JP2012002342A - Airtight pressure vessel and manufacturing method of the same - Google Patents
Airtight pressure vessel and manufacturing method of the same Download PDFInfo
- Publication number
- JP2012002342A JP2012002342A JP2010141054A JP2010141054A JP2012002342A JP 2012002342 A JP2012002342 A JP 2012002342A JP 2010141054 A JP2010141054 A JP 2010141054A JP 2010141054 A JP2010141054 A JP 2010141054A JP 2012002342 A JP2012002342 A JP 2012002342A
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical
- welding
- cylindrical housing
- concave
- cylindrical lid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/08—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/124—Tongue and groove joints
- B29C66/1244—Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue
- B29C66/12449—Tongue and groove joints characterised by the male part, i.e. the part comprising the tongue being asymmetric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/124—Tongue and groove joints
- B29C66/1246—Tongue and groove joints characterised by the female part, i.e. the part comprising the groove
- B29C66/12469—Tongue and groove joints characterised by the female part, i.e. the part comprising the groove being asymmetric
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/13—Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
- B29C66/131—Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
- B29C66/1312—Single flange to flange joints, the parts to be joined being rigid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/302—Particular design of joint configurations the area to be joined comprising melt initiators
- B29C66/3022—Particular design of joint configurations the area to be joined comprising melt initiators said melt initiators being integral with at least one of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/54—Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
- B29C66/542—Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles joining hollow covers or hollow bottoms to open ends of container bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/832—Reciprocating joining or pressing tools
- B29C66/8322—Joining or pressing tools reciprocating along one axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/82—Testing the joint
- B29C65/8207—Testing the joint by mechanical methods
- B29C65/8246—Pressure tests, e.g. hydrostatic pressure tests
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/814—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
- B29C66/8141—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
- B29C66/81431—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single cavity, e.g. a groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/712—Containers; Packaging elements or accessories, Packages
- B29L2031/7154—Barrels, drums, tuns, vats
- B29L2031/7156—Pressure vessels
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Closing Of Containers (AREA)
- Packages (AREA)
- Closures For Containers (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
Description
本発明は、気密性耐圧容器およびその製造方法に関する。 The present invention relates to an airtight pressure resistant container and a method for manufacturing the same.
医療分野および浄水器分野においては、内部に活性炭や中空糸などのろ過材を充填した中空成形品がカートリッジ容器として用いられている。
従来、同様のカートリッジ容器であるトナー容器など、射出成形等では得られにくい形状の樹脂成形品に、接着剤を使用しない超音波溶着を用いた接合方法が採用されている。
例えば、中空糸モジュールで、従来のネジとO−リングによる方法、また超音波溶着による方法の問題点を解決するべく、ネジ止めと超音波溶着を組み合わせた方法が開示されている(特許文献1)。しかしながら、この方法は、ねじ部の成形やO−リング部材の追加など部品点数が増加するため製造コストが多大になるという問題がある。
また、ハウジングを蓋体で閉塞する容器では、従来からネジ式の接着方法が用いられている。しかし、ネジ式では使用時に緩むなどの問題があり、また、大量生産の観点からも非効率なため、超音波溶着が開示されている(特許文献2)。しかしながら、ここで用いられる超音波溶着時の溶着形状はエネルギーダイレクター方式であり、凹凸嵌合形状の底面部の当接部が起点となり溶融するために結晶性樹脂の場合は、溶着時の溶融が不安定であり、結晶固化のために溶融嵌合部分に充填されにくく、気密漏れなどの問題が生じるという問題がある。仮に気密性が確保できたとしても安定な品質で生産することが困難である。
In the medical field and the water purifier field, a hollow molded product filled with a filtering material such as activated carbon or hollow fiber is used as a cartridge container.
2. Description of the Related Art Conventionally, a joining method using ultrasonic welding without using an adhesive has been adopted for a resin molded product having a shape that is difficult to obtain by injection molding or the like, such as a toner container that is a similar cartridge container.
For example, in a hollow fiber module, a method in which screwing and ultrasonic welding are combined is disclosed in order to solve the problems of conventional screw and O-ring methods and ultrasonic welding methods (Patent Document 1). ). However, this method has a problem that the manufacturing cost increases because the number of parts increases, such as the formation of a threaded portion and the addition of an O-ring member.
Further, a screw type bonding method has been conventionally used for a container in which a housing is closed with a lid. However, the screw type has problems such as loosening during use, and is inefficient from the viewpoint of mass production, so ultrasonic welding is disclosed (Patent Document 2). However, the welding shape at the time of ultrasonic welding used here is an energy director method, and melting occurs at the time of welding in the case of a crystalline resin because it melts starting from the contact portion of the bottom surface of the concave-convex fitting shape. Is unstable, and it is difficult to fill the melt-fitted portion due to crystal solidification, which causes problems such as airtight leakage. Even if airtightness can be ensured, it is difficult to produce with stable quality.
また、一方が凸形状で、他方がその凸形状の凸部に嵌合できる凹形状で、凹形状の凹部内側面の少なくとも一方の側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有し、かつ凸形状の凸部先端幅が凹形状の凹部底面幅よりも広い形状で嵌合されつつ超音波溶着されてなる円筒トナー容器が開示されている(特許文献3)。また、溶着形状として溶着受け凹部とそれに対応する凸部を設けることにより、溶着状態が良好となるキャップが開示されている(特許文献4)。
しかし、耐圧強度が必要である場合、不均一に溶着されていると耐圧の応力集中が起こるので、均一に溶着されている必要がある。そのため、単純な凹凸形状だけでは、気密性は得られるが、均一な溶着ができないために十分な耐圧強度が得られないという問題があった。また、無理に耐圧強度を確保するために超音波溶着の際に過大なるエネルギーを与えると、溶着ホーンが当接する部分に傷や破損を生じ、製品外観を損なうという問題も発生していた。
In addition, one is convex and the other is a concave shape that can be fitted to the convex convex portion, and the concave bottom surface width is inclined to be narrower than the concave top surface width on at least one side surface of the concave concave inner surface. There is disclosed a cylindrical toner container having a surface and being ultrasonically welded while being fitted in a shape in which a convex convex tip width is wider than a concave concave bottom surface width (Patent Document 3). Further, a cap is disclosed in which a welded state is improved by providing a weld receiving recess and a corresponding projection as a weld shape (Patent Document 4).
However, when pressure resistance strength is required, stress concentration of pressure resistance occurs if the pressure is not uniform, so that it is necessary to weld uniformly. For this reason, airtightness can be obtained with only a simple uneven shape, but there has been a problem that sufficient pressure resistance cannot be obtained because uniform welding cannot be performed. In addition, if excessive energy is applied during ultrasonic welding in order to forcibly secure the pressure resistance, there is a problem in that the portion where the welding horn contacts is damaged or damaged, and the appearance of the product is impaired.
医療分野および浄水器分野におけるカートリッジ容器は、内容物が液体であること、内圧が高くなっても液漏れが許されないこと等から、特に高い気密性および耐圧強度が要求されている。また、カートリッジ容器に用いられる樹脂材料は機械的強度、非汚染性に優れていることなどからポリプロピレン樹脂が用いられる場合がある。
このポリプロピレン樹脂は、比較的硬度が低いことから、樹脂の軟らかさが振動を吸収するために超音波振動が十分に伝達されずに超音波溶着が不十分となる。また、ポリプロピレン樹脂は結晶性樹脂であり、超音波振動による摩擦熱により部分的な溶融(結晶部の溶融)を生じることで、更に超音波振動の伝達が妨げられる。そのため、ポリプロピレン樹脂は、超音波溶着が困難であり、気密性・機械的強度・寸法精度・外観形状などの品質を維持することが困難であり、超音波溶着を行なう場合には過大な超音波振動エネルギー出力が必要となる。このため、前述した製品外観を確保した上で、製品に求められる耐圧強度を実現することは特に困難であった。
Cartridge containers in the medical field and the water purifier field are required to have particularly high airtightness and pressure resistance because the contents are liquid and liquid leakage is not permitted even when the internal pressure increases. In addition, a polypropylene resin may be used because the resin material used for the cartridge container is excellent in mechanical strength and non-contamination.
