[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012006988A - Method of manufacturing fiber strengthening polyvinylidene fluoride porous film - Google Patents

Method of manufacturing fiber strengthening polyvinylidene fluoride porous film Download PDF

Info

Publication number
JP2012006988A
JP2012006988A JP2010141263A JP2010141263A JP2012006988A JP 2012006988 A JP2012006988 A JP 2012006988A JP 2010141263 A JP2010141263 A JP 2010141263A JP 2010141263 A JP2010141263 A JP 2010141263A JP 2012006988 A JP2012006988 A JP 2012006988A
Authority
JP
Japan
Prior art keywords
polyvinylidene fluoride
fiber
ester compound
porous film
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010141263A
Other languages
Japanese (ja)
Other versions
JP5636761B2 (en
Inventor
Toru Uda
徹 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2010141263A priority Critical patent/JP5636761B2/en
Publication of JP2012006988A publication Critical patent/JP2012006988A/en
Application granted granted Critical
Publication of JP5636761B2 publication Critical patent/JP5636761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a fiber strengthening polyvinylidene fluoride porous film using a heat inducing phase separation method which is a method of enabling to manufacture a fiber strengthening porous film in which there is not a clear spherulite, and which has resistance to contamination over a fouling material, chemical resistance, and high mechanical strength or the like.SOLUTION: The method of manufacturing a fiber strengthening polyvinylidene fluoride porous film is characterized as follows. A mixture of 25-35 wt.% of a polyvinylidene fluoride resin having 100,000-300,000 of a weight-average molecular weight Mw and 75-65 wt.% of a citric ester compound expressed by the general formula wherein R, Rand Rare the same or different and denote a Cto Calkyl group, Rdenotes an acyl group is melt-molded on an organic fiber substrate, then the citric ester compound is removed by a citric ester compound extraction solvent to make a molding porous.

Description

本発明は、繊維強化ポリフッ化ビニリデン系多孔質膜の製造法に関する。さらに詳しくは、熱誘起相分離法による繊維強化ポリフッ化ビニリデン系多孔質膜の製造法に関する。   The present invention relates to a method for producing a fiber-reinforced polyvinylidene fluoride porous membrane. More specifically, the present invention relates to a method for producing a fiber-reinforced polyvinylidene fluoride porous membrane by a thermally induced phase separation method.

膜ロ過による浄水処理や下廃水処理は、これ迄の凝集沈殿のロ過方式と比較し、運転の維持や管理が容易であり、処理水質も良好であることから、近年水処理分野で幅広く用いられている。特に、これらの処理方式は、従来法では除去が不十分であったクリプトスポリジウム等の病原性微生物を完全に除去できることが大きな特徴として挙げられる。   Compared with conventional filtration methods for coagulation and sedimentation, purification water treatment and membrane wastewater treatment by membrane filtration are easier to maintain and manage, and the quality of the treated water is good. It is used. In particular, these treatment methods are characterized by the ability to completely remove pathogenic microorganisms such as Cryptosporidium, which was insufficiently removed by conventional methods.

これらの膜ロ過に用いられる素材としては、
(1) 微粒子や有機物等のファウリング物質に対する耐汚染性
(2) 膜の薬品洗浄によっても劣化しない耐薬品性
(3) 目づまりしたロ過物質の除去あるいは活性汚泥への酸素供給のために行うエアレーションによる膜の激しい揺れに耐えうる高い機械的強度
などの特性を有していることが求められる。
As materials used for these membrane filtration,
(1) Contamination resistance to fouling substances such as fine particles and organic matter
(2) Chemical resistance that does not deteriorate even by chemical cleaning of the membrane
(3) It is required to have characteristics such as high mechanical strength that can withstand the intense shaking of the membrane caused by aeration performed to remove clogged filter materials or to supply oxygen to activated sludge.

かかる特性を有するロ過膜として、ポリフッ化ビニリデン系樹脂をその良溶媒に溶解させた溶液を、織布や不織布のような有機繊維基材あるいは中空糸状組紐に塗布または含浸させ、ポリフッ化ビニリデン系樹脂の貧溶媒で凝固させることにより得られる平膜や中空糸膜などの繊維強化ポリフッ化ビニリデン系多孔質膜が提案されている(特許文献1〜2)。   As a filter membrane having such characteristics, a solution obtained by dissolving a polyvinylidene fluoride resin in a good solvent is applied to or impregnated into an organic fiber base material such as a woven fabric or a nonwoven fabric or a hollow fiber braid, and a polyvinylidene fluoride type Fiber reinforced polyvinylidene fluoride porous membranes such as flat membranes and hollow fiber membranes obtained by coagulation with a poor resin solvent have been proposed (Patent Documents 1 and 2).

