JP2012094549A - Lithium ion secondary battery and overcharge inhibitor therefor - Google Patents
Lithium ion secondary battery and overcharge inhibitor therefor Download PDFInfo
- Publication number
- JP2012094549A JP2012094549A JP2012027961A JP2012027961A JP2012094549A JP 2012094549 A JP2012094549 A JP 2012094549A JP 2012027961 A JP2012027961 A JP 2012027961A JP 2012027961 A JP2012027961 A JP 2012027961A JP 2012094549 A JP2012094549 A JP 2012094549A
- Authority
- JP
- Japan
- Prior art keywords
- lithium ion
- ion secondary
- secondary battery
- battery
- overcharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
Abstract
Description
本発明はリチウムイオン二次電池に関する。 The present invention relates to a lithium ion secondary battery.
リチウムイオン二次電池は高エネルギー密度を持つため種々の製品への適用が検討されている。一方、リチウムイオン二次電池が過充電されると電池の熱安定性が低下する。また、リチウム電池が過充電されると、負極上にリチウム金属が樹枝状に析出し(デンドライト)、電池が内部短絡する懸念がある。電池が内部短絡すると、電池のエネルギーが急激に放出されるため、場合によっては熱暴走する場合がある。 Lithium ion secondary batteries have high energy density, so their application to various products is being studied. On the other hand, when the lithium ion secondary battery is overcharged, the thermal stability of the battery is lowered. Further, when the lithium battery is overcharged, lithium metal is deposited in a dendritic shape on the negative electrode (dendrites), and there is a concern that the battery may be internally short-circuited. When the battery is internally short-circuited, the battery energy is suddenly released, and in some cases, thermal runaway may occur.
過充電に対する対策として、特開2003−22838号公報(特許文献1)ではシクロヘキシルベンゼンやビフェニル、特開平9−106835号公報(特許文献2)ではチオフェンを電解液に溶解させて過充電を抑制する技術が提案されている。これは、過充電時に、高電位になった正極上でシクロヘキシルベンゼンなどが電解重合することで充電電流を消費し、電池の充電反応を抑制するものである。しかし、シクロヘキシルベンゼンなどがすべて電解重合すると、電池の充電反応が再開する。そのため、過充電を根本的に抑制することは難しい。 As countermeasures against overcharge, Japanese Patent Application Laid-Open No. 2003-22838 (Patent Document 1) suppresses overcharge by dissolving cyclohexylbenzene and biphenyl in Japanese Patent Application Laid-Open No. 9-106835 (Patent Document 2). Technology has been proposed. In this case, cyclohexylbenzene or the like undergoes electropolymerization on the positive electrode that is at a high potential during overcharge, thereby consuming a charging current and suppressing the charging reaction of the battery. However, when all of cyclohexylbenzene or the like is electropolymerized, the battery charging reaction resumes. Therefore, it is difficult to fundamentally suppress overcharging.
Journal of the electrochemical society, 155(2) A129 (2008).(非特許文献1)では、レドックスシャトル型の過充電抑制剤が提案されている。レドックスシャトル型過充電抑制剤とは、過充電時に高電位になった正極で酸化され、酸化された抑制剤が負極に移動し、還元反応を受けもとの抑制剤に戻るものである。正極および負極活物質の反応よりも優先的に、この抑制剤の酸化還元反応を生じさせ、充電電流を消費し、結果過充電を抑制するものである。レドックスシャトル型過充電抑制剤の反応は可逆的であり、過充電を継続的に抑制することが期待できる。 Journal of the electrochemical society, 155 (2) A129 (2008). (Non-Patent Document 1) proposes a redox shuttle type overcharge inhibitor. A redox shuttle type overcharge inhibitor is one that is oxidized at the positive electrode that is at a high potential during overcharge, the oxidized inhibitor moves to the negative electrode, and undergoes a reduction reaction to return to the original inhibitor. Preferentially over the reaction of the positive electrode and the negative electrode active material, this inhibitor causes a redox reaction, consumes a charging current, and consequently suppresses overcharge. The reaction of the redox shuttle type overcharge inhibitor is reversible, and it can be expected to continuously suppress overcharge.
しかしながら、レドックスシャトル型の過充電抑制剤は、安全性の向上に寄与する一方、電池性能を低下させる。そこで本発明の課題は、過充電抑制機能と電池性能とを両立させた過充電抑制剤と、それを用いたリチウムイオン二次電池を提供することにある。 However, the redox shuttle type overcharge inhibitor contributes to the improvement of safety, while lowering the battery performance. Then, the subject of this invention is providing the overcharge inhibitor which made the overcharge suppression function and battery performance compatible, and a lithium ion secondary battery using the same.
上記の課題を解決する本発明の特徴は、(化1)で示される化合物を過充電抑制剤に用いることにある。(化1)において、Aは、酸素,窒素,硫黄,セレン,ケイ素であり、R1およびR2は水素または有機基である。Xは、水素,炭化水素基、またはハロゲンである。 The feature of the present invention that solves the above problem is that the compound represented by (Chemical Formula 1) is used as an overcharge inhibitor. In (Chemical Formula 1), A is oxygen, nitrogen, sulfur, selenium, and silicon, and R 1 and R 2 are hydrogen or an organic group. X is hydrogen, a hydrocarbon group, or halogen.
また、さらに(化2)で示される化合物を過充電抑制剤とすることが好ましい。(化2)はAが酸素であり、ARが(化2)で表される位置に存在する化合物である。 Further, it is preferable to use a compound represented by (Chemical Formula 2) as an overcharge inhibitor. (Chemical Formula 2) is a compound in which A is oxygen and AR is present at the position represented by (Chemical Formula 2).
(化2)において、Yは炭化水素,水素,ハロゲンである。Rは水素又は有機基である。 In (Chemical Formula 2), Y is a hydrocarbon, hydrogen, or halogen. R is hydrogen or an organic group.
また、本発明の他の特徴は、正極と、負極と、非水溶媒を用いた電解液とを有するリチウムイオン二次電池であって、電解液に過充電抑制剤として(化1)の化合物を加えたことを特徴とする。電解液へ添加される過充電抑制剤は、濃度を0.1〜8質量%とすることが好ましい。 Another feature of the present invention is a lithium ion secondary battery having a positive electrode, a negative electrode, and an electrolytic solution using a nonaqueous solvent, wherein the compound of (Chemical Formula 1) is used as an overcharge inhibitor in the electrolytic solution. It is characterized by adding. The overcharge inhibitor added to the electrolytic solution preferably has a concentration of 0.1 to 8% by mass.
