JP2012091082A - STRUCTURE FOR RETAINING Fe FINE PARTICLE, AND CATALYST AND METHOD FOR CNT PRODUCTION - Google Patents
STRUCTURE FOR RETAINING Fe FINE PARTICLE, AND CATALYST AND METHOD FOR CNT PRODUCTION Download PDFInfo
- Publication number
- JP2012091082A JP2012091082A JP2010238623A JP2010238623A JP2012091082A JP 2012091082 A JP2012091082 A JP 2012091082A JP 2010238623 A JP2010238623 A JP 2010238623A JP 2010238623 A JP2010238623 A JP 2010238623A JP 2012091082 A JP2012091082 A JP 2012091082A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- fine particles
- cnt
- fine particle
- buffer layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010419 fine particle Substances 0.000 title claims abstract description 98
- 239000003054 catalyst Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title description 3
- 239000002344 surface layer Substances 0.000 claims abstract description 30
- 239000002245 particle Substances 0.000 claims abstract description 5
- 239000010410 layer Substances 0.000 claims description 105
- 239000002041 carbon nanotube Substances 0.000 claims description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 25
- 239000000758 substrate Substances 0.000 claims description 25
- 230000004888 barrier function Effects 0.000 claims description 16
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000007789 gas Substances 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical group 0.000 claims description 6
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 abstract description 8
- 238000007254 oxidation reaction Methods 0.000 abstract description 8
- 230000000717 retained effect Effects 0.000 abstract description 3
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 14
- 239000002232 CNT15 Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005328 electron beam physical vapour deposition Methods 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229910021389 graphene Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、nmサイズのFe微粒子を保持する構造、このFe微粒子からなるCNT生成用触媒、およびこの触媒を用いたCNTの製造方法に関するものである。 The present invention relates to a structure for holding nanometer-size Fe fine particles, a catalyst for producing CNTs comprising the Fe fine particles, and a method for producing CNTs using the catalyst.
nmサイズのFe微粒子は、その用途の1つとしてCNT(カーボンナノチューブ)の生成用触媒として使用されることで知られる。CNTは、周知されるように、円筒状のグラフェンシートの単層または2層以上からなり、電子発生能と耐久性に優れ、大画面のフィールドエミッションディスプレイ用の電子発生材料等に有用視され、また、耐食性が高いため、燃料電池の触媒電極層等の耐食性が要求される用途にも適するなど、各種用途が期待されている物質である。 Nanosize Fe fine particles are known to be used as a catalyst for producing CNT (carbon nanotubes) as one of its uses. As is well known, CNT consists of a single layer or two or more layers of a cylindrical graphene sheet, is excellent in electron generation ability and durability, and is considered useful as an electron generation material for a field emission display of a large screen, Further, since it has high corrosion resistance, it is a substance that is expected to be used in various applications, such as being suitable for applications that require corrosion resistance such as catalyst electrode layers of fuel cells.
このようなCNTの生成方法として、所定の表面層に所定厚さでFe層を形成し、この形成したFe層を熱処理して表面層に多数のFe微粒子を生成し、この生成したFe微粒子に炭素含有ガスを作用させることで、Fe微粒子を成長起点としてCNTを生成する方法がある。 As a method for producing such CNTs, an Fe layer having a predetermined thickness is formed on a predetermined surface layer, and the formed Fe layer is heat-treated to generate a large number of Fe fine particles on the surface layer. There is a method of generating CNTs using Fe fine particles as growth starting points by causing a carbon-containing gas to act.
このような生成方法に用いるFe微粒子は上記CNTの生成に際してFe微粒子に炭素含有ガスを作用させるために表面層に保持しておくことが必要である。この保持に関して図8を参照して説明する。従来のFe微粒子の保持構造では、図8(a)で示すように小径、大径等の各種粒径のFe微粒子23a,23bを、その全体を露出させた形態で、表面層21に保持している。そのため、空気中に放置されると酸化等の劣化を来たしやすい。また、小径のFe微粒子23aではCNT生成に際しての加熱高温により表面層21と反応して消滅したり、あるいは図8(b)の矢印で示す方向に移動して大径のFe微粒子23bと合一化したりして図8(c)で示すようにFe微粒子23bが粗大化するようになる。また、Fe微粒子23bは表面層21に不安定な状態で保持されているだけであるので、図8(d)で示すようにCNT25の生成途中では当該CNT25の重量等により傾いてしまって表面層21に対してCNT25を垂直方向に生成させにくい。 The fine Fe particles used in such a production method must be retained in the surface layer in order to cause a carbon-containing gas to act on the fine Fe particles during the production of the CNTs. This holding will be described with reference to FIG. In the conventional Fe fine particle holding structure, as shown in FIG. 8 (a), Fe fine particles 23a and 23b having various particle diameters such as a small diameter and a large diameter are held on the surface layer 21 in a form in which the whole is exposed. ing. For this reason, when left in the air, it tends to deteriorate such as oxidation. Further, in the small-diameter Fe fine particles 23a, they disappear by reacting with the surface layer 21 due to the heating high temperature at the time of CNT generation, or move in the direction indicated by the arrow in FIG. As a result, the Fe fine particles 23b become coarse as shown in FIG. Further, since the Fe fine particles 23b are only held in an unstable state by the surface layer 21, as shown in FIG. 8 (d), the surface layer is inclined by the weight of the CNT 25 during the generation of the CNT 25. 21 is difficult to generate CNT25 in the vertical direction.
