JP2012004046A - Manufacturing method of active material, active material and lithium ion secondary battery - Google Patents
Manufacturing method of active material, active material and lithium ion secondary battery Download PDFInfo
- Publication number
- JP2012004046A JP2012004046A JP2010139838A JP2010139838A JP2012004046A JP 2012004046 A JP2012004046 A JP 2012004046A JP 2010139838 A JP2010139838 A JP 2010139838A JP 2010139838 A JP2010139838 A JP 2010139838A JP 2012004046 A JP2012004046 A JP 2012004046A
- Authority
- JP
- Japan
- Prior art keywords
- active material
- livopo
- positive electrode
- vanadium
- mixed solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、活物質の製造方法、活物質及びリチウムイオン二次電池に関する。 The present invention relates to an active material manufacturing method, an active material, and a lithium ion secondary battery.
従来、リチウムイオン二次電池の正極材料(正極活物質)としてLiCoO2やLiNi1/3Mn1/3Co1/3O2等の層状化合物やLiMn2O4等のスピネル化合物が用いられてきた。近年では、LiFePO4に代表されるオリビン型構造の化合物が注目されている。オリビン構造を有する正極材料は高温での熱安定性が高く、安全性が高いことが知られている。しかし、LiFePO4を用いたリチウムイオン二次電池は、その充放電電圧が3.5V程度と低く、エネルギー密度が低くなるという欠点を有する。そのため、高い充放電電圧を実現し得るリン酸系正極材料として、LiCoPO4やLiNiPO4等が提案されている。しかし、これらの正極材料を用いたリチウムイオン二次電池においても、十分な容量が得られていないのが現状である。リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPO4が知られている。しかし、LiVOPO4を用いたリチウムイオン二次電池においても、十分な可逆容量やレート特性が得られていない。上記の正極材料は、例えば、下記特許文献1,2及び下記非特許文献1〜4に記載されている。なお、以下では、場合により、リチウムイオン二次電池を「電池」と記す。 Conventionally, a layered compound such as LiCoO 2 or LiNi 1/3 Mn 1/3 Co 1/3 O 2 or a spinel compound such as LiMn 2 O 4 has been used as a positive electrode material (positive electrode active material) of a lithium ion secondary battery. It was. In recent years, compounds having an olivine type structure typified by LiFePO 4 have attracted attention. It is known that a positive electrode material having an olivine structure has high thermal stability at high temperatures and high safety. However, the lithium ion secondary battery using LiFePO 4 has a drawback that its charge / discharge voltage is as low as about 3.5 V and the energy density is low. Therefore, as a phosphate-based positive electrode material capable of realizing a high charge-discharge voltage, such as LiCoPO4 and LiNiPO 4 it has been proposed. However, the present situation is that a sufficient capacity is not obtained even in lithium ion secondary batteries using these positive electrode materials. LiVOPO 4 is known as a compound that can realize a charge / discharge voltage of 4 V class among phosphoric acid positive electrode materials. However, even in a lithium ion secondary battery using LiVOPO 4 , sufficient reversible capacity and rate characteristics are not obtained. Said positive electrode material is described in the following patent documents 1, 2, and the following nonpatent literatures 1-4, for example. Hereinafter, in some cases, a lithium ion secondary battery is referred to as a “battery”.
本発明は、上記従来技術の有する課題に鑑みてなされたものであり、リチウムイオン二次電池の放電容量を向上させることが可能な活物質の製造方法、活物質及びリチウムイオン二次電池を提供することを目的とする。 The present invention has been made in view of the above-described problems of the prior art, and provides an active material manufacturing method, an active material, and a lithium ion secondary battery capable of improving the discharge capacity of a lithium ion secondary battery. The purpose is to do.
上記目的を達成するために、本発明に係る活物質の製造方法は、リチウム源とリン酸源と5価のバナジウムを有するバナジウム源と水と還元剤とを含む混合液を加圧下で加熱する水熱合成工程を備え、混合液における還元剤の濃度が0.005〜0.4mol/Lである。 In order to achieve the above object, the method for producing an active material according to the present invention heats a mixed solution containing a lithium source, a phosphate source, a vanadium source having pentavalent vanadium, water, and a reducing agent under pressure. A hydrothermal synthesis step is provided, and the concentration of the reducing agent in the mixed solution is 0.005 to 0.4 mol / L.
上記本発明によればナノスケールのLiVOPO4のβ型結晶(斜方晶)を高い収率で得ることが可能となる。そして、本発明によって得られるLiVOPO4を正極活物質として備えるリチウムイオン二次電池では、大きな放電容量が達成される。 According to the present invention, nanoscale LiVOPO 4 β-type crystals (orthorhombic crystals) can be obtained in high yield. Then, in the lithium ion secondary battery comprising a LiVOPO 4 obtained by the present invention as a cathode active material, a large discharge capacity can be achieved.
上記本発明では、還元剤が酒石酸であることが好ましい。これにより、LiVOPO4のβ型結晶の収率が高くなり、電池の放電容量が向上し易くなる。 In the said invention, it is preferable that a reducing agent is tartaric acid. Thereby, the yield of the β type crystal of LiVOPO 4 is increased, and the discharge capacity of the battery is easily improved.
上記本発明では、混合液のラマンスペクトルはラマンシフトが970〜990cm−1であるピークを有することが好ましい。このようなピークを有する混合液中では、5価のバナジウムが還元剤によって還元され、4価のバナジウムが生成しているため、4価のバナジウムを構成元素とするLiVOPO4が生成し易くなる。 In the said invention, it is preferable that the Raman spectrum of a liquid mixture has a peak whose Raman shift is 970-990 cm < -1 >. In the mixed solution having such a peak, pentavalent vanadium is reduced by a reducing agent and tetravalent vanadium is generated, and thus LiVOPO 4 containing tetravalent vanadium as a constituent element is easily generated.
本発明に係る活物質は、LiVOPO4の粒子群を備え、LiVOPO4のβ型結晶相の含有率がLiVOPO4の全量に対して71mol%以上である。本発明に係るリチウムイオン二次電池は、正極集電体と、正極集電体上に設けられた正極活物質層と、を有する正極を備え、正極活物質層が上記本発明に係る活物質を含有する。 Active material in accordance with the present invention comprises a particle group of LiVOPO 4, is β-type crystal phase content of LiVOPO 4 is 71 mol% or more based on the total amount of the LiVOPO 4. A lithium ion secondary battery according to the present invention includes a positive electrode having a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector, and the positive electrode active material layer is an active material according to the present invention. Containing.
上記本発明に係る活物質は、例えば上記本発明に係る活物質の製造方法により得ることができる。上記本発明に係るリチウムイオン二次電池では、大きな放電容量が達成される。 The active material according to the present invention can be obtained, for example, by the method for producing an active material according to the present invention. In the lithium ion secondary battery according to the present invention, a large discharge capacity is achieved.
