[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012012289A - Molded body - Google Patents

Molded body Download PDF

Info

Publication number
JP2012012289A
JP2012012289A JP2011117802A JP2011117802A JP2012012289A JP 2012012289 A JP2012012289 A JP 2012012289A JP 2011117802 A JP2011117802 A JP 2011117802A JP 2011117802 A JP2011117802 A JP 2011117802A JP 2012012289 A JP2012012289 A JP 2012012289A
Authority
JP
Japan
Prior art keywords
molded body
powder
fuel
solid electrolyte
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011117802A
Other languages
Japanese (ja)
Other versions
JP5470326B2 (en
Inventor
Koichi Koga
功一 古賀
Toshiyuki Nakamura
俊之 中村
Masayuki Shinkai
正幸 新海
Makoto Omori
誠 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2011117802A priority Critical patent/JP5470326B2/en
Publication of JP2012012289A publication Critical patent/JP2012012289A/en
Application granted granted Critical
Publication of JP5470326B2 publication Critical patent/JP5470326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molded body before being fired, which is a precursor of a joining material (fired body) for joining two conductive connection members so as to be electrically connected, and which hardly generates exfoliation on a joining interface after being fired.SOLUTION: Powder of each metal element (Mn, Co) constituting transition metal compound oxide (MnCoO) having a spinel type crystal structure is used as a starting raw material. A molded body comprising paste containing the powder and an organic component is fired in the interposed state between the two conductive connection members, and thereby the two conductive connection members are joined so as to be electrically connected by the transition metal compound oxide (joining material) which is the fired body. The molded body is expanded by being fired. Hereby, the molded body has a tendency to be expanded in the thickness (film thickness) direction when being fired. Resultantly, a compressive stress is applied onto a joining interface between the conductive connection members and the joining material, and therefor exfoliation is hardly generated on the joining interface.

Description

本発明は、2つの導電性接続部材を電気的に接続するように接合する接合材(焼成体)の前駆体である、焼成前の成形体に関するものである。   The present invention relates to a molded body before firing, which is a precursor of a bonding material (fired body) for joining two conductive connecting members so as to be electrically connected.

固体酸化物形燃料電池(Solid Oxide Fuel Cell:SOFC)(のセル)は、固体電解質と、固体電解質と一体的に配置された燃料極と、固体電解質と一体的に配置された空気極とを備えている。このSOFCに対して、燃料極に燃料ガス(水素ガス等)を供給するとともに空気極に酸素を含むガス(空気等)を供給することにより、下記(1)、(2)式に示す化学反応が発生する。これにより、燃料極と空気極との間に電位差が発生する。この電位差は、固体電解質の酸素伝導度に基づく。
(1/2)・O+2e−→O2− (於:空気極) …(1)
+O2−→HO+2e− (於:燃料極) …(2)
A solid oxide fuel cell (SOFC) (cell) includes a solid electrolyte, a fuel electrode integrated with the solid electrolyte, and an air electrode integrated with the solid electrolyte. I have. By supplying fuel gas (hydrogen gas, etc.) to the fuel electrode and supplying oxygen-containing gas (air, etc.) to the air electrode, the chemical reaction shown in the following formulas (1) and (2) Will occur. Thereby, a potential difference is generated between the fuel electrode and the air electrode. This potential difference is based on the oxygen conductivity of the solid electrolyte.
(1/2) · O 2 +2 e− → O 2− (where: air electrode) (1)
H 2 + O 2− → H 2 O + 2 e− (in the fuel electrode) (2)

複数のSOFC(のセル)を電気的に直列に接続することにより、大きな電圧が得られる。この構成は、例えば、隣接する2つのSOFCのうちの一方のSOFCの空気極と、他方のSOFCの燃料極に固定された導電部(インターコネクタ)とが、集電部材を介して電気的に直列に接続されることにより得られる。この場合、一方のSOFCの空気極と集電部材、並びに、他方のSOFCのインターコネクタと集電部材が、接合材によって電気的に接続されるようにそれぞれ接合・固定される。以下、空気極、インターコネクタ、集電部材等を総称して「導電性接続部材」と呼ぶこともある。   A large voltage can be obtained by electrically connecting a plurality of SOFCs (cells) in series. In this configuration, for example, an air electrode of one SOFC of two adjacent SOFCs and a conductive portion (interconnector) fixed to the fuel electrode of the other SOFC are electrically connected via a current collecting member. It is obtained by connecting in series. In this case, the air electrode and the current collecting member of one SOFC, and the interconnector and the current collecting member of the other SOFC are joined and fixed so as to be electrically connected by the joining material. Hereinafter, the air electrode, the interconnector, the current collecting member, and the like may be collectively referred to as “conductive connection member”.

従来、このように2つの導電性接続部材を電気的に接続するように接合する接合材の材料として、Pt等の高価な貴金属材料が用いられてきた。コスト低減のため、貴金属材料の代替材料として、導電性セラミック材料が考えられる。例えば、特許文献1では、空気極と集電部材とを強固に接合する導電性セラミック材料として、La−Sr−Co−Fe系ペロブスカイト型複合酸化物が挙げられている。   Conventionally, an expensive noble metal material such as Pt has been used as a material for a joining material for joining two conductive connecting members so as to be electrically connected. In order to reduce the cost, a conductive ceramic material can be considered as an alternative material for the noble metal material. For example, in Patent Document 1, a La—Sr—Co—Fe-based perovskite complex oxide is cited as a conductive ceramic material that firmly bonds an air electrode and a current collecting member.

特開2005−339904号公報JP 2005-339904 A

ところで、一般に、導電性セラミック材料が接合材の材料として用いられる場合、2つの導電性接続部材の間にその接合材の前駆体である焼成前の成形体が介在した状態で成形体が焼成される。これにより、焼結体である導電性セラミック材料(接合材)によって2つの導電性接続部材が接合され且つ電気的に接続される。   By the way, in general, when a conductive ceramic material is used as a material for a bonding material, the green body is fired in a state where a green body before firing which is a precursor of the bonding material is interposed between two conductive connecting members. The Thereby, two electroconductive connection members are joined and electrically connected by the electroconductive ceramic material (joining material) which is a sintered compact.

この場合、通常、焼成前の成形体として、導電性セラミック材料の粉末と、有機物(バインダ、可塑剤等)とを含む成形体が使用される。このように、出発原料として「既に酸化された酸化物材料」の粉末が使用された(焼成前の)成形体が焼成に供されると、粉末同士がネック成長する(焼結する)ことによる所謂焼成収縮に起因して、成形体が収縮する現象が発生する。   In this case, a molded body containing a conductive ceramic material powder and an organic substance (binder, plasticizer, etc.) is usually used as the molded body before firing. As described above, when a molded body (before firing) in which a powder of “already oxidized oxide material” is used as a starting material is subjected to firing, the powders are neck-grown (sintered). Due to so-called firing shrinkage, a phenomenon occurs in which the molded body shrinks.

従って、例えば、導電性接続部材が焼成収縮による成形体の厚さ(膜厚)方向の収縮に追従して移動できない場合、並びに、導電性接続部材の反り等によって発生する(焼成前の)成形体の厚さのばらつきに起因して成形体の厚さ方向の焼成収縮量に差が生じる場合、導電性接続部材と接合材との界面(接合界面)に剥離が生じるという問題が発生し得る。   Therefore, for example, when the conductive connecting member cannot move following the shrinkage in the thickness (film thickness) direction of the molded body due to firing shrinkage, and the molding that occurs due to warping of the conductive connecting member (before firing) If there is a difference in the amount of firing shrinkage in the thickness direction of the molded body due to variation in the thickness of the body, there may be a problem that peeling occurs at the interface (bonding interface) between the conductive connecting member and the bonding material. .

本発明は、係る問題に対処するためになされたものであり、その目的は、2つの導電性接続部材を電気的に接続するように接合する接合材(焼成体)の前駆体である、焼成前の成形体であって、焼成後において、導電性接続部材と接合材との界面(接合界面)に剥離が生じ難いものを提供することにある。   The present invention has been made in order to cope with such a problem, and the purpose thereof is a firing of a bonding material (fired body) that joins two conductive connection members so as to be electrically connected. An object of the present invention is to provide a former molded body that is less likely to be peeled off at the interface (bonding interface) between the conductive connecting member and the bonding material after firing.

本発明者は、上述の導電性セラミック材料として、スピネル型結晶構造を有する遷移金属複合酸化物(例えば、MnCo、CuMn)に注目している。導電性のスピネル型酸化物は、上述したペロブスカイト型酸化物に比して導電性は若干劣るものの、焼結性に優れる特徴を有する。 The inventor has paid attention to transition metal composite oxides having a spinel crystal structure (for example, MnCo 2 O 4 , CuMn 2 O 4 ) as the conductive ceramic material. The conductive spinel type oxide has a characteristic that it is excellent in sinterability although it is slightly inferior to the above-described perovskite type oxide.

本発明に係る焼成前の成形体は、第1導電性接続部材と第2導電性接続部材とを電気的に接続するように接合する接合材であってスピネル型結晶構造を有する遷移金属複合酸化物(導電性セラミック材料)を含んで構成される焼成体である接合材、の前駆体である。本発明に係る焼成前の成形体の特徴は、前記遷移金属複合酸化物を構成する金属元素の粉末と、有機物とを含むことにある。   The molded body before firing according to the present invention is a transition metal composite oxide having a spinel crystal structure, which is a joining material for joining the first conductive connecting member and the second conductive connecting member so as to be electrically connected This is a precursor of a bonding material that is a fired body including an object (conductive ceramic material). The feature of the molded body before firing according to the present invention is that it contains a powder of a metal element constituting the transition metal composite oxide and an organic substance.

本発明者は、出発原料として、遷移金属複合酸化物(既に酸化された導電性セラミック材料)の粉末に代えて、遷移金属複合酸化物を構成する金属元素の粉末を使用することにより、焼成時に成形体が収縮しない(或いは、膨張すること)を見出した。これは、焼成時において出発原料としての各金属材料の酸化反応及び合成反応に起因して成形体が膨張することに基づくと考えられる。即ち、有機分の揮発による収縮量、及び焼成収縮に起因する成形体の収縮量に比して、各金属材料の酸化反応及び合成反応に起因する成形体の膨張量が等しいか又は大きいと考えられる。   The present inventor uses, as a starting material, a powder of the metal element constituting the transition metal composite oxide instead of the powder of the transition metal composite oxide (already oxidized conductive ceramic material). It has been found that the molded body does not shrink (or expands). This is considered to be based on the expansion of the molded body due to the oxidation reaction and synthesis reaction of each metal material as a starting material during firing. That is, it is considered that the amount of expansion of the molded body due to the oxidation reaction and the synthesis reaction of each metal material is equal to or larger than the amount of shrinkage due to the volatilization of organic components and the amount of shrinkage of the molded body due to firing shrinkage. It is done.