Since this polypropylene resin has a relatively low hardness, the softness of the resin absorbs vibration, so that ultrasonic vibration is not sufficiently transmitted and ultrasonic welding becomes insufficient. In addition, polypropylene resin is a crystalline resin, and transmission of ultrasonic vibration is further hindered by causing partial melting (melting of crystal part) by frictional heat due to ultrasonic vibration. For this reason, polypropylene resin is difficult to ultrasonically weld, and it is difficult to maintain quality such as airtightness, mechanical strength, dimensional accuracy, and external shape. When ultrasonic welding is performed, excessive ultrasonic waves are required. Vibration energy output is required. For this reason, it has been particularly difficult to achieve the pressure resistance required for the product while ensuring the appearance of the product described above.
これらの問題を解決するために、円筒容器に取り付けられる円筒形状の蓋材に当接する溶着ホーン面の、蓋材を側断面から見たときの高さが、蓋材中心方向に向けて高くなるようテーパ角が形成されている技術が知られている(特許文献5)。
しかし、特許文献5に記載の技術は、超音波による振動エネルギーを効率的に溶着部分に伝達させる手段であり、高い気密性を有する耐圧品質が安定するものではない。
また、超音波による振動エネルギーを十分に溶着部分に伝達させるために、溶着ホーン当接部分と溶着部分との距離を短くする方法(特許文献6)、振動エネルギーを集中させて溶着する方法(特許文献7)等がある。
しかし、特許文献6および特許文献7に記載の技術は、特許文献5に記載の技術と同様、超音波による振動エネルギーを効率的に被溶着部分に伝達させる手段であり、高い気密性を有する耐圧容器の品質が安定するものではない。
In order to solve these problems, the height of the welding horn surface in contact with the cylindrical lid attached to the cylindrical container, when the lid is viewed from the side cross section, increases toward the center of the lid. A technique in which such a taper angle is formed is known (Patent Document 5).
However, the technique described in Patent Document 5 is means for efficiently transmitting vibration energy by ultrasonic waves to the welded portion, and pressure resistance quality having high airtightness is not stable.
Further, in order to sufficiently transmit vibration energy by ultrasonic waves to the welded portion, a method of shortening the distance between the welding horn contact portion and the welded portion (Patent Document 6), a method of welding by concentrating vibration energy (Patent Patent 6) Reference 7).
However, the techniques described in
本発明は、超音波溶着法により、気密性、外観性に優れた耐圧容器およびその製造方法の提供を目的とする。特に超音波溶着を適用するのが困難な樹脂として知られているポリプロピレン樹脂を用いた気密性耐圧容器およびその製造方法の提供を目的とする。 An object of the present invention is to provide a pressure-resistant container excellent in airtightness and appearance by an ultrasonic welding method and a method for manufacturing the same. In particular, an object of the present invention is to provide a hermetic pressure resistant container using a polypropylene resin known as a resin to which ultrasonic welding is difficult to apply and a method for manufacturing the same.
本発明の気密性耐圧容器は、少なくとも一端に開口部を有する筒状ハウジングの該開口部を筒状蓋体で超音波溶着してなる。気密性耐圧容器における、容器の上記筒状蓋体が、超音波溶着時に、上記筒状ハウジングの開口部端面と超音波溶着時の筒状蓋体側溶着ホーン当接面との距離より上記筒状蓋体の天板厚さを差し引いた距離となる長さの立上り部が形成されており、上記筒状ハウジングと上記筒状蓋体との溶着が上記筒状ハウジングの開口部端面全周にわたりなされており、上記筒状ハウジングおよび筒状蓋体が結晶性を有する熱可塑性樹脂の成形体であることを特徴とする。
また、上記超音波溶着される溶着部の径方向断面は、一方が凸形状で、他方が上記凸形状の凸部に嵌合できる凹形状で、かつ上記凸形状の凸部先端面幅が上記凹形状の凹部底面幅よりも広い形状であり、上記凹形状の凹部内側面の少なくとも一方の側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有することを特徴とする。
The hermetic pressure vessel of the present invention is formed by ultrasonically welding the opening of a cylindrical housing having an opening at at least one end with a cylindrical lid. In the airtight pressure-resistant container, the cylindrical lid body of the container has a cylindrical shape based on the distance between the opening end face of the cylindrical housing and the cylindrical lid side welding horn contact surface at the time of ultrasonic welding at the time of ultrasonic welding. A rising portion having a length corresponding to a distance obtained by subtracting the thickness of the top plate of the lid is formed, and the cylindrical housing and the cylindrical lid are welded over the entire end face of the opening of the cylindrical housing. The cylindrical housing and the cylindrical lid are formed of a thermoplastic resin having crystallinity.
Further, the radial cross section of the welded portion to be ultrasonically welded has one convex shape, the other is a concave shape that can be fitted into the convex shape convex portion, and the convex shape tip end face width is the above It is a shape wider than the concave concave bottom surface, and has an inclined surface in a direction in which the concave bottom surface width is narrower than the concave upper surface width on at least one side surface of the concave concave inner surface.
更には、本発明の気密性耐圧容器の筒状蓋体の天板厚さを超える距離を有する立上り部が3.35mm以上であることを特徴とする。超音波溶着を用いた従来技術において、溶着部分の十分な接合強度を安定して得るために溶着部が溶融するのに十分な振動エネルギーを溶着部に伝達させる必要がある。溶着ホーンと溶着部の距離が長くなると、溶着ホーンで発生した超音波振動が、溶着部に到達するまでに減衰し、十分な振動を溶着部分に伝達できないため、通常は溶着ホーンと溶着部の距離は可能な限り短くすることが通例である。しかし、本発明者らは鋭意検討の結果、前述の立上り部分を製品構造に付与し、溶着ホーンと溶着部の距離が長くても十分な超音波振動エネルギーを加えることによって、外観を損なうことなく、気密性に優れた十分な耐圧強度を有する気密性耐圧容器が実現可能であることを見出した。
また、上記筒状ハウジングは、超音波溶着時の溶着受け治具に当接されるフランジ部を有し、該フランジ部の溶着受け治具が当接する面と反対の面に上記筒状蓋体が溶着されることを特徴とする。
また、気密性耐圧容器を形成する結晶性を有する熱可塑性樹脂がポリプロピレン樹脂であることを特徴とする。
Furthermore, the rising portion having a distance exceeding the top plate thickness of the cylindrical lid of the hermetic pressure resistant container of the present invention is 3.35 mm or more. In the prior art using ultrasonic welding, it is necessary to transmit sufficient vibration energy to the welded portion to melt the welded portion in order to stably obtain a sufficient bonding strength of the welded portion. When the distance between the welding horn and the welded portion is increased, the ultrasonic vibration generated by the welded horn is attenuated before reaching the welded portion, and sufficient vibration cannot be transmitted to the welded portion. The distance is usually as short as possible. However, as a result of intensive studies, the present inventors have given the above-mentioned rising part to the product structure, and by applying sufficient ultrasonic vibration energy even if the distance between the welding horn and the welding part is long, the appearance is not impaired. The present inventors have found that an airtight pressure resistant container having sufficient airtightness and sufficient pressure resistance can be realized.
Further, the cylindrical housing has a flange portion that comes into contact with a welding receiving jig at the time of ultrasonic welding, and the cylindrical lid body is provided on a surface opposite to a surface of the flange portion that comes into contact with the welding receiving jig. Is characterized by being welded.
Further, the thermoplastic resin having crystallinity forming the hermetic pressure resistant container is a polypropylene resin.