上記本発明に係る活物質では、レーザー散乱法で測定される前記粒子群の体積基準の粒度分布において、一次粒径が小さい側からの体積累積率が50%である一次粒径D50が500nm以下であることが好ましい。このように粒径が小さいLiVOPO4を用いた電池では、放電容量が向上し易い。 In the active material according to the present invention, in the volume-based particle size distribution of the particle group measured by the laser scattering method, the primary particle size D50 having a volume cumulative rate from the side where the primary particle size is small is 50% is 500 nm or less. It is preferable that In such a battery using LiVOPO 4 having a small particle size, the discharge capacity is easily improved.
本発明によれば、リチウムイオン二次電池の放電容量を向上させることが可能な活物質の製造方法、活物質及びリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the active material which can improve the discharge capacity of a lithium ion secondary battery, an active material, and a lithium ion secondary battery can be provided.
以下、図面を参照しながら、本発明の好適な一実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率及び位置関係は図示されたものに限定されない。 Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios and positional relationships in the drawings are not limited to those illustrated.
(活物質の製造方法)
<水熱合成工程>
本発明の一実施形態に係る活物質の製造方法は水熱合成工程を備える。水熱合成工程では、まず、内部を加熱、加圧する機能を有する反応容器(例えば、オートクレーブ等)内に、リチウム源、リン酸源、バナジウム源、水及び還元剤を投入して、これらが分散した混合液(水溶液)を調製する。なお、リチウム源、リン酸源及びバナジウム源は混合液に略完全に且つ均一に溶解していることが好ましい。つまり、混合液は、懸濁せず、透光性又は透明性を有することが好ましい。これにより、β型結晶相の割合が高く、容量密度の高いLiVOPO4が合成され易くなる。また、混合液を調製する際は、例えば、最初に、リン酸源、バナジウム源、水及び還元剤を混合したものを還流した後、これにリチウム源を加えてもよい。この還流により、リン酸源及びバナジウム源の複合体を形成することができる。
(Method for producing active material)
<Hydrothermal synthesis process>
The manufacturing method of the active material which concerns on one Embodiment of this invention is equipped with a hydrothermal synthesis process. In the hydrothermal synthesis process, first, a lithium source, a phosphate source, a vanadium source, water and a reducing agent are introduced into a reaction vessel (for example, an autoclave) having a function of heating and pressurizing the inside, and these are dispersed. A mixed solution (aqueous solution) is prepared. The lithium source, phosphate source and vanadium source are preferably dissolved almost completely and uniformly in the mixed solution. That is, it is preferable that the liquid mixture does not suspend and has translucency or transparency. This makes it easy to synthesize LiVOPO 4 having a high β-type crystal phase ratio and a high capacity density. In preparing the mixed solution, for example, first, a mixture of a phosphate source, a vanadium source, water and a reducing agent may be refluxed, and then a lithium source may be added thereto. By this reflux, a complex of a phosphate source and a vanadium source can be formed.
バナジウム源は価数が5であるバナジウムを含有する。5価のバナジウムは、混合液中で還元剤により還元されて、価数が4であるバナジウムとなる。バナジウムは、混合液中で、V5+,V4+等のイオンとして存在してもよく、4価又は5価のバナジウムから構成されるバナデート(バナジウム酸化物)のイオンとして存在してもよい。 The vanadium source contains vanadium having a valence of 5. Pentavalent vanadium is reduced by a reducing agent in the mixed solution to vanadium having a valence of 4. Vanadium may exist as ions of V 5+ , V 4+, etc. in the mixed solution, or may exist as ions of vanadate (vanadium oxide) composed of tetravalent or pentavalent vanadium.
仮にバナジウム源に含まれるバナジウムの価数が4以下である場合、バナジウムは、混合液中で還元剤により還元されて、価数が3価以下であるバナジウムとなる。LiVOPO4は4価のバナジウムを構成元素とするため、価数が3以下であるバナジウムを含む混合液中ではLiVOPO4が合成され難い。また、バナジウムの価数が4以下であるバナジウム源は、5価のバナジウムから構成されるバナジウム源よりも高価であり、LiVOPO4の製造コストを増加させるため、好ましくない。 If the valence of vanadium contained in the vanadium source is 4 or less, vanadium is reduced by a reducing agent in the mixed solution to vanadium having a valence of 3 or less. Since LiVOPO 4 contains tetravalent vanadium as a constituent element, LiVOPO 4 is hardly synthesized in a mixed solution containing vanadium having a valence of 3 or less. Further, a vanadium source having a vanadium valence of 4 or less is not preferable because it is more expensive than a vanadium source composed of pentavalent vanadium and increases the production cost of LiVOPO 4 .
混合液における還元剤の濃度は、混合液1リットルに対して0.005〜0.4モルである。これにより、混合液中でバナジウム源が十分に溶解して、5価のバナジウムが確実に還元されて4価のバナジウムとなり、β型のLiVOPO4が合成される。還元剤の濃度が上記の数値範囲外である場合、LiVOPO4中のα型結晶相の割合がβ型結晶相の割合よりも大きくなるとともに、LiVOPO4の一次粒径D50が大きくなり、電池の放電容量が小さくなる。 The density | concentration of the reducing agent in a liquid mixture is 0.005-0.4 mol with respect to 1 liter of liquid mixtures. As a result, the vanadium source is sufficiently dissolved in the mixed solution, and the pentavalent vanadium is reliably reduced to tetravalent vanadium to synthesize β-type LiVOPO 4 . If the concentration of the reducing agent is outside the above numerical range, with the proportion of α-type crystal phase in LiVOPO 4 is greater than the ratio of β-type crystal phase, the greater the primary particle diameter D50 of LiVOPO 4, the battery The discharge capacity is reduced.
還元剤としては、例えば、酒石酸、アスコルビン酸及びクエン酸等を用いればよいが、LiVOPO4中のβ型結晶相の割合を高めて電池の放電容量を増加させる点において、酒石酸が優れている。 As the reducing agent, for example, tartaric acid, ascorbic acid, citric acid and the like may be used, but tartaric acid is excellent in that the ratio of the β-type crystal phase in LiVOPO 4 is increased to increase the discharge capacity of the battery.
混合液のラマンスペクトルはラマンシフトが970〜990cm−1であるピークを有することが好ましい。このピークは、V4+の存在、又は4価のバナジウムを有するバナデートイオンの存在を意味する。つまり、このピークは、混合液中で還元剤の作用によりバナジウム源が略完全に溶解して、バナジウム源中の5価のバナジウムが還元されて4価のバナジウムが生成していることを意味する。このようにラマンスペクトルにおいてラマンシフトが970〜990cm−1である領域にピークを示す混合液を用いた水熱合成では、放電容量が大きいLiVOPO4を得やすくなる。換言すれば、バナジウム源が略完全に溶解した混合液を用いた水熱合成では、放電容量が大きいLiVOPO4を得やすくなる。なお、ラマンスペクトルとは、ラマン散乱光の振動数と入射光の振動数との差(ラマンシフト)に対応するラマン散乱光の強度を示すスペクトルであり、周知のラマン分光法により測定することができる。 The Raman spectrum of the mixed solution preferably has a peak with a Raman shift of 970 to 990 cm −1 . This peak means the presence of V 4+ or the presence of vanadate ions with tetravalent vanadium. That is, this peak means that the vanadium source is almost completely dissolved in the mixed solution by the action of the reducing agent, and pentavalent vanadium in the vanadium source is reduced to produce tetravalent vanadium. . In this way, in hydrothermal synthesis using a mixed solution having a peak in a region where the Raman shift is 970 to 990 cm −1 in the Raman spectrum, LiVOPO 4 having a large discharge capacity is easily obtained. In other words, in hydrothermal synthesis using a mixed solution in which the vanadium source is almost completely dissolved, it is easy to obtain LiVOPO 4 having a large discharge capacity. The Raman spectrum is a spectrum indicating the intensity of Raman scattered light corresponding to the difference (Raman shift) between the frequency of Raman scattered light and the frequency of incident light, and can be measured by a well-known Raman spectroscopy. it can.