従って、上記本発明に係る成形体によれば、焼成時にて成形体が厚さ(膜厚)方向に収縮する現象が発生しない。この結果、導電性接続部材と接合材との界面(接合界面)に剥離方向の応力が作用しなくなり、接合界面に上述した剥離が生じ難くなる。   Therefore, according to the molded body according to the present invention, the phenomenon that the molded body shrinks in the thickness (film thickness) direction does not occur during firing. As a result, the stress in the peeling direction does not act on the interface (bonding interface) between the conductive connecting member and the bonding material, and the above-described peeling does not easily occur at the bonding interface.

ここにおいて、前記成形体は、前記遷移金属複合酸化物を構成する2種類の金属元素のそれぞれの粉末を含んでいてもよいし、前記2種類の金属元素のうちの一方の金属元素の酸化物の粉末と、前記2種類の金属元素のうちの他方の金属元素の粉末と、を含んでいてもよい。前記2種類の金属元素としてMn、及びCoの組み合わせが使用され得る。この場合、焼成により形成される接合材(スピネル型結晶構造を有する遷移金属複合酸化物)は、MnCo又はMn1.5Co1.5からなる。同様に、前記2種類の金属元素としてCuの粉末、及びMnの粉末が使用され得る。この場合、焼成により形成される接合材(スピネル型結晶構造を有する遷移金属複合酸化物)は、CuMnからなる。 Here, the compact may include powders of two kinds of metal elements constituting the transition metal composite oxide, or an oxide of one of the two kinds of metal elements. And a powder of the other metal element of the two kinds of metal elements. A combination of Mn and Co can be used as the two kinds of metal elements. In this case, the bonding material (transition metal composite oxide having a spinel crystal structure) formed by firing is made of MnCo 2 O 4 or Mn 1.5 Co 1.5 O 4 . Similarly, Cu powder and Mn powder may be used as the two kinds of metal elements. In this case, the bonding material (transition metal composite oxide having a spinel crystal structure) formed by firing is made of CuMn 2 O 4 .

前記第1導電性接続部材としては、「固体電解質、前記固体電解質と一体的に配置されるとともに燃料ガスと接触して前記燃料ガスを反応させる燃料極、及び前記固体電解質と一体的に配置されるとともに酸素を含むガスと接触して前記酸素を含むガスを反応させる空気極を備えた固体酸化物形燃料電池」における前記空気極、前記固体酸化物形燃料電池における前記燃料極に固定され且つ前記燃料極と電気的に接続された化学式La1−xCr1−y-z3−δ(ただし、A:Ca,Sr,Baから選択される少なくとも1種類の元素、B:Co,Ni,Mg,Alから選択される少なくとも1種類の元素、xの範囲:0.05〜0.2、yの範囲:0.02〜0.22、zの範囲:0〜0.05、δは0を含む微小値)で表わされるランタンクロマイトを含んで構成される導電部、並びに、前記固体酸化物形燃料電池における前記燃料極に固定され且つ前記燃料極と電気的に接続された化学式(A1−x,B1−z(Ti1−y,D)O3−δ(ただし、A:アルカリ土類元素から選択される少なくとも1種類の元素、B:Sc,Y,及びランタノイド元素から選択される少なくとも1種類の元素、D:第4周期、第5周期、第6周期の遷移金属、及びAl,Si,Zn,Ga,Ge,Sn,Sb,Pb,Biから選択される少なくとも1種類の元素、xの範囲:0〜0.5、yの範囲:0〜0.5、zの範囲:−0.05〜0.05、δは0を含む微小値)で表わされるチタン酸化物を含んで構成される導電部、等が挙げられる。 As the first conductive connecting member, “a solid electrolyte, a fuel electrode that is integrally disposed with the solid electrolyte and that reacts with the fuel gas to react with the fuel gas, and a solid electrolyte that is integrally disposed with the solid electrolyte. In the solid oxide fuel cell having an air electrode that contacts the gas containing oxygen and reacts with the gas containing oxygen, and is fixed to the fuel electrode in the solid oxide fuel cell and the fuel electrode and electrically connected to the chemical formula La 1-x a x Cr 1 -y-z B y O 3-δ ( However, a: Ca, Sr, at least one element selected from Ba, B : At least one element selected from Co, Ni, Mg, Al, x range: 0.05 to 0.2, y range: 0.02 to 0.22, z range: 0 to 0. 05, δ is a minute value including 0) Conductive portion configured to include a lanthanum chromite to be I, as well, the solid oxide is fixed to the fuel electrode in the fuel cell and the fuel electrode is electrically connected to the chemical formula (A 1-x, B x ) 1-z (Ti 1-y , D y ) O 3-δ (where A: at least one element selected from alkaline earth elements, B: at least selected from Sc, Y, and lanthanoid elements) One element, D: transition metal of the fourth period, the fifth period, the sixth period, and at least one element selected from Al, Si, Zn, Ga, Ge, Sn, Sb, Pb, Bi, x range: 0 to 0.5, y range: 0 to 0.5, z range: -0.05 to 0.05, and δ is a minute value including 0). Examples thereof include a conductive portion.

前記第2導電性接続部材としては、隣接する2つの前記固体酸化物形燃料電池の間に介装されて前記2つの前記固体酸化物形燃料電池を電気的に接続するための集電部材等が挙げられる。   The second conductive connecting member is a current collecting member that is interposed between two adjacent solid oxide fuel cells and electrically connects the two solid oxide fuel cells. Is mentioned.

上記本発明に係る成形体が、前記第1、第2導電性接続部材の間に介在する薄膜状の前記接合材の前駆体である場合、前記成形体における膜の厚さ方向の代表長さについての前記成形体の焼成前に対する焼成後の増加率は0〜33%であり、前記成形体における膜の平面方向の代表長さについての前記成形体の焼成前に対する焼成後の増加率は−1〜2%であることが好適である。なお、これらの数値は、前記薄膜状の成形体がテーブル上に載置・接合された状態、即ち、厚さ方向については非拘束、且つ、平面方向については下面(テーブルとの接合面)のみが或る程度拘束された状態において得られる値である。   When the molded body according to the present invention is a precursor of the bonding material in the form of a thin film interposed between the first and second conductive connecting members, the representative length in the thickness direction of the film in the molded body The rate of increase after firing of the molded body with respect to before firing is 0 to 33%, and the rate of increase after firing of the molded body with respect to the representative length in the plane direction of the film in the molded body before firing is − It is suitable that it is 1-2%. These numerical values are the state in which the thin film-like molded body is placed and bonded on the table, that is, unconstrained in the thickness direction, and only the lower surface (bonding surface with the table) in the planar direction. Is a value obtained in a state of being restrained to some extent.

この増加率は、(焼成前の)成形体内における有機物(バインダ、可塑剤等)の含有率を調整することにより調整され得る。具体的には、有機物の含有率が大きければ大きいほど、増加率が小さくなる。これは、有機物の含有率が大きければ大きいほど、酸化膨張する金属元素の粉末の含有率が小さくなることに基づく。   This increase rate can be adjusted by adjusting the content of organic matter (binder, plasticizer, etc.) in the molded body (before firing). Specifically, the larger the organic content, the smaller the increase rate. This is based on the fact that the higher the content of the organic substance, the smaller the content of the metal element powder that oxidizes and expands.

また、(焼成前の)成形体に前記遷移金属複合酸化物の粉末が含まれる場合、この増加率は、(焼成前の)成形体内における前記遷移金属複合酸化物の粉末の含有率を調整することにより調整され得る。具体的には、前記遷移金属複合酸化物の粉末の含有率が大きければ大きいほど、増加率が小さくなる。これは、前記遷移金属複合酸化物の粉末の含有率が大きければ大きいほど、酸化膨張する金属元素の粉末の含有率が小さくなることに基づく。   Further, in the case where the transition metal composite oxide powder is contained in the compact (before firing), this increase rate adjusts the content of the transition metal composite oxide powder in the compact (before firing). Can be adjusted. Specifically, the larger the content of the transition metal composite oxide powder, the smaller the increase rate. This is based on the fact that the higher the content of the transition metal composite oxide powder, the smaller the content of the metal element powder that undergoes oxidative expansion.

また、上記本発明に係る(焼成前の)成形体においては、貴金属の粉末が含まれていてもよい。貴金属としては、例えば、Pt,Agが挙げられる。貴金属を含ませることにより、(焼成後の)接合材そのものの電気抵抗を小さくすることができる。   Moreover, in the molded body (before firing) according to the present invention, a noble metal powder may be included. Examples of the noble metal include Pt and Ag. By including the noble metal, the electrical resistance of the bonding material itself (after firing) can be reduced.

本発明の実施形態に係る焼成前の成形体が焼成されて形成される接合材が使用される対象となるSOFCの構成を示した模式図である。It is the schematic diagram which showed the structure of SOFC used as the object for which the joining material formed by baking the molded object before baking which concerns on embodiment of this invention is used. 図1に示した2つのSOFCが、集電部材及び接合材を介して電気的に直列に接続された様子を示した模式図である。It is the schematic diagram which showed a mode that two SOFC shown in FIG. 1 were electrically connected in series via the current collection member and the joining material.