しかしながら、これらの膜はいずれも非溶媒誘起相分離を基本原理とするものであり、かかる分離法は貧溶媒を必要とするものであるから、膜作製過程の制御が難しく、再現性が低い場合がある(非特許文献1)。さらに膜素材がポリフッ化ビニリデン系樹脂の場合は、通常貧溶媒に水と有機溶媒の混合溶液が使用されることから、廃液処理が必要となり膜製造過程が煩雑である。   However, all of these membranes are based on non-solvent induced phase separation, and such separation methods require poor solvents, so it is difficult to control the membrane preparation process and the reproducibility is low. (Non-Patent Document 1). Furthermore, when the membrane material is a polyvinylidene fluoride resin, since a mixed solution of water and an organic solvent is usually used as a poor solvent, a waste liquid treatment is required and the membrane production process is complicated.

一方、熱誘起相分離法を製膜基本原理に得られる多孔質膜は、貧溶媒が不要であり、プロセスの制御が容易で再現性が高い(非特許文献1)。就中、熱誘起相分離法を製膜基本原理として得られるポリフッ化ビニリデン多孔質膜は、従来の非溶媒誘起相分離法(液・液分離法)で得られる膜の課題であった機械的強度やマクロボイドの生成という問題が解決され、さらに化学的耐久性にもすぐれていることから、近年盛んに開発が行われている。   On the other hand, a porous membrane obtained by the thermally induced phase separation method based on the basic principle of film formation does not require a poor solvent, and is easy to control the process and highly reproducible (Non-patent Document 1). In particular, the polyvinylidene fluoride porous membrane obtained using the thermally induced phase separation method as the basic principle of membrane formation is a mechanical problem that has been a problem of membranes obtained by the conventional non-solvent induced phase separation method (liquid / liquid separation method). In recent years, it has been actively developed because it solves the problems of strength and generation of macrovoids, and also has excellent chemical durability.

しかるに、熱誘起相分離法をポリフッ化ビニリデン系樹脂素材に適用する場合、その多孔質膜の製膜工程は、製膜混合物を溶融混練し、次いで押出機により中空糸状に成形し、さらに延伸工程、熱処理工程および無機粒子の抽出工程も要することから、製膜工程が複雑であり、プロセス制御も容易ではなかった(特許文献3)。また、このような製膜工程のため、織布、不織布および組紐などへの塗布または含浸による高強度化が困難であった。   However, when the thermally induced phase separation method is applied to a polyvinylidene fluoride resin material, the film forming process of the porous film is performed by melt-kneading the film forming mixture, and then forming into a hollow fiber shape by an extruder, and further drawing process Further, since a heat treatment step and an inorganic particle extraction step are required, the film forming step is complicated, and the process control is not easy (Patent Document 3). Further, because of such a film forming process, it has been difficult to increase the strength by applying or impregnating woven fabric, nonwoven fabric, braid and the like.

さらにこの製造法では、ジブチルフタレート、ジオクチルジフタレート等のフタル酸エステルが溶媒として使用されているが、フタル酸エステルは内分泌攪乱物質の一種ではないかと世界的に問題視されており、国内においても食品の器具、容器包装、合成樹脂製玩具等において、ジオクチルフタレート(DOP)の使用禁止がそれぞれとりまとめられている。このため、フタル酸エステルを溶媒に使用する場合には、製膜後の工程において、溶媒を極く微量まで抽出することが求められる。   Furthermore, in this production method, phthalic acid esters such as dibutyl phthalate and dioctyl diphthalate are used as solvents. However, phthalic acid esters are regarded as a kind of endocrine disrupting substance in the world, and even in Japan. In food utensils, containers and packaging, synthetic resin toys, etc., the prohibition on the use of dioctyl phthalate (DOP) is summarized. For this reason, when using a phthalate ester as a solvent, it is required to extract a very small amount of the solvent in the step after film formation.

このフタル酸エステルは、ポリ塩化ビニルを始めとした合成樹脂の可塑剤として、好適・広範囲に用いられており、その性質から抽出し難い物質である。このため、抽出溶剤には、各種有機化合物の溶解性にすぐれている塩化メチレンが一般に用いられている。塩化メチレンは、その化学的安全性のため、一旦環境中に放出されると分解し難く、故にPRTR法規制物質としてそれの利用と廃棄とが監視され、大気中の放出量も削除することが求められている。さらに、人体への毒性も懸念される物質でもある。   This phthalate ester is suitable and widely used as a plasticizer for synthetic resins such as polyvinyl chloride, and is a substance that is difficult to extract due to its properties. For this reason, methylene chloride, which is excellent in solubility of various organic compounds, is generally used as the extraction solvent. Due to its chemical safety, methylene chloride is difficult to decompose once released into the environment, so its use and disposal is monitored as a PRTR-regulated substance, and the amount released into the atmosphere may be deleted. It has been demanded. In addition, it is a substance that is also of concern for human toxicity.