リチウム源としては、例えば、LiNO3、Li2CO3、LiOH、LiCl、Li2SO4、Li3PO4及びCH3COOLiからなる群より選ばれる少なくとも一種を用いればよい。 As the lithium source, for example, at least one selected from the group consisting of LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, Li 3 PO 4, and CH 3 COOLi may be used.
リン酸源としては、例えば、H3PO4、NH4H2PO4、(NH4)2HPO4及びLi3PO4からなる群より選ばれる少なくとも一種を用いればよい。 As the phosphoric acid source, for example, at least one selected from the group consisting of H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 and Li 3 PO 4 may be used.
バナジウム源としては、例えば、V2O5及びNH4VO3からなる群より選ばれる少なくとも一種を用いればよい。 As the vanadium source, for example, at least one selected from the group consisting of V 2 O 5 and NH 4 VO 3 may be used.
なお、二種以上のリチウム源、二種以上のリン酸源又は二種以上のバナジウム源を併用してもよい。 Two or more lithium sources, two or more phosphoric acid sources, or two or more vanadium sources may be used in combination.
水熱合成工程では、加熱前の混合液に含まれるリン元素のモル数[P]と混合液に含まれるバナジウム元素のモル数[V]との比[P]/[V]を0.9〜1.2に調整すればよい。[P]/[V]はリン酸源とバナジウム源との配合比によって調整すればよい。ただし、[P]/[V]が上記の範囲外であっても本発明の効果は達成される。 In the hydrothermal synthesis step, the ratio [P] / [V] of the number of moles of phosphorus element [P] contained in the liquid mixture before heating to the number of moles [V] of vanadium element contained in the liquid mixture is set to 0.9. What is necessary is just to adjust to -1.2. [P] / [V] may be adjusted by the blending ratio of the phosphate source and the vanadium source. However, even if [P] / [V] is outside the above range, the effect of the present invention is achieved.
水熱合成工程では、加熱前の混合液に含まれるリチウム元素のモル数[Li]と[V]との比[Li]/[V]を0.9〜1.2に調整すればよい。なお、[Li]/[V]は、リチウム源とバナジウム源との配合比によって調整すればよい。ただし、[Li]/[V]が上記の範囲外であっても本発明の効果は達成される。 In the hydrothermal synthesis step, the ratio [Li] / [V] of the number of moles of lithium element [Li] and [V] contained in the mixed solution before heating may be adjusted to 0.9 to 1.2. [Li] / [V] may be adjusted according to the blending ratio of the lithium source and the vanadium source. However, even if [Li] / [V] is outside the above range, the effect of the present invention is achieved.
水熱合成工程では、密閉した反応器内の混合液を加圧しながら加熱することにより、混合液中で水熱反応を進行させる。これにより、活物質であるLiVOPO4が水熱合成される。 In the hydrothermal synthesis step, the hydrothermal reaction is advanced in the mixed liquid by heating the mixed liquid in the sealed reactor while applying pressure. Thus, LiVOPO 4 is hydrothermally synthesized as an active material.
水熱合成工程では、混合液を加圧下で150〜300℃に加熱すればよい。これにより、nmスケールの小さな粒径を有し、高いLiの拡散能を有するLiVOPO4を得易くなる。なお、混合液の加熱温度が低すぎる場合、LiVOPO4の生成及び結晶成長が十分に進行しない。混合液の加熱温度が高過ぎると、LiVOPO4が結晶成長し過ぎてその粒径が大きくなる傾向がある。また混合液の加熱温度が高過ぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。ただし、混合液の加熱温度が上記の範囲外であっても本発明の効果は達成される。 In the hydrothermal synthesis step, the mixed solution may be heated to 150 to 300 ° C. under pressure. This makes it easy to obtain LiVOPO 4 having a small particle size on the nm scale and having a high Li diffusibility. Incidentally, when the heating temperature of the mixture is too low, the generation and crystal growth of LiVOPO 4 does not proceed sufficiently. If the heating temperature of the mixed solution is too high, LiVOPO 4 tends to grow too much and its particle size tends to increase. Moreover, when the heating temperature of a liquid mixture is too high, high heat resistance is calculated | required by the reaction container, and there exists a tendency for the manufacturing cost of an active material to increase. However, the effect of the present invention is achieved even when the heating temperature of the mixed liquid is outside the above range.
水熱合成工程において混合液に加える圧力は、0.2〜1MPaとすればよい。混合液に加える圧力が低過ぎると、最終的に得られるLiVOPO4の結晶性が低下し、その容量密度が減少する傾向がある。混合液に加える圧力が高過ぎると、反応容器に高い耐圧性が求められ、活物質の製造コストが増大する傾向がある。ただし、混合液に加える圧力が上記の範囲外であっても本発明の効果は達成される。 The pressure applied to the mixed solution in the hydrothermal synthesis step may be 0.2 to 1 MPa. If the pressure applied to the mixed solution is too low, the crystallinity of LiVOPO 4 finally obtained tends to decrease, and the capacity density tends to decrease. If the pressure applied to the mixed solution is too high, the reaction vessel is required to have high pressure resistance, and the production cost of the active material tends to increase. However, the effects of the present invention can be achieved even when the pressure applied to the mixture is outside the above range.
<熱処理工程>
本実施形態に係る活物質の製造方法は、水熱合成工程後の混合液を更に加熱する熱処理工程を備えていてもよい。熱処理工程によって、水熱合成工程で反応しなかったリチウム源、リン酸源及びバナジウム源の反応を進行させたり、水熱合成工程で生成したLiVOPO4の結晶成長を促進したりすることができる。その結果、LiVOPO4の容量密度が向上し、それを用いた電池の放電容量やレート特性が向上する傾向がある。
<Heat treatment process>
The manufacturing method of the active material which concerns on this embodiment may be equipped with the heat processing process which further heats the liquid mixture after a hydrothermal synthesis process. By the heat treatment step, the reaction of the lithium source, the phosphate source, and the vanadium source that did not react in the hydrothermal synthesis step can be advanced, or the crystal growth of LiVOPO 4 generated in the hydrothermal synthesis step can be promoted. As a result, the capacity density of LiVOPO 4 is improved, and the discharge capacity and rate characteristics of a battery using the LiVOPO 4 tend to be improved.