本発明の気密性耐圧容器の製造方法は、少なくとも一端に開口部を有する筒状ハウジングを成形する工程と、この筒状ハウジングの開口部を閉塞する筒状蓋体を成形する工程と、上記筒状ハウジングと上記筒状蓋体とを超音波振動によって相互に溶着する超音波溶着工程とを備え、
上記筒状蓋体は、超音波溶着時に、上記筒状ハウジングの開口部端面と超音波溶着時の筒状蓋体側溶着ホーン当接面との距離より筒状蓋体の天板厚さを差し引いた距離となる長さの立上り部が形成されており、
上記超音波溶着される溶着部の径方向断面は、一方が凸形状で、他方が上記凸形状の凸部に嵌合できる凹形状で、かつ上記凸形状の凸部先端面幅が上記凹形状の凹部底面幅よりも大きい形状であり、上記凹形状の凹部内側面の少なくとも一方の側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有しており、
上記超音波溶着工程は、上記筒状蓋体外周縁上面に円筒状の溶着ホーンを当接させて、上記ハウジングと上記筒状蓋体との溶着が上記筒状ハウジングの開口部端面全周にわたり溶着される工程であることを特徴とする。
The method for manufacturing an airtight pressure resistant container according to the present invention includes a step of forming a cylindrical housing having an opening at at least one end, a step of forming a cylindrical lid that closes the opening of the cylindrical housing, and the cylinder An ultrasonic welding step of welding the cylindrical housing and the cylindrical lid to each other by ultrasonic vibration,
At the time of ultrasonic welding, the cylindrical lid body subtracts the thickness of the top of the cylindrical lid body from the distance between the opening end face of the cylindrical housing and the cylindrical lid side welding horn contact surface at the time of ultrasonic welding. The rising part of the length that becomes the distance is formed,
The radial cross section of the welded portion to be ultrasonically welded has one concave shape, the other is a concave shape that can be fitted into the convex shape convex portion, and the convex shape tip surface width is the concave shape. And having an inclined surface in a direction in which the bottom surface of the concave portion is narrower than the width of the top surface of the concave portion on at least one side surface of the concave inner surface of the concave portion.
In the ultrasonic welding step, a cylindrical welding horn is brought into contact with the outer peripheral upper surface of the cylindrical lid body, and the welding of the housing and the cylindrical lid body is welded over the entire circumference of the opening end face of the cylindrical housing. It is a process to be performed.
本発明の気密性耐圧容器は、超音波溶着時に、筒状ハウジングの開口部端面と超音波溶着時の筒状蓋体側溶着ホーン当接面との距離より筒状蓋体の天板厚さを差し引いた距離となる長さの立上り部が形成されているので、ハウジングの開口部端面全周にわたって溶着部の溶着バラツキを少なくすることができ、かつ溶着ホーンとの当接面に傷・破損なく溶着することができる。そのため、ハウジングおよび蓋体が結晶性を有する熱可塑性樹脂であっても、気密性・外観性に優れた耐圧容器が得られる。
本発明の製造方法は、溶着部の溶着バラツキを少なくすることができ、かつ溶着ホーンとの当接面に傷・破損なく溶着することができるので、気密性に優れた耐圧容器を歩留まりよく製造できる。
The airtight pressure-resistant container of the present invention has a thickness of the top of the cylindrical lid that is determined by the distance between the opening end face of the cylindrical housing and the cylindrical lid side welding horn contact surface during ultrasonic welding during ultrasonic welding. Since the rising part of the length corresponding to the subtracted distance is formed, the welding variation of the welding part can be reduced over the entire circumference of the opening end face of the housing, and the contact surface with the welding horn is not damaged or damaged. Can be welded. Therefore, even if the housing and the lid are made of a thermoplastic resin having crystallinity, a pressure resistant container excellent in airtightness and appearance can be obtained.
The manufacturing method of the present invention can reduce the welding variation of the welded portion and can weld the contact surface with the welding horn without scratches or breakage, so that a pressure-resistant container having excellent airtightness can be manufactured with high yield. it can.
本発明の気密性耐圧容器を、血液浄化あるいは水浄化に用いられるフィルターを収容する円筒状容器に適用した例に基づき、図面を用いて説明する。
図1は本発明の一実施形態により得られる気密性耐圧容器の断面図である。なお、図1において、液体の注入口および排出口は省略してある。
図1に示すように、気密性耐圧容器1は、樹脂成形体である開口部をその一端に有する筒状ハウジング2と、この筒状ハウジング2を閉塞する筒状蓋体3とで構成される。筒状ハウジング2と筒状蓋体3とは溶着部4で円筒状の溶着ホーン6により超音波溶着される。
The airtight pressure-resistant container of the present invention will be described with reference to the drawings based on an example in which it is applied to a cylindrical container that contains a filter used for blood purification or water purification.
FIG. 1 is a cross-sectional view of an airtight pressure vessel obtained by an embodiment of the present invention. In FIG. 1, the liquid inlet and outlet are omitted.
As shown in FIG. 1, an airtight pressure-
図1において、筒状ハウジング2は開口部が1つの形状であるが、底部に開口部を設けて両開口部を筒状蓋体3で閉塞する構造であってもよい。筒状ハウジング2と筒状蓋体3とはそれぞれの外周縁上に形成される凹凸部からなる溶着部4により溶着される。
In FIG. 1, the
筒状蓋体3は、天板3aに筒体3bが一体の樹脂成形体として形成されている。筒状蓋体3の外周縁角部3cの径方向断面が逆L字型であり、好ましくは径方向断面が直角になっている。
筒状蓋体3の天板形状は、断面図でみて、平板形状、蓋体中心に向かって段差形状になる平板段差形状、蓋体中心に向かって円弧を描く円錐形状等を使用することができる。
また、筒体3bは、例えば図12に示すようにフランジ5aを有するように配置されていてもよく、図13に示すように天板3aの上方に配置されていてもよい。
The
The top plate shape of the
Moreover, the
筒状蓋体3には立上り部3dが形成されている(図1参照)。立上り部3dの長さは、超音波溶着が完了した後の筒状ハウジング2の開口部端面2aと超音波溶着時における筒状蓋体3の溶着ホーン当接面3eとの距離t1より、上記筒状蓋体の溶着ホーン当接面3eでの天板厚さt2を差し引いた距離となる長さ部分(t1−t2)である。
従来の溶着方法においては、超音波による振動エネルギーを効率的に被溶着部分に伝達させる必要があるため、図7に示すように、溶着ホーンと当接する部品である筒状蓋体3について立ち上がり部を有しない形状設計でなされている。この従来例に対して、本発明では、従来の溶着思想では振動エネルギーが分散し効率的に伝達させることができないと考えられていた立ち上がり部を設けることで、気密性・外観性に優れた耐圧容器を得ることができたものである。
図7に示す立上り部3dの長さが0の場合、すなわち上記長さt1がt2と同一である場合、筒状ハウジング2の開口部端面全周にわたる溶着が均一になされないため、耐圧強度に劣ることが分かった。本発明はこのような知見に基づくものである。