一方、フタル酸エステルに代り、アジピン酸エステルを溶媒として使用する方法も開示されているが(特許文献4)、抽出溶媒に塩化メチレンを使用する点ではフタル酸エステルの場合と同様である。   On the other hand, although a method using adipic acid ester as a solvent instead of phthalic acid ester is disclosed (Patent Document 4), it is the same as in the case of phthalic acid ester in that methylene chloride is used as an extraction solvent.

さらに、γ-ブチロラクトンやジメチルスルホキシド等の水溶性有機溶媒を用いた熱誘起相分離法によるポリフッ化ビニリデン系多孔質膜の製造法も開示されており(特許文献5〜6)、これらの溶媒の抽出は水で可能であるものの、得られる膜の構造は粗大な球晶が連なる構造であるため、機械的強度の低下が避けられない。   Furthermore, a method for producing a polyvinylidene fluoride porous membrane by a thermally induced phase separation method using a water-soluble organic solvent such as γ-butyrolactone or dimethyl sulfoxide is also disclosed (Patent Documents 5 to 6). Although extraction can be performed with water, the structure of the obtained film is a structure in which coarse spherulites are linked, so that a reduction in mechanical strength is inevitable.

このような球晶の生成を抑制する方法として、無機粒子を製膜原液に添加する方法が提案されているが(特許文献7)、無機粒子の抽出に水酸化ナトリウム水溶液等の強アルカリが使用されるためコスト高になるばかりではなく、無機粒子の分散性が悪い場合にはピンホールを生ずるおそれがある。   As a method for suppressing the formation of such spherulites, a method has been proposed in which inorganic particles are added to a film-forming stock solution (Patent Document 7). A strong alkali such as a sodium hydroxide aqueous solution is used for extraction of inorganic particles. Therefore, not only is the cost high, but if the dispersibility of the inorganic particles is poor, pinholes may be generated.

特開2004−290830号公報JP 2004-290830 A WO 2009/142279WO 2009/142279 特許第2,899,903号公報Japanese Patent No. 2,899,903 WO 2007/032331WO 2007/032331 特開2003−320228号公報JP 2003-320228 A 特開2006−224051号公報JP 2006-224051 A 特開2008−062227号公報JP 2008-062227 A

MEMBRANE, 26(3), 116-123 (2001)MEMBRANE, 26 (3), 116-123 (2001) レポート:Brussels, C7/GF/csteeop/ATBC/080104 (04)Report: Brussels, C7 / GF / csteeop / ATBC / 080104 (04)

本発明の目的は、熱誘起相分離法を用いた繊維強化ポリフッ化ビニリデン系多孔質膜の製造法であって、明瞭な球晶がなく、しかもファウリング物質に対する耐汚染性、耐薬品性および高い機械的強度などを有する繊維強化多孔質膜の製造を可能とする方法を提供することにある。   An object of the present invention is a method for producing a fiber-reinforced polyvinylidene fluoride porous membrane using a heat-induced phase separation method, which has no clear spherulites and is resistant to fouling, chemical resistance and An object of the present invention is to provide a method capable of producing a fiber-reinforced porous membrane having a high mechanical strength.

かかる本発明の目的は、重量平均分子量Mwが100,000〜300,000のポリフッ化ビニリデン系樹脂25〜35重量%と一般式
(ここでR1、R2、R3は同一または互いに異なるC4〜C6のアルキル基であり、R4はアシル基である)で表わされるクエン酸エステル化合物75〜65重量%との混合物を、有機繊維基材上に溶融成形した後、クエン酸エステル化合物抽出溶媒でクエン酸エステル化合物を除去し、成形体を多孔質化して繊維強化ポリフッ化ビニリデン系多孔質膜を製造する方法によって達成される。
The object of the present invention is to provide 25 to 35% by weight of a polyvinylidene fluoride resin having a weight average molecular weight Mw of 100,000 to 300,000 and a general formula
(Wherein R 1 , R 2 and R 3 are the same or different C 4 -C 6 alkyl groups and R 4 is an acyl group) and a mixture thereof with 75 to 65% by weight of a citrate compound This is achieved by a method in which a fiber-reinforced polyvinylidene fluoride-based porous membrane is produced by melt molding on an organic fiber substrate, removing the citrate ester compound with a citrate ester compound extraction solvent, and making the molded body porous. Is done.

本発明に係る繊維強化ポリフッ化ビニリデン系多孔質膜の製造方法では、製膜溶液におけるポリフッ化ビニリデン系樹脂の混合量を25〜35重量%とすることにより、製膜溶液の粘度が低く、有機繊維基材上への塗布を容易に行うことができる。また、膜成形後の延伸工程、熱処理工程および無機粒子の抽出工程等が不要であることから、基材の損傷あるいは劣化を生じさせることなく、容易に繊維強化されたポリフッ化ビニリデン系多孔質膜を製造することが可能となる。   In the method for producing a fiber-reinforced polyvinylidene fluoride porous membrane according to the present invention, the amount of the polyvinylidene fluoride resin in the membrane-forming solution is 25 to 35% by weight, whereby the viscosity of the membrane-forming solution is low and organic Application onto the fiber substrate can be easily performed. In addition, since there is no need for a stretching step, a heat treatment step, an inorganic particle extraction step, etc. after film formation, the fiber-reinforced polyvinylidene fluoride-based porous membrane is easily fiber-reinforced without causing damage or deterioration of the substrate. Can be manufactured.