本実施形態では、水熱合成工程において200〜300℃の高温領域で混合液を加熱した場合、水熱合成工程単独で充分な大きさのLiVOPO4の結晶を形成することが容易となる。また、本実施形態では、水熱合成工程において200℃未満の低温領域で混合液を加熱した場合であっても、水熱合成工程単独で所望の活物質を形成することは可能である。ただし、水熱合成工程において低温領域で混合液を加熱した場合、水熱合成工程に続いて熱処理工程を実施した方が、LiVOPO4の合成及び結晶成長が促進され、本発明の効果が更に向上する傾向がある。 In the present embodiment, when the mixed liquid is heated in a high temperature region of 200 to 300 ° C. in the hydrothermal synthesis step, it becomes easy to form a sufficiently large LiVOPO 4 crystal by the hydrothermal synthesis step alone. Moreover, in this embodiment, even if it is a case where a liquid mixture is heated in a low-temperature area | region below 200 degreeC in a hydrothermal synthesis process, it is possible to form a desired active material by a hydrothermal synthesis process alone. However, when the mixed liquid is heated in the low temperature region in the hydrothermal synthesis process, the heat treatment process following the hydrothermal synthesis process promotes the synthesis and crystal growth of LiVOPO 4 and further improves the effects of the present invention. Tend to.
熱処理工程を実施する場合、水熱合成工程後の混合液を400〜700℃の熱処理温度で加熱すればよい。混合液の熱処理時間は、3〜20時間であればよい。また、混合液の熱処理雰囲気は、窒素雰囲気、アルゴン雰囲気、又は空気雰囲気であればよい。 What is necessary is just to heat the liquid mixture after a hydrothermal synthesis process at the heat processing temperature of 400-700 degreeC when implementing a heat processing process. The heat treatment time of the mixed solution may be 3 to 20 hours. The heat treatment atmosphere of the mixed solution may be a nitrogen atmosphere, an argon atmosphere, or an air atmosphere.
なお、水熱合成工程で得られる混合液を、熱処理工程で加熱する前に60〜150℃程度で1〜30時間程度、予熱してもよい。予熱により、混合液から余計な水分や有機溶媒が除去され、混合液が粉体となる。この粉体に対して熱処理工程を実施すればよい。その結果、熱処理工程においてLiVOPO4に不純物が取り込まれることを防ぎ、粒子形状を均一化することが可能となる。 In addition, you may preheat the liquid mixture obtained at a hydrothermal synthesis process at about 60-150 degreeC for about 1 to 30 hours, before heating at a heat processing process. Preheating removes excess moisture and organic solvent from the mixed solution, and the mixed solution becomes powder. What is necessary is just to implement the heat processing process with respect to this powder. As a result, it is possible to prevent impurities from being taken into LiVOPO 4 in the heat treatment step and to make the particle shape uniform.
(活物質及びリチウムイオン二次電池)
本実施形態に係る活物質は、上述した本実施形態に係る活物質の製造方法により得ることができる。本実施形態に係る活物質は、LiVOPO4の粒子群を備え、LiVOPO4のβ型結晶相の含有率がLiVOPO4の全量に対して71mol%以上である。β型結晶相の含有率の上限値は、特に限定されず、100mol%であってもよく、95mol%であってもよい。β型結晶相の含有率が71mol%未満である場合、電池の放電容量が小さくなる。LiVOPO4のβ型結晶は、α型結晶(三斜晶)に比べて、直線的で短いイオン伝導経路を有するため、リチウムイオンを可逆的に挿入脱離する特性に優れる。そのため、LiVOPO4のβ型結晶を高い割合で含有する活物質を用いた電池では、α型結晶を用いた電池に比べて、大きな充放電容量が達成される。
(Active material and lithium ion secondary battery)
The active material according to the present embodiment can be obtained by the above-described method for producing an active material according to the present embodiment. Active material according to the present embodiment includes a particle group of LiVOPO 4, is β-type crystal phase content of LiVOPO 4 is 71 mol% or more based on the total amount of the LiVOPO 4. The upper limit of the content rate of the β-type crystal phase is not particularly limited, and may be 100 mol% or 95 mol%. When the β-type crystal phase content is less than 71 mol%, the discharge capacity of the battery is small. Since the β-type crystal of LiVOPO 4 has a linear and short ion conduction path as compared with the α-type crystal (triclinic crystal), it has excellent characteristics for reversibly inserting and desorbing lithium ions. Therefore, a battery using an active material containing a high percentage of LiVOPO 4 β-type crystals achieves a higher charge / discharge capacity than a battery using α-type crystals.
レーザー散乱法で測定されるLiVOPO4の粒子群の体積基準の粒度分布において、一次粒径が小さい側からの体積累積率が50%である一次粒径D50が、500nm以下であることが好ましく、260nm以下であることがより好ましく、127nm以下であることが特に好ましい。D50の下限値は特に限定されないが、47nm程度である。このように、上述した本実施形態に係る活物質の製造方法により得られるLiVOPO4の粒径は、従来のLiVOPO4に比べて小さい。そのため、本実施形態のLiVOPO4では、従来の活物質に比べて、イオンの伝導経路の密度が増加すると共に、粒子内でのリチウムイオンの拡散距離が短縮され、リチウムイオンの拡散能が高くなる。また、本実施形態では、LiVOPO4が小さくなることに伴いその比表面積が従来に比べて大きくなる。よって、LiVOPO4におけるLiの可逆性が向上すると共に、集電体とLiVOPO4との接触面積、及び活物質層中の導電剤とLiVOPO4との接触面積が増加し、電子の伝導経路の密度が増加する。以上の理由から、本実施形態のLiVOPO4では、従来の活物質に比べて、イオン並びに電子の伝導性及び容量密度が向上する。そのため、本実施形態のLiVOPO4を用いたリチウムイオン二次電池では、放電容量が向上する。 In the volume-based particle size distribution of the LiVOPO 4 particle group measured by the laser scattering method, the primary particle size D50 having a volume cumulative rate from the smaller primary particle size of 50% is preferably 500 nm or less, It is more preferably 260 nm or less, and particularly preferably 127 nm or less. The lower limit value of D50 is not particularly limited, but is about 47 nm. Thus, the particle size of LiVOPO 4 obtained by the method for producing an active material according to this embodiment described above is smaller than that of conventional LiVOPO 4 . Therefore, in LiVOPO 4 of the present embodiment, the density of the ion conduction path is increased and the diffusion distance of lithium ions in the particles is shortened and the lithium ion diffusing capacity is increased as compared with the conventional active material. . In the present embodiment, as LiVOPO 4 becomes smaller, the specific surface area becomes larger than the conventional one. Accordingly, the reversibility of Li in LiVOPO 4 is improved, and the contact area between the current collector and LiVOPO 4 and the contact area between the conductive agent in the active material layer and LiVOPO 4 are increased, and the density of the electron conduction path is increased. Will increase. For the above reasons, the LiVOPO 4 of the present embodiment improves the conductivity and capacity density of ions and electrons as compared with the conventional active material. Therefore, in the lithium ion secondary battery using LiVOPO 4 of the present embodiment, the discharge capacity is improved.