A rising
In the conventional welding method, it is necessary to efficiently transmit ultrasonic vibration energy to the welded portion. Therefore, as shown in FIG. 7, the rising portion of the
If the length of the rising
溶着時に凸部を形成する筒状蓋体3の外周にフランジ5a、または同凹部を形成する筒状ハウジング2の外周にフランジ5bなどのフランジ5を設けることができる(図1、図2参照)。
特に筒状ハウジング2の外周に設けられるフランジ5bは、超音波溶着時の溶着受け治具6’に当接され、このフランジ部の溶着受け治具6’が当接する面と反対の面に筒状蓋体3が溶着される。
なお、本発明は、溶着受け治具6’を筒状ハウジング2の底面2hに当接させ、超音波溶着することもできる。
A
In particular, the
In the present invention, the
通常、超音波伝達の減衰が考えられるため、溶着ホーンの当接部から溶着部までの距離を3.35mm未満にすることが超音波溶着法では一般的であり、溶着ホーンの当接部から溶着部までの距離は短いほどよいとされる。これに対して、本発明は、一般的な射出成形などを想定した天板厚さt2を3mmと仮定して考慮すると、立上り部3dの長さ(t1−t2)は、具体的に3.35mm以上であることが好ましい。これ以下の長さであると、立上り部の効果を受けにくい。ポリプロピレン樹脂などの結晶性を有する熱可塑性樹脂は3.35mm以上になると同一樹脂同士の溶着が困難になるが、本発明形状で溶着することにより、筒状ハウジング2の開口部全周にわたり均一な溶着が可能になる。
立上り部3dの長さ(t1−t2)のより好ましい範囲は、2.35mm〜50.0mmである。また、さらにより好ましい範囲は、3.35〜11.0mmである。
Usually, since attenuation of ultrasonic transmission is considered, it is common in the ultrasonic welding method that the distance from the contact portion of the welding horn to the welding portion is less than 3.35 mm. The shorter the distance to the weld, the better. On the other hand, in the present invention, when the top plate thickness t 2 assuming general injection molding is assumed to be 3 mm, the length (t 1 −t 2 ) of the rising
A more preferable range of the length (t 1 -t 2 ) of the rising
筒状ハウジング2と筒状蓋体3とは溶着部4において、それぞれの開口部に形成された凹部または凸部をそれぞれ嵌合して筒状蓋体3の上面3e部分に円筒状溶着ホーン6を、フランジ5b部分に溶着受け治具6’をそれぞれ当接させて超音波溶着することにより、筒状ハウジング2と筒状蓋体3とが溶着される。
本発明において、筒状ハウジング2または筒状蓋体3の溶着部に形成される凹部は、それぞれの外周面からフランジ状に突出させて形成することが優れた気密性・耐圧性を維持することができるので好ましい。
The
In the present invention, the concave portions formed in the welded portion of the
溶着部における溶着時の部分断面図を図2〜図6に示す。また、従来例の部分断面図を図7に示す。図2〜図7において、筒状蓋体3または筒状ハウジング2はフランジ5を有しており、また、各図は溶着後の状態を示す。
図2は、立上り部3dの長さが比較的長い場合の例であり、また、筒状蓋体3側に凸部を、筒状ハウジング2側に凹部を設けた例である。筒状蓋体3および筒状ハウジング2は円筒である。
図3は、立上り部3dの長さが比較的短い場合の例であり、また、筒状蓋体3側に凸部を、筒状ハウジング2側に凹部を設けた例である。筒状蓋体3および筒状ハウジング2は円筒である。
図4は、立上り部3dの長さが比較的長い場合の例であり、また、筒状蓋体3側に凸部を、筒状ハウジング2側に凹部を設けた例である。筒状蓋体3および筒状ハウジング2は角形である。
図5は、立上り部3dの長さが図2に示す立上り部3dの長さより長い場合の例であり、また、筒状蓋体3側に凸部を、筒状ハウジング2側に凹部を設けた例である。筒状蓋体3および筒状ハウジング2は円筒である。
図6は、立上り部3dの長さが比較的長い場合の例であり、また、筒状蓋体3側に凹部を、筒状ハウジング2側に凸部を設けた例である。筒状蓋体3および筒状ハウジング2は円筒である。
図7は、立上り部を有さない従来の断面図であり、また、筒状蓋体3側に凸部を、筒状ハウジング2側に凹部を設けた例である。筒状蓋体3および筒状ハウジング2は円筒である。溶着後に筒状ハウジングの開口部面2aと筒状蓋体3の下面3kとは密接する。このため、立上り部の長さは0になる。
2 to 6 are partial cross-sectional views at the time of welding in the weld portion. FIG. 7 shows a partial sectional view of a conventional example. 2-7, the
FIG. 2 is an example in which the length of the rising
FIG. 3 is an example in which the length of the rising
FIG. 4 is an example in which the length of the rising
FIG. 5 shows an example in which the length of the rising
FIG. 6 is an example in which the length of the rising
FIG. 7 is a conventional cross-sectional view having no rising portion, and is an example in which a convex portion is provided on the
気密性耐圧容器1の溶着部4の詳細例を図8および図9により説明する。図8は図2における溶着部断面図を、図9は図8における溶着部4の超音波溶着前の状態を表す断面図をそれぞれ示す。
図8に示すように、超音波溶着される溶着部4は、筒状蓋体の筒体3b先端部が凸部を形成し、ハウジング2の溶着部断面が凹部を形成しており、相互に嵌合できる形状をしている。また、図9に示すように、筒体3bの凸部先端幅Dがハウジング2の凹部底面幅d2よりも大きい形状である。詳細には、ハウジング2の凹部2bが、内側面2dおよび2cと、凹部底面2fとから構成され、内側面2dに凹部の上部内幅d1を狭くする方向の傾斜面2gを有している。傾斜面2gを有する凹部2bに凸部3bを嵌合して超音波振動を印加することにより、接触部における変形歪の発熱が凸部3bの先端面3fのエッジ部3hと、凹部2bの傾斜面2gを起点として、側面3'gと2'gとで発生する。
A detailed example of the welded
As shown in FIG. 8, the welded
傾斜面2gの形状としては、凹部の内幅d1が底面2f方向に向かって狭くなる形状で、図8に示す角度αが、30°〜90°の範囲であることが好ましく、さらに好ましくは、角度αが45°の場合である。
The shape of the
凸部3bの形状は、その径方向の先端幅Dを凹部の上部内幅d1よりも約0.05mmのクリアランスをもたせた形状とすることが好ましい。該形状とすることにより、溶着振動をかける前に嵌合先端部の凹凸を誘い込ませて筒状蓋体3とハウジング2とを押えて変形などを矯正させることができる。その押えを保持しながら溶着振動をかけることによって全周を均一に溶着することが可能となる。
また、傾斜面2gは内側面2dまたは内側面2cの片側面、あるいは内側面2dおよび内側面2cの両側面にあってもよい。
The shape of the
The
気密性耐圧容器1の溶着部4の他の詳細例を図10および図11により説明する。図10は図2における他の溶着部断面図を、図11は図10における溶着部4の超音波溶着前の状態を表す断面図をそれぞれ示す。
この溶着部4の他の例は、凸部3bの凸部先端面3fの幅Dと凹形状2bの凹部幅d1とは上記クリアランスを持たせた形状である。凸部3bの側面3gの少なくとも一方の側面は、凸部の上方の幅d2を凸部先端面幅Dよりも広くする方向の傾斜面3iを有する。また、ハウジング2の凹部2bの内側面2dに傾斜面を有していない以外は図8および図9に示す溶着部4と同一である。凸部3bの長さd3と凹部2bの深さd4との関係、および傾斜面3iの傾斜角度も図8および図9に示す例と同一である。また、超音波振動による発熱過程も略同一である。
Another detailed example of the welded
Other examples of the welded
本発明の気密性耐圧容器を構成する樹脂材料としては、溶着が可能な結晶性を有する熱可塑性樹脂であれば任意の樹脂材料を使用でき、樹脂接合体の用途に応じて適宜決定できる。
樹脂材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリメチルペンテン樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、ポリテトラフルオロエチレン樹脂等が挙げられる。
これらの中で、気密性耐圧容器としての機械的強度に優れるポリプロピレン樹脂が好ましい。
As the resin material constituting the hermetic pressure-resistant container of the present invention, any resin material can be used as long as it is a thermoplastic resin having crystallinity that can be welded, and can be appropriately determined according to the use of the resin joined body.
Examples of the resin material include polyethylene resin, polypropylene resin, polyamide resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polymethylpentene resin, polyphenylene sulfide resin, polyether ether ketone resin, and polytetrafluoroethylene resin. Can be mentioned.