図1は、本発明の実施形態に係る焼成前の成形体が焼成されて形成される接合材が使用される対象となる、SOFC(のセル)の構成の一例を示す。図1に示すSOFC10は、円筒状の燃料極110と、燃料極110の外周に積層された円筒状の固体電解質120と、固体電解質120の外周に積層された円筒状の空気極130と、燃料極110の外周の一部に固定された板状のインターコネクタ(端子電極)140とを備える。即ち、SOFC10は円筒状を呈していて、SOFC10の外径は、3〜50mmであり、SOFC10の軸方向(y軸方向)の長さは、50〜2000mmである。SOFC10の肉厚(燃料極110、固体電解質120、及び空気極130の径方向の厚さの合計)は、0.5〜3mmである。   FIG. 1 shows an example of the configuration of a SOFC (cell) to which a bonding material formed by firing a green body before firing according to an embodiment of the present invention is used. The SOFC 10 shown in FIG. 1 includes a cylindrical fuel electrode 110, a cylindrical solid electrolyte 120 stacked on the outer periphery of the fuel electrode 110, a cylindrical air electrode 130 stacked on the outer periphery of the solid electrolyte 120, a fuel And a plate-like interconnector (terminal electrode) 140 fixed to a part of the outer periphery of the electrode 110. That is, the SOFC 10 has a cylindrical shape, the outer diameter of the SOFC 10 is 3 to 50 mm, and the length of the SOFC 10 in the axial direction (y-axis direction) is 50 to 2000 mm. The thickness of the SOFC 10 (the total thickness in the radial direction of the fuel electrode 110, the solid electrolyte 120, and the air electrode 130) is 0.5 to 3 mm.

燃料極110(アノード電極)は、例えば、酸化ニッケルNiOとイットリア安定化ジルコニアYSZとから構成される多孔質の焼成体である。燃料極110の(径方向の)厚さは0.1〜3mmである。燃料極110、固体電解質120、及び空気極130の(径方向の)厚さのうち燃料極110の厚さが最も大きく、燃料極110は、SOFC10の支持基板として機能している。   The fuel electrode 110 (anode electrode) is a porous fired body composed of, for example, nickel oxide NiO and yttria stabilized zirconia YSZ. The thickness (in the radial direction) of the fuel electrode 110 is 0.1 to 3 mm. Of the thicknesses of the fuel electrode 110, the solid electrolyte 120, and the air electrode 130 (in the radial direction), the fuel electrode 110 has the largest thickness, and the fuel electrode 110 functions as a support substrate for the SOFC 10.

なお、燃料極110は、酸化ニッケルNiO及び/又はニッケルNiとイットリアYとから構成されていてもよい。また、燃料極110は、燃料極集電層(径方向内側)と燃料極活性層(径方向外側)との2層によって構成されていてもよい。この場合、YSZの含有率は、燃料極集電層より燃料極活性層の方が大きくされる。 The fuel electrode 110 may be composed of nickel oxide NiO and / or nickel Ni and yttria Y 2 O 3 . Further, the fuel electrode 110 may be composed of two layers of a fuel electrode current collecting layer (radially inner side) and a fuel electrode active layer (radial outer side). In this case, the content rate of YSZ is larger in the anode active layer than in the anode current collecting layer.

固体電解質120は、YSZから構成される緻密な焼成体である。固体電解質120の(径方向の)厚さは3〜30μmである。   The solid electrolyte 120 is a dense fired body made of YSZ. The thickness (in the radial direction) of the solid electrolyte 120 is 3 to 30 μm.

空気極130(カソード電極)は、ランタンストロンチウムコバルトフェライトLSCF(La0.6Sr0.4Co0.2Fe0.8)からなる多孔質の焼成体である。空気極130の(径方向の)厚さは5〜50μmである。空気極130は、LSCFからなる第1層(径方向内側)とランタンストロンチウムマンガナイトLSM(La0.8Sr0.2MnO)からなる第2層(径方向外側)との2層によって構成されてもよい。 The air electrode 130 (cathode electrode) is a porous fired body made of lanthanum strontium cobalt ferrite LSCF (La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 ). The thickness (in the radial direction) of the air electrode 130 is 5 to 50 μm. The air electrode 130 is composed of two layers, a first layer made of LSCF (inner side in the radial direction) and a second layer (outer side in the radial direction) made of lanthanum strontium manganite LSM (La 0.8 Sr 0.2 MnO 3 ). May be.

なお、SOFC作製時又は作動中のSOFC10内において固体電解質120内のYSZと空気極130内のストロンチウムとが反応して固体電解質120と空気極130との間の電気抵抗が増大する現象の発生を抑制するために、固体電解質120と空気極130との間に反応防止層が介装されてもよい。反応防止層は、セリアからなる緻密な円筒状の焼成体であることが好ましい。セリアとしては、具体的には、GDC(ガドリニウムドープセリア)、SDC(サマリウムドープセリア)等が挙げられる。   It should be noted that the occurrence of a phenomenon in which the electrical resistance between the solid electrolyte 120 and the air electrode 130 is increased due to the reaction between YSZ in the solid electrolyte 120 and strontium in the air electrode 130 in the SOFC 10 during production or operation of the SOFC. In order to suppress, a reaction preventing layer may be interposed between the solid electrolyte 120 and the air electrode 130. The reaction preventing layer is preferably a dense cylindrical fired body made of ceria. Specific examples of ceria include GDC (gadolinium doped ceria) and SDC (samarium doped ceria).

インターコネクタ140は、空気極130とは絶縁されている一方、燃料極110とは電気的に接続されている。インターコネクタ140は、ランタンクロマイトLCからなる導電性接続部材である。ランタンクロマイトLCの化学式は、下記(3)式にて表される。下記(3)式において、Aは、Ca,Sr,Baから選択される少なくとも1種類の元素である。Bは、Co,Ni,V,Mg,Alから選択される少なくとも1種類の元素である。xの範囲は、0〜0.4であり、更に好ましくは、0.05〜0.2である。yの範囲は、0〜0.3であり、更に好ましくは、0.02〜0.22である。zの範囲は、0〜0.1であり、更に好ましくは、0〜0.05である。δは0を含む微小値である。   The interconnector 140 is insulated from the air electrode 130, and is electrically connected to the fuel electrode 110. The interconnector 140 is a conductive connecting member made of lanthanum chromite LC. The chemical formula of lanthanum chromite LC is represented by the following formula (3). In the following formula (3), A is at least one element selected from Ca, Sr, and Ba. B is at least one element selected from Co, Ni, V, Mg, and Al. The range of x is 0 to 0.4, and more preferably 0.05 to 0.2. The range of y is 0 to 0.3, and more preferably 0.02 to 0.22. The range of z is 0 to 0.1, and more preferably 0 to 0.05. δ is a minute value including zero.

La1−xCr1−y-z3−δ …(3) La 1-x A x Cr 1-yz B y O 3-δ (3)

また、インターコネクタ140は、チタン酸化物により構成されてもよい。チタン酸化物の化学式は、下記(4)式にて表される。下記(4)式において、Aは、アルカリ土類元素から選択される少なくとも1種類の元素である。Bは、Sc,Y,及びランタノイド元素から選択される少なくとも1種類の元素である。Dは、第4周期、第5周期、第6周期の遷移金属、及びAl,Si,Zn,Ga,Ge,Sn,Sb,Pb,Biから選択される少なくとも1種類の元素である、xの範囲は、0〜0.5であり、yの範囲は、0〜0.5であり、zの範囲は、−0.05〜0.05である。δは0を含む微小値である。チタン酸化物としては、例えば、AとしてストロンチウムSrが使用された「ストロンチウムチタネートSrTiO」が採用され得る。 The interconnector 140 may be made of titanium oxide. The chemical formula of titanium oxide is represented by the following formula (4). In the following formula (4), A is at least one element selected from alkaline earth elements. B is at least one element selected from Sc, Y, and lanthanoid elements. D is a transition metal of the fourth period, the fifth period, the sixth period, and at least one element selected from Al, Si, Zn, Ga, Ge, Sn, Sb, Pb, Bi, The range is 0 to 0.5, the range of y is 0 to 0.5, and the range of z is -0.05 to 0.05. δ is a minute value including zero. As the titanium oxide, for example, “strontium titanate SrTiO 3 ” in which strontium Sr is used as A may be employed.

(A1−x,B1−z(Ti1−y,D)O3−δ …(4) (A 1-x , B x ) 1-z (Ti 1-y , D y ) O 3-δ (4)

なお、燃料極のインターコネクタ(端子電極)としてLCやチタン酸化物(特に、ストロンチウムチタネートSrTiO)が用いられるのは、インターコネクタの一端(径方向内側)が還元雰囲気に曝され且つ他端(径方向外側)が酸化雰囲気に曝されることに基づく。酸化・還元の両雰囲気で安定な導電性セラミックとしては、現状では、LCとSrTiOとが優れている。 Note that LC and titanium oxide (particularly, strontium titanate SrTiO 3 ) are used as the fuel electrode interconnector (terminal electrode) because one end (radially inner side) of the interconnector is exposed to a reducing atmosphere and the other end ( This is based on exposure of the outer (radially outer) to an oxidizing atmosphere. At present, LC and SrTiO 3 are excellent as conductive ceramics that are stable in both oxidizing and reducing atmospheres.

このSOFC10に対して、燃料極110に燃料ガス(水素ガス等)を供給するとともに空気極130に酸素を含むガス(空気等)を供給することにより、上記(1)、(2)式に示す化学反応が発生する。これにより、燃料極110と空気極130との間に電位差が発生する。この電位差は、固体電解質120の両面の酸素ポテンシャル差に基づく。   By supplying a fuel gas (hydrogen gas or the like) to the fuel electrode 110 and a gas (air or the like) containing oxygen to the air electrode 130 to the SOFC 10, the above formulas (1) and (2) are shown. A chemical reaction occurs. As a result, a potential difference is generated between the fuel electrode 110 and the air electrode 130. This potential difference is based on the oxygen potential difference between the two surfaces of the solid electrolyte 120.

次に、図1に示したSOFC10の製造方法の一例について説明する。   Next, an example of a method for manufacturing the SOFC 10 shown in FIG. 1 will be described.

燃料極110となる成形体は、以下のように製造された。即ち、NiO粉末とYSZ粉末とが混合され、この混合物にバインダーとしてポリビニルアルコール(PVA)が添加された。この混合物が押出成形法によって成形されることにより、円筒状の燃料極110となる成形体が得られた。   The molded body to be the fuel electrode 110 was manufactured as follows. That is, NiO powder and YSZ powder were mixed, and polyvinyl alcohol (PVA) was added to the mixture as a binder. By molding this mixture by an extrusion molding method, a molded body to be a cylindrical fuel electrode 110 was obtained.