本発明によれば、過充電抑制機能と電池性能とを両立させた過充電抑制剤と、安全性,電池性能の高いリチウムイオン二次電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the overcharge inhibitor which made the overcharge suppression function and battery performance compatible, and a lithium ion secondary battery with high safety | security and battery performance can be provided.
図2に、リチウムイオン二次電池の構造の一例を示す。正極及び負極がセパレータを介して配置され、これら全体をアルミラミネートで覆い形成される容器の内部に電解液が充填されている。 FIG. 2 shows an example of the structure of a lithium ion secondary battery. A positive electrode and a negative electrode are arranged via a separator, and an electrolyte is filled in a container formed by covering the whole with an aluminum laminate.
リチウムイオン二次電池は高エネルギー密度であるため、ノートパソコンや携帯電話などに広範に利用されている。また近年では、電気自動車の電源としてリチウムイオン二次電池の適用が検討されている。 Lithium ion secondary batteries have high energy density and are widely used in notebook computers and mobile phones. In recent years, the application of lithium ion secondary batteries as power sources for electric vehicles has been studied.
リチウムイオン二次電池の過充電時の安全性を確保するために、過充電状態を検知し充電を停止する制御回路を搭載することができる。しかし制御回路を搭載すると、電池のコストが高くなる。また、制御回路が故障した場合の対策が必要である。このような問題の対策として、過充電抑制剤は有効である。 In order to ensure the safety at the time of overcharging of the lithium ion secondary battery, a control circuit for detecting an overcharged state and stopping charging can be mounted. However, when the control circuit is mounted, the cost of the battery increases. In addition, a countermeasure is required when the control circuit fails. As a countermeasure against such a problem, an overcharge inhibitor is effective.
本発明者らは、鋭意検討の結果(化1)で示す化合物が優れた過充電抑制効果を示し、また電池性能に対し影響が少ないことを見出した。特に、(化2)で示す化合物が特に優れた特性を示す。従って、(化1)で示す化合物を過充電抑制に用いることで、電池性能を損なうことなく、優れた過充電抑制効果が期待できる。 The inventors of the present invention have found that the compound shown by the result of intensive study (Chemical Formula 1) exhibits an excellent overcharge suppression effect and has little influence on the battery performance. In particular, the compound represented by (Chemical Formula 2) exhibits particularly excellent characteristics. Therefore, by using the compound represented by (Chemical Formula 1) for overcharge suppression, an excellent overcharge suppression effect can be expected without impairing battery performance.
(化1)のXおよび(化2)のYは、水素,炭化水素基、またはハロゲンである。X及びYを選択することで、過充電抑制剤の酸化電位を調節することが可能である。酸化電位を正極活物質に併せて変化させることができるため、多種の正極活物質と組み合わせて使用できる。 X in (Chemical Formula 1) and Y in (Chemical Formula 2) are hydrogen, a hydrocarbon group, or halogen. By selecting X and Y, it is possible to adjust the oxidation potential of the overcharge inhibitor. Since the oxidation potential can be changed together with the positive electrode active material, it can be used in combination with various positive electrode active materials.
(化1)および(化2)のAは、酸素,窒素,硫黄,セレン,ケイ素,リンの少なくともいずれか一種である。酸素,窒素や硫黄などの孤立電子対を持つことで過充電抑制剤として機能する。Aの選択は、過充電抑制効果と電池性能を両立する上において重要である。Aは、好ましくは酸素,窒素,硫黄,ケイ素,リンであり、特に酸素は、電気化学的安定性が高く、電池性能を維持できるため最も好ましい。 A in (Chemical Formula 1) and (Chemical Formula 2) is at least one of oxygen, nitrogen, sulfur, selenium, silicon, and phosphorus. It functions as an overcharge inhibitor by having lone electron pairs such as oxygen, nitrogen and sulfur. The selection of A is important in achieving both an overcharge suppression effect and battery performance. A is preferably oxygen, nitrogen, sulfur, silicon, or phosphorus. In particular, oxygen is most preferable because it has high electrochemical stability and can maintain battery performance.
R1およびR2は水素または有機基である。有機基とは、炭素,水素,酸素,窒素,硫黄,リン,ハロゲンから構成される官能基である。有機基とすると、Li電池の電池性能を低下させにくい。有機基のなかで、炭化水素基,オキシメチレン基,アセチル基が好適に用いられる。炭化水素基としては、メチル基,エチル基,プロピル基,イソプロピル基,ブチル基,イソブチル基,ジメチルエチル基,ペンチル基,ヘキシル基,ヘプチル基,オクチル基,イソオクチル基,デシル基,ウンデシル基,ドデシル基などの脂肪族炭化水素基,シクロヘキル基,ジメチルシクロヘキシル基などの脂環式炭化水素基などが挙げられる。中でも、メチル基,エチル基,プロピル基が好適に用いられる。オキシメチレン基とは、オキシメチレン基,オキシエチレン基,オキシプロピレン基,オキシブチレン基,オキシテトラメチレン基などが挙げられる。オキシエチレン基またはオキシプロピレン基を用いると、電解液に対する溶解性を向上させることができ好ましい。 R 1 and R 2 are hydrogen or an organic group. The organic group is a functional group composed of carbon, hydrogen, oxygen, nitrogen, sulfur, phosphorus, and halogen. When the organic group is used, it is difficult to lower the battery performance of the Li battery. Of the organic groups, hydrocarbon groups, oxymethylene groups, and acetyl groups are preferably used. Hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, dimethylethyl, pentyl, hexyl, heptyl, octyl, isooctyl, decyl, undecyl, dodecyl And an alicyclic hydrocarbon group such as an aliphatic hydrocarbon group such as a group, a cyclohexyl group, and a dimethylcyclohexyl group. Of these, a methyl group, an ethyl group, and a propyl group are preferably used. Examples of the oxymethylene group include an oxymethylene group, an oxyethylene group, an oxypropylene group, an oxybutylene group, and an oxytetramethylene group. When an oxyethylene group or an oxypropylene group is used, solubility in an electrolytic solution can be improved, which is preferable.