Among these, a polypropylene resin excellent in mechanical strength as an airtight pressure resistant container is preferable.
各樹脂材料は、相溶性があるものであれば2種以上の混合物として用いることができる。また、上記各樹脂材料は、本発明の目的を阻害しない範囲で各種強化材、添加剤等の充填材を含有させて用いることができる。 Each resin material can be used as a mixture of two or more if it is compatible. Moreover, each said resin material can be used by containing fillers, such as various reinforcing materials and an additive, in the range which does not inhibit the objective of this invention.
次に気密性耐圧容器の製造方法について上記各図を参照して説明する。
(1)結晶性を有する熱可塑性樹脂を用いて、少なくとも一端に開口部を有する筒状ハウジング2を成形する。同様に、ハウジングの開口部を閉塞する筒状蓋体3を成形する。ハウジング2の開口部上端および筒状蓋体3の先端部には図2〜図6に示す凹凸形状を設けておく。
(2)ハウジング2および筒状蓋体3に形成された凹凸形状を相互に嵌合させ、筒状蓋体3の外周縁上面およびハウジング2に設けられたフランジ5bの下面に円筒状の溶着ホーン6をそれぞれ当接させて超音波振動を発生させながら加圧入する。この工程により、ハウジング2と筒状蓋体3との溶着が筒状ハウジングの全周にわたり、主としてそれぞれに形成された凸型の側面と凹型の側面とで超音波溶着がなされる。
Next, the manufacturing method of an airtight pressure-resistant container is demonstrated with reference to said each figure.
(1) Using a thermoplastic resin having crystallinity, the
(2) The concave and convex shapes formed on the
上記では円筒状の気密性耐圧容器を例に挙げ、円筒部材の両端部おいて、溶着部を周状に形成する場合について説明したが、本発明の気密性耐圧容器の製造方法は、筒状体であれば、円筒状に限らず、楕円体であっても、異形円体であっても、多角形体であっても適用できる。 In the above description, a cylindrical airtight pressure vessel is taken as an example, and the case where the welded portion is formed in a circumferential shape at both ends of the cylindrical member has been described. However, the manufacturing method of the airtight pressure vessel of the present invention is cylindrical. As long as it is a body, it is not limited to a cylindrical shape, and may be an ellipsoid, a deformed circle, or a polygon.
実施例1
図2に断面形状を示す、中空かつ一端が閉塞されて他端が開放されており、開口端部に凹部を形成して成形された、内径66mmφ、肉厚3mm、高さ76mmのポリプロピレン樹脂成形体である円筒状ハウジングを射出成形した。開口端部の凹部は内側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有して形成した。
また、図2に断面形状を示す、内径72mmφ、肉厚3mm、立上り部の高さ6mmのポリプロピレン樹脂成形体である立上り部を有する筒状蓋体を射出成形した。
ハウジングの全周に形成される凸部の幅は3mm、凹部の深さは3mm、幅は2.7mmであり、傾斜面の角度は45度に設定した。
超音波溶着は、日本ヒューチャア製 W5185(8000W)を使用して、周波数15kHz、振幅80μm、圧力100KPa、溶着時間1.0秒の条件にて溶着を行なった。
得られた気密性耐圧容器について、接合部の隙間および傷の有無による外観を目視で確認した。隙間および傷が見られた場合を×、見られない場合を○とした。また以下の耐圧試験に供した。結果を表1に示す。なお、表1において、溶着ホーンまでの距離は、溶着後の(立上り部の高さ+蓋体の肉厚)を表す。
Example 1
FIG. 2 shows a cross-sectional shape, which is hollow and has one end closed and the other end opened, and is formed by forming a recess at the open end, and is molded with a polypropylene resin having an inner diameter of 66 mmφ, a wall thickness of 3 mm, and a height of 76 mm. A cylindrical housing as a body was injection molded. The recess at the opening end was formed with an inclined surface in the direction in which the bottom surface width of the recess is narrower than the top surface width of the recess.
Further, a cylindrical lid body having a rising portion, which is a polypropylene resin molded body having an inner diameter of 72 mmφ, a wall thickness of 3 mm, and a height of the rising portion of 6 mm, whose cross-sectional shape is shown in FIG. 2, was injection molded.
The width of the convex portion formed on the entire circumference of the housing was 3 mm, the depth of the concave portion was 3 mm, the width was 2.7 mm, and the angle of the inclined surface was set to 45 degrees.
Ultrasonic welding was performed using W5185 (8000 W) manufactured by Nippon Huchaa under the conditions of a frequency of 15 kHz, an amplitude of 80 μm, a pressure of 100 KPa, and a welding time of 1.0 second.
About the obtained airtight pressure | voltage resistant container, the external appearance by the presence or absence of the clearance gap and a damage | wound of a junction part was confirmed visually. The case where gaps and scratches were seen was rated as x, and the case where no gaps were seen was marked as ◯. Moreover, it used for the following pressure | voltage resistant tests. The results are shown in Table 1. In Table 1, the distance to the welding horn represents (the height of the rising portion + the thickness of the lid) after welding.
耐圧試験
得られた気密性耐圧容器の筒状蓋体の中央部にあけた穴より水を投入し、0MPaから0.1MPaステップにて圧力を上げる。各圧力に達した後、5分間その圧力を保持し破壊水漏れがなければ、さらに圧力を上昇させる。気密性耐圧容器が水圧により破壊され水漏れが発生する圧力を測定した。結果を表1に示す。
なお、表1に示される「○○Mpaで破壊しない」とは、現行試験設備にてそれ以上加圧すると破壊力が大きくなり過ぎるため、それ以上の加圧をしないで、その圧力が5分間保持できることを確認後、耐圧試験を中断したものである。
Pressure test Water is introduced through a hole formed in the center of the cylindrical lid of the obtained airtight pressure-resistant container, and the pressure is increased in steps of 0 MPa to 0.1 MPa. After reaching each pressure, hold that pressure for 5 minutes, and if there is no breakwater leak, increase the pressure further. The pressure at which the airtight pressure vessel was broken by water pressure and water leakage occurred was measured. The results are shown in Table 1.
In addition, “not to break at ○○ Mpa” shown in Table 1 means that the destructive force becomes too large when further pressure is applied with the current test equipment. After confirming that it can be retained, the pressure resistance test was interrupted.
実施例2
図3に断面形状を示す、立上り部の高さが3.35mmの筒状蓋体を用いる以外は、実施例1と同様の条件で超音波溶着を行なった。
得られた気密性耐圧容器について、実施例1と同様の項目を測定した。結果を表1に示す。
Example 2
Ultrasonic welding was performed under the same conditions as in Example 1 except that a cylindrical lid body having a sectional shape shown in FIG.
About the obtained airtight pressure-resistant container, the same item as Example 1 was measured. The results are shown in Table 1.
実施例3
図4に断面形状を示す、中空かつ一端が閉塞されて他端が開放されており、開口端部に凹部を形成して成形された、内寸法が縦70mm×横130mm×高さ135mmで、肉厚5mmのポリプロピレン樹脂成形体である角型のハウジングを射出成形した。開口端部の凹部は内側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有して形成した。
また、図4に断面形状を示す、内寸法が縦80mm×横140mmで、肉厚5mm、立上り部の高さ11mmのポリプロピレン樹脂成形体である立上り部を有する角型蓋体を射出成形した。
角型ハウジングの全周に形成される凸部の幅は5mm、凹部の深さは5mm、幅は4.7mmであり、傾斜面の角度は45度に設定した。超音波溶着は、日本ヒューチャア製 W5185(8000W)を使用して、周波数15kHz、振幅80μm、圧力600KPa、溶着時間1.0秒の条件にて溶着を行なった。
得られた気密性耐圧容器について、実施例1と同様の項目を測定した。結果を表1に示す。
Example 3
FIG. 4 shows a cross-sectional shape, hollow and closed at one end and opened at the other end, and formed by forming a recess at the opening end, the inner dimensions are 70 mm long × 130 mm wide × 135 mm high, A rectangular housing, which is a 5 mm thick polypropylene resin molding, was injection molded. The recess at the opening end was formed with an inclined surface in the direction in which the bottom surface width of the recess is narrower than the top surface width of the recess.