さらに、特定のクエン酸エステル化合物をポリフッ化ビニリデン系樹脂の溶媒として用いることで、熱誘起相分離法により、前記の如き問題点を有するフタル酸エステル、塩化メチレン、添加剤として無機粒子等を使用することなく、人体に対する安全性が高くかつ環境負荷の小さい製膜溶媒を用いての繊維強化ポリフッ化ビニリデン系多孔質膜が得られる。かかる繊維強化ポリフッ化ビニリデン系多孔質膜は、明瞭な球晶がなく、ファウリング物質に対する耐汚染性、耐薬品性および高い機械的強度を持ち、浄水処理あるいは下廃水処理の膜ロ過に適している。   Furthermore, by using a specific citrate ester compound as a solvent for the polyvinylidene fluoride resin, phthalate ester having the above-mentioned problems, methylene chloride, and inorganic particles as additives are used by the thermally induced phase separation method. Thus, a fiber-reinforced polyvinylidene fluoride porous membrane using a membrane-forming solvent that is highly safe for the human body and has a low environmental load can be obtained. Such fiber reinforced polyvinylidene fluoride porous membranes have no clear spherulites, have fouling resistance, chemical resistance and high mechanical strength, and are suitable for membrane filtration for water purification or sewage treatment. ing.

実施例で得られた多孔質平膜の断面の走査型電子顕微鏡写真であるIt is a scanning electron micrograph of the cross section of the porous flat membrane obtained in the Example. 実施例で得られた多孔質平膜の表面の走査型電子顕微鏡写真であるIt is a scanning electron micrograph of the surface of the porous flat membrane obtained in the Example.

本発明方法においては、熱誘起相分離法によって繊維強化ポリフッ化ビニリデン系多孔質膜が製造される。   In the method of the present invention, a fiber-reinforced polyvinylidene fluoride porous membrane is produced by a thermally induced phase separation method.

熱誘起相分離法は、熱可塑性樹脂を加熱溶融させた状態で溶媒と均質混合し、これを加熱溶融状態で成形した後、成形体を成形体成分の非溶解性液体(水など)への浸漬または空気中で冷却することでポリマー層と溶媒層とを相分離させ、これを溶液浸漬して膜中の溶媒を抽出して多孔質を得るものである。   In the heat-induced phase separation method, a thermoplastic resin is intimately mixed with a solvent in a heated and melted state, molded in a heated and melted state, and then the molded body is converted into an insoluble liquid (such as water) of the molded body components. The polymer layer and the solvent layer are phase-separated by immersion or cooling in air, and this is immersed in a solution to extract the solvent in the film to obtain a porous material.

ポリフッ化ビニリデン系樹脂としては、フッ化ビニリデンの単独重合体、フッ化ビニリデンとテトラフルオロエチレン、ヘキサフルオロプロピレン、トリフルオロクロロエチレン、エチレンとの共重合体等が挙げられ、好ましくはフッ化ビニリデン単独重合体が用いられる。ポリフッ化ビニリデン系樹脂の重量平均分子量Mw(GPS法によるポリスチレン換算分子量として測定)は、100,000〜300,000程度であることが好ましい。Mwがこれよりも大きくなると、球晶構造の生成が顕著となり、一方Mwがこれよりも小さくなると、機械的強度が低下するようになる。   Examples of the polyvinylidene fluoride resin include a homopolymer of vinylidene fluoride, a copolymer of vinylidene fluoride and tetrafluoroethylene, hexafluoropropylene, trifluorochloroethylene, and ethylene, and preferably vinylidene fluoride alone A polymer is used. The polyvinylidene fluoride resin preferably has a weight average molecular weight Mw (measured as a polystyrene-equivalent molecular weight by the GPS method) of about 100,000 to 300,000. When Mw is larger than this, the formation of spherulite structure becomes remarkable, while when Mw is smaller than this, the mechanical strength is lowered.