リチウムイオン二次電池の電解液は、非水溶媒に支持電解質を溶解させたものである。
非水溶媒としては水でなく、支持電解質を溶解させることができるものであれば特に限定されない。例えば、ジエチルカーボネート,ジメチルカーボネート,エチレンカーボネート,エチルメチルカーボネート,プロピレンカーボネート,γ−ブチルラクトン,テトロヒドロフラン,ジメトキシエタン等の有機溶媒が挙げられる。複数の異なる非水溶媒を混合して使用することも可能である。
The electrolyte of the lithium ion secondary battery is obtained by dissolving a supporting electrolyte in a nonaqueous solvent.
The non-aqueous solvent is not particularly limited as long as it is not water and can dissolve the supporting electrolyte. Examples thereof include organic solvents such as diethyl carbonate, dimethyl carbonate, ethylene carbonate, ethyl methyl carbonate, propylene carbonate, γ-butyl lactone, tetrohydrofuran and dimethoxyethane. It is also possible to use a mixture of a plurality of different non-aqueous solvents.
支持電解質は、非水溶媒に可溶なものならば特に種類は問わず、リチウムイオン二次電池の支持電解質として従来提案されているものが適宜使用できる。LiPF6,LiN(CF3SO2)2,LiN(C2F6SO2)2,LiClO4,LiBF4,LiAsF6,LiI,LiBr,LiSCN,Li2B10Cl10,LiCF3CO2などの電解質塩が例示され、これらを複数種類混合して用いることもできる。
The supporting electrolyte is not particularly limited as long as it is soluble in a non-aqueous solvent, and those conventionally proposed as supporting electrolytes for lithium ion secondary batteries can be used as appropriate. LiPF 6, LiN (CF 3 SO 2) 2, LiN (C 2 F 6 SO 2) 2, LiClO 4, LiBF 4, LiAsF 6, LiI, LiBr, LiSCN, Li 2 B 10 Cl 10, LiCF 3
リチウムイオン二次電池の正極活物質は、リチウムイオンを吸蔵・放出可能なものならば特に種類は問わず、リチウムイオン二次電池の正極活物質として従来提案されているものが適宜使用できる。例えば、LiCoO2,LiNiO2,LiMn1/3Ni1/3Co1/3O2,LiMn0.4Ni0.4Co0.2O2のような層状構造を有する酸化物や,LiMn2O4やLi1+xMn2-xO4のようなスピネル型の結晶構造を有するMnの酸化物、また、Mnの一部をCoやCr等の他元素で置換したものを用いることができる。また、LiFePO4,LiCoPO4,LiMnPO4などのオリビン構造を有する正極活物質も用いることができる。 The positive electrode active material of the lithium ion secondary battery is not particularly limited as long as it can occlude and release lithium ions, and those conventionally proposed as the positive electrode active material of the lithium ion secondary battery can be appropriately used. For example, an oxide having a layered structure such as LiCoO 2 , LiNiO 2 , LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 0.4 Ni 0.4 Co 0.2 O 2 , LiMn 2 O 4 , Li 1+ oxides of Mn having a spinel type crystal structure, such as x Mn 2-x O 4, can also be used a material obtained by replacing a part of Mn with another element such as Co or Cr. A positive electrode active material having an olivine structure such as LiFePO 4 , LiCoPO 4 , LiMnPO 4 can also be used.
リチウムイオン二次電池の負極活物質としても、従来提案されているものが適宜使用できる。天然黒鉛,石油コークスや石炭ピッチコークス等から得られる易黒鉛化材料を2500℃以上の高温で熱処理したもの,メソフェーズカーボン或いは非晶質炭素,炭素繊維,リチウムと合金化する金属、あるいは炭素粒子表面に金属を担持した材料などが用いられる。例えばリチウム,銀,アルミニウム,スズ,ケイ素,インジウム,ガリウム,マグネシウムより選ばれた金属あるいは合金である。また、該金属または該金属の酸化物を負極活物質として利用できる。さらに、チタン酸リチウムを用いることもできる。 As the negative electrode active material of the lithium ion secondary battery, those conventionally proposed can be used as appropriate. Easily graphitized material obtained from natural graphite, petroleum coke, coal pitch coke, etc., heat treated at a high temperature of 2500 ° C or higher, mesophase carbon or amorphous carbon, carbon fiber, metal alloyed with lithium, or carbon particle surface A material carrying a metal is used. For example, a metal or alloy selected from lithium, silver, aluminum, tin, silicon, indium, gallium, and magnesium. Further, the metal or the oxide of the metal can be used as a negative electrode active material. Furthermore, lithium titanate can also be used.
リチウムイオン二次電池のセパレータは、電池に悪影響を及ぼさない補強材なら材質は問わない。正負極間を隔てて短絡を防止するものを適宜使用できる。例えばポリオレフィン,ポリアミド,ポリエステルなどのポリマーからなるものや、繊維状のガラス繊維を用いたガラスクロスがある。特にポリオレフィンが好適に用いられる。ポリオレフィンとしては、ポリエチレン,ポリプロピレンなどが挙げられ、それらのフィルムを重ね合わせて使用することもできる。また、セパレータの通気度(sec/100mL)は、10以上1000以下であり、好ましくは50以上800以下であり、特に好ましくは90以上700以下である。 The separator of the lithium ion secondary battery may be any material as long as it does not adversely affect the battery. What prevents a short circuit across positive and negative electrodes can be used suitably. For example, there are those made of polymers such as polyolefin, polyamide and polyester, and glass cloth using fibrous glass fibers. In particular, polyolefin is preferably used. Examples of the polyolefin include polyethylene, polypropylene and the like, and those films can be used in an overlapping manner. Further, the air permeability (sec / 100 mL) of the separator is 10 or more and 1000 or less, preferably 50 or more and 800 or less, and particularly preferably 90 or more and 700 or less.
リチウムイオン二次電池の過充電抑制剤は、ある電圧で反応し、過充電を抑制するものである。その反応は、電池の作動電圧以上の電圧である。具体的には、Li/Li+基準で2V以上であり、好ましくは3V以上である。この値が小さすぎると電池内部で過充電抑制剤が反応し、電池性能を低下させる。また、過充電抑制剤の添加量も、過充電抑制効果と電池性能を両立する上で重要である。 The overcharge inhibitor of a lithium ion secondary battery reacts at a certain voltage to suppress overcharge. The reaction is a voltage higher than the operating voltage of the battery. Specifically, it is 2 V or higher, preferably 3 V or higher, based on Li / Li +. If this value is too small, the overcharge inhibitor reacts inside the battery, reducing the battery performance. Moreover, the addition amount of an overcharge inhibitor is also important in achieving both an overcharge suppression effect and battery performance.