このようにして従来のFe微粒子保持構造では空気中に置かれたりするとFe微粒子の状態が酸化等で劣化しやすく、あるいは真空や還元ガス雰囲気内で高温下に置かれたりすると、剥離したり、下層に取り込まれて消滅したりしやすく、その結果、この構造をCNTの生成に使用することができにくくなるなど、使用上においても保管上においても極めて扱いにくい。 In this way, in the conventional Fe fine particle holding structure, the state of the Fe fine particles tends to deteriorate due to oxidation or the like when placed in the air, or peels off when placed under high temperature in a vacuum or reducing gas atmosphere, It is easy to be taken in and disappeared in the lower layer, and as a result, it is difficult to use this structure for the production of CNTs.
こうした事情からFe微粒子はCNTの生成だけでなく別用途の使用に際しても表面層21上に酸化等の劣化がしにくく化学的に安定し、かつ移動したり消滅したりしないで物理的に安定した状態で保持できる構造が要求される。 Under these circumstances, the Fe fine particles are not only CNT generated but also chemically stable on the surface layer 21 when they are used for other purposes, and are physically stable without being moved or disappeared. A structure that can be held in a state is required.
そこで、本発明においては、上記各種環境下や使用下に置かれても酸化等の劣化を来たすようなことなく、また、サイズ粗大化や消滅や移動等を起こすようなことなく安定した状態でFe微粒子を保持できる構造を提供することを課題とする。 Therefore, in the present invention, there is no deterioration such as oxidation even when placed under the above various environments or use, and in a stable state without causing coarsening, disappearance, movement, etc. It is an object to provide a structure capable of holding Fe fine particles.
本発明にかかる構造は、直径5ないし20nmのFe微粒子が表面層上に個々独立して存在し、かつ、その一部が表面層に埋没した状態で保持されていることを特徴とする。 The structure according to the present invention is characterized in that Fe fine particles having a diameter of 5 to 20 nm are individually present on the surface layer, and a part thereof is held in a state of being buried in the surface layer.
このFe微粒子はFe単体のみならずFe化合物も含む。 These Fe fine particles contain not only a simple substance of Fe but also an Fe compound.
このFe微粒子は好ましくはその形状が球形である。この球形は完全な球形に限定するのではなく、楕円球形等多少形状が変形している形状も含む。また上記直径長さ5ないし20nmの範囲は、球形であればその直径であるが、球形以外に変形した立体形状であれば、これの各種方向における最大と最小の長さの少なくとも一方が上記直径範囲に入る形状も含む。 The Fe fine particles are preferably spherical in shape. This spherical shape is not limited to a perfect spherical shape, but includes a shape whose shape is somewhat deformed, such as an elliptical spherical shape. Further, the range of the diameter length of 5 to 20 nm is the diameter if it is a sphere, but if it is a three-dimensional shape deformed other than a sphere, at least one of the maximum and minimum lengths in various directions is the diameter. Including shapes that fall within the scope.
表面層は、基板表面に形成される層が複数の場合、最表面層、例えば実施形態のようなバッファ層を言い、また、基板表面に単層が形成される場合、その単層を言い、基板表面に何も層が形成されない場合、基板内の表面に近い部分を含む。 The surface layer refers to the outermost surface layer, for example, the buffer layer as in the embodiment when there are a plurality of layers formed on the substrate surface, and refers to the single layer when a single layer is formed on the substrate surface, When no layer is formed on the substrate surface, it includes a portion close to the surface in the substrate.
表面層の材質は特に限定しないが、好ましくは、SiやAlである。 The material of the surface layer is not particularly limited, but is preferably Si or Al.