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える発電要素30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される負極リード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出される正極リード60とを備える。
As shown in FIG. 1, a lithium ion
負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。また、正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。
The
正極活物質層14は、本実施形態に係る上記活物質を含有する。 The positive electrode active material layer 14 contains the active material according to the present embodiment.
以上、本発明の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although one suitable embodiment of the present invention was described in detail, the present invention is not limited to the above-mentioned embodiment.
例えば、水熱合成工程において、加熱前の混合液に炭素粒子を添加してもよい。これにより、LiVOPO4の少なくとも一部が炭素粒子表面に生成し、炭素粒子にLiVOPO4を担持させることが可能となる。その結果、得られる活物質の電気伝導性を向上させることが可能となる。炭素粒子を構成する物質としては、アセチレンブラック等のカーボンブラック、黒鉛、活性炭、ハードカーボン、ソフトカーボン等が挙げられる。 For example, in the hydrothermal synthesis step, carbon particles may be added to the mixed solution before heating. Thereby, at least a part of LiVOPO 4 is generated on the surface of the carbon particles, and the LiVOPO 4 can be supported on the carbon particles. As a result, it is possible to improve the electrical conductivity of the obtained active material. Examples of the material constituting the carbon particles include carbon black such as acetylene black, graphite, activated carbon, hard carbon, and soft carbon.
本実施形態の活物質は、リチウムイオン二次電池以外の電気化学素子の電極材料としても用いることができる。このような、電気化学素子としては、金属リチウム二次電池(本発明により得られたLiVOPO4を含む電極を正極として用い、金属リチウムを負極として用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。 The active material of this embodiment can also be used as an electrode material for electrochemical devices other than lithium ion secondary batteries. As such an electrochemical element, other than lithium ion secondary batteries such as a metal lithium secondary battery (the electrode containing LiVOPO 4 obtained according to the present invention is used as a positive electrode and metal lithium is used as a negative electrode). Examples include secondary batteries and electrochemical capacitors such as lithium capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
(実施例1)
<混合液の組成>
実施例1のLiVOPO4の製造では、以下の原料を含む混合液を調製した。
Example 1
<Composition of mixture>
In the production of LiVOPO 4 of Example 1, a mixed solution containing the following raw materials was prepared.
リチウム源:1.70g(0.04mol)のLiOH・H2O(分子量=41.96、ナカライテスク社製、特級、純度99重量%)。 Lithium source: 1.70 g (0.04 mol) of LiOH.H 2 O (molecular weight = 41.96, manufactured by Nacalai Tesque, special grade, purity 99% by weight).
リン酸源:4.69g(0.04mol)のH3PO4(分子量=98.00、ナカライテスク社製、1級、純度:85重量%)。 Phosphoric acid source: 4.69 g (0.04 mol) of H 3 PO 4 (molecular weight = 98.00, manufactured by Nacalai Tesque, first grade, purity: 85% by weight).
バナジウム源:3.67g(0.02mol)のV2O5(分子量=181.88、ナカライテスク社製、特級、純度:99重量%)。 Vanadium source: 3.67 g (0.02 mol) of V 2 O 5 (molecular weight = 181.88, manufactured by Nacalai Tesque, special grade, purity: 99% by weight).
200gの蒸留水(ナカライテスク社製、HPLC(高速液体クロマトグラフィー)用)。なお、ガラス内筒とオートクレーブとの間に別途20gの蒸留水も用いた。 200 g of distilled water (manufactured by Nacalai Tesque, for HPLC (high performance liquid chromatography)). Separately, 20 g of distilled water was also used between the glass inner cylinder and the autoclave.
還元剤:1.51g(0.01mol)のL−(+)−酒石酸(分子式=C4H6O6、分子量=150.09、ナカライテスク社製、特級、純度:99.5重量%)。 Reducing agent: 1.51 g (0.01 mol) of L-(+)-tartaric acid (molecular formula = C 4 H 6 O 6 , molecular weight = 150.09, manufactured by Nacalai Tesque, special grade, purity: 99.5% by weight) .
混合液における還元剤(酒石酸)の濃度:0.05mol/L。 Concentration of reducing agent (tartaric acid) in the mixed solution: 0.05 mol / L.
混合液中のバナジウム1molに対する還元剤(酒石酸)の比率:25mol vs.V。 Ratio of reducing agent (tartaric acid) to 1 mol of vanadium in the mixed solution: 25 mol vs. V.
上記のリン酸源及びバナジウム源の各含有量から明らかなように、混合液に含まれるリン元素のモル数[P]と混合液に含まれるバナジウム元素のモル数[V]との比[P]/[V]を1に調整した。また、上記のリチウム源及びバナジウム源の各含有量から明らかなように、混合液に含まれるリチウム元素のモル数[Li]と[V]との比[Li]/[V]を1に調整した。また、リチウム源の含有量と蒸留水の量から明らかなように、混合液におけるLi+の濃度を、0.2mol/Lに調整した。上記の原料の各仕込み量は、LiVOPO4(分子量:168.85)に換算すると、化学量論的に約6.756g(0.04mol)のLiVOPO4の収量に相当する。 As apparent from the contents of the phosphoric acid source and the vanadium source, the ratio [P] of the number of moles of phosphorus element [P] contained in the mixed solution and the number of moles [V] of vanadium element contained in the mixed solution [P] ] / [V] was adjusted to 1. Further, as is clear from the contents of the above lithium source and vanadium source, the ratio [Li] / [V] of the number of moles [Li] and [V] of the lithium element contained in the mixed solution is adjusted to 1. did. Further, as apparent from the content of the lithium source and the amount of distilled water, the concentration of Li + in the mixed solution was adjusted to 0.2 mol / L. Each amount of the raw materials is equivalent to a yield of about 6.756 g (0.04 mol) of LiVOPO 4 in terms of stoichiometry when converted to LiVOPO 4 (molecular weight: 168.85).
<混合液の調整>
上記の混合液を以下の手順で調製した。まず、オートクレーブの0.5Lガラス内筒内に、35mmフットボール型回転子を入れ、V2O5、蒸留水及びH3PO4をこの順序で導入し、これらをマグネチックスターラーで2.5時間攪拌した。この撹拌により得た混合物にL−(+)−酒石酸を添加した。L−(+)−酒石酸を添加した直後、混合物の色相はすぐには変化しなかった。L−(+)−酒石酸を添加してから1時間撹拌した混合物は、pHが1である山吹色のペーストになった。この山吹色のペーストにLiOH・H2Oを添加することにより、上記の組成を有する草緑色の実施例1の混合液を得た。なお、LiOH・H2Oを添加した直後の山吹色のペーストのpHは3であった。目視による観察の結果、実施例1の混合液中では、原料(リチウム源、リン酸源、バナジウム源及び還元剤)が完全に溶解しており、固体は確認されなかった。すなわち、実施例1の混合液は懸濁せずに透明であることが確認された。
<Adjustment of liquid mixture>
The above mixture was prepared by the following procedure. First, a 35 mm football-type rotator is placed in a 0.5 L glass inner cylinder of an autoclave, and V 2 O 5 , distilled water and H 3 PO 4 are introduced in this order, and these are put in a magnetic stirrer for 2.5 hours. Stir. L-(+)-tartaric acid was added to the mixture obtained by this stirring. Immediately after adding L-(+)-tartaric acid, the hue of the mixture did not change immediately. The mixture stirred for 1 hour after the addition of L-(+)-tartaric acid became a bright yellow paste with a pH of 1. LiOH · H 2 O was added to this bright yellow paste to obtain a grass green mixed solution of Example 1 having the above composition. The pH of the bright yellow paste immediately after the addition of LiOH.H 2 O was 3. As a result of visual observation, the raw materials (lithium source, phosphate source, vanadium source and reducing agent) were completely dissolved in the mixed solution of Example 1, and no solid was confirmed. That is, it was confirmed that the mixed solution of Example 1 was transparent without being suspended.