過充電抑制剤は、過充電を抑制させる形態でリチウムイオン二次電池内に存在させる。特に、過充電抑制剤を電解液に溶解させて溶液状態としたり、懸濁状態として電解液に共存させて用いることが好ましい。 The overcharge inhibitor is present in the lithium ion secondary battery in a form that suppresses overcharge. In particular, it is preferable to use an overcharge inhibitor dissolved in the electrolytic solution to form a solution, or in a suspended state to coexist in the electrolytic solution.
溶液とする場合、過充電抑制剤の濃度[(質量%=(過充電抑制剤の重量)/(電解液重量+過充電抑制剤の重量)×100)]は、0.001%以上90%以下であり、好ましくは0.05%以上20%以下であり、特に好ましくは0.1%以上8%以下である。溶液とすると、過充電抑制剤の添加量が多いほど電池性能が低下する。また、添加量が少ないほど過充電の抑制効果が少ない。 When the solution is used, the concentration of the overcharge inhibitor [(mass% = (weight of overcharge inhibitor) / (weight of electrolyte solution + weight of overcharge inhibitor) × 100)] is 0.001% or more and 90%. Or less, preferably 0.05% or more and 20% or less, and particularly preferably 0.1% or more and 8% or less. When the solution is used, the battery performance decreases as the amount of the overcharge inhibitor added increases. Also, the smaller the amount added, the less the overcharge suppression effect.
以下、実施例を用いて本発明の実施の形態について説明する。なお、本発明はこれらの実施例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described using examples. The present invention is not limited to these examples.
本実施例は、過充電抑制剤A(化2:R1,R2=Me,Y1〜Y12=H:アルドリッチ製(2,2′−Dimethoxy−1,1′−binaphthalene))を用いたリチウムイオン二次電池について説明する。電池は、正極活物質にはLiFePO4を用い、負極には板状のLi金属(本城金属社製)をそのまま用いた。電解液は、電解質塩にLiPF6を、溶媒にEC/DMC/EMC=1:1:1(体積比)を使用した、電解質塩の濃度は1mol/Lに設定した。セパレータはポリオレフィンを使用した。
This embodiment, overcharge inhibitor A (of 2: R 1, R 2 = Me,
<正極の作製方法>
正極活物質(LiFePO4)導電剤(SP270:日本黒鉛社製黒鉛)、バインダー(ポリフッ化ビニリデンKF1120:呉羽化学工業社)を85:10:10質量%の割合で混合し、N−メチル−2−ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ20μmのアルミニウム箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、100g/m2であった。その後、プレスし電極を裁断して正極を作製した。
<Method for producing positive electrode>
A positive electrode active material (LiFePO 4 ) conductive agent (SP270: graphite manufactured by Nippon Graphite Co., Ltd.) and a binder (polyvinylidene fluoride KF1120: Kureha Chemical Industry Co., Ltd.) were mixed at a ratio of 85: 10: 10% by mass, and N-methyl-2 -A mixture of pyrrolidone was added to prepare a slurry solution. The slurry was applied to a 20 μm thick aluminum foil by a doctor blade method and dried. The mixture application amount was 100 g / m 2 . Then, it pressed and cut | judged the electrode and produced the positive electrode.
<電解液の作製方法>
濃度が2質量%になるように過充電抑制剤Aを電解液に加えた。この電解液を使用しサイクリックボルタンメトリー(CV)を測定した。CV測定は、作用極として白金,対極および参照極としてリチウム金属を用い、過充電抑制剤を溶解させた電解液を加えて作製した評価セルを用いて実施した。過充電抑制剤の濃度は2質量%に設定した。CVの測定は、電位の掃引速度10mVで、3.0Vから5.0Vの範囲で行った。図1にサイクリックボルタンメトリーの測定例を示す。過充電抑制剤Aを添加した電解液の酸化電位は4.0Vであり、可逆な酸化還元波を観測した。
<Method for producing electrolyte solution>
Overcharge inhibitor A was added to the electrolyte so that the concentration was 2% by mass. Using this electrolytic solution, cyclic voltammetry (CV) was measured. CV measurement was carried out using an evaluation cell prepared by adding platinum, the counter electrode, and lithium metal as the reference electrode, and an electrolyte in which an overcharge inhibitor was dissolved. The concentration of the overcharge inhibitor was set to 2% by mass. The CV measurement was performed in the range of 3.0 V to 5.0 V at a potential sweep rate of 10 mV. FIG. 1 shows an example of cyclic voltammetry measurement. The oxidation potential of the electrolytic solution to which the overcharge inhibitor A was added was 4.0 V, and a reversible redox wave was observed.
<電池の作製方法>
正極及び負極の間に、ポリオレフィン製のセパレータを挿入し、電極群を形成した。そこに、電解液を注液した。その後、電池をアルミ製ラミネートで封入し、電池を作製した。その後、充放電を3サイクル繰り返すことで電池を初期化した。
<Production method of battery>
A polyolefin separator was inserted between the positive electrode and the negative electrode to form an electrode group. Thereto, an electrolytic solution was injected. Thereafter, the battery was sealed with an aluminum laminate to produce a battery. Then, the battery was initialized by repeating charging / discharging 3 cycles.
<電池の評価方法>
1.サイクル試験
電池の充電は、予め設定した上限電圧まで電流密度0.1mA/cm2で充電した。放電は、予め設定した下限電圧まで、電流密度0.1mA/cm2で放電した。正極活物質にLiFePO4を用いた場合、上限電圧は3.6V、下限電圧は2.0Vであった。また、正極活物質にLiCoO2を用いた場合、上限電圧は4.3V、下限電圧は3.0Vであった。
<Battery evaluation method>
1. Cycle test The battery was charged at a current density of 0.1 mA / cm 2 up to a preset upper limit voltage. The discharge was performed at a current density of 0.1 mA / cm 2 up to a preset lower limit voltage. When LiFePO 4 was used as the positive electrode active material, the upper limit voltage was 3.6V and the lower limit voltage was 2.0V. When LiCoO 2 was used as the positive electrode active material, the upper limit voltage was 4.3V and the lower limit voltage was 3.0V.