本発明によると、Fe微粒子はその一部が表面層中に埋没しているので表面層にFe微粒子を安定して保持させることができ、これにより、CNTの生成触媒として用いた際に該Fe微粒子の向きを変えることがない。また、SiやAlとの合金化が起こることにより空気中に晒された場合とか高温雰囲気下に置かれた場合でも、酸化等の劣化が抑制され、微粒子表面が安定した状態を長期に保つことができるようになる。Fe微粒子はその一部が表面層中に埋没しているので、Fe微粒子が表面層上を移動したりするようなことがなくなり隣り合うFe微粒子と合一化して粗大化したりせず、ナノサイズのFe微粒子として必要なサイズおよび必要な性状を安定して維持することができる。このようなことは、Fe微粒子に炭素含有ガスを接触させてFe微粒子表面にCNTを生成させる場合、直径均一なCNTを生成させるうえでは好ましい。 According to the present invention, since the Fe fine particles are partially embedded in the surface layer, the Fe fine particles can be stably held in the surface layer, whereby the Fe fine particles can be used when used as a CNT production catalyst. The direction of the fine particles is not changed. In addition, even when exposed to the air due to alloying with Si or Al or when placed in a high temperature atmosphere, deterioration such as oxidation is suppressed and the surface of the fine particles is kept stable for a long period of time. Will be able to. Since part of the Fe fine particles are buried in the surface layer, the Fe fine particles do not move on the surface layer, and are not coalesced and coarsened with adjacent Fe fine particles. The required size and required properties of the Fe fine particles can be stably maintained. Such a case is preferable in generating CNTs having a uniform diameter when the carbon-containing gas is brought into contact with the Fe fine particles to generate CNTs on the surface of the Fe fine particles.
好ましい態様は、上記表面層は、基板表面に順次に形成されている複数の層のうち最表面層を構成するバッファ層であって、該バッファ層はSiあるいはAlを主成分に含む。 In a preferred embodiment, the surface layer is a buffer layer constituting the outermost surface layer among a plurality of layers sequentially formed on the substrate surface, and the buffer layer contains Si or Al as a main component.
好ましい態様は、上記表面層と基板表面との間にバリア層を有し、このバリア層が酸化金属層あるいは酸素を含む金属層である。 In a preferred embodiment, a barrier layer is provided between the surface layer and the substrate surface, and the barrier layer is a metal oxide layer or a metal layer containing oxygen.
本発明によれば、Fe微粒子を酸化等の劣化なく、サイズも安定して維持してFe微粒子を保持できる構造を提供することができる。このような構造では、CNT生成触媒の構造として利用する場合では、直線性に優れたCNTを再現性よく容易に製造することができる。 According to the present invention, it is possible to provide a structure capable of holding Fe fine particles while maintaining the size of Fe fine particles stably without deterioration such as oxidation. In such a structure, when it is used as the structure of a CNT production catalyst, a CNT excellent in linearity can be easily produced with good reproducibility.
以下、添付した図面を参照して、本発明の実施の形態に係るFe微粒子保持構造を説明する。図1に、同Fe微粒子保持構造の断面構成を示す。図1を参照して、実施形態のFe微粒子保持構造1は、基板3と、この基板3上に設けた複数の層5,9,11と、Fe微粒子13と、を備える。基板3はSi(シリコン)からなる。各層5,9,11はこの順序で基板3上に形成されている。 Hereinafter, an Fe fine particle holding structure according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a cross-sectional configuration of the Fe fine particle holding structure. With reference to FIG. 1, the Fe fine particle holding structure 1 of the embodiment includes a substrate 3, a plurality of layers 5, 9, 11 provided on the substrate 3, and Fe fine particles 13. The substrate 3 is made of Si (silicon). The layers 5, 9, and 11 are formed on the substrate 3 in this order.
層5は、基板3に最近のバリア層であり、上層9,11等と、基板3との間を隔ててこれらの間での干渉を防ぐための層である。バリア層5は、例えば金属酸化物、例えばAl2O3(アルミナ)、あるいは酸素を含む金属で形成される。バリア層5は、基板3にAl(アルミニウム)やAl2O3などの金属酸化物を用いた場合は不要である。 The layer 5 is a recent barrier layer on the substrate 3 and is a layer for separating the upper layers 9, 11 and the like from the substrate 3 to prevent interference therebetween. The barrier layer 5 is formed of, for example, a metal oxide such as Al 2 O 3 (alumina) or a metal containing oxygen. The barrier layer 5 is not necessary when a metal oxide such as Al (aluminum) or Al 2 O 3 is used for the substrate 3.
層9は、酸素7を含むAl層である。 The layer 9 is an Al layer containing oxygen 7.
層11は、SiあるいはAlを主成分としたバッファ層である。バッファ層11は、Siからなり、下層側にAl9aを含む。したがって、バッファ層11はSiまたはAlを主成分としている。 The layer 11 is a buffer layer mainly composed of Si or Al. The buffer layer 11 is made of Si and includes Al9a on the lower layer side. Therefore, the buffer layer 11 is mainly composed of Si or Al.
以上の各層5,9,11のうち、バッファ層11は表面層を構成する。 Of the above layers 5, 9, and 11, the buffer layer 11 constitutes a surface layer.
Fe微粒子13は、nmサイズのFe微粒子である。 The Fe fine particles 13 are nm-sized Fe fine particles.