<水熱合成工程>
実施例1の混合液を内包するガラス内筒を密閉して、ガラス内筒内の混合液を強力マグネチックスターラーで攪拌しながら、所定のPID制御で混合液の加熱を開始した。加熱に伴い発生した水蒸気により密閉されたガラス内筒内の内圧を上昇させた。このようにして、水熱合成工程では、ガラス内筒内の混合液を約10時間にわたって加圧下で250℃に保持した。
<Hydrothermal synthesis process>
The glass inner cylinder containing the mixed liquid of Example 1 was sealed, and heating of the mixed liquid was started by predetermined PID control while stirring the mixed liquid in the glass inner cylinder with a strong magnetic stirrer. The internal pressure in the glass inner cylinder sealed with water vapor generated by heating was increased. In this way, in the hydrothermal synthesis step, the mixed solution in the glass inner cylinder was maintained at 250 ° C. under pressure for about 10 hours.
ガラス内筒内の混合液の温度が250℃に達してから10時間経過した時点で加熱を止め、混合液を4.5時間程度空冷してその温度が室温まで下がってから混合液をガラス内筒内から取り出した。ガラス内筒内から取り出た混合液は、あずき色の沈殿を含む懸濁液であった。懸濁液には発泡が確認されなかった。懸濁液のpHは6であった。ガラス内筒を静置して、容器内の上澄みを濾過した。濾液は微かに白濁していた。ガラス内筒に約200mlの蒸留水を入れて、ガラス内筒内を攪拌洗浄した。洗浄後の蒸留水のpHは7であった。その後直ぐに、洗浄後の蒸留水を吸引濾過した。以上の濾過によって得た褐色又はあずき色の沈殿物を約200mlのアセトンで洗浄してから、目開きが52μmであるフィルターを用いて再び吸引ろ過した。濾液(アセトン)は微かに白濁していた。濾過後の褐色の沈殿物を温風で乾燥することにより、褐色の固体6.04gを得た。LiVOPO4に換算した褐色の固体の重量は、原料の仕込み時に想定していたLiVOPO4の収量6.756gの89.4%に相当することが確認された。 When 10 hours have passed since the temperature of the mixed liquid in the glass inner cylinder reached 250 ° C., the heating was stopped, the mixed liquid was air-cooled for about 4.5 hours, and after the temperature dropped to room temperature, the mixed liquid was placed in the glass. Removed from the cylinder. The mixed liquid taken out from the glass inner cylinder was a suspension containing a maroon precipitate. No foaming was observed in the suspension. The pH of the suspension was 6. The glass inner cylinder was left still and the supernatant in the container was filtered. The filtrate was slightly cloudy. About 200 ml of distilled water was put into the glass inner cylinder, and the inside of the glass inner cylinder was stirred and washed. The pH of the distilled water after washing was 7. Immediately thereafter, the distilled water after washing was suction filtered. The brown or maroon precipitate obtained by the above filtration was washed with about 200 ml of acetone, and then suction filtered again using a filter having an opening of 52 μm. The filtrate (acetone) was slightly cloudy. The brown precipitate after filtration was dried with warm air to obtain 6.04 g of a brown solid. Weight of brown solid which was converted to LiVOPO 4, it corresponds to a 89.4% yield of LiVOPO 4, which has been assumed when charging the raw material 6.756g was confirmed.
<熱処理工程>
乾燥した褐色の固体のうち1.00gをアルミナ坩堝に入れた。加熱炉を用いてアルミナ坩堝内の固体を加熱する熱処理工程を実施した。熱処理工程では、空気雰囲気中でアルミナ坩堝内の固体を加熱した。また、熱処理工程では、炉内の温度を45分かけて室温から450℃まで昇温させ、アルミナ坩堝内の固体を450℃で4時間加熱した後、加熱炉を自然冷却した。この熱処理工程により、実施例1の活物質として、明るい緑色の粉体0.98gを得た。熱処理工程における固体の残存率は98質量%であった。
<Heat treatment process>
Of the dried brown solid, 1.00 g was placed in an alumina crucible. A heat treatment step of heating the solid in the alumina crucible using a heating furnace was performed. In the heat treatment step, the solid in the alumina crucible was heated in an air atmosphere. In the heat treatment step, the temperature in the furnace was raised from room temperature to 450 ° C. over 45 minutes, the solid in the alumina crucible was heated at 450 ° C. for 4 hours, and then the heating furnace was naturally cooled. By this heat treatment step, 0.98 g of bright green powder was obtained as the active material of Example 1. The residual ratio of the solid in the heat treatment step was 98% by mass.
(実施例2〜9、比較例1〜3)
実施例2〜9、比較例1〜3では、還元剤として表1に示す化合物を用いた。実施例2〜9及び比較例1〜3では、混合液における還元剤の濃度(以下、「濃度X」と記す。)を表1に示す値に調整した。実施例2〜9及び比較例1〜3では、混合液中のバナジウム1molに対する還元剤の比率(以下、「比率Y」と記す。)を表1に示す値に調整した。
(Examples 2-9, Comparative Examples 1-3)
In Examples 2-9 and Comparative Examples 1-3, the compounds shown in Table 1 were used as reducing agents. In Examples 2 to 9 and Comparative Examples 1 to 3, the concentration of the reducing agent in the mixed solution (hereinafter referred to as “concentration X”) was adjusted to the values shown in Table 1. In Examples 2 to 9 and Comparative Examples 1 to 3, the ratio of the reducing agent to 1 mol of vanadium in the mixed solution (hereinafter referred to as “ratio Y”) was adjusted to the values shown in Table 1.
以上の事項以外は、実施例1と同様の方法で、実施例2〜9及び比較例1〜3の各活物質を得た。 Except for the above, the active materials of Examples 2 to 9 and Comparative Examples 1 to 3 were obtained in the same manner as in Example 1.
[混合液における原料の溶解度]
実施例1と同様の方法で、各実施例及び比較例の混合液における原料(リチウム源、リン酸源、バナジウム源及び還元剤)の溶解度を調べた。結果を表1に示す。
[Solubility of raw materials in liquid mixture]
In the same manner as in Example 1, the solubility of the raw materials (lithium source, phosphate source, vanadium source and reducing agent) in the mixed solution of each Example and Comparative Example was examined. The results are shown in Table 1.