固体電解質120となる膜は、以下のように燃料極110となる成形体の外周面に形成された。即ち、YSZ粉末に水とバインダーが加えられ、この混合物がボールミルで24時間混合されてスラリーが作製された。このスラリーが、燃料極110となる成形体の外周面に塗布・乾燥された。これにより、燃料極110となる成形体の外周面に固体電解質120となる膜が形成された。この場合、インターコネクタ140を設けるための空間を確保するため、燃料極110となる成形体の外周面の一部が露出するように固体電解質120となる膜が形成される。なお、燃料極110となる成形体の外周面に固体電解質120となる膜を形成するに際し、テープ積層法、印刷法等が用いられてもよい。   The film to be the solid electrolyte 120 was formed on the outer peripheral surface of the molded body to be the fuel electrode 110 as follows. That is, water and a binder were added to the YSZ powder, and this mixture was mixed with a ball mill for 24 hours to prepare a slurry. This slurry was applied and dried on the outer peripheral surface of the molded body to be the fuel electrode 110. Thereby, the film | membrane used as the solid electrolyte 120 was formed in the outer peripheral surface of the molded object used as the fuel electrode 110. FIG. In this case, in order to secure a space for providing the interconnector 140, a film that becomes the solid electrolyte 120 is formed so that a part of the outer peripheral surface of the molded body that becomes the fuel electrode 110 is exposed. When forming a film that will be the solid electrolyte 120 on the outer peripheral surface of the molded body that will be the fuel electrode 110, a tape lamination method, a printing method, or the like may be used.

インターコネクタ140となる膜は、以下のように燃料極110となる成形体の外周面に形成された。即ち、ランタンクロマイトLC粉末に水とバインダーが加えられ、この混合物がボールミルで24時間混合されてスラリーが作製された。このスラリーが、燃料極110となる成形体の外周面の前記露出部位に塗布・乾燥された。これにより、燃料極110となる成形体の外周面に、固体電解質120となる膜、及びインターコネクタ140となる膜が積層された積層成形体が得られた。   The film to be the interconnector 140 was formed on the outer peripheral surface of the molded body to be the fuel electrode 110 as follows. That is, water and a binder were added to lanthanum chromite LC powder, and this mixture was mixed with a ball mill for 24 hours to prepare a slurry. This slurry was applied and dried on the exposed portion of the outer peripheral surface of the molded body to be the fuel electrode 110. As a result, a laminated molded body was obtained in which a film to be the solid electrolyte 120 and a film to be the interconnector 140 were laminated on the outer peripheral surface of the molded body to be the fuel electrode 110.

上記積層成形体が電気炉(酸素含有雰囲気中)で空気中にて1400℃で2時間、同時に焼結された。これにより、燃料極110の外周面に固体電解質120、及びインターコネクタ140が形成された。なお、燃料極110となる成形体の外周面にインターコネクタ140となる膜を形成するに際し、テープ積層法、印刷法等が用いられてもよい。   The laminated molded body was simultaneously sintered at 1400 ° C. for 2 hours in air in an electric furnace (in an oxygen-containing atmosphere). Thereby, the solid electrolyte 120 and the interconnector 140 were formed on the outer peripheral surface of the fuel electrode 110. In forming the film to be the interconnector 140 on the outer peripheral surface of the molded body to be the fuel electrode 110, a tape lamination method, a printing method, or the like may be used.

空気極130は、以下のように固体電解質120の外周面に形成された。即ち、LSCF粉末に水とバインダーが加えられ、この混合物がボールミルで24時間混合されてスラリーが作製された。このスラリーが、固体電解質120の外周面に塗布・乾燥され、電気炉(酸素含有雰囲気中)で空気中にて1000℃で1時間焼成されて、固体電解質120の外周面に空気極130が形成された。   The air electrode 130 was formed on the outer peripheral surface of the solid electrolyte 120 as follows. That is, water and a binder were added to the LSCF powder, and this mixture was mixed with a ball mill for 24 hours to prepare a slurry. This slurry is applied and dried on the outer peripheral surface of the solid electrolyte 120, and is baked in air at 1000 ° C. for 1 hour in an electric furnace (in an oxygen-containing atmosphere) to form the air electrode 130 on the outer peripheral surface of the solid electrolyte 120. It was done.

以上により、SOFC10を構成する部材の積層が完了する。ここで、燃料極110は導電性を有する必要がある。従って、焼成後の燃料極110(焼成体)に対して、800℃の高温下にて還元ガスを供給する熱処理(還元処理)が行われる。この還元処理により、NiOがNiへと還元されて、燃料極110は導電性を獲得する。以上、図1に示したSOFC10の製造方法の一例について説明した。   Thus, the stacking of the members constituting the SOFC 10 is completed. Here, the fuel electrode 110 needs to have conductivity. Therefore, heat treatment (reduction treatment) for supplying a reducing gas at a high temperature of 800 ° C. is performed on the fired fuel electrode 110 (fired body). By this reduction treatment, NiO is reduced to Ni, and the fuel electrode 110 acquires electrical conductivity. In the above, an example of the manufacturing method of SOFC10 shown in FIG. 1 was demonstrated.

次に、図2を参照しながら、図1に示した2つのSOFC10が集電部材及び接合材を介して電気的に直列に接続される構成の一例について説明する。図2に示す例では、隣接する2つのSOFC10のうちの図中上側のSOFC10の空気極130と、図中下側のSOFC10のインターコネクタ140との間に、集電部材200が介装されている。集電部材200は、例えば、SUS材料等から構成される金属メッシュ等である。   Next, an example of a configuration in which the two SOFCs 10 illustrated in FIG. 1 are electrically connected in series via a current collecting member and a bonding material will be described with reference to FIG. In the example shown in FIG. 2, the current collecting member 200 is interposed between the air electrode 130 of the upper SOFC 10 in the figure and the interconnector 140 of the lower SOFC 10 in the figure, of the two adjacent SOFCs 10. Yes. The current collecting member 200 is, for example, a metal mesh made of a SUS material or the like.

この集電部材200の図中上側面は、接合材300により図中上側のSOFC10の空気極130と電気的に接続するように接合されている。この集電部材200の図中下側面は、接合材300により図中下側のSOFC10のインターコネクタ140と電気的に接続するように接合されている。   An upper side surface of the current collecting member 200 in the drawing is joined by a bonding material 300 so as to be electrically connected to the air electrode 130 of the SOFC 10 on the upper side in the drawing. The lower side surface of the current collecting member 200 in the drawing is joined by a bonding material 300 so as to be electrically connected to the interconnector 140 of the lower SOFC 10 in the drawing.

接合材300は、スピネル型結晶構造を有する遷移金属複合酸化物から構成される薄膜状の焼成体であり、例えば、MnCo、CuMn等から構成される。接合材300の層の厚さは1〜500μmである。接合材300に、Pt,Ag等の貴金属が含まれていてもよい。接合材300に貴金属を含ませることにより、接合材そのものの電気抵抗を小さくすることができる。 The bonding material 300 is a thin-film fired body made of a transition metal composite oxide having a spinel crystal structure, and is made of, for example, MnCo 2 O 4 , CuMn 2 O 4, or the like. The thickness of the layer of the bonding material 300 is 1 to 500 μm. The bonding material 300 may contain a noble metal such as Pt or Ag. By including a noble metal in the bonding material 300, the electric resistance of the bonding material itself can be reduced.

接合材300による、空気極130と集電部材200との接合、並びに、インターコネクタ140と集電部材200との接合は、以下のように達成された。スピネル系材料がMnCoである場合を例にとって説明する。先ず、出発原料としてのマンガンMnの金属粉末とコバルトCoの金属粉末とが1:2のモル比率で秤量され混合された。金属粉末の粒径は0.5〜5μmであり、平均粒径は2μmであった。Pt,Ag等の貴金属の粉末が加えられてもよい。この混合物に、必要に応じてバインダーとしてエチルセルロース、溶剤としてテルピネオールが加えられ、この混合物が乳鉢で混合されて接合用のペーストが作製された。 The joining of the air electrode 130 and the current collecting member 200 and the joining of the interconnector 140 and the current collecting member 200 by the joining material 300 were achieved as follows. A case where the spinel material is MnCo 2 O 4 will be described as an example. First, manganese Mn metal powder and cobalt Co metal powder as starting materials were weighed and mixed at a molar ratio of 1: 2. The metal powder had a particle size of 0.5 to 5 μm and an average particle size of 2 μm. Powders of noble metals such as Pt and Ag may be added. If necessary, ethyl cellulose as a binder and terpineol as a solvent were added to this mixture, and this mixture was mixed in a mortar to prepare a bonding paste.

図中上側のSOFC10の空気極130の接合部と、集電部材200の図中上側の接合部とにこの接合用ペーストが塗布され、且つ、図中下側のSOFC10のインターコネクタ140の接合部と、集電部材200の図中下側の接合部とにこの接合用ペーストが塗布された。即ち、接合材300の前駆体である「焼成前の成形体」が形成される。そして、図中上側のSOFC10の空気極130と図中下側のSOFC10のインターコネクタ140とが集電部材200を介して貼り合わされた。その後、このペーストが100℃で1時間乾燥された後、空気中にて比較的低い850℃で1時間焼成されることで、焼結体である接合材300が形成された。   The joining paste is applied to the joint portion of the air electrode 130 of the upper SOFC 10 in the drawing and the upper joint portion of the current collecting member 200 in the drawing, and the joint portion of the interconnector 140 of the lower SOFC 10 in the drawing. The bonding paste was applied to the lower joint portion of the current collecting member 200 in the figure. That is, a “molded body before firing” that is a precursor of the bonding material 300 is formed. Then, the air electrode 130 of the upper SOFC 10 in the figure and the interconnector 140 of the lower SOFC 10 in the figure were bonded together via the current collecting member 200. Thereafter, the paste was dried at 100 ° C. for 1 hour, and then fired in air at a relatively low temperature of 850 ° C. for 1 hour, whereby the bonding material 300 as a sintered body was formed.