Fe微粒子13は互いに個々独立して存在すると共に、表面層であるバッファ層11にその一部が埋没し、残部がバッファ層11表面から露出した状態でバッファ層11に保持されている。ここで個々独立して存在するとは、平面方向で隣り合う複数のFe微粒子13同士が重なり合わず、平面方向に一定以上の距離を隔てて存在することを意味する。 The Fe fine particles 13 exist independently of each other, are partly buried in the buffer layer 11 that is the surface layer, and are held in the buffer layer 11 in a state where the remaining part is exposed from the surface of the buffer layer 11. Here, “independently present” means that a plurality of Fe fine particles 13 adjacent in the planar direction do not overlap each other and exist at a certain distance in the planar direction.
実施形態では図面的にはFe微粒子13は略下半分が上記一部としてバッファ層11中に埋没し、略上半分が上記残部としてバッファ層11外に露出した状態で示しているが、Fe微粒子13の埋没形態は図面で示す形態に限定されない。Fe微粒子13はバッファ層11中に平面方向に移動したりできない程度にその一部が埋没していればよい。例えば上記埋没される一部はFe微粒子13が下半分を越えて埋没されている場合、下半分より少なく埋没している場合も含む。 In the embodiment, the Fe fine particles 13 are shown in a state in which the lower half is buried in the buffer layer 11 as a part and the upper half is exposed outside the buffer layer 11 as the remaining part. The buried form of 13 is not limited to the form shown in the drawings. The Fe fine particles 13 may be partially buried in the buffer layer 11 to the extent that they cannot move in the plane direction. For example, the buried part includes the case where the Fe fine particles 13 are buried beyond the lower half and the case where the Fe fine particles 13 are buried less than the lower half.
なお、「埋没」という用語はあくまで形態を一例として表現しているものであり、上方からバッファ層11に埋め込み没したという意味ではない。 Note that the term “buried” is merely an example of the form, and does not mean that it is buried in the buffer layer 11 from above.
Fe微粒子13はnmサイズとして直径5ないし20nmのFe微粒子が触媒として有用である。 Fe fine particles 13 having an nm size of 5 to 20 nm in diameter are useful as a catalyst.
Fe微粒子13は図1ではその形状が完全な球形に示されているが、そうした完全な球形に限定されるものではなく、楕円球形や瓢箪型等に形状が球形以外に変形した微粒子形状を含む。 Although the shape of the Fe fine particles 13 is shown as a perfect sphere in FIG. 1, the shape is not limited to such a perfect sphere, and includes a fine particle shape whose shape is deformed to a shape other than a sphere, such as an elliptic sphere or a saddle shape. .
図2を参照して、図1で示す保持構造1の製造過程を説明する。 With reference to FIG. 2, the manufacturing process of the holding structure 1 shown in FIG. 1 will be described.
図2(a)で示す保持構造1の前駆体17を熱アニールする。この前駆体17は、基板3上に、バリア層5と、酸素7を含むAl層9と、バッファ層11と、Fe層19とをこの順序で形成したものである。 The precursor 17 of the holding structure 1 shown in FIG. This precursor 17 is obtained by forming a barrier layer 5, an Al layer 9 containing oxygen 7, a buffer layer 11, and an Fe layer 19 in this order on a substrate 3.
バリア層5は、スパッタやALD(atomic layer deposition)で基板3上に成層される。バリア層5は、例えば金属酸化物系や酸素を含む金属で形成される層であり、金属酸化物には例えばアルミナがある。ただし、基板3にAlやアルミナなどの様に基板材質自体がバリア層として使用できる場合は、バリア層5は不要である。 The barrier layer 5 is deposited on the substrate 3 by sputtering or ALD (atomic layer deposition). The barrier layer 5 is a layer formed of, for example, a metal oxide system or a metal containing oxygen, and the metal oxide includes, for example, alumina. However, when the substrate material itself can be used as the barrier layer such as Al or alumina for the substrate 3, the barrier layer 5 is not necessary.
Al層9は、バリア層5上にスパッタやEB−PVD(電子ビーム物理蒸着)により約2−3nmの層厚に成層される。Al層9には非金属元素として酸素7を含有させる。酸素7の導入量は、好ましくは、圧力換算で10-5Paないし10-2Paである。 The Al layer 9 is formed on the barrier layer 5 to a thickness of about 2-3 nm by sputtering or EB-PVD (electron beam physical vapor deposition). The Al layer 9 contains oxygen 7 as a nonmetallic element. The amount of oxygen 7 introduced is preferably 10 −5 Pa to 10 −2 Pa in terms of pressure.
バッファ層11は、Al層9上成層されるものであり、Siからなりスパッタにより5−7nmの層厚に成層される。バッファ層11は、SiとFeとの合金層としてもよく、この合金層とした場合には、Fe層19を省略することができる。 The buffer layer 11 is formed on the Al layer 9 and is made of Si and is formed to a thickness of 5-7 nm by sputtering. The buffer layer 11 may be an alloy layer of Si and Fe. When this buffer layer 11 is used, the Fe layer 19 can be omitted.
Fe層19はスパッタやEB−PVD(電子ビーム物理蒸着)により磁性金属層として2nm程度の層厚に成層する。 The Fe layer 19 is deposited to a thickness of about 2 nm as a magnetic metal layer by sputtering or EB-PVD (electron beam physical vapor deposition).