ポリフッ化ビニリデン系樹脂の溶媒としては、一般式
で表わされるクエン酸エステル化合物が用いられる。ここで、基R1、R2、R3は同一または互いに異なるC4〜C6のアルキル基であり、基R4はアセチル基、ベンゾイル基等のアシル基であり、このような化合物としては、例えばアセチルクエン酸トリブチル、アセチルクエン酸トリペンチル、アセチルクエン酸トリヘキシルおよびこれらの混合物が挙げられ、好ましくはアセチルクエン酸トリブチルが用いられる。
As a solvent for polyvinylidene fluoride resin, a general formula
A citrate ester compound represented by the formula: Here, the groups R 1 , R 2 , and R 3 are the same or different C 4 to C 6 alkyl groups, the group R 4 is an acyl group such as an acetyl group and a benzoyl group, and such compounds include Examples thereof include tributyl acetyl citrate, tripentyl acetyl citrate, trihexyl acetyl citrate, and mixtures thereof, and preferably tributyl acetyl citrate is used.

基R1、R2、R3において、アルキル基がC3以下の炭素数を有するクエン酸アルキルエステルでは、得られるポリフッ化ビニリデン系多孔質膜の断面構造中に顕著な球晶の生成が認められ、基R4が水素原子である場合にも同様である。例えば、米国食品医薬品局(FDA)や英国プラスチック連盟(BPF)においても広く安全性が認められた化合物であり、欧州委員会の科学詰問委員会(CSTEE)においても、安全であることが意見表明されているこれらのクエン酸エステル(非特許文献2)を製膜溶媒として用いた場合、得られるポリフッ化ビニリデン系多孔質膜の膜断面構造は、微小な球晶が連なる構造であって、それの最大孔径はロ過膜としては不適な大きな値を示す。一方、基R1、R2、R3において、アルキル基がC7以上の炭素数を有するクエン酸アルキルエステルでは、ポリフッ化ビニリデン系樹脂との相溶性が悪化したり、得られた成形体からのクエン酸アルキルエステルの抽出が困難となる。 In the groups R 1 , R 2 , and R 3 , alkyl citrate having an alkyl group with a carbon number of C 3 or less, noticeable formation of spherulites in the cross-sectional structure of the resulting polyvinylidene fluoride porous membrane. The same applies to the case where the group R 4 is a hydrogen atom. For example, the US Food and Drug Administration (FDA) and the British Plastics Federation (BPF) are widely recognized as safe, and the European Commission's Scientific Checkout Committee (CSTEE) expressed their opinion that they are safe. When these citrate esters (Non-patent Document 2) are used as a film-forming solvent, the resulting cross-sectional structure of the polyvinylidene fluoride porous film is a structure in which minute spherulites are linked, The maximum pore diameter is a large value unsuitable for a peritoneum. On the other hand, in the groups R 1 , R 2 , and R 3 , in the citric acid alkyl ester in which the alkyl group has a carbon number of C 7 or more, the compatibility with the polyvinylidene fluoride resin is deteriorated, or from the obtained molded body Extraction of the citric acid alkyl ester becomes difficult.

熱誘起相分離法では、一般に熱可塑性樹脂と溶媒との混合物である製膜原液中の樹脂濃度が増大すると、球晶の生成が抑制される方向に働くが、本発明の製膜溶液にあっては樹脂濃度が増大するとかえって球晶が生成し、また樹脂濃度が小さくなると微細な球晶構造の生成がみられるので、ポリフッ化ビニリデン系樹脂は溶媒であるクエン酸エステル化合物との合計量中25〜35重量%の割合で用いられなければならず、その溶媒となるクエン酸エステル化合物はポリフッ化ビニリデン系樹脂との合計量中75〜65重量%の割合で用いられる。   In the heat-induced phase separation method, when the resin concentration in the film-forming stock solution, which is generally a mixture of a thermoplastic resin and a solvent, increases, the formation of spherulites is suppressed, but this is suitable for the film-forming solution of the present invention. As the resin concentration increases, spherulites are formed, and when the resin concentration decreases, fine spherulite structures are observed. Therefore, the polyvinylidene fluoride resin is included in the total amount of the citrate compound as a solvent. It must be used in a proportion of 25 to 35% by weight, and the citrate ester compound serving as the solvent is used in a proportion of 75 to 65% by weight in the total amount with the polyvinylidene fluoride resin.

ポリフッ化ビニリデン系樹脂とクエン酸エステル化合物との所定割合の混合物は、それを溶融成形した後、クエン酸エステル化合物抽出溶媒でクエン酸エステル化合物を除去し、成形体を多孔質化させるという熱誘起相分離法が適用される。   A mixture of a polyvinylidene fluoride resin and a citrate compound is melt-molded, and then the citrate compound is removed with a citrate compound extraction solvent to make the molded body porous. Phase separation methods are applied.

その溶融混合温度や溶融成形温度は、ポリフッ化ビニリデン系樹脂が溶融し、一相に混じり合う温度以上で、かつクエン酸エステル化合物の沸点以下の温度であり、一般には約150〜200℃、好ましくは約160〜180℃である。   The melt mixing temperature or melt molding temperature is a temperature above the temperature at which the polyvinylidene fluoride resin melts and mixes in one phase and below the boiling point of the citrate compound, generally about 150 to 200 ° C., preferably Is about 160-180 ° C.