Further, a rectangular lid body having a rising portion, which is a polypropylene resin molded body having an internal dimension of 80 mm × 140 mm in width, a thickness of 5 mm, and a height of the rising portion of 11 mm, whose cross-sectional shape is shown in FIG. 4, was injection molded.
The width of the convex portion formed on the entire circumference of the square housing was 5 mm, the depth of the concave portion was 5 mm, the width was 4.7 mm, and the angle of the inclined surface was set to 45 degrees. Ultrasonic welding was performed using W5185 (8000 W) manufactured by Nippon Huchaa under conditions of a frequency of 15 kHz, an amplitude of 80 μm, a pressure of 600 KPa, and a welding time of 1.0 second.
About the obtained airtight pressure-resistant container, the same item as Example 1 was measured. The results are shown in Table 1.
実施例4
図5に断面形状を示す、中空かつ一端が閉塞されて他端が開放されており、開口端部に凹部を形成して成形された、内径150mmφ、肉厚5mm、高さ140mmのポリプロピレン樹脂成形体である円筒状ハウジングを射出成形した。開口端部の凹部は内側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有して形成した。
また、図5に断面形状を示す、立上り部の高さ11mmのポリプロピレン樹脂成形体である立上り部を有する円型蓋体を射出成形した。
円型ハウジングの全周に形成される凸部の幅は5mm、凹部の深さは5mm、幅は4.7mmであり、傾斜面の角度は45度に設定した。実施例3と同様の条件で超音波溶着を行なった。
得られた気密性耐圧容器について、実施例1と同様の項目を測定した。結果を表1に示す。
Example 4
FIG. 5 shows a cross-sectional shape, which is hollow and has one end closed and the other end opened, and is formed by forming a recess at the opening end, and is molded with a polypropylene resin having an inner diameter of 150 mmφ, a thickness of 5 mm, and a height of 140 mm. A cylindrical housing as a body was injection molded. The recess at the opening end was formed with an inclined surface in the direction in which the bottom surface width of the recess is narrower than the top surface width of the recess.
Further, a circular lid body having a rising portion, which is a polypropylene resin molded body having a rising portion height of 11 mm, having a cross-sectional shape shown in FIG. 5, was injection molded.
The width of the convex portion formed on the entire circumference of the circular housing was 5 mm, the depth of the concave portion was 5 mm, the width was 4.7 mm, and the angle of the inclined surface was set to 45 degrees. Ultrasonic welding was performed under the same conditions as in Example 3.
About the obtained airtight pressure-resistant container, the same item as Example 1 was measured. The results are shown in Table 1.
実施例5
図6に断面形状を示す、中空かつ一端が閉塞されて他端が開放されており、開口端部に凹部を形成して成形された、内径66mmφ、肉厚3mm、高さ76mmのポリプロピレン樹脂成形体である円筒状ハウジングを射出成形した。
また、図6に断面形状を示す、内径66mmφ、肉厚3mm、立上り部の高さ8mmのポリプロピレン樹脂成形体である立上り部を有して、かつ外周部に凹部を有する筒状蓋体を射出成形した。開口端部は上面幅を狭くする方向の傾斜面を有する凸部を成形した。筒状蓋体の全周に形成される凸部の幅は3mm、凹部の深さは3mm、幅は2.7mmであり、傾斜面の角度は45度に設定した。実施例1と同様の条件で超音波溶着を行なった。
得られた気密性耐圧容器について、実施例1と同様の項目を測定した。結果を表1に示す。
Example 5
FIG. 6 shows a cross-sectional shape, which is hollow and has one end closed and the other end opened, and is formed by forming a recess at the open end, and is molded with a polypropylene resin having an inner diameter of 66 mmφ, a wall thickness of 3 mm, and a height of 76 mm. A cylindrical housing as a body was injection molded.
Further, a cylindrical lid body having a rising portion which is a polypropylene resin molded body having an inner diameter of 66 mmφ, a wall thickness of 3 mm, and a height of the rising portion of 8 mm, and having a concave portion on the outer peripheral portion, which is shown in a sectional shape in FIG. Molded. The opening end portion was formed with a convex portion having an inclined surface in the direction of narrowing the upper surface width. The width of the convex portion formed on the entire circumference of the cylindrical lid was 3 mm, the depth of the concave portion was 3 mm, the width was 2.7 mm, and the angle of the inclined surface was set to 45 degrees. Ultrasonic welding was performed under the same conditions as in Example 1.
About the obtained airtight pressure-resistant container, the same item as Example 1 was measured. The results are shown in Table 1.
比較例1
図7に断面形状を示す、中空かつ一端が閉塞されて他端が開放されており、開口端部に凹部を形成して成形された、内径66mmφ、肉厚3mm、高さ76mmのポリプロピレン樹脂成形体である円筒状ハウジングを射出成形した。開口端部の凹部は内側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有して形成した。
また、図7に断面形状を示す、外径84mmφ、肉厚3mmのポリプロピレン樹脂成形体である立上り部を有さない筒状蓋体を射出成形した。
ハウジングの全周に形成される凸部の幅は3mm、凹部の深さは3mm、幅は2.7mmであり、傾斜面の角度は45度に設定した。実施例1と同様の条件で超音波溶着を行なった。
得られた気密性耐圧容器について、実施例1と同様の項目を測定した。結果を表1に示す。
Comparative Example 1
FIG. 7 shows a cross-sectional shape, which is hollow and has one end closed and the other end opened, and is formed by forming a recess at the opening end, and is molded with a polypropylene resin having an inner diameter of 66 mmφ, a wall thickness of 3 mm, and a height of 76 mm. A cylindrical housing as a body was injection molded. The recess at the opening end was formed with an inclined surface in the direction in which the bottom surface width of the recess is narrower than the top surface width of the recess.
Moreover, the cylindrical lid body which does not have a standing part which is a polypropylene resin molded body having an outer diameter of 84 mmφ and a thickness of 3 mm, whose cross-sectional shape is shown in FIG. 7, was injection molded.
The width of the convex portion formed on the entire circumference of the housing was 3 mm, the depth of the concave portion was 3 mm, the width was 2.7 mm, and the angle of the inclined surface was set to 45 degrees. Ultrasonic welding was performed under the same conditions as in Example 1.
About the obtained airtight pressure-resistant container, the same item as Example 1 was measured. The results are shown in Table 1.
比較例2
溶着条件を、日本ヒューチャア製 W5185(8000W)を使用して、周波数15kHz、振幅80μm、圧力600KPa、溶着時間1.0秒の条件とする以外は、比較例1と同一の製造条件、方法で気密性耐圧容器を得た。
得られた気密性耐圧容器について、実施例1と同様の項目を測定した。結果を表1に示す。
Comparative Example 2
The same welding conditions and method as in Comparative Example 1 were used except that the welding conditions were W5185 (8000 W) manufactured by Nippon Huchaer, and the frequency was 15 kHz, the amplitude was 80 μm, the pressure was 600 KPa, and the welding time was 1.0 second. A pressure resistant container was obtained.
About the obtained airtight pressure-resistant container, the same item as Example 1 was measured. The results are shown in Table 1.
