance of an electrolytic capacitor. 実施の形態1における低温用LED点灯装置100の起動直後の電解コンデンサC1の電圧波形を示すグラフ。3 is a graph showing a voltage waveform of the electrolytic capacitor C1 immediately after activation of the low temperature LED lighting device 100 according to the first embodiment. 実施の形態1における低温用LED点灯装置100の起動直後の電解コンデンサC2の電圧波形を示すグラフ。3 is a graph showing a voltage waveform of the electrolytic capacitor C2 immediately after the start of the low temperature LED lighting device 100 according to the first embodiment. 実施の形態1における低温用LED点灯装置100の電解コンデンサC1の電圧波形を示すグラフ。3 is a graph showing a voltage waveform of electrolytic capacitor C1 of LED lighting device 100 for low temperature in the first embodiment. 実施の形態2における点灯回路部140の出力電流制御を示すグラフ。6 is a graph showing output current control of a lighting circuit unit 140 according to Embodiment 2. 実施の形態3における点灯回路部140の出力電流制御を示すグラフ。10 is a graph showing output current control of the lighting circuit section 140 in the third embodiment. 実施の形態4における低温用LED点灯装置100の回路ブロック図。FIG. 6 is a circuit block diagram of a low-temperature LED lighting device 100 according to a fourth embodiment.

実施の形態1.
図1は、実施の形態1における低温用LED点灯装置100の回路ブロック図である。
実施の形態1における低温用LED点灯装置100について、図1に基づいて説明する。
Embodiment 1 FIG.
FIG. 1 is a circuit block diagram of LED lighting device 100 for low temperature in the first embodiment.
The LED lighting device 100 for low temperature in Embodiment 1 is demonstrated based on FIG.

低温用LED点灯装置100は、冷凍倉庫内などの低温度の環境・場所で使用され、発光ダイオード部160や器具本体(図示省略)やスイッチ装置(図示省略)と共に低温用LED照明装置を構成する。
器具本体は、低温用LED点灯装置100や発光ダイオード部160を収納する。
スイッチ装置がオンにされると、商用電源から電力が供給され、低温用LED点灯装置100が起動し、各回路に電流が流れて発光ダイオード部160が点灯する。スイッチ装置がオフにされると、商用電源からの電力供給が停止し、低温用LED点灯装置100が停止し、発光ダイオード部160が消灯する。
The low-temperature LED lighting device 100 is used in a low-temperature environment / place such as in a freezer warehouse, and constitutes a low-temperature LED illumination device together with the light-emitting diode unit 160, an appliance body (not shown), and a switch device (not shown). .
The appliance main body houses the low-temperature LED lighting device 100 and the light-emitting diode unit 160.
When the switch device is turned on, power is supplied from the commercial power source, the low temperature LED lighting device 100 is activated, a current flows through each circuit, and the light emitting diode unit 160 is lit. When the switch device is turned off, power supply from the commercial power supply is stopped, the low temperature LED lighting device 100 is stopped, and the light emitting diode unit 160 is turned off.

低温用LED点灯装置100は、入力フィルタ回路部110、整流回路部120、電源平滑部130、点灯回路部140、出力平滑部150、発光ダイオード部160、点灯制御回路部170およびタイマー回路部180を備える。   The LED lighting device 100 for low temperature includes an input filter circuit unit 110, a rectifier circuit unit 120, a power supply smoothing unit 130, a lighting circuit unit 140, an output smoothing unit 150, a light emitting diode unit 160, a lighting control circuit unit 170, and a timer circuit unit 180. Prepare.

入力フィルタ回路部110は、ノイズフィルタを構成し、商用電源のノイズを除去する。   The input filter circuit unit 110 constitutes a noise filter and removes noise from the commercial power supply.

整流回路部120は、商用電源の交流電流・電圧を入力し、入力した交流電流・電圧を全波整流し、全波整流により得られた脈流電流・電圧を出力する。
例えば、整流回路部120は、ダイオードブリッジで構成される。
The rectifier circuit unit 120 receives an AC current / voltage of a commercial power supply, performs full-wave rectification on the input AC current / voltage, and outputs a pulsating current / voltage obtained by full-wave rectification.
For example, the rectifier circuit unit 120 is configured with a diode bridge.

電源平滑部130は、電解コンデンサC1を備える。
電源平滑部130は、整流回路部120から出力された脈流電流で電解コンデンサC1に電荷を充電し、充電した電荷を電解コンデンサC1から放電することにより、整流回路部120から出力された出力電流・電圧を平滑する。
例えば、電源平滑部130は、電解コンデンサC1のみで構成されるコンデンサインプット方式の回路、または昇圧チョッパ方式のアクティブフィルタ回路で構成される。
以下、電源平滑部130を電解コンデンサC1のみで構成されるコンデンサインプット方式の回路として説明する。
The power supply smoothing unit 130 includes an electrolytic capacitor C1.
The power supply smoothing unit 130 charges the electrolytic capacitor C1 with the pulsating current output from the rectifying circuit unit 120, and discharges the charged charge from the electrolytic capacitor C1, thereby outputting the output current output from the rectifying circuit unit 120.・ Smooth the voltage.
For example, the power supply smoothing unit 130 is configured by a capacitor input type circuit configured only by the electrolytic capacitor C1 or a step-up chopper type active filter circuit.
Hereinafter, the power supply smoothing unit 130 will be described as a capacitor input type circuit including only the electrolytic capacitor C1.

点灯回路部140は、電源平滑部130により平滑された直流電流・電圧を入力し、入力した直流電圧を降圧し、所定の大きさの出力電流・電圧を発光ダイオード部160に出力する回路である。
例えば、点灯回路部140は、バックコンバータ方式またはハーフブリッジ方式の回路で構成される。
The lighting circuit unit 140 is a circuit that inputs the DC current / voltage smoothed by the power supply smoothing unit 130, steps down the input DC voltage, and outputs an output current / voltage of a predetermined magnitude to the light emitting diode unit 160. .
For example, the lighting circuit unit 140 is configured by a back converter type or half bridge type circuit.

出力平滑部150は、電解コンデンサC2を備える。
出力平滑部150は、電源平滑部130と同様に、点灯回路部140から出力された出力電流・電圧を平滑する。
The output smoothing unit 150 includes an electrolytic capacitor C2.
Similar to the power supply smoothing unit 130, the output smoothing unit 150 smoothes the output current / voltage output from the lighting circuit unit 140.

発光ダイオード部160は、プリント基板上に直列に接続された複数の発光ダイオードである。
発光ダイオード部160は、出力平滑部150により平滑された出力電流・電圧を入力し、入力した出力電流・電圧で点灯する。
The light emitting diode unit 160 is a plurality of light emitting diodes connected in series on the printed circuit board.
The light emitting diode unit 160 receives the output current / voltage smoothed by the output smoothing unit 150 and lights up with the input output current / voltage.

発光ダイオード部160の複数の発光ダイオードは、所定の順方向降下電圧より大きい電圧が印加されると電流の大きさに応じた明るさで点灯し、印加される電圧が順方向降下電圧より小さいと点灯しない。   The plurality of light emitting diodes of the light emitting diode unit 160 are lit with brightness according to the magnitude of the current when a voltage larger than a predetermined forward drop voltage is applied, and the applied voltage is smaller than the forward drop voltage. not light.