溶融成形は、製膜原液である溶融物を有機繊維からなる基材上に、ナイフコータ、ベーカーアプリケータおよびドクターブレードなどのギャップコータにより塗布するか、あるいはTダイなどのダイスからシート状に押し出し、次いで水、有機液体等の冷却浴中に浸せきして固化させることより行われる。この時、溶融物の塗布厚みは、一般には0.1〜2.0mm、好ましくは0.2〜1.0mmに設定される。   In melt molding, a melt as a film-forming solution is applied onto a substrate made of organic fibers by a gap coater such as a knife coater, a baker applicator and a doctor blade, or extruded into a sheet form from a die such as a T die, Subsequently, it is carried out by immersing in a cooling bath of water, organic liquid or the like to solidify. At this time, the coating thickness of the melt is generally set to 0.1 to 2.0 mm, preferably 0.2 to 1.0 mm.

有機繊維基材の基材としては、織布、不織布、編布、紙または網などが挙げられ、好ましくは織布または不織布が挙げられ、その厚みが0.1〜2.0mm、目付量が20〜200g/m2のものが用いられる。有機繊維としては、ポリエステル、ポリプロピレン、ポリエチレン、レーヨン、ビニロン、ナイロン、ポリアミド、ポリイミド、アラミドなどが挙げられ、好ましくはポリエステルが用いられる。 Examples of the base material of the organic fiber base material include woven fabric, non-woven fabric, knitted fabric, paper or net, preferably woven fabric or non-woven fabric, the thickness is 0.1 to 2.0 mm, and the basis weight is 20 to 200 g. / m 2 is used. Examples of the organic fiber include polyester, polypropylene, polyethylene, rayon, vinylon, nylon, polyamide, polyimide, and aramid, and polyester is preferably used.

成形体を多孔質化するために用いられるクエン酸エステル化合物抽出溶媒としては、例えばメタノール、エタノール、イソプロパノール等のアルコール系溶媒、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、n-ヘキサン、シクロヘキサン等の炭化水素系溶媒が挙げられる。ただし、基材の種類によっては、抽出溶媒の種類によって溶解または膨潤するものがあるため、有機繊維の種類に応じて、選定することが必要となる。   Examples of the citrate compound extraction solvent used to make the molded body porous include alcohol solvents such as methanol, ethanol and isopropanol, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, and n-hexane and cyclohexane. A hydrocarbon solvent is mentioned. However, depending on the type of the base material, there are those that dissolve or swell depending on the type of the extraction solvent. Therefore, it is necessary to select according to the type of the organic fiber.

このようにして多孔質化された繊維強化ポリフッ化ビニリデン系多孔質膜の内部構造は、明瞭な球晶構造が確認されず、10μm以上のマクロボイドがみられないことが望ましく、またその孔径は、3〜5μmのクリプトスポリジウムを阻止するという観点からは、バブルポイント法で求められる最大孔径が2.0μm以下、好ましくは1.0μm以下でなければならないが、本発明に係る製造方法により得られる繊維強化ポリフッ化ビニリデン系多孔質膜はこうした要求を十分に満足させる。   As for the internal structure of the fiber reinforced polyvinylidene fluoride porous membrane thus made porous, it is desirable that a clear spherulite structure is not confirmed, and macrovoids of 10 μm or more are not seen, and the pore diameter is From the viewpoint of preventing Cryptosporidium of 3 to 5 μm, the maximum pore size required by the bubble point method should be 2.0 μm or less, preferably 1.0 μm or less, but the fiber reinforcement obtained by the production method according to the present invention The polyvinylidene fluoride-based porous membrane sufficiently satisfies these requirements.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
ポリフッ化ビニリデン樹脂(シグマアルドリッチ社製品;Mw275,000)30重量%とアセチルクエン酸トリブチル70重量%とを、スリーワンモータを用いて170℃の温度で溶融混合した。170℃に加熱したSUS鋼板上に目付130g/m2、厚さ0.5mmのポリエステル織布を固定し、この織布上に溶融混合物をベーカーアプリケータにより塗布した。次いで溶融混合物塗布織布上に、170℃に加熱したSUS鋼板をのせて、溶融混合物塗布織布を2枚のSUS鋼板を挟むような状態として1分間保持した後、20℃の水冷却浴中で固化させることにより、フィルム状成形体を得た。得られた成形体をエタノール中に浸漬させ、アセチルクエン酸トリブチルを抽出、除去した後乾燥を行い、織布により強度が増した平膜状ポリフッ化ビニリデン多孔質膜を得た。
Example 30% by weight of polyvinylidene fluoride resin (manufactured by Sigma-Aldrich; Mw275,000) and 70% by weight of tributyl acetylcitrate were melt-mixed at a temperature of 170 ° C. using a three-one motor. A polyester woven fabric having a basis weight of 130 g / m 2 and a thickness of 0.5 mm was fixed on a SUS steel plate heated to 170 ° C., and the molten mixture was applied onto the woven fabric by a baker applicator. Next, a SUS steel sheet heated to 170 ° C. is placed on the molten mixture-coated woven fabric, and the molten mixture-coated woven fabric is held for 1 minute with two SUS steel plates sandwiched therebetween, and then in a 20 ° C. water cooling bath. The film-like molded object was obtained by making it solidify with. The obtained molded body was immersed in ethanol, and tributyl acetyl citrate was extracted and removed, followed by drying to obtain a flat membrane-like polyvinylidene fluoride porous membrane having increased strength by a woven fabric.