[ラマンスペクトルの測定]
ラマン分光法により、水熱合成工程において加熱する前の実施例1の混合液のラマンスペクトルを測定した。ラマンスペクトルの測定には、Kaiser社製の532型ラマン分光システムを用いた。ラマンスペクトルの測定では、波長が532nmであるレーザーを混合液に照射した。実施例1のラマンスペクトルでは、ラマンシフトが982cm−1であるピークが確認された。これは混合液中のバナデートイオンが有するV4+に由来するピークである。また実施例1のラマンスペクトルでは、ラマンシフトが1035〜1130cm−1であるピークが確認された。これは、ラマンシフトが982cm−1であるピークに対応するV4+とは振動状態が異なるV4+に由来するピークである。ラマンスペクトルの測定結果から、実施例1の混合液中では、バナジウム源が完全に溶解して、5価のバナジウムが還元されて4価のバナジウムに変化していることが確認された。
[Raman spectrum measurement]
The Raman spectrum of the mixed solution of Example 1 before heating in the hydrothermal synthesis step was measured by Raman spectroscopy. For measurement of the Raman spectrum, a 532 type Raman spectroscopic system manufactured by Kaiser was used. In the measurement of the Raman spectrum, the mixed solution was irradiated with a laser having a wavelength of 532 nm. In the Raman spectrum of Example 1, a peak having a Raman shift of 982 cm −1 was confirmed. This is a peak derived from V 4+ possessed by vanadate ions in the mixed solution. In the Raman spectrum of Example 1, a peak having a Raman shift of 1035 to 1130 cm −1 was confirmed. This is a V 4+ Raman shift corresponding to the peak is 982 cm -1 is a peak derived from the different V 4+ vibration state. From the measurement result of the Raman spectrum, it was confirmed that in the mixed solution of Example 1, the vanadium source was completely dissolved and pentavalent vanadium was reduced and changed to tetravalent vanadium.
実施例1の同様の方法で、水熱合成工程において加熱する前の各実施例及び比較例の混合液のラマンスペクトルを測定し、ラマンシフトが982cm−1であるピーク(以下、「ラマンピーク」と記す。)の有無を確認した。結果を表1に示す。 In the same manner as in Example 1, the Raman spectra of the mixed liquids of each Example and Comparative Example before heating in the hydrothermal synthesis step were measured, and the peak having a Raman shift of 982 cm −1 (hereinafter, “Raman peak”). .) Was confirmed. The results are shown in Table 1.
[結晶構造の測定]
粉末X線回折法(XRD)による分析の結果、全実施例及び比較例の活物質はLiVOPO4であることが確認された。粉末X線回折(XRD)に基づくリートベルト解析により、各実施例及び比較例のLiVOPO4中のβ型結晶相の含有率(単位:mol%)を求めた。結果を表1に示す。
[Measurement of crystal structure]
As a result of analysis by powder X-ray diffractometry (XRD), it was confirmed that the active materials of all Examples and Comparative Examples were LiVOPO 4 . The content (unit: mol%) of the β-type crystal phase in LiVOPO 4 of each Example and Comparative Example was determined by Rietveld analysis based on powder X-ray diffraction (XRD). The results are shown in Table 1.
[粒度分布の測定]
各実施例及び比較例のLiVOPO4の粒度分布をレーザー散乱法(動的光散乱法)で測定した。粒度分布の測定には、Malvern社製の装置を用いた。そして、各実施例及び比較例のLiVOPO4の体積基準の一次粒径D50を求めた。結果を表1に示す。
[Measurement of particle size distribution]
The particle size distribution of LiVOPO 4 of each example and comparative example was measured by a laser scattering method (dynamic light scattering method). An apparatus made by Malvern was used for measurement of the particle size distribution. Then, to determine the primary particle diameter D50 on the volume basis of LiVOPO 4 of Examples and Comparative Examples. The results are shown in Table 1.
<評価用セルの作製>
実施例1の活物質と、バインダーであるポリフッ化ビニリデン(PVDF)とアセチレンブラックを混合したものを、溶媒であるN−メチル−2−ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、実施例1の活物質を含む活物質層が形成された電極(正極)を得た。
<Production of evaluation cell>
A mixture of the active material of Example 1, polyvinylidene fluoride (PVDF) as a binder, and acetylene black was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry. The slurry was prepared so that the weight ratio of the active material, acetylene black, and PVDF was 84: 8: 8 in the slurry. This slurry was applied onto an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing the active material of Example 1 was formed.
次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネーターパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF6溶液を注入した後、真空シールし、実施例1の評価用セルを作製した。 Next, the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body). This laminate was put in an aluminum laminator pack, and 1M LiPF 6 solution was injected as an electrolyte into the aluminum laminate pack, followed by vacuum sealing to produce an evaluation cell of Example 1.
実施例1と同様の方法で、実施例2〜9及び比較例1〜3の活物質をそれぞれ単独で用いた評価用セルを作製した。 In the same manner as in Example 1, evaluation cells were produced using each of the active materials of Examples 2 to 9 and Comparative Examples 1 to 3 alone.
[放電容量の測定]
実施例1の評価用セルを用いて、放電レートを0.01C(25℃で定電流放電を行ったときに100時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。測定結果を表1に示す。
[Measurement of discharge capacity]
Using the evaluation cell of Example 1, the discharge capacity (unit: mAh / unit) when the discharge rate is 0.01 C (current value at which discharge is completed in 100 hours when constant current discharge is performed at 25 ° C.) g) was measured. The measurement results are shown in Table 1.
実施例1と同様の方法で、実施例2〜9、比較例1〜3の各評価用セルの放電容量を測定した。結果を表1に示す。 In the same manner as in Example 1, the discharge capacities of the evaluation cells of Examples 2 to 9 and Comparative Examples 1 to 3 were measured. The results are shown in Table 1.
表1から明らかなように、実施例1〜9では、混合液における還元剤の濃度が0.005〜0.4mol/Lであった。実施例1〜9のLiVOPO4におけるβ型結晶相の含有率は71mol%以上であることが確認された。実施例1〜9の評価用セルの放電容量は、混合液における還元剤の濃度が0.005〜0.4mol/Lの範囲外であった比較例1〜3に比べて大きいことが確認された。 As apparent from Table 1, in Examples 1 to 9, the concentration of the reducing agent in the mixed solution was 0.005 to 0.4 mol / L. It was confirmed that the content of the β-type crystal phase in LiVOPO 4 of Examples 1 to 9 was 71 mol% or more. It was confirmed that the discharge capacities of the evaluation cells of Examples 1 to 9 were larger than those of Comparative Examples 1 to 3 in which the concentration of the reducing agent in the mixed solution was outside the range of 0.005 to 0.4 mol / L. It was.
比較例1及び3の各混合液は、原料を完全に溶解することなく懸濁しており、組成が不均一なペーストであった。比較例1及び3の各混合液では、ラマンシフトが982cm−1であるピークが確認されなかった。比較例2及び3のLiVOPO4はα型結晶相を主成分として含有することが確認された。 Each of the mixed solutions of Comparative Examples 1 and 3 was a paste having a non-uniform composition because the raw material was suspended without completely dissolving. In each of the mixed liquids of Comparative Examples 1 and 3, a peak having a Raman shift of 982 cm −1 was not confirmed. It was confirmed that LiVOPO 4 of Comparative Examples 2 and 3 contains an α-type crystal phase as a main component.