タイマー回路部180は、低温用LED点灯装置100が起動してからの経過時間をカウントし、所定の初期時間の経過を検出する。
初期時間とは、低温環境での使用により静電容量が低下した電解コンデンサC1と電解コンデンサC2とが発熱して内部温度を上昇し、それぞれの静電容量が十分に回復するための待ち時間である。
初期時間はタイマー回路部180に備える記憶回路に予め記憶・設定しておく。
The timer circuit unit 180 counts the elapsed time since the low temperature LED lighting device 100 is activated, and detects the passage of a predetermined initial time.
The initial time is a waiting time for the electrolytic capacitors C1 and C2 whose capacitances have been lowered due to use in a low temperature environment to generate heat and raise the internal temperature, and to sufficiently recover the respective capacitances. is there.
The initial time is stored and set in advance in a storage circuit provided in the timer circuit unit 180.

点灯制御回路部170は、点灯回路部140を制御して点灯回路部140の出力電流の大きさを調整・変更する回路である。
例えば、点灯回路部140はスイッチ素子(例えば、トランジスタ)を備え、点灯制御回路部170は点灯回路部140のスイッチ素子をスイッチング制御する。点灯回路部140にはスイッチ素子のオン時間の割合に応じた大きさの電流が流れ、点灯回路部140は回路に流れる電流に応じた大きさの出力電流・電圧を出力する。
The lighting control circuit unit 170 is a circuit that controls the lighting circuit unit 140 to adjust / change the magnitude of the output current of the lighting circuit unit 140.
For example, the lighting circuit unit 140 includes a switch element (for example, a transistor), and the lighting control circuit unit 170 performs switching control of the switch element of the lighting circuit unit 140. A current having a magnitude corresponding to the ratio of the ON time of the switch element flows through the lighting circuit section 140, and the lighting circuit section 140 outputs an output current / voltage having a magnitude corresponding to the current flowing through the circuit.

図2は、実施の形態1における点灯回路部140の出力電流制御を示すグラフである。
点灯制御回路部170による点灯回路部140の出力電流制御について、図2に基づいて説明する。
FIG. 2 is a graph showing the output current control of the lighting circuit unit 140 in the first embodiment.
The output current control of the lighting circuit unit 140 by the lighting control circuit unit 170 will be described with reference to FIG.

図2において、点灯回路部140から発光ダイオード部160への出力電流を実線で示し、電解コンデンサC1の静電容量を点線で示す。   In FIG. 2, the output current from the lighting circuit section 140 to the light emitting diode section 160 is indicated by a solid line, and the capacitance of the electrolytic capacitor C1 is indicated by a dotted line.

点灯制御回路部170は、低温用LED点灯装置100が起動(時刻T0)してからタイマー回路部180が初期時間の経過(時刻T1)を検出するまで、所定の初期電流量の出力電流を点灯回路部140に出力させる。そして、点灯制御回路部170は、タイマー回路部180が初期時間の経過(時刻T0)を検出した後、所定の目標電流量の出力電流を点灯回路部140に出力させる。   The lighting control circuit unit 170 lights an output current of a predetermined initial current amount from when the low temperature LED lighting device 100 is activated (time T0) until the timer circuit unit 180 detects the passage of the initial time (time T1). The circuit part 140 is made to output. Then, the lighting control circuit unit 170 causes the lighting circuit unit 140 to output an output current of a predetermined target current amount after the timer circuit unit 180 detects the passage of the initial time (time T0).

目標電流量とは、発光ダイオード部160を目標の明るさ(例えば、最大の明るさ)で点灯するために必要な電流の大きさである。
初期電流量とは、低温環境での使用により電解コンデンサC1・C2の静電容量が低下していても、発光ダイオード部160に印加する出力電圧を発光ダイオード部160の順方向電圧より低くしない電流の大きさである。初期電流量は目標電流量より小さい(例えば、目標電流量の50%)。
目標電流量や初期電流量を点灯回路部140に出力させるための制御情報(例えば、スイッチ素子のオン時間の割合)は、点灯制御回路部170に備える記憶回路に予め記憶・設定しておく。
The target current amount is a magnitude of a current necessary for lighting the light emitting diode unit 160 with a target brightness (for example, maximum brightness).
The initial current amount is a current that does not lower the output voltage applied to the light emitting diode unit 160 from the forward voltage of the light emitting diode unit 160 even if the capacitance of the electrolytic capacitors C1 and C2 is reduced due to use in a low temperature environment. Is the size of The initial current amount is smaller than the target current amount (for example, 50% of the target current amount).
Control information for causing the lighting circuit unit 140 to output the target current amount and the initial current amount (for example, the ratio of the ON time of the switch element) is stored and set in advance in a storage circuit provided in the lighting control circuit unit 170.

以下に、「初期時間」「初期電流量」について説明する。   The “initial time” and “initial current amount” will be described below.

図3は、電解コンデンサの静電容量およびインピーダンスの温度特性を示すグラフである。アルミ電解コンデンサBXC450V15μFを例に電解コンデンサの静電容量およびインピーダンスの温度特性について、図3に基づいて説明する。
図3において、実線はメーカーが開示している値を示し、破線は推測値を示している。
FIG. 3 is a graph showing temperature characteristics of capacitance and impedance of the electrolytic capacitor. The temperature characteristics of the capacitance and impedance of the electrolytic capacitor will be described with reference to FIG. 3, taking an aluminum electrolytic capacitor BXC450V15 μF as an example.
In FIG. 3, a solid line indicates a value disclosed by a manufacturer, and a broken line indicates an estimated value.

電解コンデンサを低温下で使用すると内部の電解液が凍結するため、静電容量が低下し、一方、内部インピーダンスが増加する。
例えば、電解コンデンサの静電容量は、−40度では常温時(20度)の60%に低下し、−60度では常温時の20%に低下する。
一方、電解コンデンサの内部インピーダンスは、−40度では常温時の600%に増加し、−60度では常温時の1200%に増加する。
When the electrolytic capacitor is used at a low temperature, the internal electrolytic solution is frozen, so that the capacitance is reduced while the internal impedance is increased.
For example, the capacitance of the electrolytic capacitor decreases to 60% at room temperature (20 degrees) at -40 degrees, and to 20% at room temperature at -60 degrees.
On the other hand, the internal impedance of the electrolytic capacitor increases to 600% at normal temperature at −40 degrees, and increases to 1200% at normal temperature at −60 degrees.

このように、低温時には電解コンデンサの静電容量が低下する。
つまり、低温用LED点灯装置100の起動直後は各電解コンデンサC1・C2の温度が低く、静電容量が低下している。このため、起動直後の各電解コンデンサC1・C2は十分な量の電荷を充電できず、発光ダイオード部160に印加する出力電圧を十分に平滑することができない。
In this way, the capacitance of the electrolytic capacitor decreases at low temperatures.
That is, immediately after the start of the low temperature LED lighting device 100, the temperature of each electrolytic capacitor C1, C2 is low, and the capacitance is reduced. For this reason, each of the electrolytic capacitors C1 and C2 immediately after startup cannot be charged with a sufficient amount of charge, and the output voltage applied to the light emitting diode section 160 cannot be sufficiently smoothed.