即ち、出発原料としてスピネル系材料を構成する2種類の金属元素のそれぞれの粉末が使用され、この粉末が焼成時に酸化させられることで、スピネル系材料を有する接合材300が形成された。なお、出発原料として、スピネル系材料を構成する2種類の金属元素のうちの一方の金属元素の酸化物の粉末と、前記2種類の金属元素のうちの他方の金属元素の粉末とが使用されてもよい。また、出発原料として、前記一方の金属元素の酸化物の粉末と、前記一方の金属元素の粉末と、前記他方の金属元素の粉末とが使用されてもよい。また、出発原料として、前記一方の金属元素の酸化物の粉末と、前記一方の金属元素の粉末と、前記他方の金属元素の酸化物の粉末と、前記他方の金属元素の粉末とが使用されてもよい。また、これらの各組み合わせにおいて、出発原料として、スピネル系材料(遷移金属複合酸化物)の粉末が含まれていてもよい。以上、出発原料として、スピネル系材料を構成する2種類の金属元素のうちの少なくとも一方の金属元素の粉末が含まれていればよい。   That is, the powder of each of the two types of metal elements constituting the spinel material was used as a starting material, and this powder was oxidized during firing, whereby the bonding material 300 having the spinel material was formed. Note that, as a starting material, a powder of an oxide of one of the two metal elements constituting the spinel material and a powder of the other metal element of the two metal elements are used. May be. In addition, as a starting material, an oxide powder of the one metal element, a powder of the one metal element, and a powder of the other metal element may be used. Further, as the starting material, the one metal element oxide powder, the one metal element powder, the other metal element oxide powder, and the other metal element powder are used. May be. In each of these combinations, a powder of a spinel material (transition metal composite oxide) may be included as a starting material. As described above, the starting material only needs to contain powder of at least one of the two metal elements constituting the spinel material.

ペーストの焼成温度が比較的低くてもペーストが十分に焼き締まるのは、各金属元素の粉末の酸化反応(=発熱反応)に起因して発生する熱により粉末表面の温度が局所的に上昇してスピネル型結晶(複合酸化物の結晶)が合成・成長していくことに基づくと考えられる。   Even if the firing temperature of the paste is relatively low, the paste is sufficiently baked because the temperature of the powder surface rises locally due to the heat generated due to the oxidation reaction (= exothermic reaction) of each metal element powder. This is considered to be based on the synthesis and growth of spinel crystals (complex oxide crystals).

この接合材300により、空気極130及び集電部材200、並びに、インターコネクタ140及び集電部材200がそれぞれ、接合され且つ電気的に接続された。以上、図1に示した2つのSOFC10を集電部材200及び接合材300を介して電気的に直列に接続する方法の一例について説明した。   With the bonding material 300, the air electrode 130 and the current collecting member 200, and the interconnector 140 and the current collecting member 200 are joined and electrically connected, respectively. Heretofore, an example of a method of electrically connecting the two SOFCs 10 illustrated in FIG. 1 in series via the current collecting member 200 and the bonding material 300 has been described.

なお、特開2009−16351では、マンガンスピネル化合物からなる空気極を、マンガンスピネル化合物からなる接着材によって金属インターコネクタと接合することが記載されている(特に、段落0029を参照)。しかしながら、具体的な実施例が一切記載されていない。一般に、マンガンスピネル化合物は、酸化マンガン粉末と酸化コバルト粉末などをスピネル比率で混合し、その混合物を焼結することで製造される。即ち、本実施形態に係る接合材300の製造方法は、通常のマンガンスピネル化合物の製造方法とは全く異なる。   JP 2009-16351 describes that an air electrode made of a manganese spinel compound is joined to a metal interconnector by an adhesive made of a manganese spinel compound (see particularly paragraph 0029). However, no specific examples are described. In general, a manganese spinel compound is produced by mixing manganese oxide powder and cobalt oxide powder at a spinel ratio and sintering the mixture. That is, the manufacturing method of the bonding material 300 according to the present embodiment is completely different from the normal manufacturing method of the manganese spinel compound.

(作用・効果)
次に、上記実施形態に係る「接合材300の前駆体である焼成前の成形体」の作用・効果について説明する。この作用・効果を説明するため、比較例として、予め合成されたスピネル系材料(遷移金属複合酸化物)の粉末のみを出発原料として形成された成形体(接合材)を導入する。比較例に係る接合材は、以下のように形成された。
(Action / Effect)
Next, the operation and effect of the “molded body before firing that is a precursor of the bonding material 300” according to the embodiment will be described. In order to explain this action and effect, as a comparative example, a molded body (joining material) formed using only a powder of a spinel-based material (transition metal composite oxide) synthesized in advance as a starting material is introduced. The bonding material according to the comparative example was formed as follows.

先ず、所定の手順にて合成されたスピネル系材料(MnCo)がポットミルで粉砕され、スピネル系材料(複合酸化物)の粉末が得られた。この粉末の粒径は0.2〜2μmであり、平均粒径は0.5μmであった。この粉末に、必要に応じてバインダーとしてエチルセルロース、溶剤としてテルピネオールが添加されて接合用のペーストが作製される。そして、このペーストを用いて上記と同様に、上記各接合部に接合材の前駆体である比較例に係る「焼成前の成形体」が形成される。そして、図中上側のSOFC10の空気極130と図中下側のSOFC10のインターコネクタ140とが集電部材200を介して貼り合わされた。このペーストが100℃で1時間乾燥される。その後、空気中にて高温の850〜1000℃で1時間焼成されることで、焼結体である比較例に係る接合材が形成された。 First, a spinel material (MnCo 2 O 4 ) synthesized by a predetermined procedure was pulverized by a pot mill to obtain a spinel material (composite oxide) powder. The particle size of this powder was 0.2-2 μm, and the average particle size was 0.5 μm. If necessary, ethyl cellulose as a binder and terpineol as a solvent are added to the powder to produce a bonding paste. Then, in the same manner as described above, the “molded body before firing” according to the comparative example, which is a precursor of the bonding material, is formed at each of the bonding portions using the paste. Then, the air electrode 130 of the upper SOFC 10 in the figure and the interconnector 140 of the lower SOFC 10 in the figure were bonded together via the current collecting member 200. This paste is dried at 100 ° C. for 1 hour. Then, the joining material which concerns on the comparative example which is a sintered compact was formed by baking at high temperature 850-1000 degreeC in the air for 1 hour.

なお、比較例の場合、上記実施形態のようにペーストの焼成温度を低くするとペーストが十分に焼き締まらない。これは、比較例の場合、既に酸化された酸化物のペーストが使用されているので、上記実施形態と異なり、ペーストの焼成中にて酸化反応に起因する熱によるスピネル型結晶の成長作用が望めないことに基づく。   In the case of the comparative example, if the baking temperature of the paste is lowered as in the above embodiment, the paste is not sufficiently baked. This is because, in the case of the comparative example, an oxide paste that has already been oxidized is used, and unlike the above embodiment, the growth effect of the spinel crystal due to the heat caused by the oxidation reaction can be expected during the baking of the paste. Based on not.

<寸法増加率の評価>
本発明者は、比較例に係る成形体は焼成によって収縮し、本実施形態に係る成形体は焼成によって膨張することを見出した。以下、このことを確認した試験Aについて説明する。
<Evaluation of dimensional increase rate>
The inventor has found that the molded body according to the comparative example contracts by firing, and the molded body according to the present embodiment expands by firing. Hereinafter, test A in which this has been confirmed will be described.

(試験A)
試験Aでは、本実施形態に係る成形体(接合材)及び比較例に係る成形体(接合材)のそれぞれに対して、接合材の材質、接合材の出発原料、成形体内の有機成分の含有率、及び接合材形成時の焼成温度(熱処理温度)の組み合わせが異なる複数のサンプルが作製された。
(Test A)
In Test A, the material of the bonding material, the starting material of the bonding material, and the inclusion of organic components in the molded body for each of the molded body (bonding material) according to the present embodiment and the molded body (bonding material) according to the comparative example. A plurality of samples having different combinations of the rate and the firing temperature (heat treatment temperature) at the time of forming the bonding material were produced.

具体的には、表1に示すように、13種類の水準(組み合わせ)が準備された。そして、各水準に対して5つのサンプルが作製された。表1において、出発原料としてスピネル系材料(遷移金属複合酸化物)を構成する2種類の金属元素のうちの少なくとも一方の金属元素の粉末(金属粉末)が含まれるもの(水準3〜13)、具体的には、出発原料が「前記2種類の金属元素のそれぞれの粉末」であるもの(水準3〜9)、並びに、出発原料が「前記2種類の金属元素のうちの一方の金属元素の酸化物の粉末と前記2種類の金属元素のうちの他方の金属元素の粉末」であるもの(水準10〜13)、が本実施形態に対応し、出発原料が予め合成されたスピネル系材料(遷移金属複合酸化物)の粉末のみであるもの(水準1〜2)が比較例に対応する。   Specifically, as shown in Table 1, 13 types (combinations) of levels were prepared. And five samples were produced for each level. In Table 1, those containing at least one metal element powder (metal powder) of two kinds of metal elements constituting a spinel material (transition metal composite oxide) as a starting material (levels 3 to 13), Specifically, the starting material is “each powder of the two types of metal elements” (levels 3 to 9), and the starting material is “of one of the two types of metal elements. An oxide powder and a powder of the other metal element of the two kinds of metal elements (levels 10 to 13) correspond to the present embodiment, and a spinel material in which starting materials are synthesized in advance ( A transition metal composite oxide) powder (levels 1 and 2) corresponds to the comparative example.

Figure 2012012289
Figure 2012012289

試験Aでは、各サンプル(焼成前の成形体)は、所定のテーブルの上面(平面)において同じ形状(薄膜状)に成形された。各サンプルは、このようにテーブル上に載置・接合された状態、即ち、厚さ方向については非拘束、且つ、平面方向については下面(テーブルとの接合面)のみが或る程度拘束された状態で、対応する熱処理温度にて所定時間焼成された。そして、各サンプルについて、成形体における膜の厚さ方向の長さ(膜の厚さ)についての焼成前に対する焼成後の増加率、並びに、成形体における膜の平面方向の長さ(膜の幅、特に、膜の上面の幅)についての焼成前に対する焼成後の増加率が計測された。この計測は、成形体の焼成前後の形状変化(平面方向、膜厚方向)を、レーザ変位センサからなる非接触式の三次元形状測定機により測定することにより行われた。この結果を表2に示す。尚、表2に示す体積増加率は、平面方向及び膜厚方向の増加率に基づいて算出した。   In Test A, each sample (molded body before firing) was molded into the same shape (thin film shape) on the upper surface (plane) of a predetermined table. Each sample was placed and joined on the table in this way, that is, unconstrained in the thickness direction, and only the lower surface (joint surface with the table) was restrained to some extent in the planar direction. In the state, it was fired for a predetermined time at a corresponding heat treatment temperature. And about each sample, the increase rate after baking with respect to the length (film thickness) in the thickness direction of the film in the molded body, and the length in the planar direction of the film in the molded body (film width) In particular, the increase rate after firing with respect to before firing was measured for the width of the upper surface of the film. This measurement was performed by measuring a shape change (plane direction, film thickness direction) before and after firing of the molded body with a non-contact type three-dimensional shape measuring machine including a laser displacement sensor. The results are shown in Table 2. In addition, the volume increase rate shown in Table 2 was calculated based on the increase rate in the plane direction and the film thickness direction.