この充放電サイクルを繰り返し、サイクル試験を行った。サイクル特性は、1サイクル目の放電容量と、50サイクル後の放電容量の比をとることで評価した。また、この評価は、室温および50℃の2条件で行い、比較を行った。
2.過充電試験
作製した電池を、下限電圧まで放電し、その後上限電圧まで予備充電した。予備充電した際得られた充電容量をSOC100%と規定した。予備充電後、SOC200%まで過充電試験を行った。過充電試験後、電池の電圧を測定し、過充電抑制効果を確認した。上記の試験の結果、25℃における容量維持率は85%、50℃では75%であった。また、過充電試験後、セルを解体し、負極上のデンドライト析出の有無を確認した。過充電後のセルの電圧は3.5Vであり、負極上のデンドライト生成は見られなかった。
This charge / discharge cycle was repeated to perform a cycle test. The cycle characteristics were evaluated by taking the ratio between the discharge capacity at the first cycle and the discharge capacity after 50 cycles. Moreover, this evaluation was performed under two conditions of room temperature and 50 ° C., and a comparison was made.
2. Overcharge test The produced battery was discharged to the lower limit voltage and then precharged to the upper limit voltage. The charge capacity obtained when precharging was defined as 100% SOC. After the preliminary charging, an overcharge test was performed up to SOC 200%. After the overcharge test, the voltage of the battery was measured to confirm the overcharge suppression effect. As a result of the above test, the capacity retention rate at 25 ° C. was 85%, and at 50 ° C., it was 75%. Moreover, the cell was disassembled after the overcharge test, and the presence or absence of dendrite precipitation on the negative electrode was confirmed. The voltage of the cell after overcharging was 3.5 V, and no dendrite formation on the negative electrode was observed.
上記のように、過充電抑制剤Aを使用したリチウムイオン二次電池は、高性能であるとともに、過充電を抑制できた。 As described above, the lithium ion secondary battery using the overcharge inhibitor A has high performance and can suppress overcharge.
実施例2は、過充電抑制剤Aの量を実施例1よりも減らした例である。過充電抑制剤Aの濃度を0.01質量%に設定し、実施例1と同様に電池を作製した。作成した電池を評価した結果、25℃における容量維持率は86%、50℃では76%であった。過充電後のセルの電圧は3.5Vであった。過充電試験後、電池を解体し負極を観察したところ、負極上にデンドライト生成が見られた。過充電抑制剤Aの濃度が薄いと電池性能は低下しないが、過充電抑制効果が小さい。 Example 2 is an example in which the amount of the overcharge inhibitor A is less than that of Example 1. The concentration of the overcharge inhibitor A was set to 0.01% by mass, and a battery was produced in the same manner as in Example 1. As a result of evaluating the produced battery, the capacity retention rate at 25 ° C. was 86%, and at 50 ° C., it was 76%. The voltage of the cell after overcharging was 3.5V. After the overcharge test, the battery was disassembled and the negative electrode was observed. As a result, dendrite formation was observed on the negative electrode. When the concentration of the overcharge inhibitor A is low, the battery performance does not deteriorate, but the overcharge suppression effect is small.
実施例3は、過充電抑制剤Aの量を実施例1よりも増やした例である。過充電抑制剤Aの濃度を10質量%に設定し、実施例1と同様に電池を作製した。作成した電池を評価した結果、25℃における容量維持率は75%、50℃では60%であった。過充電後のセルの電圧は3.5Vであり、負極上のデンドライト生成は見られなかった。過充電抑制剤Aの濃度が濃いと過充電抑制効果は得られるものの、電池性能の低下が大きい傾向があった。 Example 3 is an example in which the amount of the overcharge inhibitor A is increased from that of Example 1. The concentration of the overcharge inhibitor A was set to 10% by mass, and a battery was produced in the same manner as in Example 1. As a result of evaluating the produced battery, the capacity retention rate at 25 ° C. was 75%, and at 50 ° C., it was 60%. The voltage of the cell after overcharging was 3.5 V, and no dendrite formation on the negative electrode was observed. When the concentration of the overcharge inhibitor A is high, the effect of suppressing overcharge is obtained, but the battery performance tends to decrease greatly.
実施例4は、負極としてLi金属の代わりにグラファイトを活物質として使用した負極(グラファイト負極)を使用した電池の例である。負極を変更した以外は実施例1と同様に電池を作製した。 Example 4 is an example of a battery using a negative electrode (graphite negative electrode) using graphite as an active material instead of Li metal as a negative electrode. A battery was produced in the same manner as in Example 1 except that the negative electrode was changed.
グラファイト負極は以下のとおり作製した。グラファイトとバインダー(ポリフッ化ビニリデンKF1120:呉羽化学工業社)を90:10質量%の割合で混合し、N−メチル−2−ピロリドンに投入混合して、スラリー状の溶液を作製した。該スラリーを厚さ20μmの銅箔にドクターブレード法で塗布し、乾燥した。合剤塗布量は、40g/m2であった。合剤かさ密度が1.0g/cm3になるようにプレスし、電極を裁断して負極を作製した。 The graphite negative electrode was produced as follows. Graphite and a binder (polyvinylidene fluoride KF1120: Kureha Chemical Industry Co., Ltd.) were mixed at a ratio of 90: 10% by mass and charged into N-methyl-2-pyrrolidone to prepare a slurry solution. The slurry was applied to a copper foil having a thickness of 20 μm by a doctor blade method and dried. The mixture application amount was 40 g / m 2 . The mixture was pressed so that the bulk density was 1.0 g / cm 3 , and the electrode was cut to prepare a negative electrode.
作成した電池を評価した結果、25℃における容量維持率は83%、50℃では72%であった。過充電後のセルの電圧は3.4Vであり、負極上のデンドライト生成は見られなかった。負極を変えても過充電抑制剤Aは過充電の抑制効果があった。 As a result of evaluating the produced battery, the capacity retention rate at 25 ° C. was 83%, and at 50 ° C., it was 72%. The voltage of the cell after overcharging was 3.4 V, and no dendrite formation on the negative electrode was observed. Even if the negative electrode was changed, the overcharge inhibitor A had an effect of suppressing overcharge.
本実施例は、過充電抑制剤として、過充電抑制剤B(化2:R1,R2=OCCH3,Y1〜Y12=H:アルドリッチ製)を用いる例である。過充電抑制剤を変更した以外は、実施例1と同様に電池を作製した。 In this example, an overcharge inhibitor B (Chemical Formula 2: R 1 , R 2 = OCCH 3 , Y 1 to Y 12 = H: manufactured by Aldrich) is used as the overcharge inhibitor. A battery was produced in the same manner as in Example 1 except that the overcharge inhibitor was changed.
過充電抑制剤を濃度が2質量%になるように電解液に加え、CVを測定した。酸化電位は4.2Vであり、可逆な酸化還元波を観測した。次に、前記電解液を使用し、電池を作製した。電池は、正極活物質にはLiFePO4を用い、負極にはLi金属を用いた。25℃における容量維持率は87%、50℃では78%であった。容量維持率は、過充電抑制剤Aを添加した場合に比べ改善された。また、過充電後のセルの電圧は3.5Vであり、負極上のデンドライト生成は見られなかった。 An overcharge inhibitor was added to the electrolyte so that the concentration was 2% by mass, and CV was measured. The oxidation potential was 4.2 V, and a reversible redox wave was observed. Next, a battery was fabricated using the electrolytic solution. The battery used LiFePO 4 for the positive electrode active material and Li metal for the negative electrode. The capacity retention rate at 25 ° C. was 87%, and at 50 ° C., it was 78%. The capacity retention rate was improved as compared with the case where the overcharge inhibitor A was added. Moreover, the voltage of the cell after overcharging was 3.5 V, and no dendrite formation on the negative electrode was observed.
実施例6は、実施例5の負極をグラファイト負極に変更する例である。その他製法は実施例1と同様である。25℃における容量維持率は83%、50℃では72%であった。容量維持率は、過充電抑制剤Aを添加した場合に比べ改善された。過充電後のセルの電圧は3.4Vであり、負極上のデンドライト生成は見られなかった。 Example 6 is an example in which the negative electrode of Example 5 is changed to a graphite negative electrode. Other manufacturing methods are the same as those in Example 1. The capacity retention rate at 25 ° C. was 83%, and at 50 ° C., it was 72%. The capacity retention rate was improved as compared with the case where the overcharge inhibitor A was added. The voltage of the cell after overcharging was 3.4 V, and no dendrite formation on the negative electrode was observed.
実施例7は過充電抑制剤C(化2:R1,R2=Me,Y1〜Y12(Y4,Y10を除く)=H,Y4,Y10=Br)を用いる例である。本実施例では、正極活物質としてLiFePO4の代わりにLiCoO2を使用した。正極の作製方法は実施例1の正極と同様である。 Example 7 is an example using an overcharge inhibitor C (Chemical Formula 2: R 1 , R 2 = Me, Y 1 to Y 12 (excluding Y 4 and Y 10 ) = H, Y 4 , Y 10 = Br). is there. In this example, LiCoO 2 was used instead of LiFePO 4 as the positive electrode active material. The method for producing the positive electrode is the same as that of the positive electrode of Example 1.
過充電抑制剤Cは、下記のとおり合成した。6,6′−Dibromo−1,1′−bi−2−naphthol 1mol(444g)(東京化成製)をテトラヒドロフランに溶解させ、そこに水素化ナトリウムを2.1mol(50.4g)加えた。30分間攪拌後、ヨウ化メチル2.1mol(298g)を加え、さらに3時間攪拌した。反応溶液をカラムクロマトグラフィーで分離することで、過充電抑制剤C((化2):R1,R2=Me,Y1〜Y12(Y4,Y10を除く)=H,Y4,Y10=Br)を収率60%で得た。過充電抑制剤Cを濃度が2質量%になるように電解液に加え、CVを測定したところ、酸化電位は4.5Vであり、可逆的な酸化還元波を観測した。
The overcharge inhibitor C was synthesized as follows. 1,6′-Dibromo-1,1′-bi-2-
次に、過充電抑制剤Cを2質量%の濃度で加えた電解液を使用し、実施例1と同様に電池を作製した。電池は、正極活物質にはLiCoO2を用い、負極にはLi金属を用いた。25℃における容量維持率は86%、50℃では76%であった。過充電後のセルの電圧は4.5Vであり、負極上のデンドライト生成は見られなかった。 Next, a battery was produced in the same manner as in Example 1 using an electrolytic solution to which the overcharge inhibitor C was added at a concentration of 2% by mass. The battery used LiCoO 2 for the positive electrode active material and Li metal for the negative electrode. The capacity retention rate at 25 ° C. was 86%, and at 50 ° C., it was 76%. The voltage of the cell after overcharging was 4.5 V, and no dendrite formation on the negative electrode was observed.
実施例8は、実施例7の負極をグラファイトに変更した電池の例である。25℃における容量維持率は84%、50℃では73%であった。過充電後のセルの電圧は4.4Vであり、負極上のデンドライト生成は見られなかった。 Example 8 is an example of a battery in which the negative electrode of Example 7 was changed to graphite. The capacity retention rate at 25 ° C. was 84%, and at 50 ° C., it was 73%. The voltage of the cell after overcharging was 4.4 V, and no dendrite formation on the negative electrode was observed.
(比較例1)
過充電抑制剤を加えず、実施例1と同様に電池を作製した。25℃における容量維持率は86%、50℃では78%であった。過充電後のセルの電圧は3.5Vであった。セルを解体し、負極を観察したところ、負極上にデンドライトが生成したことを確認した。
(Comparative Example 1)
A battery was produced in the same manner as in Example 1 without adding the overcharge inhibitor. The capacity retention rate at 25 ° C was 86%, and at 50 ° C, it was 78%. The voltage of the cell after overcharging was 3.5V. When the cell was disassembled and the negative electrode was observed, it was confirmed that dendrite was formed on the negative electrode.
(比較例2)
過充電抑制剤を加えず、実施例7と同様に電池を作製した。25℃における容量維持率は89%、50℃では77%であった。過充電後のセルの電圧は4.7Vであった。セルを解体し、負極を観察したところ、負極上にデンドライトが生成したことを確認した。
(Comparative Example 2)
A battery was produced in the same manner as in Example 7 without adding an overcharge inhibitor. The capacity retention rate at 25 ° C. was 89% and at 50 ° C. was 77%. The voltage of the cell after overcharging was 4.7V. When the cell was disassembled and the negative electrode was observed, it was confirmed that dendrite was formed on the negative electrode.