表1に示すように、各実施例は、立上り部を有することで、外観に優れ、耐圧は向上した。特に同寸法である実施例1、2および4は、比較例1に比較して約2倍となる耐圧性に優れたポリプロピレン樹脂製の気密性耐圧容器が得られた。これに対して、比較例2では、外観に傷が発生し、製品上使用できるものではなかった。 As shown in Table 1, each example had a rising portion, so that the appearance was excellent and the withstand voltage was improved. In particular, Examples 1, 2, and 4 having the same dimensions were obtained as polypropylene-made airtight pressure-resistant containers having excellent pressure resistance, which was about twice that of Comparative Example 1. On the other hand, in Comparative Example 2, scratches occurred on the appearance, and the product could not be used.
本発明の気密性耐圧容器は、ポリプロピレン樹脂製であっても、気密性と耐圧性に優れるので、ろ過材を充填したカートリッジ容器として医療分野および浄水器分野に利用できる。 Even if the airtight pressure-resistant container of the present invention is made of polypropylene resin, it is excellent in airtightness and pressure resistance, and can be used in the medical field and the water purifier field as a cartridge container filled with a filter medium.
1 気密性耐圧容器
2 筒状ハウジング
3 筒状蓋体
4 溶着部
5 フランジ
6 溶着ホーン
DESCRIPTION OF
Claims (6)
前記筒状蓋体は、超音波溶着後の前記筒状ハウジングの開口部端面と、超音波溶着時の前記筒状蓋体側溶着ホーン当接面との距離より、前記筒状蓋体の天板厚さを差し引いた距離となる長さの立上り部が形成されており、
前記筒状ハウジングと前記筒状蓋体との溶着が前記筒状ハウジングの開口部端面全周にわたりなされており、
前記筒状ハウジングおよび筒状蓋体が結晶性を有する熱可塑性樹脂の成形体であることを特徴とする気密性耐圧容器。 An airtight pressure-resistant container formed by ultrasonically welding the opening of a cylindrical housing having an opening at at least one end with a cylindrical lid,
The cylindrical lid body has a top plate of the cylindrical lid body based on the distance between the opening end face of the cylindrical housing after ultrasonic welding and the cylindrical lid side welding horn contact surface at the time of ultrasonic welding. A rising part with a length that is the distance minus the thickness is formed,
Welding of the cylindrical housing and the cylindrical lid is made over the entire periphery of the opening end face of the cylindrical housing;
An airtight pressure-resistant container, wherein the cylindrical housing and the cylindrical lid are formed of a crystalline thermoplastic resin.
前記筒状ハウジングの開口部を閉塞する筒状蓋体を成形する工程と、
前記筒状ハウジングと前記筒状蓋体とを超音波振動によって相互に溶着する超音波溶着工程とを備える気密性耐圧容器の製造方法であって、
前記筒状蓋体は、超音波溶着後の前記筒状ハウジングの開口部端面と超音波溶着時の前記筒状蓋体側溶着ホーン当接面との距離より前記筒状蓋体の天板厚さを差し引いた距離となる長さの立上り部が形成されており、
前記超音波溶着される溶着部の径方向断面は、一方が凸形状で、他方が前記凸形状の凸部に嵌合できる凹形状で、かつ前記凸形状の凸部先端面幅が前記凹形状の凹部底面幅よりも大きい形状であり、前記凹形状の凹部内側面の少なくとも一方の側面に凹部底面幅を凹部上面幅よりも狭くする方向の傾斜面を有しており、
前記超音波溶着工程は、前記筒状蓋体外周縁上面に円筒状の溶着ホーンを当接させて、前記ハウジングと前記筒状蓋体との溶着が前記筒状ハウジングの開口部端面全周にわたり溶着される工程であることを特徴とする気密性耐圧容器の製造方法。 Forming a cylindrical housing having an opening at at least one end;
Forming a cylindrical lid for closing the opening of the cylindrical housing;
An ultrasonic welding process for welding the cylindrical housing and the cylindrical lid to each other by ultrasonic vibration,
The cylindrical lid body has a top plate thickness of the cylindrical lid body based on a distance between an opening end face of the cylindrical housing after ultrasonic welding and the cylindrical lid side welding horn contact surface at the time of ultrasonic welding. The rising part of the length which becomes the distance which deducted is formed,
The radial cross section of the welded portion to be ultrasonically welded has one convex shape, the other is a concave shape that can be fitted to the convex shape convex portion, and the convex shape tip surface width is the concave shape. The recess bottom surface width is a shape larger than at least one side surface of the concave inner surface of the recess has an inclined surface in the direction of narrowing the recess bottom surface width than the recess top surface width,
In the ultrasonic welding step, a cylindrical welding horn is brought into contact with the upper surface of the outer peripheral edge of the cylindrical lid, and the welding of the housing and the cylindrical lid is welded over the entire circumference of the opening end face of the cylindrical housing. A process for producing an airtight pressure-resistant container, characterized in that the process is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010141054A JP2012002342A (en) | 2010-06-21 | 2010-06-21 | Airtight pressure vessel and manufacturing method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010141054A JP2012002342A (en) | 2010-06-21 | 2010-06-21 | Airtight pressure vessel and manufacturing method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012002342A true JP2012002342A (en) | 2012-01-05 |
Family
ID=45534548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010141054A Pending JP2012002342A (en) | 2010-06-21 | 2010-06-21 | Airtight pressure vessel and manufacturing method of the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012002342A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103330988A (en) * | 2013-07-06 | 2013-10-02 | 李刚 | Closed type integrated humidification bottle and production technology thereof |
WO2013173136A1 (en) * | 2012-05-18 | 2013-11-21 | Toyota Boshoku America, Inc. | Haptic motor |
CN105387600A (en) * | 2014-08-22 | 2016-03-09 | 大金工业株式会社 | Hollow part and manufacturing method thereof |
CN105782438A (en) * | 2016-05-16 | 2016-07-20 | 江苏久维压力容器制造有限公司 | Double-cover pressure container |
JP2018002200A (en) * | 2016-06-29 | 2018-01-11 | 株式会社カネカ | Airtight pressure-resistant container |
WO2018168215A1 (en) * | 2017-03-13 | 2018-09-20 | 日本発條株式会社 | Accumulator |
JP2019051597A (en) * | 2017-09-12 | 2019-04-04 | キヤノン株式会社 | Liquid container and manufacturing method of liquid container |
WO2019170777A1 (en) * | 2018-03-06 | 2019-09-12 | Plastic Omnium Advanced Innovation And Research | Composite tank and method for manufacturing same |
FR3078650A1 (en) * | 2018-03-06 | 2019-09-13 | Plastic Omnium Advanced Innovation And Research | LINER FOR HIGH PRESSURE GAS STORAGE COMPOSITE TANK |
CN110255463A (en) * | 2019-06-17 | 2019-09-20 | 江苏新美星包装机械股份有限公司 | Rectangle trim into lid conveying mechanism in rotary capping machine |
JPWO2022102117A1 (en) * | 2020-11-16 | 2022-05-19 | ||
JPWO2022102116A1 (en) * | 2020-11-16 | 2022-05-19 | ||
JPWO2022102115A1 (en) * | 2020-11-16 | 2022-05-19 | ||
WO2022130897A1 (en) * | 2020-12-18 | 2022-06-23 | 千住金属工業株式会社 | Method for forming metal body, metal body, and mating-connection terminal comprising said metal body |
WO2022153671A1 (en) * | 2021-01-15 | 2022-07-21 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor package, electronic device, and method for producing semiconductor package |
WO2023063674A1 (en) * | 2021-10-14 | 2023-04-20 | 오씨아이 주식회사 | Case inlet bonding apparatus and case inlet bonding method using same |
WO2023089766A1 (en) * | 2021-11-19 | 2023-05-25 | Tdk株式会社 | Magnetization rotational element, magnetoresistive effect element, and magnetic memory |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0252668A (en) * | 1988-08-16 | 1990-02-22 | Terumo Corp | Medical liquid processing unit and manufacture thereof |