図4は、実施の形態1における低温用LED点灯装置100の起動直後の電解コンデンサC1の電圧波形を示すグラフ。
図5は、実施の形態1における低温用LED点灯装置100の起動直後の電解コンデンサC2の電圧波形を示すグラフ。
実施の形態1における低温用LED点灯装置100の起動直後の電解コンデンサC1・C2の電圧波形について、図4および図5に基づいて説明する。
FIG. 4 is a graph showing a voltage waveform of the electrolytic capacitor C1 immediately after the start of the low temperature LED lighting device 100 according to the first embodiment.
FIG. 5 is a graph showing a voltage waveform of the electrolytic capacitor C2 immediately after activation of the low temperature LED lighting device 100 according to the first embodiment.
A voltage waveform of electrolytic capacitors C1 and C2 immediately after startup of LED lighting device 100 for low temperature in the first embodiment will be described based on FIGS.

整流回路部120の出力電圧(整流電圧)を一点鎖線で示し、電解コンデンサC1・C2の出力電圧(平滑電圧)を実線で示す。
電解コンデンサC1の平滑電圧は、整流回路部120の出力を平滑したものである。
電解コンデンサC2の平滑電圧は、発光ダイオード部160に印加する電圧と等しい。
The output voltage (rectified voltage) of the rectifier circuit unit 120 is indicated by a one-dot chain line, and the output voltages (smooth voltage) of the electrolytic capacitors C1 and C2 are indicated by a solid line.
The smoothing voltage of the electrolytic capacitor C1 is obtained by smoothing the output of the rectifier circuit unit 120.
The smoothing voltage of the electrolytic capacitor C <b> 2 is equal to the voltage applied to the light emitting diode unit 160.

電解コンデンサC1は、図4に示すように、整流回路部120の整流電圧を平滑する。
しかし、起動直後の電解コンデンサC1は静電容量が低下しているため整流電圧を十分に平滑できず、平滑電圧のリップル電圧ΔVが大きい。リップル電圧ΔVとは、平滑電圧の脈流成分の大きさである。つまり、平滑電圧の最大電圧(ピーク電圧VACp)と最小電圧との差がリップル電圧ΔVである。リップル電圧ΔVは、発光ダイオード部160に流れる負荷電流が大きいほど大きくなり、小さいほど小さくなる。
このため、点灯回路部140から発光ダイオード部160に出力する電流(負荷電流)が大きい場合、電解コンデンサC1の平滑電圧が発光ダイオード部160の順方向降下電圧Vfを下回る時間帯(t1からt2)が生じる。電解コンデンサC2の容量も低下しているため、図5のように、電解コンデンサC2もt1からt2の時間帯に発光ダイオード部160の順方向降下電圧Vfを下回る。そして、その時間帯に発光ダイオード部160が消灯し、発光ダイオード部160の点滅やちらつきが発生する。リップル電圧ΔVがΔV’以下になれば発光ダイオード部160の点滅やちらつきは発生しない。
The electrolytic capacitor C1 smoothes the rectified voltage of the rectifier circuit unit 120 as shown in FIG.
However, since the capacitance of the electrolytic capacitor C1 immediately after startup is low, the rectified voltage cannot be sufficiently smoothed, and the ripple voltage ΔV of the smoothed voltage is large. The ripple voltage ΔV is the magnitude of the pulsating flow component of the smooth voltage. That is, the difference between the maximum voltage (peak voltage VACp) of the smoothing voltage and the minimum voltage is the ripple voltage ΔV. The ripple voltage ΔV increases as the load current flowing through the light emitting diode unit 160 increases, and decreases as the load current decreases.
For this reason, when the current (load current) output from the lighting circuit section 140 to the light emitting diode section 160 is large, the time period (t1 to t2) when the smoothing voltage of the electrolytic capacitor C1 is lower than the forward voltage drop Vf of the light emitting diode section 160. Occurs. Since the capacity of the electrolytic capacitor C2 is also reduced, the electrolytic capacitor C2 also falls below the forward voltage drop Vf of the light emitting diode portion 160 during the time period from t1 to t2, as shown in FIG. Then, the light emitting diode unit 160 is turned off during the time period, and the light emitting diode unit 160 blinks or flickers. If the ripple voltage ΔV is equal to or lower than ΔV ′, the light emitting diode unit 160 does not blink or flicker.

リップル電圧ΔVをΔV’以下にして発光ダイオード部160の点滅やちらつきを防ぐ初期電流量ILEDは、以下のように求めることができる。   The initial current amount ILED that prevents the light emitting diode unit 160 from blinking or flickering by setting the ripple voltage ΔV to be equal to or lower than ΔV ′ can be obtained as follows.

電解コンデンサC1に充電される電荷量Qが初期電流量ILEDの電流を流した場合に放電される電荷量以上であればよいため、以下の式(1)が成り立てばよい。
但し、C1は電解コンデンサC1の静電容量を示し、VACpは電源電圧、整流電圧および平滑電圧のピーク電圧を示す。また、t1’は整流電圧が順方向降下電圧Vfを下回る時刻を示し、t2は整流電圧が順方向電圧Vfを上回る時刻を示す。
Since the amount of charge Q charged in the electrolytic capacitor C1 may be equal to or greater than the amount of charge discharged when the current of the initial current amount ILED flows, the following equation (1) may be satisfied.
However, C1 shows the electrostatic capacitance of the electrolytic capacitor C1, and VACp shows the peak voltage of a power supply voltage, a rectification voltage, and a smoothing voltage. Further, t1 ′ indicates a time when the rectified voltage falls below the forward voltage drop Vf, and t2 indicates a time when the rectified voltage exceeds the forward voltage Vf.

Q=C1×(VACp−Vf)≧ILED×(t2−t1’) 式(1)   Q = C1 × (VACp−Vf) ≧ ILED × (t2−t1 ′) Formula (1)

したがって、初期電流量ILEDは、上記式(1)に基づいて以下の式(2)で求めることができる。   Therefore, the initial current amount ILED can be obtained by the following formula (2) based on the above formula (1).

ILED≦C1×(VACp−Vf)/(t2−t1’) 式(2)   ILED ≦ C1 × (VACp−Vf) / (t2−t1 ′) Formula (2)

また、時刻「t1’」「t2」は、以下の関係式(3)を満たす「t」として求めることができる。
但し、Vは電源電圧を示し、fは電源電圧、整流電圧および平滑電圧の周波数を示す。
Further, the times “t1 ′” and “t2” can be obtained as “t” that satisfies the following relational expression (3).
However, V shows a power supply voltage, f shows the frequency of a power supply voltage, a rectification voltage, and a smoothing voltage.

V=VACp×sin(2×π×f×t)=Vf 式(3)   V = VACp × sin (2 × π × f × t) = Vf Equation (3)

例えば、常温時の静電容量が「20μF」である電解コンデンサC1を「−60度」の環境で使用した場合、静電容量C1は常温時の20%(図3参照)に相当する「4μF」に低下する(式(4))。   For example, when an electrolytic capacitor C1 having a capacitance of “20 μF” at normal temperature is used in an environment of “−60 degrees”, the capacitance C1 is “4 μF corresponding to 20% at normal temperature (see FIG. 3). (Equation (4)).