(比較例3)
過充電抑制剤を加えず、実施例4と同様に電池を作製した。25℃における容量維持率は86%、50℃では75%であった。過充電後のセルの電圧は3.4Vであった。セルを解体し、負極を観察したところ、負極上にデンドライトが生成したことを確認した。
(Comparative Example 3)
A battery was produced in the same manner as in Example 4 without adding an overcharge inhibitor. The capacity retention rate at 25 ° C. was 86%, and at 50 ° C., it was 75%. The voltage of the cell after overcharging was 3.4V. When the cell was disassembled and the negative electrode was observed, it was confirmed that dendrite was formed on the negative electrode.
(比較例4)
過充電抑制剤を加えず、実施例8と同様に電池を作製した。25℃における容量維持率は86%、50℃では75%であった。過充電後のセルの電圧は4.6Vであった。セルを解体し、負極を観察したところ、負極上にデンドライトが生成したことを確認した。
(Comparative Example 4)
A battery was produced in the same manner as in Example 8 without adding the overcharge inhibitor. The capacity retention rate at 25 ° C. was 86%, and at 50 ° C., it was 75%. The voltage of the cell after overcharging was 4.6V. When the cell was disassembled and the negative electrode was observed, it was confirmed that dendrite was formed on the negative electrode.
(比較例5)
過充電抑制剤としてトリフェニルアミン(アルドリッチ製)を用い、実施例1と同様に電池を作製した。トリフェニルアミン(アルドリッチ製)を濃度が2質量%になるように電解液に加えCVを測定したところ、酸化電位は3.6Vであり、可逆な酸化還元波を観測した。
(Comparative Example 5)
A battery was prepared in the same manner as in Example 1 using triphenylamine (manufactured by Aldrich) as an overcharge inhibitor. When CV was measured by adding triphenylamine (manufactured by Aldrich) to the electrolyte so as to have a concentration of 2% by mass, the oxidation potential was 3.6 V, and a reversible oxidation-reduction wave was observed.
過充電抑制剤としてトリフェニルアミン(アルドリッチ製)を濃度が2質量%になるように電解液に加えた電池を作製した。正極活物質にはLiFePO4を用い、負極にはLi金属を用いた。25℃における容量維持率は70%、50℃では50%であった。過充電後のセルの電圧は3.5Vであり、負極上のデンドライト生成は見られなかった。 A battery was prepared by adding triphenylamine (manufactured by Aldrich) as an overcharge inhibitor to the electrolyte so that the concentration was 2% by mass. LiFePO 4 was used for the positive electrode active material, and Li metal was used for the negative electrode. The capacity retention rate at 25 ° C. was 70%, and at 50 ° C., it was 50%. The voltage of the cell after overcharging was 3.5 V, and no dendrite formation on the negative electrode was observed.
(比較例6)
過充電抑制剤としてtris−4ブロモフェニルアミン(アルドリッチ製)を用い、実施例1と同様に電池を作製した。tris−4ブロモフェニルアミン(アルドリッチ製)を濃度が2質量%になるように電解液に加えCVを測定したところ、酸化電位は3.7Vであり、可逆な酸化還元波を観測した。
(Comparative Example 6)
A battery was prepared in the same manner as in Example 1 using tris-4 bromophenylamine (manufactured by Aldrich) as an overcharge inhibitor. When CV was measured by adding tris-4 bromophenylamine (manufactured by Aldrich) to the electrolyte so as to have a concentration of 2% by mass, the oxidation potential was 3.7 V, and a reversible redox wave was observed.
過充電抑制剤としてtris−4ブロモフェニルアミン(アルドリッチ製)を濃度が2質量%になるように電解液に加えた電池を作製した。正極活物質にはLiFePO4を用い、負極にはLi金属を用いた。25℃における容量維持率は75%、50℃では55%であった。過充電後のセルの電圧は3.5Vであり、負極上のデンドライト生成は見られなかった。 A battery was prepared by adding tris-4 bromophenylamine (manufactured by Aldrich) as an overcharge inhibitor to the electrolyte so that the concentration was 2% by mass. LiFePO 4 was used for the positive electrode active material, and Li metal was used for the negative electrode. The capacity retention rate at 25 ° C was 75%, and at 50 ° C, it was 55%. The voltage of the cell after overcharging was 3.5 V, and no dendrite formation on the negative electrode was observed.
上記の実施例1〜8,比較例1〜6の結果をまとめ、表1に示す。 The results of Examples 1 to 8 and Comparative Examples 1 to 6 are summarized and shown in Table 1.
1 正極
2 セパレータ
3 負極
4 アルミラミネート
5 正極リード
6 負極リード
7 融着部
DESCRIPTION OF
Claims (6)
非水溶媒に支持電解質を溶解させた電解液を充填したリチウムイオン二次電池であって、
前記電解液は、(化2)で示される化合物を含み、
前記化合物の反応は前記リチウムイオン二次電池の作動電圧以上の電圧であることを特徴とするリチウムイオン二次電池。
((化2)において、
R1およびR2は、水素,脂肪族炭化水素基,脂環式炭化水素基,オキシメチレン基またはアセチル基のいずれかである。
Y1乃至Y12は、水素,炭化水素基、またはハロゲンである。)
A lithium ion secondary battery filled with an electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent,
The electrolytic solution includes a compound represented by (Chemical Formula 2),
The lithium ion secondary battery is characterized in that the reaction of the compound is a voltage higher than the operating voltage of the lithium ion secondary battery.
(In (Chemical Formula 2),
R 1 and R 2 are hydrogen, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an oxymethylene group, or an acetyl group.
Y 1 to Y 12 are hydrogen, a hydrocarbon group, or halogen. )
非水溶媒に支持電解質を溶解させた電解液を充填したリチウムイオン二次電池であって、
前記電解液は、(化2)で示される化合物を含み、
前記(化2)で示される化合物は、前記電解液に0.001質量%以上90%質量%以下含まれることを特徴とするリチウムイオン二次電池。
((化2)において、
R1およびR2は、水素,脂肪族炭化水素基,脂環式炭化水素基,オキシメチレン基またはアセチル基のいずれかである。
Y1乃至Y12は、水素,炭化水素基、またはハロゲンである。)
A lithium ion secondary battery filled with an electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent,
The electrolytic solution includes a compound represented by (Chemical Formula 2),
The lithium ion secondary battery, wherein the compound represented by (Chemical Formula 2) is contained in the electrolytic solution in an amount of 0.001% by mass to 90% by mass.
(In (Chemical Formula 2),
R 1 and R 2 are hydrogen, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an oxymethylene group, or an acetyl group.