以上の構成を有する前駆体17を、熱アニールする。 The precursor 17 having the above configuration is thermally annealed.
前駆体17は熱アニールすると、図2(b)で示すように、バッファ層11中にFe層19中からFe19aが一旦入り込む一方で、Al層9中からAl9aが矢印で示すようにバッファ層11中に入り込んでくる。 When the precursor 17 is thermally annealed, as shown in FIG. 2B, the Fe 19a once enters the buffer layer 11 from the Fe layer 19, while the Al 9a from the Al layer 9 is indicated by an arrow as indicated by an arrow. Come in.
このようにしてバッファ層11には上層側からFe19aが、下層側からAl9aがそれぞれ入りこむが、バッファ層11内でSiはFe19aとは共存できない一方でAl9aと共存するようになる。 In this way, Fe 19a enters the buffer layer 11 from the upper layer side and Al 9a enters from the lower layer side, but Si cannot coexist with Fe 19a in the buffer layer 11, but coexists with Al 9a.
結果、バッファ層11中のFe19aは、バッファ層11最表面側に押し出され、Fe微粒子13として析出してくる。 As a result, Fe 19a in the buffer layer 11 is pushed out to the outermost surface side of the buffer layer 11 and precipitates as Fe fine particles 13.
なお、図2(a)のFe層19は、図2(b)ではなくなり、バッファ層11中にFe19aとして示されるが、図示を略するがFe層19が部分的にバッファ層11表面に残存する場合もある。また、Fe層19を省略し、上記したようにバッファ層11中のSiとFe19aとを合金化して設けておいてもよい。 The Fe layer 19 in FIG. 2A is not shown in FIG. 2B, and is shown as Fe 19a in the buffer layer 11, but the Fe layer 19 partially remains on the surface of the buffer layer 11 although not shown. There is also a case. Alternatively, the Fe layer 19 may be omitted, and Si in the buffer layer 11 and Fe 19a may be alloyed as described above.
この場合、最表面側に押し出されたFe微粒子のうち、小径のFe微粒子はシリサイド化等により失活あるいは大径のFe微粒子への合一化あるいは析出しないことにより、最表面には、図2(c)で示すように、一定以上の直径でかつ均一直径の複数のFe微粒子13のみが析出して、実施の形態の構造1を得ることができる。 In this case, among the Fe fine particles extruded to the outermost surface side, small-diameter Fe fine particles are not deactivated by silicidation or the like, and are not coalesced or precipitated into large-diameter Fe fine particles. As shown in (c), only a plurality of Fe fine particles 13 having a diameter equal to or larger than a certain value and a uniform diameter are deposited, and the structure 1 of the embodiment can be obtained.
この構造1では、Fe微粒子13の直径が均一である結果、それらFe微粒子13の活性度も均一化しており、その結果、Fe微粒子13上に成長するCNTの成長速度が一定化し、図3で示すようにFe微粒子13上に直線性に優れたCNTを形成することができる。 In this structure 1, as a result of the uniform diameter of the Fe fine particles 13, the activity of the Fe fine particles 13 is also uniformed. As a result, the growth rate of the CNT growing on the Fe fine particles 13 is constant, and FIG. As shown, CNTs excellent in linearity can be formed on the Fe fine particles 13.
図3に図1で示すFe微粒子保持構造1のFe微粒子13上にCNT15が生成している状態を示す。実施形態の構造1は、CNT15形成時のグラフェンシートの層数を増加させることができる結果、CNT15の剛直性を向上させ、この点からも直線性に優れたCNT15を再現性よく容易に製造することができる。このFe微粒子保持構造1上のFe微粒子13をCNT15生成用の触媒微粒子として使用するときの工程の詳しい説明は省略するが、このFe微粒子13に炭素含有ガスが接触反応することで当該Fe微粒子13上にCNT15が生成される。 FIG. 3 shows a state in which CNTs 15 are generated on the Fe fine particles 13 of the Fe fine particle holding structure 1 shown in FIG. The structure 1 of the embodiment can increase the number of layers of the graphene sheet when forming the CNTs 15. As a result, the rigidity of the CNTs 15 is improved. Also from this point, the CNTs 15 having excellent linearity are easily manufactured with good reproducibility. be able to. Although detailed description of the process when using the Fe fine particles 13 on the Fe fine particle holding structure 1 as catalyst fine particles for generating CNTs 15 is omitted, the Fe fine particles 13 are brought into contact with the Fe fine particles 13 by a carbon-containing gas contact reaction. CNTs 15 are generated on the top.