C1=20μF×0.2=4μF 式(4)   C1 = 20 μF × 0.2 = 4 μF (4)

また、電源電圧Vのピーク電圧VACpが「141V」であり、電源電圧Vの周波数fが「50Hz」であり、発光ダイオード部160の順方向降下電圧Vfが「50V」である場合、上記式(3)に各値を代入して以下の関係式(5)が得られる。   Further, when the peak voltage VACp of the power supply voltage V is “141 V”, the frequency f of the power supply voltage V is “50 Hz”, and the forward voltage drop Vf of the light emitting diode section 160 is “50 V”, the above formula ( By substituting each value into 3), the following relational expression (5) is obtained.

V=141×sin(2×π×50×t)=50 式(5)   V = 141 × sin (2 × π × 50 × t) = 50 Formula (5)

上記関係式(5)を満たすtに基づいて、「(t2−t1’)=2.3ms」が求まる。   Based on t satisfying the relational expression (5), “(t2−t1 ′) = 2.3 ms” is obtained.

そして、得られた各値を上記式(2)に代入すると初期電流量ILEDの最大値として「158mA」が求める(式(6))。
したがって、上記条件において、初期電流量ILEDを「158mA」以下にすれば発光ダイオード部160の点滅やちらつきを防ぐことができる。
Then, when each obtained value is substituted into the above formula (2), “158 mA” is obtained as the maximum value of the initial current amount ILED (formula (6)).
Therefore, if the initial current amount ILED is set to “158 mA” or less under the above conditions, the light-emitting diode unit 160 can be prevented from blinking or flickering.

ILED≦4μF×(141V−50V)/(2.3ms)=158mA 式(6)   ILED ≦ 4 μF × (141 V−50 V) / (2.3 ms) = 158 mA Formula (6)

図6は、実施の形態1における低温用LED点灯装置100の電解コンデンサC1の電圧波形を示すグラフである。
実施の形態1において点灯回路部140から発光ダイオード部160に初期電流量ILEDを出力する初期時間T1について、図6に基づいて説明する。
FIG. 6 is a graph showing a voltage waveform of the electrolytic capacitor C1 of the low-temperature LED lighting device 100 according to the first embodiment.
An initial time T1 for outputting the initial current amount ILED from the lighting circuit section 140 to the light emitting diode section 160 in the first embodiment will be described with reference to FIG.

図6(a)(b)は、点灯回路部140から発光ダイオード部160に出力する電流量を上記初期電流量ILED「158mA」より小さい「150mA」にした場合の電解コンデンサC1の電圧波形を示している。
図6(a)の横軸は500ms/DIVのレンジで時間を示し、図6(b)の横軸は5s/DIVのレンジで時間を示し、図6(a)(b)の縦軸は50V/DIVのレンジで電圧を示している。
6A and 6B show voltage waveforms of the electrolytic capacitor C1 when the amount of current output from the lighting circuit portion 140 to the light emitting diode portion 160 is set to “150 mA” smaller than the initial current amount ILED “158 mA”. ing.
The horizontal axis of FIG. 6A shows time in the range of 500 ms / DIV, the horizontal axis of FIG. 6B shows time in the range of 5 s / DIV, and the vertical axis of FIGS. The voltage is shown in the range of 50V / DIV.

周囲温度−60度の使用環境では電解コンデンサC1の静電容量が常温時の20%程度であるため(図3参照)、平滑電圧のリップル電圧ΔVが大きい。
一方、電解コンデンサC1の内部インピーダンスは常温時の1200%程度であるため(図3参照)、発熱量(自己発熱)が大きく、凍結した電解液が徐々にに解凍される。
そのため、時間が経過するにつれて、電解液が解凍され、電解コンデンサC1の静電容量が回復し、リップル電圧ΔVが小さくなる。
In an environment where the ambient temperature is -60 degrees, the capacitance of the electrolytic capacitor C1 is about 20% of that at room temperature (see FIG. 3), so the ripple voltage ΔV of the smoothing voltage is large.
On the other hand, since the internal impedance of the electrolytic capacitor C1 is about 1200% at room temperature (see FIG. 3), the calorific value (self-heating) is large, and the frozen electrolyte is gradually thawed.
Therefore, as time elapses, the electrolytic solution is thawed, the capacitance of the electrolytic capacitor C1 is restored, and the ripple voltage ΔV is reduced.

電解コンデンサC1の静電容量は、電解コンデンサC1の平滑電圧の下限値を結んだ曲線(一点鎖線)と同様に変化する。   The capacitance of the electrolytic capacitor C1 changes in the same manner as a curve (one-dot chain line) connecting the lower limit values of the smoothing voltage of the electrolytic capacitor C1.

図6(b)において、電解コンデンサC1の静電容量は、約2.5秒後にはリップル電圧ΔVが安定した約20秒経過時の静電容量(常温時の静電容量)の約80%に回復することが分かる。   In FIG. 6 (b), the capacitance of the electrolytic capacitor C1 is about 80% of the capacitance (capacitance at room temperature) after about 20 seconds when the ripple voltage ΔV is stabilized after about 2.5 seconds. It turns out to recover.

そこで、上記の条件において、「2.5秒」程度(例えば、2.0秒から3.0秒の範囲)の初期時間T1に、「150mA」程度(例えば、148mAから158mAの範囲)の初期電流量ILEDを出力するとよい。
静電容量が定格静電容量の80%程度まで回復すれば、発光ダイオード部160を100%点灯させる電流量を点灯回路部140から出力しても、電解コンデンサC1の平滑電圧は発光ダイオード部160の順方向降下電圧Vfを下回らないと考えられるからである。
Therefore, in the above condition, the initial time T1 of about “2.5 seconds” (for example, in the range of 2.0 seconds to 3.0 seconds) is set to the initial value of about “150 mA” (for example, in the range of 148 mA to 158 mA). The amount of current ILED may be output.
If the capacitance recovers to about 80% of the rated capacitance, the smoothing voltage of the electrolytic capacitor C1 can be maintained even if the amount of current that causes the light emitting diode portion 160 to light 100% is output from the lighting circuit portion 140. This is because it is considered not to fall below the forward voltage drop Vf.

例えば、電解コンデンサの寿命は定格静電容量(常温時の静電容量)の64%を使用条件にして定義され、電解コンデンサを使用する回路は一般的にこの静電容量値「64%」で正常に動作するように設計される。
したがって、この静電容量値「64%」にマージンを加えた「80%」まで電解コンデンサC1の静電容量が回復すれば、低温用LED点灯装置100は十分に安定して動作する。
For example, the life of an electrolytic capacitor is defined on the condition that 64% of the rated capacitance (capacitance at normal temperature) is used, and a circuit using an electrolytic capacitor generally has this capacitance value of “64%”. Designed to work properly.
Therefore, if the capacitance of the electrolytic capacitor C1 recovers to “80%” obtained by adding a margin to the capacitance value “64%”, the low-temperature LED lighting device 100 operates sufficiently stably.