10・・・正極,20・・・負極、12・・・正極集電体、14・・・正極活物質層、18・・・セパレータ、22・・・負極集電体、24・・・負極活物質層、30・・・発電要素、50・・・ケース、60,62・・・リード、100・・・リチウムイオン二次電池。
DESCRIPTION OF
Claims (6)
前記混合液における前記還元剤の濃度が0.005〜0.4mol/Lである、
活物質の製造方法。 Comprising a hydrothermal synthesis step of heating a mixed solution containing a lithium source, a phosphate source, a vanadium source having pentavalent vanadium, water and a reducing agent under pressure,
The concentration of the reducing agent in the mixed solution is 0.005 to 0.4 mol / L.
A method for producing an active material.
請求項1に記載の活物質の製造方法。 The reducing agent is tartaric acid,
The manufacturing method of the active material of Claim 1.
請求項1又は2に記載の活物質の製造方法。 The Raman spectrum of the mixture has a peak with a Raman shift of 970 to 990 cm −1 .
The manufacturing method of the active material of Claim 1 or 2.
LiVOPO4のβ型結晶相の含有率が前記LiVOPO4の全量に対して71mol%以上である、
活物質。 Comprising a particle group of LiVOPO 4
Is at least 71 mol% of the total amount content of the LiVOPO 4 of β-type crystal phase of LiVOPO 4,
Active material.
一次粒径が小さい側からの体積累積率が50%である一次粒径D50が、500nm以下である、
請求項4に記載の活物質。 In the volume-based particle size distribution of the particles measured by the laser scattering method,
The primary particle size D50 having a volume cumulative rate of 50% from the smaller primary particle size is 500 nm or less.
The active material according to claim 4.
前記正極活物質層が請求項4又は5に記載の前記活物質を含有する、
リチウムイオン二次電池。 A positive electrode having a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector;
The positive electrode active material layer contains the active material according to claim 4 or 5.
Lithium ion secondary battery.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010139838A JP2012004046A (en) | 2010-06-18 | 2010-06-18 | Manufacturing method of active material, active material and lithium ion secondary battery |
US13/160,968 US8734987B2 (en) | 2010-06-18 | 2011-06-15 | Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material |
CN201310689040.7A CN103771386B (en) | 2010-06-18 | 2011-06-20 | Active material, the electrode containing it, the manufacture method of the lithium secondary battery for possessing the electrode and active material |
CN2011101703797A CN102363523A (en) | 2010-06-18 | 2011-06-20 | Active material, electrode containing same, lithium-ion secondary battery with electrode, and method of manufacturing active material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010139838A JP2012004046A (en) | 2010-06-18 | 2010-06-18 | Manufacturing method of active material, active material and lithium ion secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012004046A true JP2012004046A (en) | 2012-01-05 |
Family
ID=45535802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010139838A Withdrawn JP2012004046A (en) | 2010-06-18 | 2010-06-18 | Manufacturing method of active material, active material and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012004046A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206562A (en) * | 2012-03-27 | 2013-10-07 | Tdk Corp | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery |
JP2013232288A (en) * | 2012-04-27 | 2013-11-14 | Tdk Corp | Positive electrode active material, positive electrode including the same, and lithium ion secondary battery |
JP2014238963A (en) * | 2013-06-07 | 2014-12-18 | Tdk株式会社 | Positive electrode active material, and lithium ion secondary battery |
JP2021040078A (en) * | 2019-09-04 | 2021-03-11 | 時空化学株式会社 | Pouch type super capacitor, positive electrode material, and negative electrode material |
-
2010
- 2010-06-18 JP JP2010139838A patent/JP2012004046A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013206562A (en) * | 2012-03-27 | 2013-10-07 | Tdk Corp | Cathode material for lithium-ion secondary battery, cathode for lithium-ion secondary battery, lithium-ion secondary battery, and method of producing cathode material for lithium-ion secondary battery |
JP2013232288A (en) * | 2012-04-27 | 2013-11-14 | Tdk Corp | Positive electrode active material, positive electrode including the same, and lithium ion secondary battery |
JP2014238963A (en) * | 2013-06-07 | 2014-12-18 | Tdk株式会社 | Positive electrode active material, and lithium ion secondary battery |
JP2021040078A (en) * | 2019-09-04 | 2021-03-11 | 時空化学株式会社 | Pouch type super capacitor, positive electrode material, and negative electrode material |
JP7399407B2 (en) | 2019-09-04 | 2023-12-18 | 時空化学株式会社 | Pouch type supercapacitor, positive electrode material and negative electrode material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9269954B2 (en) | Production process for lithium-silicate-system compound | |
Aravindan et al. | LiMnPO 4–A next generation cathode material for lithium-ion batteries | |
US8734987B2 (en) | Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material | |
JP5347603B2 (en) | Active material manufacturing method, active material, electrode, and lithium ion secondary battery | |
EP2407426A1 (en) | Process for producing lithium borate compound | |
JP5741143B2 (en) | Active material, method for producing active material, electrode, lithium ion secondary battery, and method for producing lithium ion secondary battery | |
JP5810587B2 (en) | Active material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery | |
JP5515343B2 (en) | Active material manufacturing method, active material, electrode, and lithium ion secondary battery | |
JP2012004046A (en) | Manufacturing method of active material, active material and lithium ion secondary battery | |
JP5444944B2 (en) | Active material and method for producing active material | |
JP2012004045A (en) | Manufacturing method of active material, active material and lithium ion secondary battery | |
JP5888046B2 (en) | Positive electrode active material, positive electrode and lithium ion secondary battery | |
US20110052473A1 (en) | Method of manufacturing active material | |
CN102126716A (en) | Cathode material of lithium iron phosphate lithium battery and preparation method thereof | |
JP5444943B2 (en) | Method for producing active material | |
JP5444942B2 (en) | Method for producing active material | |
JP5609915B2 (en) | Positive electrode active material, positive electrode and lithium ion secondary battery using the same | |
Zheng et al. | Studies of Composite Cathode Material LiFePO4–Li3V2 (PO4) 3 and It’s Precursor FeVO4· x H2O | |
WO2024070137A1 (en) | Lithium-ion secondary battery positive electrode material and method for manufacturing same, lithium-ion secondary battery positive electrode, and lithium-ion secondary battery | |
JP5594006B2 (en) | Method for producing active material for lithium ion secondary battery and method for producing lithium ion secondary battery | |
JP6098382B2 (en) | Positive electrode active material and lithium ion secondary battery | |
JP5648732B2 (en) | Positive electrode active material and lithium ion secondary battery | |
JP2018156930A (en) | Positive electrode active material, positive electrode using the same, and lithium ion secondary battery | |
JP2018156823A (en) | Cathode active material, and cathode and lithium ion secondary battery using the same | |
Zhang et al. | Preparation and electrochemical performance of 2LiFe1–xCoxPO4–Li3V2 (PO4) 3/C cathode material for lithium-ion batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20130903 |