以上において、本実施形態のFe微粒子保持構造1は、用途の一例としてCNT15の生成用触媒構造として説明したが、その用途に限定されない。実施形態のFe微粒子保持構造1は、Fe微粒子13の一部が表面層であるバッファ層11に埋没し、残部がバッファ層11外に露出した構造を有すること、およびFeに対してSiやAlが一定の比率で合金化していることにより、空気中に晒された場合とか高温雰囲気下に置かれた場合でも、Fe微粒子13の酸化等の劣化が抑制され、その表面の安定状態を長期に保つことができるようになる。 In the above, the Fe fine particle holding structure 1 of the present embodiment has been described as a catalyst structure for generating CNT 15 as an example of the application, but is not limited to the application. The Fe fine particle holding structure 1 of the embodiment has a structure in which a part of the Fe fine particle 13 is buried in the buffer layer 11 that is a surface layer and the remaining part is exposed outside the buffer layer 11, and Si or Al with respect to Fe Is alloyed at a certain ratio, so that even when exposed to air or placed in a high temperature atmosphere, deterioration such as oxidation of the Fe fine particles 13 is suppressed, and the stable state of the surface is prolonged. Will be able to keep.
また、Fe微粒子13は独立してその一部がバッファ層11中に埋没しているので、バッファ層11上を移動したりすることがなくなり隣り合うFe微粒子13と合一化して粗大化したりせず、nmサイズのFe微粒子13として必要なサイズおよび必要な性状を安定して維持することができる。 In addition, since the Fe fine particles 13 are partly buried in the buffer layer 11 independently, they do not move on the buffer layer 11 and can be combined with the adjacent Fe fine particles 13 to be coarsened. Therefore, the necessary size and necessary properties of the nanosized Fe fine particles 13 can be stably maintained.
図4Aに実施形態のFe微粒子保持構造のTEM写真を示し、図4Bに図4AのSEM写真に示す上記構造の模写図を示す。図4A,図4Bを参照して、図4AのTEM写真には、図4Bの模写図で示すように、基板3と、反応層20と、バリア層5と、Al層9と、バッファ層11と、この基板3上に設けた複数の層5,9,11と、Fe微粒子13とが示されている。反応層20は、基板3とバリア層5との間の反応層である。このTEM写真が示すように、Fe微粒子13はバッファ層11中に下半分が埋没し、上半分がバッファ層11外に露出している状態で示されている。Fe微粒子13はTEM写真では数個示されるが、それらはいずれもサイズが直径5ないし20nm範囲内であることが判る。また、各Fe微粒子13の形状はTEM写真から判断してほぼ球形であることが判る。また、21はFe微粒子保持構造を撮影する際に充填された樹脂を示す。 FIG. 4A shows a TEM photograph of the Fe fine particle holding structure of the embodiment, and FIG. 4B shows a copy of the structure shown in the SEM photograph of FIG. 4A. Referring to FIGS. 4A and 4B, the TEM photograph of FIG. 4A shows the substrate 3, the reaction layer 20, the barrier layer 5, the Al layer 9, and the buffer layer 11 in the TEM photograph of FIG. 4B. A plurality of layers 5, 9, 11 provided on the substrate 3 and Fe fine particles 13 are shown. The reaction layer 20 is a reaction layer between the substrate 3 and the barrier layer 5. As shown in the TEM photograph, the Fe fine particles 13 are shown in a state where the lower half is buried in the buffer layer 11 and the upper half is exposed outside the buffer layer 11. Several Fe fine particles 13 are shown in the TEM photograph, and it can be seen that all of them are in the diameter range of 5 to 20 nm. Further, it can be seen that the shape of each Fe fine particle 13 is substantially spherical as judged from the TEM photograph. Reference numeral 21 denotes a resin filled when photographing the Fe fine particle holding structure.
図5Aに上記図4AのTEM写真で示すFe微粒子保持構造を用いて製造したCNT15のTEM写真を示し、図5Bにその模写図を示す。また、図6Aに図5Aで示すCNT15の任意1つを拡大して示すTEM写真を示す、図6Bに図6AのTEM写真に示すCNT15を模写的に示す。これらTEM写真が示すCNT15はFe微粒子13上に直径均一で高い直線性で生成されていることが判る。 FIG. 5A shows a TEM photograph of CNT 15 manufactured using the Fe fine particle holding structure shown in the TEM photograph of FIG. 4A, and FIG. 6A shows a TEM photograph showing an enlarged one of the CNTs 15 shown in FIG. 5A, and FIG. 6B shows a CNT15 shown in the TEM photograph of FIG. 6A. It can be seen that the CNTs 15 shown in these TEM photographs are generated on the Fe fine particles 13 with a uniform diameter and high linearity.