初期時間T1は、上記のように実測値または実験値(図6参照)に基づいて設定しても良いし、電解コンデンサC1の発熱量および電解液の温度特性に基づいて求めてもよい。
つまり、静電容量が常温時の「80%」であるときの電解液の目標温度を電解液の温度特性に基づいて求める。
次に、電解液の充填量に基づいて、電解液を低温度(例えば、−60度)から目標温度に上昇させるために必要な熱量Qを求める。
そして、熱量Qを発熱するために必要な時間tを初期時間T1として求める。熱量Qと時間tとは「Q=IRt」の関係を満たす。Iは電解コンデンサC1に流れる電流量を示し、Rは電解コンデンサC1の内部インピーダンスを示す。
As described above, the initial time T1 may be set based on an actual measurement value or an experimental value (see FIG. 6), or may be obtained based on the calorific value of the electrolytic capacitor C1 and the temperature characteristics of the electrolytic solution.
That is, the target temperature of the electrolytic solution when the capacitance is “80%” at normal temperature is obtained based on the temperature characteristics of the electrolytic solution.
Next, based on the filling amount of the electrolytic solution, a heat quantity Q required to raise the electrolytic solution from a low temperature (for example, −60 degrees) to a target temperature is obtained.
Then, the time t required to generate the heat quantity Q is obtained as the initial time T1. The amount of heat Q and time t satisfy the relationship of “Q = I 2 Rt”. I indicates the amount of current flowing through the electrolytic capacitor C1, and R indicates the internal impedance of the electrolytic capacitor C1.

本実施の形態では、光源に発光ダイオードを用いる場合について説明したが、低温環境下でも点灯可能な光源であればよく、光源は発光ダイオードに限定されない。例えば、低温環境下における点灯特性が良い光源を用いても良いし、低温環境下での点灯特性改善機能(例えば、光源を点灯特性が良い温度に暖める機能)を照明装置に備えても良い。また、光源の種類に応じて点灯回路部を構成すればよく、点灯回路部は出力電流(直流電流又は交流電流)を出力する。   In this embodiment, the case where a light emitting diode is used as the light source has been described. However, any light source that can be lit even in a low temperature environment may be used, and the light source is not limited to the light emitting diode. For example, a light source having good lighting characteristics in a low temperature environment may be used, and a lighting characteristic improving function in a low temperature environment (for example, a function of heating the light source to a temperature having good lighting characteristics) may be provided in the lighting device. Moreover, what is necessary is just to comprise a lighting circuit part according to the kind of light source, and a lighting circuit part outputs an output current (a direct current or an alternating current).

実施の形態2.
実施の形態1と異なる点灯回路部140の出力電流制御について説明する。
低温用LED点灯装置100の回路構成は、実施の形態1(図1参照)と同じである。
Embodiment 2. FIG.
The output current control of the lighting circuit unit 140 that is different from the first embodiment will be described.
The circuit configuration of the low temperature LED lighting device 100 is the same as that of the first embodiment (see FIG. 1).

図7は、実施の形態2における点灯回路部140の出力電流制御を示すグラフである。
点灯制御回路部170による点灯回路部140の出力制御について、図7に基づいて説明する。
FIG. 7 is a graph showing output current control of the lighting circuit unit 140 in the second embodiment.
The output control of the lighting circuit unit 140 by the lighting control circuit unit 170 will be described with reference to FIG.

点灯制御回路部170は、点灯回路部140から発光ダイオード部160に出力させる電流量を段階的に増加させる。
例えば、点灯制御回路部170は、点灯回路部140の出力電流を第1の電流量変更時間Taの経過時、第2の電流量変更時間Tbの経過時、第3の電流量変更時間T1(初期時間)の経過時の3段階で、初期電流量から目標電流量まで増加させる。
The lighting control circuit unit 170 gradually increases the amount of current output from the lighting circuit unit 140 to the light emitting diode unit 160.
For example, the lighting control circuit unit 170 outputs the output current of the lighting circuit unit 140 when the first current amount change time Ta elapses, when the second current amount change time Tb elapses, and when the third current amount change time T1 ( The initial current amount is increased from the initial current amount to the target current amount in three stages.

各電流量変更時間はタイマー回路部180に予め記憶・設定する。タイマー回路部180は設定値に基づいて各電流量変更時間の経過を検出し、各電流量変更時間の経過を点灯制御回路部170に通知する。各電流量変更時間を経過時の点灯回路部140の出力電流量は点灯制御回路部170に予め記憶・設定する。点灯制御回路部170は、タイマー回路部180から時間経過の通知を受ける度に、点灯回路部140の出力電流を当該時間の設定量に増加させる。但し、各電流量変更時間を経過時の点灯回路部140の出力電流量は、電解コンデンサC1の平滑電圧を発光ダイオード部160の順方向降下電圧Vfより低くしないものとする。   Each current amount change time is stored and set in the timer circuit unit 180 in advance. The timer circuit unit 180 detects the lapse of each current amount change time based on the set value, and notifies the lighting control circuit unit 170 of the lapse of each current amount change time. The output current amount of the lighting circuit unit 140 when each current amount change time has elapsed is stored and set in the lighting control circuit unit 170 in advance. The lighting control circuit unit 170 increases the output current of the lighting circuit unit 140 to the set amount of the time each time a time elapse notification is received from the timer circuit unit 180. However, the output current amount of the lighting circuit unit 140 when each current amount change time elapses is such that the smoothing voltage of the electrolytic capacitor C1 is not lower than the forward voltage drop Vf of the light emitting diode unit 160.

点灯回路部140の出力電流を初期時間の経過時まで段階的に増加させることにより、電解コンデンサC1の電解液をより短時間に解凍し、電解コンデンサC1の静電容量をより短時間に回復することができる。つまり、実施の形態1より短い初期時間を設定し、発光ダイオード部160をより早く目標の明るさで点灯させることができる。
また、発光ダイオード部160の明るさを段階的に変化させ、発光ダイオード部160の明るさの変化に対する違和感を和らげることができる。
By gradually increasing the output current of the lighting circuit section 140 until the initial time elapses, the electrolytic solution of the electrolytic capacitor C1 is thawed in a shorter time, and the capacitance of the electrolytic capacitor C1 is recovered in a shorter time. be able to. That is, an initial time shorter than that in Embodiment 1 can be set, and the light-emitting diode unit 160 can be lit at the target brightness earlier.
In addition, the brightness of the light emitting diode unit 160 can be changed in a stepwise manner, and the uncomfortable feeling with respect to the change in the brightness of the light emitting diode unit 160 can be reduced.

但し、初期時間T1が経過して電解コンデンサC1の静電容量が十分に回復してから、点灯回路部140の出力電流を初期電流量から段階的に増加させても構わない。   However, the output current of the lighting circuit unit 140 may be increased stepwise from the initial current amount after the initial time T1 has elapsed and the capacitance of the electrolytic capacitor C1 has sufficiently recovered.

実施の形態3.
実施の形態1、2と異なる点灯回路部140の出力電流制御について説明する。
低温用LED点灯装置100の回路構成は、実施の形態1(図1参照)と同じである。
Embodiment 3 FIG.
The output current control of the lighting circuit unit 140 different from the first and second embodiments will be described.
The circuit configuration of the low temperature LED lighting device 100 is the same as that of the first embodiment (see FIG. 1).

図8は、実施の形態3における点灯回路部140の出力電流制御を示すグラフである。
点灯制御回路部170による点灯回路部140の出力制御について、図8に基づいて説明する。
FIG. 8 is a graph showing output current control of the lighting circuit unit 140 in the third embodiment.
The output control of the lighting circuit unit 140 by the lighting control circuit unit 170 will be described with reference to FIG.