Y 1 to Y 12 are hydrogen, a hydrocarbon group, or halogen. )
R1およびR2は、オキシエチレン基またはオキシプロピレン基のいずれかであることを特徴とするリチウムイオン二次電池。
In any one of Claims 1 thru | or 2.
R 1 and R 2, the lithium ion secondary battery which is characterized in that either an oxyethylene group or oxypropylene group.
R1およびR2は、MeまたはCOCH3であり、
Y1乃至Y12は、HまたはBr(ただし、BrはY4,Y10のみ)であることを特徴とするリチウムイオン二次電池。 In any one of Claims 1 thru | or 3,
R 1 and R 2 are Me or COCH 3 ;
Y 1 to Y 12 are H or Br (however, Br is Y 4 or Y 10 only), a lithium ion secondary battery.
前記(化2)で示される化合物は、前記電解液に0.1〜8質量%含まれることを特徴とするリチウムイオン二次電池。 In any one of Claims 1 thru | or 4,
The lithium ion secondary battery, wherein the compound represented by (Chemical Formula 2) is contained in the electrolytic solution in an amount of 0.1 to 8% by mass.
前記化合物の反応はリチウムイオン二次電池の作動電圧以上の電圧であることを特徴とするリチウムイオン二次電池用過充電抑制剤。
((化2)において、
R1およびR2は、水素,脂肪族炭化水素基,脂環式炭化水素基,オキシメチレン基また
はアセチル基のいずれかである。
Y1乃至Y12は、水素,炭化水素基、またはハロゲンである。)
The overcharge inhibitor for a lithium ion secondary battery, wherein the reaction of the compound is a voltage equal to or higher than an operating voltage of the lithium ion secondary battery.
(In (Chemical Formula 2),
R 1 and R 2 are hydrogen, an aliphatic hydrocarbon group, an alicyclic hydrocarbon group, an oxymethylene group, or an acetyl group.
Y 1 to Y 12 are hydrogen, a hydrocarbon group, or halogen. )
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012027961A JP5309233B2 (en) | 2012-02-13 | 2012-02-13 | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012027961A JP5309233B2 (en) | 2012-02-13 | 2012-02-13 | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009173824A Division JP4934704B2 (en) | 2009-07-27 | 2009-07-27 | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012094549A true JP2012094549A (en) | 2012-05-17 |
JP5309233B2 JP5309233B2 (en) | 2013-10-09 |
Family
ID=46387603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012027961A Expired - Fee Related JP5309233B2 (en) | 2012-02-13 | 2012-02-13 | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5309233B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000215909A (en) * | 1999-01-20 | 2000-08-04 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2004087168A (en) * | 2002-08-23 | 2004-03-18 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution and lithium secondary battery including it |
JP2007531972A (en) * | 2004-04-01 | 2007-11-08 | スリーエム イノベイティブ プロパティズ カンパニー | Redox shuttle for rechargeable lithium-ion batteries |
JP2010202866A (en) * | 2009-02-09 | 2010-09-16 | Tokyo Institute Of Technology | Sulfonated polymer and proton conductive membrane using the same |
JP2011512014A (en) * | 2008-02-12 | 2011-04-14 | スリーエム イノベイティブ プロパティズ カンパニー | Redox shuttle for high voltage cathode |
-
2012
- 2012-02-13 JP JP2012027961A patent/JP5309233B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000215909A (en) * | 1999-01-20 | 2000-08-04 | Japan Storage Battery Co Ltd | Nonaqueous electrolyte secondary battery |
JP2004087168A (en) * | 2002-08-23 | 2004-03-18 | Mitsui Chemicals Inc | Nonaqueous electrolytic solution and lithium secondary battery including it |
JP2007531972A (en) * | 2004-04-01 | 2007-11-08 | スリーエム イノベイティブ プロパティズ カンパニー | Redox shuttle for rechargeable lithium-ion batteries |
JP2011512014A (en) * | 2008-02-12 | 2011-04-14 | スリーエム イノベイティブ プロパティズ カンパニー | Redox shuttle for high voltage cathode |
JP2010202866A (en) * | 2009-02-09 | 2010-09-16 | Tokyo Institute Of Technology | Sulfonated polymer and proton conductive membrane using the same |
Also Published As
Publication number | Publication date |
---|---|
JP5309233B2 (en) | 2013-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9728805B2 (en) | Nonaqueous electrolyte and lithium secondary battery using the same | |
EP2160788B1 (en) | Non-aqueous electrolyte and lithium secondary battery comprising the same | |
JP5410277B2 (en) | Nonaqueous electrolyte additive having cyano group and electrochemical device using the same | |
JP5058538B2 (en) | Lithium ion secondary battery | |
KR20080110404A (en) | Additive for non-aqueous electrolyte and secondary battery using the same | |
JP2018518816A (en) | Li-ion battery electrolyte with reduced impedance increase | |
CN104396080A (en) | Secondary battery of improved life characteristic | |
KR101431259B1 (en) | Additive for non-aqueous electrolyte and secondary battery using the same | |
KR20170000903A (en) | Lithium secondary battery | |
JP2012003994A (en) | Nonaqueous electrolyte battery and nonaqueous electrolyte | |
JP5879344B2 (en) | Lithium secondary battery | |
JP4488994B2 (en) | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same | |
JP2015198088A (en) | Nonaqueous electrolyte for long life secondary battery and secondary battery including the same | |
JP2009302022A (en) | Nonaqueous electrolyte secondary battery | |
JP2018523903A (en) | ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY CONTAINING THE SAME | |
JP4934704B2 (en) | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery | |
US11916198B2 (en) | Fast-charging lithium ion batteries with electrolytes that do not react on the anodes | |
WO2023123464A1 (en) | Electrolyte solution, electrochemical device containing same, and electronic device | |
JP5309233B2 (en) | Lithium ion secondary battery and overcharge inhibitor for lithium ion secondary battery | |
JP6222389B1 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
KR101551593B1 (en) | Secondary battery with high capacity and longevity comprising silazane-based compound | |
JP2012174465A (en) | Nonaqueous electrolyte secondary battery | |
JP2009099449A (en) | Non-aqueous electrolytic liquid secondary battery and non-aqueous electrolytic liquid composition | |
KR20180117868A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising thereof | |
JP5472970B2 (en) | Lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130604 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130701 |
|
LAPS | Cancellation because of no payment of annual fees |