Figure 2012012289
Figure 2012012289

表2から理解できるように、比較例に係る成形体は焼成によって収縮し(特に、厚さ方向の寸法増加率が負)、本実施形態に係る成形体は焼成によって収縮しない又は膨張する(特に、厚さ方向の寸法増加率がゼロ又は正)。比較例に係る成形体が(特に厚さ方向において)収縮するのは、所謂焼成収縮に基づくと考えられる。なお、水準1の収縮量が水準2の収縮量より小さいのは、850℃の熱処理温度では、成形体が焼き締まらないためである。一方、本実施形態に係る成形体が(特に厚さ方向において)収縮しない(或いは、膨張する)のは、焼成時において出発原料としての各金属材料の酸化反応及び合成反応に起因して成形体が膨張することに基づくと考えられる。即ち、焼成収縮に起因する成形体の収縮量に比して、各金属材料の酸化反応及び合成反応に起因する成形体の膨張量が等しいか又は大きいことに基づくと考えられる。このような傾向は、表2の水準9から理解できるように、接合材がCuMnからなる場合においても確認された。 As can be understood from Table 2, the molded body according to the comparative example shrinks by firing (particularly, the dimensional increase rate in the thickness direction is negative), and the molded body according to the present embodiment does not shrink or expands by firing (in particular, The dimensional increase rate in the thickness direction is zero or positive). The shrinkage of the molded body according to the comparative example (especially in the thickness direction) is considered to be based on so-called firing shrinkage. The reason why the level 1 shrinkage is smaller than the level 2 shrinkage is that the compact does not shrink at a heat treatment temperature of 850 ° C. On the other hand, the molded body according to the present embodiment does not shrink (or expands in particular in the thickness direction) due to the oxidation reaction and synthesis reaction of each metal material as a starting material during firing. Is considered to be based on the expansion. That is, it is considered that the expansion amount of the molded body due to the oxidation reaction and the synthesis reaction of each metal material is equal to or larger than the shrinkage amount of the molded body due to firing shrinkage. Such a tendency was confirmed even when the bonding material was made of CuMn 2 O 4 as can be understood from Level 9 in Table 2.

なお、表2から理解できるように、本実施形態に係る成形体は、焼成によって、厚さ方向(膜厚方向)にのみ膨張し得、平面方向には殆ど膨張しなかった。即ち、テーブルに対する接合領域(接合面積)は殆ど拡大しなかった。このように成形体が平面方向に殆ど膨張しないのは、焼成時において成形体がテーブル上に載置・接合された状態(即ち、平面方向について下面が或る程度拘束された状態)にあることに基づくと考えられる。   As can be understood from Table 2, the molded body according to the present embodiment was able to expand only in the thickness direction (film thickness direction) by firing and hardly expand in the planar direction. That is, the bonding area (bonding area) to the table hardly expanded. The reason why the molded body hardly expands in the planar direction in this way is that the molded body is placed on and joined to the table during firing (that is, the lower surface is constrained to some extent in the planar direction). Based on

また、表2の水準3〜6から理解できるように、寸法増加率は、(焼成前の)成形体内における有機成分(バインダ、可塑剤等)の含有率を調整することにより調整され得る。具体的には、有機成分の含有率が大きければ大きいほど、寸法増加率が小さくなる。これは、有機成分の含有率が大きければ大きいほど、酸化膨張する金属元素の粉末の含有率が小さくなることに基づく。   Further, as can be understood from levels 3 to 6 in Table 2, the dimensional increase rate can be adjusted by adjusting the content of organic components (binder, plasticizer, etc.) in the molded body (before firing). Specifically, the larger the organic component content, the smaller the dimensional increase rate. This is based on the fact that the larger the content of the organic component, the smaller the content of the metal element powder that oxidizes and expands.

同様に、表2の水準5、7、8から理解できるように、寸法増加率は、(焼成前の)成形体内におけるスピネル系材料(遷移金属複合酸化物)の粉末の含有率を調整することにより調整され得る。具体的には、スピネル系材料の粉末の含有率が大きければ大きいほど、寸法増加率が小さくなる。これは、スピネル系材料の粉末の含有率が大きければ大きいほど、酸化膨張する金属元素の粉末の含有率が小さくなることに基づく。   Similarly, as can be understood from the levels 5, 7, and 8 in Table 2, the dimensional increase rate is to adjust the content of the spinel-based material (transition metal composite oxide) powder in the molded body (before firing). Can be adjusted. Specifically, the larger the content of the spinel-based material powder, the smaller the dimensional increase rate. This is based on the fact that the higher the content ratio of the spinel-based material powder, the smaller the content ratio of the metal element powder that undergoes oxidative expansion.

なお、表2には示されていないが、表2の水準10〜13(即ち、出発原料が、前記2種類の金属元素のうちの一方の金属元素の酸化物の粉末と、前記2種類の金属元素のうちの他方の金属元素の粉末であるもの)において、出発原料としてスピネル系材料の粉末をも含めた場合、スピネル系材料の粉末の含有率が大きければ大きいほど、寸法増加率が小さくなることが確認されている。これも、上記と同様、スピネル系材料の粉末の含有率が大きければ大きいほど、酸化膨張する金属元素の粉末の含有率が小さくなることに基づく。   Although not shown in Table 2, levels 10 to 13 in Table 2 (that is, the starting material is an oxide powder of one of the two types of metal elements and the two types of metal elements). In the case of including the powder of the spinel material as a starting material in the metal element powder of the other metal element), the larger the content of the spinel material powder, the smaller the dimensional increase rate. It has been confirmed that Similarly to the above, this is also based on the fact that the higher the content of the spinel-based material powder, the smaller the content of the metal element powder that undergoes oxidative expansion.

また、表2には示されていないが、表2の水準3〜9(即ち、出発原料が、前記2種類の金属元素のそれぞれの粉末であるもの)において、出発原料として「前記2種類の金属元素の一方又は両方について金属元素の酸化物の粉末」をも含めた場合、金属元素の酸化物の粉末の含有率が大きければ大きいほど、(特に厚さ方向の)寸法増加率が小さくなることが確認されている。これは、金属元素の酸化物の粉末の含有率が大きければ大きいほど、酸化膨張する金属元素の粉末の含有率が小さくなることに基づく。そして、表2の水準10〜13から理解できるように、出発原料として、前記2種類の金属元素のうちの一方の金属元素の粉末の全てが前記一方の金属元素の酸化物の粉末に置き換えられた場合、(特に厚さ方向の)寸法増加率が略ゼロになる。   Further, although not shown in Table 2, in the levels 3 to 9 in Table 2 (that is, the starting material is a powder of each of the two types of metal elements), When the metal element oxide powder for one or both of the metal elements is included, the larger the content of the metal element oxide powder, the smaller the dimensional increase rate (especially in the thickness direction). It has been confirmed. This is based on the fact that the larger the content of the metal element oxide powder, the smaller the content of the metal element powder that undergoes oxidative expansion. As can be understood from levels 10 to 13 in Table 2, as a starting material, all of the metal element powders of the two kinds of metal elements are replaced with oxide powders of the one metal element. In this case, the dimensional increase rate (especially in the thickness direction) becomes substantially zero.

<電気抵抗の評価>
本発明者は、図2に示す「2つのSOFCが集電部材及び接合材を介して電気的に直列に接続される構造体」(以下、「構造体」と呼ぶ。)において、比較例に係る成形体(接合材)を使用した構造体に対して、本実施形態に係る成形体(接合材)を使用した構造体が、電気抵抗が小さい(導電率が高い)ことを見出した。以下、このことを確認した試験Bについて説明する。なお、この試験Bでは、2つのSOFCの間の相対位置が不変となっている。従って、図中上側のSOFC10の空気極130と図中下側のSOFC10のインターコネクタ140との間の相対距離も不変となっている。
<Evaluation of electrical resistance>
The inventor of the present invention uses a comparative example in “a structure in which two SOFCs are electrically connected in series via a current collector and a bonding material” (hereinafter referred to as “structure”) shown in FIG. It has been found that the structure using the molded body (bonding material) according to the present embodiment has a low electrical resistance (high electrical conductivity) relative to the structure using the molded body (bonding material). Hereinafter, test B in which this has been confirmed will be described. In this test B, the relative position between the two SOFCs is unchanged. Therefore, the relative distance between the air electrode 130 of the upper SOFC 10 in the figure and the interconnector 140 of the lower SOFC 10 in the figure is also unchanged.

(試験B)
試験Bでは、上述の表1に示す13種類の水準(組み合わせ)のうちの6種類の水準(表1に示す水準2、3、4、6、8、10)が準備された。そして、各水準に対して3つのサンプルが作製された。試験Aと同様、出発原料としてスピネル系材料を構成する2種類の金属元素のうちの少なくとも一方の金属元素の粉末(金属粉末)が含まれるもの(水準3、4、6、8、10)が本実施形態に対応し、出発原料が予め合成されたスピネル系材料(遷移金属複合酸化物)の粉末のみであるもの(水準2)が比較例に対応する。
(Test B)
In Test B, six levels (levels 2, 3, 4, 6, 8, and 10 shown in Table 1) among the 13 types (combinations) shown in Table 1 were prepared. And three samples were produced for each level. As in Test A, those containing at least one metal element powder (metal powder) of the two types of metal elements constituting the spinel-based material as a starting material (levels 3, 4, 6, 8, 10) Corresponding to this embodiment, the starting material is only a powder of a spinel material (transition metal composite oxide) synthesized beforehand (level 2) corresponds to the comparative example.