得られた多孔質平膜の断面構造を走査型電子顕微鏡で観察したところ、図1に示される如く明瞭な球晶構造は生じておらず、また10μm以上のマクロボイドは存在しなかった。なお、図2は、膜表面の走査型電子顕微鏡写真である。   When the cross-sectional structure of the obtained porous flat membrane was observed with a scanning electron microscope, a clear spherulite structure did not occur as shown in FIG. 1, and no macrovoids of 10 μm or more were present. FIG. 2 is a scanning electron micrograph of the film surface.

さらに、この多孔質平膜について、最大孔径、平均孔径および透水量の測定を行ったところ、それぞれ1.0μm、0.3μmおよび3200 L/m2/時間であった。これらの各項目の測定は、下記の条件に従い行われた。
最大孔径:ASTM F316-86に基づき、バブルポイント法により測定
液体としてエタノールを使用し、25℃におけるバブルポイントを、次式
から算出した
最大孔径(μm)=(2860×T)/P1
T:表面張力(単位:mN/m)
P1:最初に気泡が検知される空気圧力(単位:Pa)
平均孔径:ASTM F316-03に基づき、ハーフドライ平均孔径を測定
液体としてエタノールを使用し、25℃において、平膜を濡らした状態で
の濡れ流量と、乾いた状態での乾き流量の半値が一致する空気圧力(ハ
ーフドライ圧力)から次式により算出した
平均孔径(μm)=(2860×T)/P2
T:表面張力(単位:mN/m)
P2:ハーフドライ圧力(単位:Pa)
透水量:平膜を直径25mmの円形状に打ち抜き、これをロ過ホルダー(アドバンテッ
ク社製撹拌型ウルトラホルダーUHP-25K;有効ロ過面積3.5cm2)にセットし
、25℃、0.1MPaの引加圧条件下で透水試験を行った
Furthermore, when the maximum pore size, average pore size and water permeability were measured for this porous flat membrane, they were 1.0 μm, 0.3 μm and 3200 L / m 2 / hour, respectively. The measurement of each of these items was performed according to the following conditions.
Maximum pore size: measured by the bubble point method based on ASTM F316-86
Using ethanol as the liquid, the bubble point at 25 ° C
Calculated from
Maximum pore size (μm) = (2860 × T) / P 1
T: Surface tension (Unit: mN / m)
P 1 : Air pressure at which bubbles are first detected (unit: Pa)
Average pore size: Half dry average pore size measured based on ASTM F316-03
Using ethanol as the liquid, with the flat membrane wet at 25 ° C
Air pressure (Ha
Calculated from the following equation:
Average pore diameter (μm) = (2860 × T) / P 2
T: Surface tension (Unit: mN / m)
P 2 : Half dry pressure (unit: Pa)
Permeability: punched flat membrane into a circular shape with a diameter of 25mm,
Set in the stirring type ultra holder UHP-25K manufactured by Ku-ku (effective effective area 3.5 cm 2 )
, 25 ° C, 0.1MPa under water pressure test

Claims (4)