点灯制御回路部170は、起動時(T0)から初期時間の経過時(T1)まで、点灯回路部140から発光ダイオード部160に出力させる電流量を所定の増加割合で又は所定の増加量ずつ連続的に増加させる。増加割合または増加量は点灯制御回路部170に予め記憶・設定する。初期時間の経過はタイマー回路部180が検出する。
これにより、点灯回路部140の出力電流は、起動時(T0)から初期時間T1が経過するまでの間に、初期電流量から目標電流量まで連続的に増加する。
但し、各時刻における点灯回路部140の出力電流量は、電解コンデンサC1の平滑電圧を発光ダイオード部160の順方向降下電圧Vfより低くしないものとする。
The lighting control circuit unit 170 continuously outputs a current amount to be output from the lighting circuit unit 140 to the light emitting diode unit 160 at a predetermined increase rate or by a predetermined increase amount from the start time (T0) to the elapse of the initial time (T1). Increase. The increase rate or increase amount is stored and set in advance in the lighting control circuit unit 170. The timer circuit unit 180 detects the passage of the initial time.
As a result, the output current of the lighting circuit section 140 continuously increases from the initial current amount to the target current amount during the period from the start (T0) until the initial time T1 elapses.
However, it is assumed that the output current amount of the lighting circuit unit 140 at each time does not make the smoothing voltage of the electrolytic capacitor C1 lower than the forward drop voltage Vf of the light emitting diode unit 160.

点灯回路部140の出力電流量を連続的に増加させることにより、電解コンデンサC1の電解液をより短時間に解凍し、電解コンデンサC1の静電容量をより短時間に回復することができる。つまり、実施の形態1より短い初期時間を設定し、発光ダイオード部160をより早く目標の明るさで点灯させることができる。
また、発光ダイオード部160の明るさの変化に対する違和感をフェードイン効果により和らげることができる。
By continuously increasing the output current amount of the lighting circuit unit 140, the electrolytic solution of the electrolytic capacitor C1 can be thawed in a shorter time, and the capacitance of the electrolytic capacitor C1 can be recovered in a shorter time. That is, an initial time shorter than that in Embodiment 1 can be set, and the light-emitting diode unit 160 can be lit at the target brightness earlier.
In addition, the feeling of strangeness with respect to the change in brightness of the light emitting diode unit 160 can be reduced by a fade-in effect.

実施の形態3において、点灯制御回路部170は、初期時間の経過時まで点灯回路部140の出力電流量を増加させるのではなく、点灯回路部140の出力電流量が目標電流量に達するまで点灯回路部140の出力電流量を増加させてもよい。この場合、タイマー回路部180は不要である。   In the third embodiment, the lighting control circuit unit 170 does not increase the output current amount of the lighting circuit unit 140 until the initial time elapses, but lights up until the output current amount of the lighting circuit unit 140 reaches the target current amount. The amount of output current of the circuit unit 140 may be increased. In this case, the timer circuit unit 180 is not necessary.

実施の形態4.
実施の形態1〜3と異なる点灯回路部140の出力電流制御について説明する。
Embodiment 4 FIG.
The output current control of the lighting circuit unit 140 different from the first to third embodiments will be described.

図9は、実施の形態4における低温用LED点灯装置100の回路ブロック図である。
図9において、低温用LED点灯装置100は、タイマー回路部180(図1参照)の代わりに、リップル電圧検出回路190を備える。その他の構成は実施の形態1〜3と同じである。
FIG. 9 is a circuit block diagram of LED lighting device 100 for low temperature in the fourth embodiment.
In FIG. 9, the low temperature LED lighting device 100 includes a ripple voltage detection circuit 190 instead of the timer circuit unit 180 (see FIG. 1). Other configurations are the same as those of the first to third embodiments.

リップル電圧検出回路190は、発光ダイオード部160の電流入力部に接続し、発光ダイオード部160に印加する印加電圧(点灯回路部140の出力電圧)を検出する。   The ripple voltage detection circuit 190 is connected to a current input unit of the light emitting diode unit 160 and detects an applied voltage (an output voltage of the lighting circuit unit 140) applied to the light emitting diode unit 160.

点灯制御回路部170は、リップル電圧検出回路190により検出された印加電圧が発光ダイオード部160の順方向降下電圧Vfより低くならないように、点灯回路部140の出力電流を初期電流量から目標電流量まで増加させる。   The lighting control circuit unit 170 changes the output current of the lighting circuit unit 140 from the initial current amount to the target current amount so that the applied voltage detected by the ripple voltage detection circuit 190 does not become lower than the forward drop voltage Vf of the light emitting diode unit 160. Increase to.

例えば、発光ダイオード部160の印加電圧に対応付けて点灯回路部140の制御情報(例えば、スイッチ素子のオン時間の割合)を示す制御表を点灯制御回路部170に予め記憶・設定する。
点灯制御回路部170はこの制御表に基づいて点灯回路部140の出力電流を制御する。
For example, a control table indicating control information (for example, a ratio of on-time of the switch element) of the lighting circuit unit 140 in association with the applied voltage of the light emitting diode unit 160 is stored and set in the lighting control circuit unit 170 in advance.
The lighting control circuit unit 170 controls the output current of the lighting circuit unit 140 based on this control table.

例えば、点灯制御回路部170は、図8のように連続的に、または、図7のように段階的に点灯回路部140の出力電流を増加させる。   For example, the lighting control circuit unit 170 increases the output current of the lighting circuit unit 140 continuously as shown in FIG. 8 or stepwise as shown in FIG.

点灯回路部140の出力電流を発光ダイオード部160の印加電圧に基づいて調整することにより、発光ダイオード部160を適切な明るさで点灯させることができる。
また、電解コンデンサC1の電解液をより短時間に解凍し、電解コンデンサC1の静電容量をより短時間に回復することができる。
By adjusting the output current of the lighting circuit unit 140 based on the voltage applied to the light emitting diode unit 160, the light emitting diode unit 160 can be lit with appropriate brightness.
In addition, the electrolytic solution of the electrolytic capacitor C1 can be thawed in a shorter time, and the capacitance of the electrolytic capacitor C1 can be recovered in a shorter time.

100 低温用LED点灯装置、110 入力フィルタ回路部、120 整流回路部、130 電源平滑部、140 点灯回路部、150 出力平滑部、160 発光ダイオード部、170 点灯制御回路部、180 タイマー回路部、190 リップル電圧検出回路。   DESCRIPTION OF SYMBOLS 100 Low temperature LED lighting device, 110 Input filter circuit part, 120 Rectifier circuit part, 130 Power supply smoothing part, 140 Lighting circuit part, 150 Output smoothing part, 160 Light emitting diode part, 170 Lighting control circuit part, 180 Timer circuit part, 190 Ripple voltage detection circuit.