試験Bでは、各サンプル(焼成前の成形体)は、図2に示すように、図中上側のSOFC10の空気極130と集電部材200との間、並びに、図中下側のSOFC10のインターコネクタ140と集電部材200との間にそれぞれ成形された。各サンプルに対して、燃料極110側に窒素ガス、空気極140側に空気を供給しながら、800℃まで昇温し、800℃に達した時点で燃料極110に水素ガスを供給しながら還元処理が3時間行われた。この還元処理後、図中上側のSOFC10の空気極130と図中下側のSOFC10のインターコネクタ140と介して外部に取り出される出力(出力密度)が計測された。出力密度として、温度が800℃で定格電圧0.8Vでの値が使用された。出力密度が小さいことは電気抵抗が大きいことを意味する。電気抵抗が大きいことは、接合材の接合界面(図2において面a,b,c,dを参照)に剥離等が生じていることを意味する。この結果を表3に示す。   In test B, as shown in FIG. 2, each sample (molded body before firing) is separated between the air electrode 130 of the upper SOFC 10 and the current collecting member 200 in the figure, and between the lower SOFC 10 in the figure. Each was formed between the connector 140 and the current collecting member 200. While supplying nitrogen gas to the fuel electrode 110 side and air to the air electrode 140 side for each sample, the temperature was raised to 800 ° C., and when the temperature reached 800 ° C., hydrogen gas was supplied to the fuel electrode 110 and reduced. Processing was carried out for 3 hours. After this reduction treatment, the output (output density) taken out through the air electrode 130 of the upper SOFC 10 in the figure and the interconnector 140 of the lower SOFC 10 in the figure was measured. As the output density, a value at a temperature of 800 ° C. and a rated voltage of 0.8 V was used. Small output density means high electrical resistance. High electrical resistance means that peeling or the like has occurred at the bonding interface of the bonding material (see surfaces a, b, c, and d in FIG. 2). The results are shown in Table 3.

Figure 2012012289
Figure 2012012289

表3から理解できるように、本実施形態に係る構造体の方が比較例に係る構造体よりも出力密度が大きい傾向がある。即ち、本実施形態に係る構造体の方が比較例に係る構造体よりも電気抵抗が小さいということができる。このことは、比較例に係る構造体(成形体の厚さ方向の寸法増加率が負)では、接合材の接合界面に剥離等が生じ易く、一方、本実施形態に係る構造体(成形体の厚さ方向の寸法増加率がゼロ又は正)では、接合材の接合界面に剥離等が生じ難いことを意味する。   As can be understood from Table 3, the structure according to the present embodiment tends to have a higher output density than the structure according to the comparative example. That is, it can be said that the structure according to the present embodiment has a smaller electrical resistance than the structure according to the comparative example. This means that in the structure according to the comparative example (the dimension increase rate in the thickness direction of the molded body is negative), peeling or the like is likely to occur at the bonding interface of the bonding material. If the dimensional increase rate in the thickness direction is zero or positive), it means that peeling or the like hardly occurs at the bonding interface of the bonding material.

比較例に係る構造体では接合材の接合界面に剥離等が生じ易いのは、図中上側のSOFC10の空気極130と図中下側のSOFC10のインターコネクタ140との間の相対距離が焼成収縮による成形体の厚さ(膜厚)方向(図中のz軸方向)の収縮に追従して減少できないことに基づくと考えられる。一方、本実施形態に係る構造体では接合材の接合界面に剥離等が生じ難いのは、成形体が厚さ(膜厚)方向(図中z軸方向)に収縮しないことにより接合材の接合界面に剥離方向の応力が作用しなくなることに基づくと考えられる。   In the structure according to the comparative example, peeling or the like is likely to occur at the bonding interface of the bonding material because the relative distance between the air electrode 130 of the upper SOFC 10 in the figure and the interconnector 140 of the lower SOFC 10 in the figure is reduced by firing shrinkage. This is considered to be based on the fact that it cannot be reduced following the contraction in the thickness (film thickness) direction (z-axis direction in the figure) of the molded body. On the other hand, in the structure according to the present embodiment, separation or the like hardly occurs at the bonding interface of the bonding material because the molded body does not shrink in the thickness (film thickness) direction (z-axis direction in the drawing). This is considered to be based on the fact that the stress in the peeling direction does not act on the interface.

加えて、表3から理解できるように、本実施形態に係る構造体(成形体の体積増加率がゼロ又は正)において、成形体の厚さ方向の寸法増加率(厚さ方向について非拘束での値)が33%より大きいと、出力密度が減少する傾向(従って、電気抵抗が増大する傾向)がある。これは、成形体の厚さ方向の寸法増加率(厚さ方向について非拘束での値)が33%より大きいと、上述した厚さ(膜厚)方向(図中のz軸方向)の膨張(圧縮応力)が過大となり、接合箇所で亀裂等が発生することに基づくと考えられる。以上より、薄膜状の成形体の厚さ方向の寸法増加率(厚さ方向について非拘束での値)は、0〜33%であることが特に好ましいといえる。   In addition, as understood from Table 3, in the structure according to this embodiment (the volume increase rate of the molded body is zero or positive), the dimensional increase rate in the thickness direction of the molded body (unconstrained in the thickness direction). If the value is greater than 33%, the power density tends to decrease (and thus the electric resistance tends to increase). This is because when the dimensional increase rate in the thickness direction of the molded body (value in the unconstrained thickness direction) is greater than 33%, the above-described expansion in the thickness (film thickness) direction (z-axis direction in the figure). It is considered that (compressive stress) becomes excessive and cracks and the like are generated at the joints. As mentioned above, it can be said that it is especially preferable that the dimensional increase rate in the thickness direction of the thin-film-shaped molded body (value in the thickness direction without constraint) is 0 to 33%.

以上、スピネル系材料(MnCo等)を構成する2種類の金属元素のうちの少なくとも一方の金属元素(Mn,Co等)の粉末を出発原料として形成された本実施形態に係る成形体(接合材)は、予め合成されたスピネル系材料(MnCo等)の粉末のみを出発原料として形成された比較例に係る成形体(接合材)とは異なり、焼成時にて成形体が厚さ(膜厚)方向(図2のz軸方向)に収縮しない(又は膨張しようとする)。この結果、導電性接続部材と接合材との界面(接合界面、図2に示す面a,b,c,d)に剥離方向の応力が作用しなくなり、接合界面に上述した剥離が生じ難くなる。 As described above, the molded body according to the present embodiment formed using a powder of at least one metal element (Mn, Co, etc.) of two kinds of metal elements constituting the spinel material (MnCo 2 O 4 etc.) as a starting material. (Bonding material) is different from a molded body (bonding material) according to a comparative example formed using only a powder of a spinel-based material (MnCo 2 O 4 or the like) synthesized in advance as a starting material. It does not shrink (or tries to expand) in the thickness (film thickness) direction (z-axis direction in FIG. 2). As a result, the stress in the peeling direction does not act on the interface (bonding interface, surfaces a, b, c, and d shown in FIG. 2) between the conductive connecting member and the bonding material, and the above-described peeling is less likely to occur at the bonding interface. .

なお、本発明は本実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、本実施形態では、2つの円筒状のSOFCを電気的に直列に接続するために本実施形態に係る成形体(接合材)が使用されているが、2つの平板状のSOFCを電気的に直列に接続するために本実施形態に係る成形体(接合材)が使用されてもよい。   In addition, this invention is not limited to this embodiment, A various modification can be employ | adopted within the scope of the present invention. For example, in the present embodiment, the molded body (joining material) according to the present embodiment is used to electrically connect two cylindrical SOFCs in series, but the two flat SOFCs are electrically connected. In order to connect in series, the molded object (joining material) which concerns on this embodiment may be used.

10…SOFC、110…燃料極、120…固体電解質、130…空気極、140…インターコネクタ、200…集電部材、300…接合材   DESCRIPTION OF SYMBOLS 10 ... SOFC, 110 ... Fuel electrode, 120 ... Solid electrolyte, 130 ... Air electrode, 140 ... Interconnector, 200 ... Current collecting member, 300 ... Joining material

Claims (11)