重量平均分子量Mwが100,000〜300,000のポリフッ化ビニリデン系樹脂25〜35重量%と一般式
(ここでR1、R2、R3は同一または互いに異なるC4〜C6のアルキル基であり、R4はアシル基である)で表わされるクエン酸エステル化合物75〜65重量%との混合物を有機繊維基材上に溶融成形した後、クエン酸エステル化合物抽出溶媒でクエン酸エステル化合物を除去し、成形体を多孔質化させることを特徴とする繊維強化ポリフッ化ビニリデン系多孔質膜の製造法。
Polyvinylidene fluoride resin having a weight average molecular weight Mw of 100,000 to 300,000, 25 to 35% by weight and a general formula
(Wherein R 1 , R 2 and R 3 are the same or different C 4 -C 6 alkyl groups and R 4 is an acyl group) and a mixture thereof with 75 to 65% by weight of a citrate compound Is melt-molded on an organic fiber base material, and then the citrate ester compound is removed with a citrate ester compound extraction solvent to make the molded body porous. Law.
クエン酸エステル化合物がアセチルクエン酸トリブチルである請求項1記載の繊維強化ポリフッ化ビニリデン系多孔質膜の製造法。   The method for producing a fiber-reinforced polyvinylidene fluoride porous membrane according to claim 1, wherein the citrate ester compound is tributyl acetylcitrate. 請求項1記載の方法で製造された繊維強化ポリフッ化ビニリデン系多孔質膜。   A fiber-reinforced polyvinylidene fluoride porous membrane produced by the method according to claim 1. バブルポイント法(ASTM F316-86準拠)で求められた最大孔径が2.0μm以下で、膜断面構造に明確な球晶が確認されない請求項3記載の繊維強化ポリフッ化ビニリデン系多孔質膜。   The fiber reinforced polyvinylidene fluoride porous membrane according to claim 3, wherein the maximum pore size determined by the bubble point method (according to ASTM F316-86) is 2.0 µm or less, and no clear spherulites are confirmed in the membrane cross-sectional structure.
JP2010141263A 2010-06-22 2010-06-22 Fabrication method of fiber reinforced polyvinylidene fluoride porous membrane Active JP5636761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010141263A JP5636761B2 (en) 2010-06-22 2010-06-22 Fabrication method of fiber reinforced polyvinylidene fluoride porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010141263A JP5636761B2 (en) 2010-06-22 2010-06-22 Fabrication method of fiber reinforced polyvinylidene fluoride porous membrane

Publications (2)

Publication Number Publication Date
JP2012006988A true JP2012006988A (en) 2012-01-12
JP5636761B2 JP5636761B2 (en) 2014-12-10

Family

ID=45537898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010141263A Active JP5636761B2 (en) 2010-06-22 2010-06-22 Fabrication method of fiber reinforced polyvinylidene fluoride porous membrane

Country Status (1)

Country Link
JP (1) JP5636761B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314247A (en) * 1987-04-24 1988-12-22 ミリポア・コーポレイション Microporous membrane from polypropylene
JP2005516764A (en) * 2002-02-12 2005-06-09 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Halar film
JP2006218441A (en) * 2005-02-14 2006-08-24 Nitto Denko Corp Porous membrane and its production method
WO2008156124A1 (en) * 2007-06-19 2008-12-24 Asahi Kasei Kabushiki Kaisha Method for separation of immunoglobulin monomer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63314247A (en) * 1987-04-24 1988-12-22 ミリポア・コーポレイション Microporous membrane from polypropylene
JP2005516764A (en) * 2002-02-12 2005-06-09 ユー・エス・フィルター・ウェイストウォーター・グループ・インコーポレイテッド Halar film
JP2006218441A (en) * 2005-02-14 2006-08-24 Nitto Denko Corp Porous membrane and its production method
WO2008156124A1 (en) * 2007-06-19 2008-12-24 Asahi Kasei Kabushiki Kaisha Method for separation of immunoglobulin monomer

Also Published As

Publication number Publication date
JP5636761B2 (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5068168B2 (en) Vinylidene fluoride resin hollow fiber porous membrane
JP5552289B2 (en) Method for producing vinylidene fluoride resin porous membrane
JP5531667B2 (en) Manufacturing method of polyvinylidene fluoride porous membrane
KR101657307B1 (en) Fluorinated hollow fiber membrane and method for preparing the same
JP5626269B2 (en) Polymer porous membrane and method for producing polymer porous membrane
JP2014076446A (en) Highly durable pvdf porous membrane and method of producing the same, and washing method and filtration method using the same
JP5856887B2 (en) Method for producing porous membrane
US11338253B2 (en) Porous hollow fiber membrane, method for producing same, and water purification method
JP2010094670A (en) Polyvinylidene fluoride-based multiple membrane and method for producing the same
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JP2009226338A (en) Vinylidene fluoride type resin hollow filament porous membrane and method for manufacruring the same
JP5292890B2 (en) Composite hollow fiber membrane
JPWO2007032331A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
JPWO2010082437A1 (en) Vinylidene fluoride resin hollow fiber porous membrane and method for producing the same
WO2007123004A1 (en) Porous hollow-fiber membrane of vinylidene fluoride resin and process for producing the same
JP2012187575A (en) Composite membrane and method for manufacturing the same
JP2015058418A (en) Porous polymer membrane and production method thereof
JP2016097362A (en) Porous hollow fiber membrane, method for producing porous hollow fiber membrane, and water purification method
JP5636761B2 (en) Fabrication method of fiber reinforced polyvinylidene fluoride porous membrane
WO2012063669A1 (en) Process for production of separation membrane
JP4864707B2 (en) Method for producing vinylidene fluoride resin porous water treatment membrane
JP4781691B2 (en) Porous membrane and method for producing the same
JP5636762B2 (en) Manufacturing method of fiber reinforced porous membrane
JP2010075851A (en) Porous film and method for manufacturing the same
JP6863277B2 (en) Porous hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141007

R150 Certificate of patent or registration of utility model

Ref document number: 5636761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250