Claims (8)

光源を点灯する点灯装置において、
交流電流を入力し、入力した交流電流を整流して脈流電流を出力する整流回路部と、
温度に応じて静電容量が変化し、前記整流回路部から出力される脈流電流を直流電流に平滑する電解コンデンサと、
前記電解コンデンサにより得られた直流電流を入力し、所定の目標電流量の出力電流を光源に出力する点灯回路部であって、前記整流回路部に交流電流が入力されてから前記電解コンデンサの温度が上昇して前記電解コンデンサの静電容量が所定量に達するための所定の初期時間が経過するまで前記目標電流量より小さい出力電流を光源に出力し、前記初期時間の経過後に前記目標電流量の出力電流を光源に出力する点灯回路部と
を備えたことを特徴とする点灯装置。
In the lighting device that lights the light source,
A rectifier circuit that inputs an alternating current, rectifies the input alternating current, and outputs a pulsating current;
An electrolytic capacitor that changes capacitance according to temperature and smoothes a pulsating current output from the rectifier circuit unit into a direct current;
A lighting circuit unit that inputs a direct current obtained by the electrolytic capacitor and outputs an output current of a predetermined target current amount to a light source, and the temperature of the electrolytic capacitor after the alternating current is input to the rectifier circuit unit The output current smaller than the target current amount is output to the light source until a predetermined initial time for the capacitance of the electrolytic capacitor to reach a predetermined amount elapses, and the target current amount is passed after the initial time has elapsed. A lighting circuit comprising: a lighting circuit unit that outputs the output current of the output to the light source.
光源を点灯する点灯装置において、
交流電流を入力し、入力した交流電流を整流して脈流電流を出力する整流回路部と、
前記整流回路部から出力される脈流電流を入力し、所定の目標電流量の出力電流を光源に出力する点灯回路部と、
温度に応じて静電容量が変化し、前記点灯回路部から光源に出力される出力電流を平滑する電解コンデンサと
を備え、
前記点灯回路部は、前記整流回路部に交流電流が入力されてから前記電解コンデンサの温度が上昇して前記電解コンデンサの静電容量が所定量に達するための所定の初期時間が経過するまで前記目標電流量より小さい出力電流を光源に出力し、前記初期時間の経過後に前記目標電流量の出力電流を光源に出力する
ことを特徴とする点灯装置。
In the lighting device that lights the light source,
A rectifier circuit that inputs an alternating current, rectifies the input alternating current, and outputs a pulsating current;
A lighting circuit unit that inputs a pulsating current output from the rectifier circuit unit and outputs an output current of a predetermined target current amount to a light source;
An electrostatic capacitance that varies according to temperature, and an electrolytic capacitor that smoothes the output current output from the lighting circuit unit to the light source,
The lighting circuit unit is configured to increase the temperature of the electrolytic capacitor after an alternating current is input to the rectifier circuit unit until the predetermined initial time for the capacitance of the electrolytic capacitor to reach a predetermined amount elapses. A lighting device that outputs an output current smaller than a target current amount to a light source, and outputs an output current of the target current amount to the light source after the initial time has elapsed.
前記点灯装置は、さらに、
前記初期時間の経過を検出するタイマー回路部を備え、
前記点灯回路部は、前記タイマー回路部が前記初期時間の経過を検出するまで前記目標電流量より小さい所定の初期電流量の出力電流を光源に出力し、前記タイマー回路部が前記初期時間の経過を検出した後に前記目標電流量の出力電流を光源に出力する
ことを特徴とする請求項1または請求項2記載の点灯装置。
The lighting device further includes:
A timer circuit unit for detecting the passage of the initial time;
The lighting circuit unit outputs an output current having a predetermined initial current amount smaller than the target current amount to the light source until the timer circuit unit detects the passage of the initial time, and the timer circuit unit passes the initial time. 3. The lighting device according to claim 1, wherein an output current of the target current amount is output to the light source after detecting the current.
前記点灯装置は、さらに、
前記初期時間を含んだ複数の電流量変更時間の経過を検出するタイマー回路部を備え、
前記点灯回路部は、前記タイマー回路部が電流量変更時間の経過を検出する度に出力電流の出力量を増やすことにより、光源に出力する出力電流の大きさを前記目標電流量より小さい所定の初期電流量から前記目標電流量まで段階的に増加する
ことを特徴とする請求項1または請求項2記載の点灯装置。
The lighting device further includes:
A timer circuit unit that detects the lapse of a plurality of current amount change times including the initial time,
The lighting circuit unit increases the output amount of the output current every time the timer circuit unit detects the elapse of the current amount change time, thereby reducing the magnitude of the output current output to the light source by a predetermined amount smaller than the target current amount. The lighting device according to claim 1, wherein the lighting device gradually increases from an initial current amount to the target current amount.
前記点灯装置は、さらに、
前記初期時間の経過を検出するタイマー回路部を備え、
前記点灯回路部は、前記タイマー回路部が前記初期時間の経過を検出するまで出力電流の出力量を増やし続けることにより、光源に出力する出力電流の大きさを前記目標電流量より小さい所定の初期電流量から前記目標電流量まで連続的に増加する
ことを特徴とする請求項1または請求項2記載の点灯装置。
The lighting device further includes:
A timer circuit unit for detecting the passage of the initial time;
The lighting circuit unit continuously increases the output amount of the output current until the timer circuit unit detects the passage of the initial time, thereby reducing the magnitude of the output current output to the light source to a predetermined initial amount smaller than the target current amount. The lighting device according to claim 1, wherein the lighting device continuously increases from a current amount to the target current amount.
前記点灯装置は、直列に接続した複数の発光ダイオードを光源として点灯する点灯装置であり、
前記初期電流量は、前記点灯装置の使用環境の温度に対応する前記電解コンデンサの静電容量に基づいて、光源に印加する直流電圧のリップルの下限の電圧を複数の発光ダイオードの順方向降下電圧より低くしない電流量として定められる
ことを特徴とする請求項3〜請求項5いずれかに記載の点灯装置。
The lighting device is a lighting device that lights a plurality of light emitting diodes connected in series as a light source,
The initial current amount is based on the capacitance of the electrolytic capacitor corresponding to the temperature of the environment in which the lighting device is used, and the lower limit voltage of the DC voltage applied to the light source is a forward drop voltage of a plurality of light emitting diodes. The lighting device according to any one of claims 3 to 5, wherein the lighting device is determined as a current amount that is not lower.
直列に接続した複数の発光ダイオードを光源として点灯する点灯装置であり、
交流電流を入力し、入力した交流電流を整流して脈流電流を出力する整流回路部と、
前記整流回路部から出力される脈流電流を入力し、所定の目標電流量の出力電流を光源に出力する点灯回路部と、
光源に印加される出力電圧のリップルを検出するリップル電圧検出回路と
を備え、
前記点灯回路部は、前記リップル電圧検出回路により検出された出力電圧のリップルが複数の発光ダイオードの順方向降下電圧より低くならないように、光源に出力する出力電流の大きさを前記目標電流量より小さい所定の初期電流量から前記目標電流量まで増加する
ことを特徴とする点灯装置。
A lighting device that lights a plurality of light emitting diodes connected in series as a light source,
A rectifier circuit that inputs an alternating current, rectifies the input alternating current, and outputs a pulsating current;
A lighting circuit unit that inputs a pulsating current output from the rectifier circuit unit and outputs an output current of a predetermined target current amount to a light source;
A ripple voltage detection circuit that detects a ripple of the output voltage applied to the light source,
The lighting circuit unit sets the output current output to the light source from the target current amount so that the ripple of the output voltage detected by the ripple voltage detection circuit does not become lower than the forward drop voltage of the plurality of light emitting diodes. A lighting device that increases from a small predetermined initial current amount to the target current amount.
請求項1〜請求項7いずれかに記載の点灯装置と、
直列に接続した複数の発光ダイオードからなる光源として有する光源と
を備えたことを特徴とする照明装置。
The lighting device according to any one of claims 1 to 7,
An illumination device comprising: a light source having a light source including a plurality of light emitting diodes connected in series.
JP2010152974A 2010-07-05 2010-07-05 Lighting device and lighting device Active JP5501124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152974A JP5501124B2 (en) 2010-07-05 2010-07-05 Lighting device and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152974A JP5501124B2 (en) 2010-07-05 2010-07-05 Lighting device and lighting device

Publications (2)

Publication Number Publication Date
JP2012015052A true JP2012015052A (en) 2012-01-19
JP5501124B2 JP5501124B2 (en) 2014-05-21

Family

ID=45601227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152974A Active JP5501124B2 (en) 2010-07-05 2010-07-05 Lighting device and lighting device

Country Status (1)

Country Link
JP (1) JP5501124B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065528A (en) * 2011-09-20 2013-04-11 Toshiba Lighting & Technology Corp Led lighting device and led illuminating device
JP2013161782A (en) * 2012-02-08 2013-08-19 Lextar Electronics Corp Light-emitting diode illuminating device, and lighting control method for the same
JP2013214441A (en) * 2012-04-03 2013-10-17 Mitsubishi Electric Corp Lighting device and lighting apparatus
DE102012224206A1 (en) * 2012-12-21 2014-06-26 Tridonic Gmbh & Co. Kg LED converter with frost start function
JP2014216196A (en) * 2013-04-25 2014-11-17 パナソニック株式会社 Visible light communication device and lighting device using the same
WO2021013699A1 (en) * 2019-07-24 2021-01-28 Eldolab Holding B.V. Smart starting up method by an led driver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148690A (en) * 1988-11-30 1990-06-07 Tokyo Electric Co Ltd Lighting equipment
JP2002044938A (en) * 2000-07-21 2002-02-08 Sharp Corp Switching power unit
JP2008289285A (en) * 2007-05-17 2008-11-27 Canon Inc Dc voltage conversion circuit, record device, and control method for dc voltage conversion circuit
JP2009064764A (en) * 2007-11-05 2009-03-26 Momo Alliance Co Ltd Lighting system
WO2009118975A1 (en) * 2008-03-27 2009-10-01 三菱電機株式会社 Led backlight drive
JP2009231640A (en) * 2008-03-24 2009-10-08 Toshiba Lighting & Technology Corp Power supply device and illuminator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148690A (en) * 1988-11-30 1990-06-07 Tokyo Electric Co Ltd Lighting equipment
JP2002044938A (en) * 2000-07-21 2002-02-08 Sharp Corp Switching power unit
JP2008289285A (en) * 2007-05-17 2008-11-27 Canon Inc Dc voltage conversion circuit, record device, and control method for dc voltage conversion circuit
JP2009064764A (en) * 2007-11-05 2009-03-26 Momo Alliance Co Ltd Lighting system
JP2009231640A (en) * 2008-03-24 2009-10-08 Toshiba Lighting & Technology Corp Power supply device and illuminator
WO2009118975A1 (en) * 2008-03-27 2009-10-01 三菱電機株式会社 Led backlight drive

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065528A (en) * 2011-09-20 2013-04-11 Toshiba Lighting & Technology Corp Led lighting device and led illuminating device
JP2013161782A (en) * 2012-02-08 2013-08-19 Lextar Electronics Corp Light-emitting diode illuminating device, and lighting control method for the same
JP2013214441A (en) * 2012-04-03 2013-10-17 Mitsubishi Electric Corp Lighting device and lighting apparatus
CN105075394B (en) * 2012-12-21 2017-07-21 赤多尼科两合股份有限公司 LED converters with frost startup function
CN105075394A (en) * 2012-12-21 2015-11-18 赤多尼科两合股份有限公司 Led converter having a frost start function
DE102012224206A1 (en) * 2012-12-21 2014-06-26 Tridonic Gmbh & Co. Kg LED converter with frost start function
AT15400U1 (en) * 2012-12-21 2017-08-15 Tridonic Gmbh & Co Kg LED converter with frost start function
EP2936929B1 (en) * 2012-12-21 2020-03-25 Tridonic GmbH & Co. KG Led-converter with frost start function
DE102012224206B4 (en) 2012-12-21 2024-09-12 Tridonic Gmbh & Co Kg LED converter with frost start function
JP2014216196A (en) * 2013-04-25 2014-11-17 パナソニック株式会社 Visible light communication device and lighting device using the same
WO2021013699A1 (en) * 2019-07-24 2021-01-28 Eldolab Holding B.V. Smart starting up method by an led driver
NL2023562B1 (en) * 2019-07-24 2021-02-10 Eldolab Holding Bv Smart starting up method by an LED driver
EP4005348B1 (en) 2019-07-24 2023-05-31 eldoLAB Holding B.V. Smart starting up method by an led driver
US11825578B2 (en) 2019-07-24 2023-11-21 Eldolab Holding B.V. Smart starting up method by an LED driver

Also Published As

Publication number Publication date
JP5501124B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5834236B2 (en) Solid light source lighting device and lighting apparatus using the same
US8872444B2 (en) Lighting device for solid-state light source and illumination apparatus including same
JP5501124B2 (en) Lighting device and lighting device
JP5942179B2 (en) Load discrimination device and lighting apparatus using the same
JP5423803B2 (en) DC power supply system
KR101302182B1 (en) Power supply circuit for alteration of flicker frequency of light emitting diode
US20160323957A1 (en) Controlling the drive signal in a lighting fixture based on ambient temperature
JP5645257B2 (en) Semiconductor light-emitting element lighting device and lighting fixture using the same
JP2012209103A (en) Led dimmer circuit
KR20140138054A (en) Power supply circuit for light emitting diode
JP5425124B2 (en) Power supply device and lighting device
BR102012005134A2 (en) controllers, systems and methods for controlling dimming of light sources
TWI507082B (en) Controller and method for powering light emitting diode light source and portable lighting device
US9699851B2 (en) Dimming lighting circuit and luminaire
JP5507957B2 (en) Power circuit
CN102469668B (en) LED power supply circuit capable of being matched with electronic transformer
JP2016006761A (en) Led driver
JP6340988B2 (en) Lighting device with power failure compensation function, backup power supply device, and battery discharge control unit
JP6323149B2 (en) Power supply device for lighting with power failure compensation function and lighting device
JP2013027200A (en) Power-supply device and lighting apparatus
JP5379559B2 (en) Protective device and lighting apparatus using the same
JP2014022083A (en) Power supply device for illumination
KR102130176B1 (en) Power supply circuit for alteration of flicker frequency of light emitting diode
JP2016072208A (en) Led lighting device and led illumination device containing the same
JP6102020B2 (en) Light emitting diode lighting device and lighting fixture using the light emitting diode lighting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R150 Certificate of patent or registration of utility model

Ref document number: 5501124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250