第1導電性接続部材と第2導電性接続部材とを電気的に接続するように接合する接合材であってスピネル型結晶構造を有する遷移金属複合酸化物を含んで構成される焼成体である接合材、の前駆体である、焼成前の成形体であって、
前記遷移金属複合酸化物を構成する金属元素の粉末と、有機物とを含む成形体。
A bonding material for bonding a first conductive connection member and a second conductive connection member so as to be electrically connected, and a fired body including a transition metal composite oxide having a spinel crystal structure It is a molded body before firing, which is a precursor of the bonding material,
The molded object containing the powder of the metal element which comprises the said transition metal complex oxide, and organic substance.
請求項1に記載の成形体において、
前記成形体が、前記第1、第2導電性接続部材の間に介在する薄膜状の前記接合材の前駆体であり、
前記成形体における膜の厚さ方向の代表長さについての前記成形体の焼成前に対する焼成後の増加率は0〜33%であり、前記成形体における膜の平面方向の代表長さについての前記成形体の焼成前に対する焼成後の増加率は−1〜2%である、成形体。
In the molded product according to claim 1,
The molded body is a precursor of the thin-film bonding material interposed between the first and second conductive connecting members,
The increase rate after firing with respect to the representative length in the thickness direction of the film in the molded body after firing is 0 to 33%, and the representative length in the planar direction of the film in the molded body is The molded body having an increase rate after firing of -1 to 2% with respect to that before firing of the molded body.
請求項1又は請求項2に記載の成形体において、
前記遷移金属複合酸化物の粉末を含む成形体。
In the molded product according to claim 1 or 2,
The molded object containing the powder of the said transition metal complex oxide.
請求項1乃至請求項3の何れか一項に記載の成形体において、
前記遷移金属複合酸化物を構成する2種類の金属元素のそれぞれの粉末を含む成形体。
In the molded product according to any one of claims 1 to 3,
The molded object containing each powder of two types of metal elements which comprise the said transition metal complex oxide.
請求項1乃至請求項3の何れか一項に記載の成形体において、
前記遷移金属複合酸化物を構成する2種類の金属元素のうちの一方の金属元素の酸化物の粉末と、前記2種類の金属元素のうちの他方の金属元素の粉末と、を含む成形体。
In the molded product according to any one of claims 1 to 3,
A compact comprising an oxide powder of one metal element of two kinds of metal elements constituting the transition metal composite oxide and a powder of the other metal element of the two kinds of metal elements.
請求項4又は請求項5に記載の成形体において、
前記2種類の金属元素は、Mn、及びCoである成形体。
In the molded product according to claim 4 or 5,
The molded body in which the two kinds of metal elements are Mn and Co.
請求項4又は請求項5に記載の成形体において、
前記2種類の金属元素は、Cu、及びMnである成形体。
In the molded product according to claim 4 or 5,
The formed body in which the two kinds of metal elements are Cu and Mn.
請求項1乃至請求項7の何れか一項に記載の成形体において、
前記第1導電性接続部材が、
固体電解質、前記固体電解質と一体的に配置されるとともに燃料ガスと接触して前記燃料ガスを反応させる燃料極、及び前記固体電解質と一体的に配置されるとともに酸素を含むガスと接触して前記酸素を含むガスを反応させる空気極を備えた固体酸化物形燃料電池における前記空気極である、成形体。
In the molded product according to any one of claims 1 to 7,
The first conductive connecting member is
A solid electrolyte, a fuel electrode disposed integrally with the solid electrolyte and contacting the fuel gas to react with the fuel gas; and a solid electrode disposed integrally with the solid electrolyte and in contact with a gas containing oxygen A molded body that is the air electrode in a solid oxide fuel cell including an air electrode that reacts with a gas containing oxygen.
請求項1乃至請求項7の何れか一項に記載の成形体において、
前記第1導電性接続部材が、
固体電解質、前記固体電解質と一体的に配置されるとともに燃料ガスと接触して前記燃料ガスを反応させる燃料極、及び前記固体電解質と一体的に配置されるとともに酸素を含むガスと接触して前記酸素を含むガスを反応させる空気極を備えた固体酸化物形燃料電池における前記燃料極に固定され且つ前記燃料極と電気的に接続された化学式La1−xCr1−y-z(ただし、A:Ca,Sr,Baから選択される少なくとも1種類の元素、B:Co,Ni,Mg,Alから選択される少なくとも1種類の元素、xの範囲:0.05〜0.2、yの範囲:0.02〜0.22、zの範囲:0〜0.05)で表わされるランタンクロマイトを含んで構成される導電部である、成形体。
In the molded product according to any one of claims 1 to 7,
The first conductive connecting member is
A solid electrolyte, a fuel electrode disposed integrally with the solid electrolyte and contacting the fuel gas to react with the fuel gas; and a solid electrode disposed integrally with the solid electrolyte and in contact with a gas containing oxygen oxygen is fixed to the fuel electrode in solid oxide fuel cell comprising an air electrode of reacting a gas containing and the fuel electrode and electrically connected to the chemical formula La 1-x a x Cr 1 -y-z B y O 3 (A: at least one element selected from Ca, Sr, Ba, B: at least one element selected from Co, Ni, Mg, Al, range of x: 0.05 to 0.2, y range: 0.02 to 0.22, z range: 0 to 0.05), and a molded body that is a conductive part configured to include lanthanum chromite.
請求項1乃至請求項7の何れか一項に記載の成形体において、
前記第1導電性接続部材が、
固体電解質、前記固体電解質と一体的に配置されるとともに燃料ガスと接触して前記燃料ガスを反応させる燃料極、及び前記固体電解質と一体的に配置されるとともに酸素を含むガスと接触して前記酸素を含むガスを反応させる空気極を備えた固体酸化物形燃料電池における前記燃料極に固定され且つ前記燃料極と電気的に接続された化学式(A1−x,B1−z(Ti1−y,D)O(ただし、A:アルカリ土類元素から選択される少なくとも1種類の元素、B:Sc,Y,及びランタノイド元素から選択される少なくとも1種類の元素、D:第4周期、第5周期、第6周期の遷移金属、及びAl,Si,Zn,Ga,Ge,Sn,Sb,Pb,Biから選択される少なくとも1種類の元素、xの範囲:0〜0.5、yの範囲:0〜0.5、zの範囲:−0.05〜0.05)で表わされるチタン酸化物を含んで構成される導電部である、成形体。
In the molded product according to any one of claims 1 to 7,
The first conductive connecting member is
A solid electrolyte, a fuel electrode disposed integrally with the solid electrolyte and contacting the fuel gas to react with the fuel gas; and a solid electrode disposed integrally with the solid electrolyte and in contact with a gas containing oxygen A chemical formula (A 1-x , B x ) 1-z (fixed to the fuel electrode and electrically connected to the fuel electrode in a solid oxide fuel cell having an air electrode for reacting a gas containing oxygen. Ti 1-y , D y ) O 3 (where A: at least one element selected from alkaline earth elements, B: at least one element selected from Sc, Y, and lanthanoid elements, D: 4th period, 5th period, 6th period transition metal, and at least one element selected from Al, Si, Zn, Ga, Ge, Sn, Sb, Pb, Bi, x range: 0 to 0 .5, y Range: 0 to 0.5, range of z: -0.05~0.05) a conductive portion configured to include a titanium oxide represented by the molded body.
請求項8乃至請求項10の何れか一項に記載の成形体において、
前記第2導電性接続部材が、
隣接する2つの前記固体酸化物形燃料電池の間に介装されて、前記2つの前記固体酸化物形燃料電池を電気的に接続するための集電部材である、成形体。
In the molded product according to any one of claims 8 to 10,
The second conductive connecting member is
A molded body that is interposed between two adjacent solid oxide fuel cells and is a current collecting member for electrically connecting the two solid oxide fuel cells.
JP2011117802A 2010-05-31 2011-05-26 Compact Active JP5470326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117802A JP5470326B2 (en) 2010-05-31 2011-05-26 Compact

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010123754 2010-05-31
JP2010123754 2010-05-31
JP2011117802A JP5470326B2 (en) 2010-05-31 2011-05-26 Compact

Publications (2)

Publication Number Publication Date
JP2012012289A true JP2012012289A (en) 2012-01-19
JP5470326B2 JP5470326B2 (en) 2014-04-16

Family

ID=45599160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117802A Active JP5470326B2 (en) 2010-05-31 2011-05-26 Compact

Country Status (1)

Country Link
JP (1) JP5470326B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216293A (en) * 2015-05-19 2016-12-22 日本特殊陶業株式会社 Joint material precursor and electrochemical reaction cell stack
JP2017016846A (en) * 2015-06-30 2017-01-19 日本特殊陶業株式会社 Junction material precursor, electrochemical reaction cell stack, and manufacturing method thereof
JP2017014048A (en) * 2015-06-30 2017-01-19 日本特殊陶業株式会社 Joint material precursor, electrochemical reaction cell stack, and their production methods
JP2017154968A (en) * 2017-04-07 2017-09-07 日本特殊陶業株式会社 Joint material precursor, electrochemical reaction cell stack, and their production methods

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141842A (en) * 2005-11-14 2007-06-07 General Electric Co <Ge> Method and material for connecting electrode with inter-connection layer in solid oxide fuel cell stack
JP2008077913A (en) * 2006-09-20 2008-04-03 Sumitomo Precision Prod Co Ltd Inter-connector for fuel cell and cell stack
JP2008204937A (en) * 2007-01-26 2008-09-04 Tokyo Electric Power Co Inc:The Interconnector for solid oxide fuel cell, its manufacturing method, solid oxide fuel cell, and its operating method
JP2009016351A (en) * 2007-07-05 2009-01-22 General Electric Co <Ge> Solid oxide electrochemical device provided with improved electrode
JP2009152016A (en) * 2007-12-19 2009-07-09 Tokyo Gas Co Ltd Protection film coating method on interconnector for solid oxide fuel cell
JP2010086819A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Single chamber type solid-oxide fuel cell and its stack structure
JP2010092645A (en) * 2008-10-06 2010-04-22 Toto Ltd Solid oxide fuel battery cell body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141842A (en) * 2005-11-14 2007-06-07 General Electric Co <Ge> Method and material for connecting electrode with inter-connection layer in solid oxide fuel cell stack
JP2008077913A (en) * 2006-09-20 2008-04-03 Sumitomo Precision Prod Co Ltd Inter-connector for fuel cell and cell stack
JP2008204937A (en) * 2007-01-26 2008-09-04 Tokyo Electric Power Co Inc:The Interconnector for solid oxide fuel cell, its manufacturing method, solid oxide fuel cell, and its operating method
JP2009016351A (en) * 2007-07-05 2009-01-22 General Electric Co <Ge> Solid oxide electrochemical device provided with improved electrode
JP2009152016A (en) * 2007-12-19 2009-07-09 Tokyo Gas Co Ltd Protection film coating method on interconnector for solid oxide fuel cell
JP2010086819A (en) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd Single chamber type solid-oxide fuel cell and its stack structure
JP2010092645A (en) * 2008-10-06 2010-04-22 Toto Ltd Solid oxide fuel battery cell body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016216293A (en) * 2015-05-19 2016-12-22 日本特殊陶業株式会社 Joint material precursor and electrochemical reaction cell stack
JP2017016846A (en) * 2015-06-30 2017-01-19 日本特殊陶業株式会社 Junction material precursor, electrochemical reaction cell stack, and manufacturing method thereof
JP2017014048A (en) * 2015-06-30 2017-01-19 日本特殊陶業株式会社 Joint material precursor, electrochemical reaction cell stack, and their production methods
JP2017154968A (en) * 2017-04-07 2017-09-07 日本特殊陶業株式会社 Joint material precursor, electrochemical reaction cell stack, and their production methods

Also Published As

Publication number Publication date
JP5470326B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5483714B2 (en) Bonding agent
JP5251982B2 (en) Interconnector material, cell separation structure, and solid oxide fuel cell
JP5075183B2 (en) Electrochemical equipment
JP5160131B2 (en) Electrolyte / electrode assembly and method for producing the same
JP2011099159A (en) Coating body
WO2012081485A1 (en) Solid oxide fuel cell
JP4866955B2 (en) Zygote
KR20180124919A (en) Alternative anode materials for solid oxide fuel cells
JP5346873B2 (en) Bonding agent
JP4901976B2 (en) Bonding agent
JP5470326B2 (en) Compact
JP2015088284A (en) Solid oxide fuel cell
WO2011138915A1 (en) High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP5272572B2 (en) Interconnector material, cell separation structure, and solid oxide fuel cell
JP5062789B1 (en) Solid oxide fuel cell
JP6836156B2 (en) Fuel cell
JP4719940B2 (en) Interconnector material and solid oxide fuel cell having the same
JP5422414B2 (en) Solid oxide fuel cell
JP4374631B2 (en) Oxide ion mixed conductor and its application
JP5079991B2 (en) Fuel cell and fuel cell
JP4913257B1 (en) Solid oxide fuel cell
JP2008234915A (en) Collector material of solid oxide fuel cell, air electrode collector, and the solid oxide fuel cell
JP2012009426A (en) Solid oxide type fuel cell
JP5202746B1 (en) Solid oxide fuel cell
JP5412534B2 (en) Method for producing composite substrate and method for producing solid oxide fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R150 Certificate of patent or registration of utility model

Ref document number: 5470326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150