また、図7(a),図7(b)にこうしたCNTが集合したSEM写真を示す。図7(a)は倍率5万倍のSEM写真、図7(b)は倍率20万倍のSEM写真である。これらSEM写真から示すように、実施の形態の触媒構造を用いて直線性に優れたCNT15を製造することができている。このSEM写真は、その製造の一例として基板を真空チャンバ内に配置して700℃の高温に加熱し、炭素含有ガスとしてアセチレンガスを導入し、真空チャンバ内圧を所定圧力で一定保持することでCNT15が成長していることを示すSEM写真である。 FIGS. 7A and 7B show SEM photographs in which such CNTs are gathered. FIG. 7A is an SEM photograph at a magnification of 50,000 times, and FIG. 7B is an SEM photograph at a magnification of 200,000 times. As shown from these SEM photographs, the CNT 15 excellent in linearity can be manufactured using the catalyst structure of the embodiment. As an example of the SEM photograph, the substrate is placed in a vacuum chamber, heated to a high temperature of 700 ° C., acetylene gas is introduced as a carbon-containing gas, and the internal pressure of the vacuum chamber is kept constant at a predetermined pressure. It is a SEM photograph which shows that is growing.
以上説明したように本実施形態では、直径5ないし20nmのFe微粒子13が個々独立して存在し、かつ、バッファ層11に一部埋没した状態でバッファ層11に保持されているので、Fe微粒子13はバッファ層11に安定保持され、これにより、Fe微粒子13は空気中に晒された場合とか高温雰囲気下に置かれた場合でも、酸化等の劣化が抑制され、その表面が安定した状態を長期に保つことができるようになる。そして、Fe微粒子13は一部がバッファ層11に埋没していることで、バッファ層11上を移動したりするようなことがなくなり隣り合うFe微粒子13と合一化して粗大化したりせず、必要なサイズおよび必要な性状を安定して維持することができる。 As described above, in the present embodiment, the Fe fine particles 13 having a diameter of 5 to 20 nm exist independently and are held in the buffer layer 11 in a state of being partially buried in the buffer layer 11. 13 is stably held in the buffer layer 11, whereby the Fe fine particles 13 are prevented from being deteriorated by oxidation or the like even when exposed to the air or placed in a high temperature atmosphere, and the surface of the Fe fine particles 13 is stabilized. It can be kept for a long time. And since the Fe fine particles 13 are partially embedded in the buffer layer 11, they do not move on the buffer layer 11, and are not coalesced and coarsened with the adjacent Fe fine particles 13. The required size and required properties can be stably maintained.
1 Fe微粒子保持構造
3 基板
5 バリア層
7 酸素
9 Al層
11 バッファ層
13 Fe微粒子
15 CNT
19 Fe層
1 Fe fine particle holding structure 3 Substrate 5 Barrier layer 7 Oxygen 9 Al layer 11 Buffer layer 13 Fe fine particle 15 CNT
19 Fe layer
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010238623A JP5751467B2 (en) | 2010-10-25 | 2010-10-25 | Fe fine particle holding structure, catalyst for producing CNT, and method for producing CNT |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010238623A JP5751467B2 (en) | 2010-10-25 | 2010-10-25 | Fe fine particle holding structure, catalyst for producing CNT, and method for producing CNT |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015094993A Division JP5978345B2 (en) | 2015-05-07 | 2015-05-07 | Fe fine particle holding structure, catalyst for generating CNT, CNT manufacturing method, and manufacturing method of Fe fine particle holding structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012091082A true JP2012091082A (en) | 2012-05-17 |
JP5751467B2 JP5751467B2 (en) | 2015-07-22 |
Family
ID=46385068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010238623A Active JP5751467B2 (en) | 2010-10-25 | 2010-10-25 | Fe fine particle holding structure, catalyst for producing CNT, and method for producing CNT |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5751467B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014131952A (en) * | 2012-12-04 | 2014-07-17 | Honda Motor Co Ltd | Substrate for growing carbon nanotube and method of manufacturing the same |
JP2014131953A (en) * | 2012-12-04 | 2014-07-17 | Honda Motor Co Ltd | Substrate for growing carbon nanotube and method of manufacturing the same |
WO2016035484A1 (en) * | 2014-09-01 | 2016-03-10 | ニッタ株式会社 | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
JP2018070444A (en) * | 2016-10-31 | 2018-05-10 | ツィンファ ユニバーシティ | Method for making semiconducting layer |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015890A (en) * | 2005-07-07 | 2007-01-25 | Univ Nagoya | Substrate for carbon nanotube formation, its manufacturing method, and carbon nanotube |
JP2007117881A (en) * | 2005-10-27 | 2007-05-17 | Sonac Kk | Catalyst support substrate and manufacturing method of the same |
JP2008120658A (en) * | 2006-11-15 | 2008-05-29 | Sonac Kk | Aggregative structure of multiwall carbon nanotube |
JP2009155693A (en) * | 2007-12-27 | 2009-07-16 | Sonac Kk | Substrate unit |
JP2010189196A (en) * | 2009-02-16 | 2010-09-02 | Nippon Zeon Co Ltd | Production apparatus and production method for carbon nanotube oriented aggregate |
JP2010254572A (en) * | 2008-04-16 | 2010-11-11 | Nitto Denko Corp | Assembly of fibrous columnar structure and pressure-sensitive adhesive member using the same |
-
2010
- 2010-10-25 JP JP2010238623A patent/JP5751467B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007015890A (en) * | 2005-07-07 | 2007-01-25 | Univ Nagoya | Substrate for carbon nanotube formation, its manufacturing method, and carbon nanotube |