JP2000229360A (en) * | 1999-02-09 | 2000-08-22 | Du Pont Kk | Member structure of vibration welding |
JP2001313014A (en) * | 2000-04-27 | 2001-11-09 | Sanyo Electric Co Ltd | Equipment case |
WO2002072426A1 (en) * | 2001-03-12 | 2002-09-19 | Shikoku Kakoki Co., Ltd. | Ultrasonic wave sealing method for container |
JP2009126085A (en) * | 2007-11-26 | 2009-06-11 | Sato Light Kogyo Kk | Method for joining resin moldings and resin joined body |
-
2010
- 2010-06-21 JP JP2010141054A patent/JP2012002342A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0252668A (en) * | 1988-08-16 | 1990-02-22 | Terumo Corp | Medical liquid processing unit and manufacture thereof |
JP2000229360A (en) * | 1999-02-09 | 2000-08-22 | Du Pont Kk | Member structure of vibration welding |
JP2001313014A (en) * | 2000-04-27 | 2001-11-09 | Sanyo Electric Co Ltd | Equipment case |
WO2002072426A1 (en) * | 2001-03-12 | 2002-09-19 | Shikoku Kakoki Co., Ltd. | Ultrasonic wave sealing method for container |
JP2009126085A (en) * | 2007-11-26 | 2009-06-11 | Sato Light Kogyo Kk | Method for joining resin moldings and resin joined body |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013173136A1 (en) * | 2012-05-18 | 2013-11-21 | Toyota Boshoku America, Inc. | Haptic motor |
US10214128B2 (en) | 2012-05-18 | 2019-02-26 | Toyota Boshoku America, Inc. | Haptic motor |
CN103330988A (en) * | 2013-07-06 | 2013-10-02 | 李刚 | Closed type integrated humidification bottle and production technology thereof |
CN105387600A (en) * | 2014-08-22 | 2016-03-09 | 大金工业株式会社 | Hollow part and manufacturing method thereof |
CN105782438A (en) * | 2016-05-16 | 2016-07-20 | 江苏久维压力容器制造有限公司 | Double-cover pressure container |
JP2018002200A (en) * | 2016-06-29 | 2018-01-11 | 株式会社カネカ | Airtight pressure-resistant container |
US11174880B2 (en) | 2017-03-13 | 2021-11-16 | Nhk Spring Co., Ltd. | Accumulator |
WO2018168215A1 (en) * | 2017-03-13 | 2018-09-20 | 日本発條株式会社 | Accumulator |
JP2018151002A (en) * | 2017-03-13 | 2018-09-27 | 日本発條株式会社 | accumulator |
JP7013180B2 (en) | 2017-09-12 | 2022-01-31 | キヤノン株式会社 | Liquid container and manufacturing method of liquid container |
JP2019051597A (en) * | 2017-09-12 | 2019-04-04 | キヤノン株式会社 | Liquid container and manufacturing method of liquid container |
US11518577B2 (en) | 2017-09-12 | 2022-12-06 | Canon Kabushiki Kaisha | Liquid container and manufacturing method of the same |
FR3078650A1 (en) * | 2018-03-06 | 2019-09-13 | Plastic Omnium Advanced Innovation And Research | LINER FOR HIGH PRESSURE GAS STORAGE COMPOSITE TANK |
KR20200125688A (en) * | 2018-03-06 | 2020-11-04 | 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 | Composite tank and its manufacturing method |
WO2019170777A1 (en) * | 2018-03-06 | 2019-09-12 | Plastic Omnium Advanced Innovation And Research | Composite tank and method for manufacturing same |
KR102608494B1 (en) | 2018-03-06 | 2023-12-01 | 플라스틱 옴니엄 어드벤스드 이노베이션 앤드 리서치 | Composite tank and its manufacturing method |
CN110255463A (en) * | 2019-06-17 | 2019-09-20 | 江苏新美星包装机械股份有限公司 | Rectangle trim into lid conveying mechanism in rotary capping machine |
CN110255463B (en) * | 2019-06-17 | 2024-03-08 | 江苏新美星包装机械股份有限公司 | Cover feeding and conveying mechanism for rectangular decorative cover in rotary capping machine |
WO2022102115A1 (en) * | 2020-11-16 | 2022-05-19 | 日本たばこ産業株式会社 | Cartridge, and method for manufacturing cartridge |
JPWO2022102115A1 (en) * | 2020-11-16 | 2022-05-19 | ||
WO2022102117A1 (en) * | 2020-11-16 | 2022-05-19 | 日本たばこ産業株式会社 | Cartridge and method for manufacturing cartridge |
WO2022102116A1 (en) * | 2020-11-16 | 2022-05-19 | 日本たばこ産業株式会社 | Cartridge and method for manufacturing cartridge |
JP7240530B2 (en) | 2020-11-16 | 2023-03-15 | 日本たばこ産業株式会社 | Cartridge and cartridge manufacturing method |
JP7240529B2 (en) | 2020-11-16 | 2023-03-15 | 日本たばこ産業株式会社 | Cartridge and cartridge manufacturing method |
JP7240531B2 (en) | 2020-11-16 | 2023-03-15 | 日本たばこ産業株式会社 | Cartridge and cartridge manufacturing method |
JPWO2022102116A1 (en) * | 2020-11-16 | 2022-05-19 | ||
JPWO2022102117A1 (en) * | 2020-11-16 | 2022-05-19 | ||
WO2022130897A1 (en) * | 2020-12-18 | 2022-06-23 | 千住金属工業株式会社 | Method for forming metal body, metal body, and mating-connection terminal comprising said metal body |
WO2022153671A1 (en) * | 2021-01-15 | 2022-07-21 | ソニーセミコンダクタソリューションズ株式会社 | Semiconductor package, electronic device, and method for producing semiconductor package |
WO2023063674A1 (en) * | 2021-10-14 | 2023-04-20 | 오씨아이 주식회사 | Case inlet bonding apparatus and case inlet bonding method using same |
WO2023089766A1 (en) * | 2021-11-19 | 2023-05-25 | Tdk株式会社 | Magnetization rotational element, magnetoresistive effect element, and magnetic memory |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2012002342A (en) | Airtight pressure vessel and manufacturing method of the same | |
US3947307A (en) | Apparatus for fluid-tight welding of a closable connecting piece into a thin-walled container | |
US6712232B2 (en) | Plastic container and method of manufacturing the same | |
US20190105608A1 (en) | Hollow fiber membrane module and manufacturing method therefor | |
TW201343211A (en) | Hollow filament membrane module | |
JPWO2017171015A1 (en) | Hollow fiber membrane module and method of manufacturing hollow fiber membrane module | |
TW201540293A (en) | Medical fluid container | |
JP5402563B2 (en) | Outlet stopper and packaging container | |
JP4887479B2 (en) | Manufacturing method for hollow pressure-resistant molded products | |
CN110269967B (en) | Hollow fiber membrane module, method for producing same, and mold for molding | |
JP4887478B2 (en) | Method for joining resin molded body and resin joined body | |
JP4941035B2 (en) | Cylindrical lid and module using the same | |
JP2017006421A (en) | Synthetic resin container | |
JP4958326B2 (en) | container | |
JP2016022995A (en) | Airtight pressure-resistant container | |
JP6348125B2 (en) | cap | |
JP2008238437A (en) | Method for manufacturing container | |
JP3240272U (en) | double container | |
JP2020179371A (en) | Hollow fiber membrane module and its manufacturing method | |
JP4675549B2 (en) | Ultrasonic welding horn | |
JPS62195849A (en) | Sealing of enclosed type storage battery | |
JP2022095354A (en) | Liquid tank and manufacturing method for the same | |
JP3965458B2 (en) | Cylindrical toner container and manufacturing method thereof | |
JP2011224125A (en) | Medical cap, medical container equipped with the same, and method for manufacturing medical container | |
JP7245642B2 (en) | Inner stopper for sealing the filling port of a container for containing beads for blood treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140204 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140403 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141007 |