JP2007117881A (en) * | 2005-10-27 | 2007-05-17 | Sonac Kk | Catalyst support substrate and manufacturing method of the same |
JP2008120658A (en) * | 2006-11-15 | 2008-05-29 | Sonac Kk | Aggregative structure of multiwall carbon nanotube |
JP2009155693A (en) * | 2007-12-27 | 2009-07-16 | Sonac Kk | Substrate unit |
JP2010254572A (en) * | 2008-04-16 | 2010-11-11 | Nitto Denko Corp | Assembly of fibrous columnar structure and pressure-sensitive adhesive member using the same |
JP2010189196A (en) * | 2009-02-16 | 2010-09-02 | Nippon Zeon Co Ltd | Production apparatus and production method for carbon nanotube oriented aggregate |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014131952A (en) * | 2012-12-04 | 2014-07-17 | Honda Motor Co Ltd | Substrate for growing carbon nanotube and method of manufacturing the same |
JP2014131953A (en) * | 2012-12-04 | 2014-07-17 | Honda Motor Co Ltd | Substrate for growing carbon nanotube and method of manufacturing the same |
WO2016035484A1 (en) * | 2014-09-01 | 2016-03-10 | ニッタ株式会社 | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
KR20170047280A (en) | 2014-09-01 | 2017-05-04 | 니타 가부시키가이샤 | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
CN106660016A (en) * | 2014-09-01 | 2017-05-10 | 霓达株式会社 | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
US10207920B2 (en) | 2014-09-01 | 2019-02-19 | Nitta Corporation | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
KR101995143B1 (en) * | 2014-09-01 | 2019-09-30 | 니타 가부시키가이샤 | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
CN106660016B (en) * | 2014-09-01 | 2020-05-05 | 霓达株式会社 | Catalyst particle holding structure for carbon nanotube production and method for producing same |
EP3199235B1 (en) * | 2014-09-01 | 2024-09-18 | Nitta Corporation | Structure for holding catalyst particles for carbon nanotube production and method for producing same |
JP2018070444A (en) * | 2016-10-31 | 2018-05-10 | ツィンファ ユニバーシティ | Method for making semiconducting layer |
Also Published As
Publication number | Publication date |
---|---|
JP5751467B2 (en) | 2015-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7785558B2 (en) | Method of manufacturing carbon nanostructure | |
US8298623B2 (en) | Method for making composite material | |
US9868640B2 (en) | Graphene structure and method of manufacturing the same | |
JP2010254571A (en) | Carbon nanotube film and method for manufacturing the same, and light-emitting device | |
JP5751467B2 (en) | Fe fine particle holding structure, catalyst for producing CNT, and method for producing CNT | |
JP2007123280A (en) | CARBON NANOTUBE HAVING ZnO PROTRUSION | |
US20150351285A1 (en) | Heat dissipation structure and synthesizing method thereof | |
JP5872672B2 (en) | Catalyst-free synthesis of vertically aligned CNT on SiNW array | |
JP2005239541A (en) | Method of horizontally growing carbon nanotube and device having carbon nanotube | |
Yang et al. | Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper | |
JP2008037670A (en) | Method for producing carbon nanotube | |
JP2006052122A (en) | Matrix structure of carbon nanotube and its manufacturing method | |
JP2005238142A (en) | Catalytic structure and method for producing carbon nanotube by using the same | |
JP2008201648A (en) | Carbon nanotube production apparatus and carbon nanotube production method | |
JP5978345B2 (en) | Fe fine particle holding structure, catalyst for generating CNT, CNT manufacturing method, and manufacturing method of Fe fine particle holding structure | |
US8507030B2 (en) | Method of fabricating metal oxide film on carbon nanotube and method of fabricating carbon nanotube transistor using the same | |
JP4426523B2 (en) | Carbon nanotube matrix growth method | |
CN106660016B (en) | Catalyst particle holding structure for carbon nanotube production and method for producing same | |
KR20070071177A (en) | Method for manufacturing single-walled carbon nanotube on glass | |
JP7163645B2 (en) | Carbon nanotube electrode, electricity storage device using the same, and method for producing carbon nanotube composite | |
TWI500576B (en) | Method of preparing carbon nanotube field emitters | |
Kim et al. | Position-controlled AlN/ZnO coaxial nanotube heterostructure arrays for electron emitter applications | |
Meguro et al. | Formation of convex carbon micro-and nano-disk by atmospheric plasma system | |
JP5989858B2 (en) | Catalytic metal fine particle forming substrate | |
JP2002217400A (en) | Method for manufacturing quantum dot and quantum dot structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130828 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140311 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140805 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141003 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150407 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150507 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20150518 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5751467 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |