[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012087386A - Electroless nickel plating bath and electroless nickel plating method using the same - Google Patents

Electroless nickel plating bath and electroless nickel plating method using the same Download PDF

Info

Publication number
JP2012087386A
JP2012087386A JP2010236378A JP2010236378A JP2012087386A JP 2012087386 A JP2012087386 A JP 2012087386A JP 2010236378 A JP2010236378 A JP 2010236378A JP 2010236378 A JP2010236378 A JP 2010236378A JP 2012087386 A JP2012087386 A JP 2012087386A
Authority
JP
Japan
Prior art keywords
nickel plating
electroless nickel
acid
antimony
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010236378A
Other languages
Japanese (ja)
Inventor
Takeshi Bessho
毅 別所
Hideo Honma
英夫 本間
Mitsuhiro Watanabe
充広 渡辺
Katsuhiko Tashiro
雄彦 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Gakuin University Surface Engineering Research Institute
Toyota Motor Corp
Original Assignee
Kanto Gakuin University Surface Engineering Research Institute
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Gakuin University Surface Engineering Research Institute, Toyota Motor Corp filed Critical Kanto Gakuin University Surface Engineering Research Institute
Priority to JP2010236378A priority Critical patent/JP2012087386A/en
Priority to PCT/IB2011/002514 priority patent/WO2012052832A2/en
Publication of JP2012087386A publication Critical patent/JP2012087386A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electroless nickel plating bath capable of forming a nickel plating film with low film stress, and to provide an electroless nickel plating method using the same.SOLUTION: The plating film with low film stress can be formed by using the electroless nickel plating bath which contains metal antimony or an antimony compound as a stabilizer and contains succinic acid or one of a malic acid, and lactic acid, at a predetermined ratio as a complexing agent.

Description

本発明は、無電解ニッケルめっきの技術に関し、特に応力が低いニッケルめっき皮膜を形成することが可能な無電解ニッケルめっき浴、およびそれを用いた無電解ニッケルめっき法に関する。   The present invention relates to a technique for electroless nickel plating, and particularly to an electroless nickel plating bath capable of forming a nickel plating film with low stress, and an electroless nickel plating method using the same.

無電解ニッケルめっき浴には、めっき液の安定性の向上、めっき外観や付きまわり性の改善などを目的として、有機および/または無機添加剤をめっき液中に添加することが多い。一般的に、有機添加剤を適度な濃度で添加すると、液安定性、析出速度およびめっき外観などを向上させることができるが、その一方でめっき皮膜の応力は増加する。また、めっき直後は低応力であっても、経日的にめっき皮膜の応力が増加することもある。めっき皮膜の応力の増加は、めっき処理した製品に反りやクラックを生じさせる原因となる。そのため、めっき皮膜の応力はなるべく低くなるようにすることが望ましい。   In an electroless nickel plating bath, organic and / or inorganic additives are often added to the plating solution for the purpose of improving the stability of the plating solution, improving the appearance of plating and throwing power. Generally, when an organic additive is added at an appropriate concentration, the liquid stability, the deposition rate, the plating appearance, and the like can be improved, while the stress of the plating film increases. Moreover, even if the stress is low immediately after plating, the stress of the plating film may increase over time. An increase in the stress of the plating film causes warpage and cracks in the plated product. Therefore, it is desirable to make the stress of the plating film as low as possible.

特許文献1には、無電解ニッケルめっき浴にモリブデンを適量添加することにより、ニッケル皮膜内部の応力が下がることが開示されている。特許文献2には、水溶性ニッケル塩、還元剤、モリブデンおよびアンチモンを含む無電解ニッケルめっき浴は、有害物質である鉛などを含まずとも、液安定性、析出速度およびめっき外観などに優れていることが開示されている。特許文献3には、アルミニウムまたはアルミニウム合金に無電解ニッケルめっき皮膜を形成する際に、めっき浴として水溶性のアンチモン化合物またはビスマス化合物を金属として0.01〜100ppm含有する無電解ニッケルめっき浴を用いると、微小ノジュールを少なくする点から有効であることが開示されている。ただし、特許文献2および3は、得られためっき皮膜の応力に関しては何ら言及していない。   Patent Document 1 discloses that the stress inside the nickel coating is reduced by adding an appropriate amount of molybdenum to the electroless nickel plating bath. In Patent Document 2, an electroless nickel plating bath containing a water-soluble nickel salt, a reducing agent, molybdenum, and antimony is excellent in liquid stability, deposition rate, plating appearance, and the like, even without containing lead as a harmful substance. Is disclosed. Patent Document 3 uses an electroless nickel plating bath containing 0.01 to 100 ppm of a water-soluble antimony compound or bismuth compound as a metal when forming an electroless nickel plating film on aluminum or an aluminum alloy. It is disclosed that it is effective from the viewpoint of reducing minute nodules. However, Patent Documents 2 and 3 do not mention anything about the stress of the obtained plating film.

特開2005−200707号JP 2005-200707 A 特開2005−264309号JP 2005-264309 A 特開平5−230664号Japanese Patent Application Laid-Open No. 5-230664

本発明は、皮膜応力が低いニッケルめっき皮膜を形成することが可能な無電解ニッケルめっき浴および該めっき浴を用いた無電解ニッケルめっき法を提供することを目的とする。   An object of the present invention is to provide an electroless nickel plating bath capable of forming a nickel plating film having a low film stress and an electroless nickel plating method using the plating bath.

本発明者らは、安定剤として金属アンチモンまたはアンチモン化合物を含み、かつ錯化剤としてリンゴ酸または乳酸とコハク酸とを所定比で含む無電解ニッケル浴を用いることにより、応力が低いめっき皮膜が形成可能であることを見出した。本発明の要旨は以下のとおりである。   By using an electroless nickel bath containing metal antimony or an antimony compound as a stabilizer and malic acid or lactic acid and succinic acid as a complexing agent in a predetermined ratio, the present inventors can form a plating film with low stress. It was found that it can be formed. The gist of the present invention is as follows.

(1)ニッケル塩と、還元剤と、金属アンチモンまたはアンチモン化合物を含む安定剤と、リンゴ酸または乳酸とコハク酸とをキレートモル比で25:75〜75:25の範囲で含む錯化剤とを含む、無電解ニッケルめっき浴。
(2)錯化剤を1リットルあたり0.3〜1.3キレートモル含む、(1)に記載の無電解ニッケルめっき浴。
(3)安定剤が金属アンチモン、塩化アンチモン、酢酸アンチモン、酸化アンチモン、酒石酸アンチモニルカリウム、またはそれらの混合物である、(1)または(2)に記載の無電解ニッケルめっき浴。
(4)還元剤が次亜リン酸または次亜リン酸ナトリウムである、(1)〜(3)のいずれかに記載の無電解ニッケルめっき浴。
(5)(1)〜(4)のいずれかに記載の無電解ニッケルめっき浴を用いる、無電解ニッケルめっき法。
(1) A nickel salt, a reducing agent, a stabilizer containing metal antimony or an antimony compound, and a complexing agent containing malic acid or lactic acid and succinic acid in a chelate molar ratio of 25:75 to 75:25. Including electroless nickel plating bath.
(2) The electroless nickel plating bath according to (1), containing a complexing agent in an amount of 0.3 to 1.3 chelate moles per liter.
(3) The electroless nickel plating bath according to (1) or (2), wherein the stabilizer is metal antimony, antimony chloride, antimony acetate, antimony oxide, potassium antimony tartrate, or a mixture thereof.
(4) The electroless nickel plating bath according to any one of (1) to (3), wherein the reducing agent is hypophosphorous acid or sodium hypophosphite.
(5) An electroless nickel plating method using the electroless nickel plating bath according to any one of (1) to (4).

本発明によれば、皮膜応力が低く、外観および付きまわり性にすぐれたニッケルめっき皮膜を形成することができる。   According to the present invention, it is possible to form a nickel plating film having a low film stress and excellent appearance and throwing power.

本発明の無電解ニッケルめっき浴は、ニッケル塩と、還元剤と、金属アンチモンまたはアンチモン化合物を含む安定剤と、リンゴ酸または乳酸とコハク酸とをキレートモル比で25:75〜75:25の範囲で含む錯化剤とを含む。   The electroless nickel plating bath of the present invention comprises a nickel salt, a reducing agent, a stabilizer containing metal antimony or an antimony compound, malic acid or lactic acid and succinic acid in a chelate molar ratio of 25:75 to 75:25. And a complexing agent.

ニッケル塩としては、無電解ニッケルめっき浴に通常使用されるものを用いることができる。ニッケル塩の具体例としては、硫酸ニッケル、塩化ニッケル、炭酸ニッケル、酢酸ニッケル、次亜リン酸ニッケル、スルファミン酸ニッケル、クエン酸ニッケルなどを挙げることができる。これらは単独で、あるいは2種以上を組み合わせて用いてもよい。ニッケル塩は、0.01〜0.50mol/L、特に0.01〜0.30mol/L、とりわけ0.05〜0.20mol/Lの範囲の量で用いるのが好ましい。   As the nickel salt, those usually used for an electroless nickel plating bath can be used. Specific examples of the nickel salt include nickel sulfate, nickel chloride, nickel carbonate, nickel acetate, nickel hypophosphite, nickel sulfamate, and nickel citrate. These may be used alone or in combination of two or more. The nickel salt is preferably used in an amount ranging from 0.01 to 0.50 mol / L, particularly from 0.01 to 0.30 mol / L, especially from 0.05 to 0.20 mol / L.

還元剤としては、例えば次亜リン酸、次亜リン酸ナトリウム、DMAB(ジメチルアミノボラン)、塩酸ヒドラジンや硫酸ヒドラジンなどのヒドラジン化合物が挙げられる。本発明では次亜リン酸または次亜リン酸ナトリウムが還元剤として最も好ましい。次亜リン酸または次亜リン酸ナトリウムを還元剤として用いると、Ni−Pめっき皮膜が得られる。還元剤は、0.01〜0.50mol/L、特に0.05〜0.30mol/L、とりわけ0.10〜0.25mol/Lの範囲の量で用いるのが好ましい。   Examples of the reducing agent include hypophosphorous acid, sodium hypophosphite, DMAB (dimethylaminoborane), hydrazine compounds such as hydrazine hydrochloride and hydrazine sulfate. In the present invention, hypophosphorous acid or sodium hypophosphite is most preferable as the reducing agent. When hypophosphorous acid or sodium hypophosphite is used as a reducing agent, a Ni-P plating film is obtained. The reducing agent is preferably used in an amount in the range of 0.01 to 0.50 mol / L, particularly 0.05 to 0.30 mol / L, especially 0.10 to 0.25 mol / L.

本発明の無電解ニッケルめっき浴に用いる安定剤は、アンチモンを金属アンチモンとして、あるいはアンチモン化合物として含む。アンチモン化合物としては、塩化アンチモン、酢酸アンチモン、酸化アンチモン、酒石酸アンチモニルカリウム、アンチモニル−L−酒石酸、アンチモン酸、アンチモン酸ナトリウム、アンチモン酸カリウムなどが挙げられる。これらの金属アンチモンあるいはアンチモン化合物は2種以上を混合して用いてもよい。好ましくは、安定剤は、金属アンチモン、塩化アンチモン、酢酸アンチモン、酸化アンチモン、酒石酸アンチモニルカリウム、またはそれらの混合物である。安定剤は、Sbとして0.001〜0.10mmol/L、特に0.005〜0.075mmol/L、とりわけ0.01〜0.05mmol/Lの範囲の量で用いるのが好ましい。本発明においては、安定剤として塩化アンチモン(塩化アンチモン(III)として)または酒石酸アンチモニルカリウム(酒石酸アンチモニル(III)カリウム・三水和物として)を、Sbとして0.1〜50mg/L、特に0.1〜25mg/L、とりわけ0.2〜20mg/Lの範囲の量で用いるのが最も好ましい。   The stabilizer used in the electroless nickel plating bath of the present invention contains antimony as metal antimony or as an antimony compound. Examples of the antimony compound include antimony chloride, antimony acetate, antimony oxide, antimony potassium tartrate, antimonyl-L-tartaric acid, antimonic acid, sodium antimonate, and potassium antimonate. These metal antimony or antimony compounds may be used in combination of two or more. Preferably, the stabilizer is antimony metal, antimony chloride, antimony acetate, antimony oxide, potassium antimonyl tartrate, or a mixture thereof. The stabilizer is preferably used as Sb in an amount in the range of 0.001 to 0.10 mmol / L, particularly 0.005 to 0.075 mmol / L, especially 0.01 to 0.05 mmol / L. In the present invention, antimony chloride (as antimony (III) chloride) or antimony potassium tartrate (as antimony (III) potassium tartrate trihydrate) as a stabilizer and 0.1 to 50 mg / L as Sb, particularly Most preferably, it is used in an amount ranging from 0.1 to 25 mg / L, especially from 0.2 to 20 mg / L.

本発明の無電解ニッケル浴は、錯化剤としてリンゴ酸または乳酸とコハク酸とをキレートモル比で25:75〜75:25の範囲で含む。リンゴ酸または乳酸とコハク酸との比は、キレートモル比で30:70〜70:30、特に35:65〜65:35、さらに40:60〜60:40、とりわけ45:55〜55:45の範囲であるとより好ましい。錯化剤としては、リンゴ酸とコハク酸との組み合わせが最も好ましい。   The electroless nickel bath of the present invention contains malic acid or lactic acid and succinic acid as a complexing agent in a chelate molar ratio of 25:75 to 75:25. The ratio of malic acid or lactic acid to succinic acid is 30:70 to 70:30, in particular 35:65 to 65:35, in addition 40:60 to 60:40, in particular 45:55 to 55:45 in chelate molar ratio. A range is more preferable. The complexing agent is most preferably a combination of malic acid and succinic acid.

キレートモル(cM)とは、錯化剤が個々に有する配座数を考慮した濃度の単位として当業者に知られている。配座数が1の錯化剤の濃度は一般的なモル濃度と同一である。配座数が2以上である場合は、モル濃度に配座数をかけた値がキレートモルとなる。この単位を用いることにより、異なる錯化剤でもほぼ同等の濃度条件での比較が可能になる。代表的な錯化剤の配座数は次のとおりである。配座数1:酢酸、プロピオン酸など。配座数2:乳酸、グリコール酸、コハク酸、グリシンなど。配座数3:リンゴ酸、アスパラギン酸。配座数4:クエン酸。   The chelate mole (cM) is known to those skilled in the art as a unit of concentration taking into account the number of conformations each complexing agent has. The concentration of the complexing agent with a conformation number of 1 is the same as the general molar concentration. When the number of conformations is 2 or more, the value obtained by multiplying the molar concentration by the number of conformations is the chelate mole. By using this unit, different complexing agents can be compared under almost the same concentration conditions. The number of conformations of typical complexing agents is as follows. Conformation number 1: acetic acid, propionic acid, etc. Conformation number 2: lactic acid, glycolic acid, succinic acid, glycine and the like. Conformation number 3: malic acid, aspartic acid. Conformation number 4: citric acid.

錯化剤は、無電解ニッケルめっき浴中に、1リットルあたり0.3〜1.3キレートモル、特に0.4〜1.1キレートモル、とりわけ0.5〜0.9キレートモルの量で存在するのが好ましい。   The complexing agent is present in the electroless nickel plating bath in an amount of 0.3 to 1.3 chelate mole, in particular 0.4 to 1.1 chelate mole, in particular 0.5 to 0.9 chelate mole, per liter. Is preferred.

錯化剤は、リンゴ酸または乳酸とコハク酸以外の化合物を含んでいてもよい。錯化剤として用いることができる化合物としては、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸およびシュウ酸などのカルボン酸、乳酸、グリコール酸、リンゴ酸、クエン酸などのヒドロキシカルボン酸、アラニン、バリン、チロシン、グリシン、アスパラギン酸、ヒスチジンなどのアミノ酸が挙げられる。本発明において錯化剤は、好ましくはリンゴ酸または乳酸とコハク酸とのみからなり、最も好ましくはリンゴ酸とコハク酸のみからなる。   The complexing agent may contain compounds other than malic acid or lactic acid and succinic acid. Examples of the compound that can be used as the complexing agent include carboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid and oxalic acid, hydroxycarboxylic acids such as lactic acid, glycolic acid, malic acid and citric acid, and alanine. , Amino acids such as valine, tyrosine, glycine, aspartic acid, histidine and the like. In the present invention, the complexing agent preferably comprises only malic acid or lactic acid and succinic acid, and most preferably comprises only malic acid and succinic acid.

本発明の無電解ニッケルめっき浴は、上記以外にも、例えば以下のような成分を含んでいてもよい:pH調整剤(水酸化カリウム、アンモニア水溶液、水酸化ナトリウムなど)、光沢剤(鉛、銅、チオ硫酸ナトリウムなど)、界面活性剤(ドデシル硫酸ナトリウム、PEG1Kなど)、pH緩衝剤(塩化アンモニウム、硫酸アンモニウム、ホウ酸など)など。   In addition to the above, the electroless nickel plating bath of the present invention may contain, for example, the following components: pH adjuster (potassium hydroxide, aqueous ammonia, sodium hydroxide, etc.), brightener (lead, Copper, sodium thiosulfate, etc.), surfactant (sodium dodecyl sulfate, PEG1K, etc.), pH buffer (ammonium chloride, ammonium sulfate, boric acid, etc.), etc.

本発明は、上記の無電解ニッケルめっき浴を用いる無電解ニッケルめっき法にも関する。本発明の無電解ニッケルめっき法は、基材を本発明の無電解ニッケルめっき浴に浸し、必要に応じて加熱することにより行われる。基材としては、導電性および非導電性の物質のいずれでもよく、特に限定されるものではない。基材の具体例としては、銅、アルミニウム、鉄、またはそれらの合金からなるもの、樹脂、シリコンウエハーにアルミニウムをスパッタしたもの、などが挙げられる。基材には、めっきする前に、酸やアルカリによる脱脂ならびに活性化など、当業者に公知の前処理が施される。   The present invention also relates to an electroless nickel plating method using the above electroless nickel plating bath. The electroless nickel plating method of the present invention is performed by immersing the base material in the electroless nickel plating bath of the present invention and heating as necessary. As a base material, any of an electroconductive and nonelectroconductive substance may be sufficient, and it does not specifically limit. Specific examples of the substrate include those made of copper, aluminum, iron, or alloys thereof, resins, and silicon wafers obtained by sputtering aluminum. Prior to plating, the substrate is subjected to pretreatments known to those skilled in the art, such as degreasing and activation with acid or alkali.

本発明の無電解ニッケルめっき浴および該めっき浴を用いた無電解ニッケルめっき法によれば、皮膜応力が低く反りやクラックなどが生じない高品質なニッケルめっき皮膜を成膜することができる。本発明は、特にシリコンウエハー、自動車部品、装飾用部品、電子部品、工業用治具、型、ロールなどにニッケルめっきを施すのに有利である。   According to the electroless nickel plating bath and the electroless nickel plating method using the plating bath of the present invention, it is possible to form a high-quality nickel plating film with low film stress and without warping or cracking. The present invention is particularly advantageous for nickel plating on silicon wafers, automobile parts, decorative parts, electronic parts, industrial jigs, molds, rolls and the like.

以下、実施例を用いて本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example, this invention is not limited to these Examples.

1.実験手順
基材として銅板(50×25mm)と、市販のBeCu材テストストリップ(めっき有効面積76×10mm)とを用意した。銅板は次の手順で前処理した:1)60℃で5分間アルカリ脱脂(NaOH8g/L、クエン酸ナトリウム10g/L、ナロアクティーN−120(三洋化成工業社製)2g/L)、2)室温で1分間酸活性(10%硫酸)、3)室温で1分間0.1g/LのPdCl溶液で処理。テストストリップは次の手順で前処理した:1)室温で5分間酸脱脂(PB−242D(荏原ユージライト社製))、2)室温で1分間酸活性(10%硫酸)、3)室温で5分間0.1g/LのPdCl溶液で処理。前処理後の各基材に、無補給で30分間めっきし、析出速度とめっき皮膜応力を測定した。
1. Experimental procedure A copper plate (50 × 25 mm 2 ) and a commercially available BeCu material test strip (plating effective area 76 × 10 mm 2 ) were prepared as substrates. The copper plate was pretreated by the following procedure: 1) Alkaline degreasing at 60 ° C. for 5 minutes (NaOH 8 g / L, sodium citrate 10 g / L, NAROACTY N-120 (manufactured by Sanyo Chemical Industries) 2 g / L), 2) 1 min at room temperature the acid activity (10% sulfuric acid), 3) PdCl 2 solution treated at room temperature for 1 minute 0.1 g / L. The test strips were pretreated by the following procedure: 1) Acid degreasing for 5 minutes at room temperature (PB-242D (Sugawara Eugleite)), 2) 1 minute acid activity at room temperature (10% sulfuric acid), 3) At room temperature Treat with 0.1 g / L PdCl 2 solution for 5 minutes. Each substrate after pretreatment was plated for 30 minutes without replenishment, and the deposition rate and plating film stress were measured.

析出速度は、精密天秤を用いて測定しためっき前後の銅板の重量差に基づいて算出しためっき膜厚(皮膜密度は7.85g/cmとした)とめっき時間から求めた。めっき皮膜応力は、めっき後のテストストリップの両脚の先端をスケールに触れない程度にストリップ式電着応力試験器(683ECアナライザー、エレクトロケミカル社製)にセットし、両脚間の特殊スケール目盛の合計値(開脚度)を読み、Sを応力(MPa)、Tを膜厚(μm)、Uを開脚度、KをテストストリップのファクターとしてS=58.2×UK/Tの計算式に代入して求めた。 The deposition rate was determined from the plating film thickness (film density was 7.85 g / cm 3 ) calculated based on the weight difference between the copper plates before and after plating measured using a precision balance and the plating time. The plating film stress is set on a strip-type electrodeposition stress tester (683EC analyzer, manufactured by Electrochemical Co., Ltd.) so that the tips of both legs of the test strip after plating do not touch the scale. Read (leg), substituting into S = 58.2 × UK / T, where S is stress (MPa), T is film thickness (μm), U is the degree of spread, and K is a factor of the test strip. And asked.

2.錯化剤の濃度と組み合わせの検討
表1に記載した条件に従ってめっきを行い、錯化剤の組み合わせおよび錯化剤濃度の最適条件を検討した。
2. Examination of Complexing Agent Concentration and Combination Plating was performed according to the conditions described in Table 1, and the optimum conditions for the complexing agent combination and the complexing agent concentration were examined.

Figure 2012087386
Figure 2012087386

表2は、錯化剤として、リンゴ酸と、コハク酸、乳酸、酢酸またはグリシンとを50:50のキレートモル比で用いためっき浴による結果である(表中、「as plate」とはめっき直後を意味し、比はキレートモル比である)。   Table 2 shows the results obtained by a plating bath using malic acid and succinic acid, lactic acid, acetic acid or glycine as a complexing agent in a chelate molar ratio of 50:50 (in the table, “as plate” means immediately after plating). And the ratio is the chelate molar ratio).

錯化剤として、リンゴ酸とコハク酸の組み合わせ、またはリンゴ酸と酢酸の組み合わせを用いためっき浴は、析出速度が比較的速く、めっき皮膜の応力も比較的低かった(めっき皮膜の応力は(−)は圧縮応力を、(+)は引っ張り応力をそれぞれ示している)。ただし、リンゴ酸と酢酸の組み合わせを用いためっき浴では、総錯化剤濃度が高くなると応力が引っ張り側に移行する傾向がみられた。一方、リンゴ酸とコハク酸の組み合わせを用いた場合は、そのような傾向はみられなかった。総錯化剤濃度は、0.8cM/Lとした際、最も析出速度が速かった。総合的にみて、錯化剤としてリンゴ酸とコハク酸を50:50のキレートモル比で用い、総錯化剤濃度を0.8cM/Lとするのが最良であると判断された。   A plating bath using a combination of malic acid and succinic acid or a combination of malic acid and acetic acid as a complexing agent has a relatively high deposition rate and a relatively low stress of the plating film (the stress of the plating film is ( -) Indicates compressive stress, and (+) indicates tensile stress). However, in the plating bath using a combination of malic acid and acetic acid, when the total complexing agent concentration was high, the stress tended to shift to the tensile side. On the other hand, such a tendency was not observed when a combination of malic acid and succinic acid was used. When the total complexing agent concentration was 0.8 cM / L, the precipitation rate was the fastest. Overall, it was determined that it would be best to use malic acid and succinic acid as the complexing agent in a chelate molar ratio of 50:50 and a total complexing agent concentration of 0.8 cM / L.

Figure 2012087386
Figure 2012087386

表3は、総錯化剤濃度を0.8cM/Lに固定し、種々の錯化剤の50:50の比の組み合わせについて析出速度、めっき直後の皮膜応力、および熱処理した後の皮膜応力を調べた結果である。なお、熱処理は、数日〜十数日経過した際のめっき皮膜の状態をシミュレートするための加速劣化試験のためのものである。リンゴ酸を含む組み合わせ、およびコハク酸と乳酸の組み合わせは熱処理後の皮膜応力が低かった。しかし、リンゴ酸と乳酸、およびリンゴ酸とグリシンの組み合わせは析出速度が遅かった。リンゴ酸とコハク酸、リンゴ酸と酢酸、およびコハク酸と乳酸の組み合わせが、析出速度およびめっき皮膜応力の観点から優れていると判断された。ただし、酢酸はキレート力が弱くめっき速度促進剤として作用するため、酢酸を使用すると、析出速度が早くなる一方で、めっき浴の安定性が低下する。老化時は、新建浴時とは異なり、副生成物や蓄積物が液中に増えるため、より浴安定性が低下しやすい。その上、酢酸には臭気の問題もある。従って、錯化剤としてはリンゴ酸とコハク酸またはコハク酸と乳酸の組み合わせが好ましいと判断された。   Table 3 shows the precipitation rate, film stress immediately after plating, and film stress after heat treatment for a combination of 50:50 ratios of various complexing agents with the total complexing agent concentration fixed at 0.8 cM / L. It is the result of investigation. The heat treatment is for an accelerated deterioration test for simulating the state of the plating film when several days to several tens of days have passed. The combination containing malic acid and the combination of succinic acid and lactic acid had low film stress after heat treatment. However, the combination of malic acid and lactic acid and malic acid and glycine had a slow precipitation rate. The combination of malic acid and succinic acid, malic acid and acetic acid, and succinic acid and lactic acid was judged to be excellent from the viewpoints of deposition rate and plating film stress. However, since acetic acid has a weak chelating power and acts as a plating rate accelerator, the use of acetic acid increases the deposition rate while lowering the stability of the plating bath. When aging, unlike the new construction bath, by-products and accumulations increase in the liquid, bath stability is more likely to decrease. In addition, acetic acid has odor problems. Therefore, it was judged that the complexing agent is preferably malic acid and succinic acid or a combination of succinic acid and lactic acid.

Figure 2012087386
Figure 2012087386

3.錯化剤の混合比率の検討
表1に記載した条件に従ってめっきを行い、錯化剤の混合比率の最適条件を検討した。表4は、好ましい錯化剤の組み合わせであると判断されたリンゴ酸とコハク酸の混合比率を種々変更して、析出速度、めっき直後の皮膜応力、および熱処理した後の皮膜応力を調べた結果である(表中、比はキレートモル比である)。
3. Examination of the mixing ratio of the complexing agent Plating was performed according to the conditions described in Table 1, and the optimum conditions for the mixing ratio of the complexing agent were examined. Table 4 shows the results of investigating the deposition rate, the film stress immediately after plating, and the film stress after heat treatment by variously changing the mixing ratio of malic acid and succinic acid judged to be a preferable combination of complexing agents. (In the table, the ratio is the chelate molar ratio).

コハク酸の比率が高くなるにつれて、析出速度は速くなり、応力は引っ張り側に移行する傾向がみられた。リンゴ酸とコハク酸のキレートモル比は50:50とするのが最も好ましいと判断された。総錯化剤濃度は、やはり0.8cM/Lとするのが最良であった。   As the succinic acid ratio increased, the deposition rate increased and the stress tended to shift to the tensile side. It was judged that the chelate molar ratio of malic acid and succinic acid was most preferably 50:50. The total complexing agent concentration was still best at 0.8 cM / L.

Figure 2012087386
Figure 2012087386

4.安定剤の検討
表5に記載した条件に従ってめっきを行い、最適な安定剤の種類と量を検討した。
4). Study of Stabilizer Plating was performed according to the conditions described in Table 5, and the optimum type and amount of stabilizer were examined.

Figure 2012087386
Figure 2012087386

表6は、安定剤としてビスマス(硝酸ビスマス)、アンチモン(塩化アンチモン(III))、またはチオ尿素を用いためっき浴、あるいは市販のめっき浴(エピタスNPR−18、上村工業製)を使用した際の析出速度、めっき直後の皮膜応力、および熱処理した後の皮膜応力を調べた結果である。(ビスマス、アンチモンの濃度は、それぞれBi、Sbとしてのものである。)安定剤としてビスマスおよびチオ尿素を用いた場合、安定剤無添加の場合と比較して、浴安定性の向上、めっき皮膜の外観向上、析出速度の向上などの効果がみられたが、熱処理後の皮膜応力が高くなった。一方、安定剤としてアンチモンを使用した場合、熱処理後の皮膜応力が、他の安定剤を用いためっき浴および市販のめっき浴を用いた場合と比較して顕著に低くなった。   Table 6 shows that when a plating bath using bismuth (bismuth nitrate), antimony (antimony (III) chloride), or thiourea as a stabilizer, or a commercially available plating bath (Epitus NPR-18, manufactured by Uemura Kogyo Co., Ltd.) is used. This is a result of investigating the deposition rate, film stress immediately after plating, and film stress after heat treatment. (The concentrations of bismuth and antimony are those of Bi and Sb, respectively.) When bismuth and thiourea are used as stabilizers, the bath stability is improved compared to the case where no stabilizer is added, and the plating film. However, the film stress after heat treatment became high. On the other hand, when antimony was used as the stabilizer, the film stress after the heat treatment was remarkably lowered as compared with the case of using a plating bath using another stabilizer and a commercially available plating bath.

Figure 2012087386
Figure 2012087386

表7は、安定剤としてモリブデン(モリブデン酸ナトリウム二水和物、NaMoO・2HO)を用いためっき浴を使用した際の結果である。モリブデンを用いた場合では、熱処理後の皮膜応力を低下する効果は観察されなかった。また、モリブデンの量を増やすと、ニッケルが析出せずめっき浴として機能しなかった。 Table 7 shows the results when a plating bath using molybdenum (sodium molybdate dihydrate, Na 2 MoO 4 .2H 2 O) as a stabilizer was used. In the case of using molybdenum, the effect of reducing the film stress after the heat treatment was not observed. Further, when the amount of molybdenum was increased, nickel did not precipitate and did not function as a plating bath.

Figure 2012087386
Figure 2012087386

表8は、安定剤としてアンチモン(酒石酸アンチモニル(III)カリウム・三水和物、C12Sb・3HO)とモリブデン(モリブデン酸ナトリウム二水和物、NaMoO・2HO)の混合物を用いためっき浴を使用した際の結果である。アンチモンとモリブデンを混合した場合では望ましい結果は得られなかった。 Table 8, antimony stabilizer (tartrate Anchimoniru (III) potassium trihydrate, C 8 H 4 K 2 O 12 Sb 2 · 3H 2 O) and molybdenum (sodium molybdate dihydrate, Na 2 MoO 4 is a · 2H 2 O) results when using the mixture of the plating bath used for. When antimony and molybdenum were mixed, the desired result was not obtained.

Figure 2012087386
Figure 2012087386

4.安定剤使用時の錯化剤の混合比率の検討
表9に記載した条件に従ってめっきを行い、安定剤としてアンチモン(酒石酸アンチモニル(III)カリウム・三水和物)を使用した場合における、最適な錯化剤の種類と量を検討した。
4). Examination of mixing ratio of complexing agent when using stabilizer The optimal complex when plating is performed according to the conditions described in Table 9 and antimony (potassium antimonyl (III) potassium tartrate trihydrate) is used as a stabilizer. The type and amount of agent were examined.

Figure 2012087386
Figure 2012087386

表10は、好ましい錯化剤の組み合わせであると判断されたリンゴ酸とコハク酸の混合比率を種々変更して、析出速度、めっき直後の皮膜応力、および熱処理した後の皮膜応力を調べた結果である(表中、比はキレートモル比である)。   Table 10 shows the results of examining the deposition rate, the film stress immediately after plating, and the film stress after heat treatment by variously changing the mixing ratio of malic acid and succinic acid, which was judged to be a preferable combination of complexing agents. (In the table, the ratio is the chelate molar ratio).

安定剤(アンチモン)を使用した場合でも、リンゴ酸に対するコハク酸の混合比率が高まるにつれて析出速度の増加、引っ張り応力への移行傾向が観察された。また、還元剤の濃度が高いほど析出速度は増加し、応力にもあまり影響がなかったものの、めっき浴の安定性が低下した。リンゴ酸:コハク酸=49:51、還元剤濃度を0.175mol/Lとするのが最も好ましいと判断された。   Even when a stabilizer (antimony) was used, an increase in precipitation rate and a tendency to shift to tensile stress were observed as the mixing ratio of succinic acid to malic acid increased. In addition, the higher the concentration of the reducing agent, the higher the deposition rate, and although there was not much influence on the stress, the stability of the plating bath decreased. It was judged that malic acid: succinic acid = 49: 51 and the reducing agent concentration was most preferably 0.175 mol / L.

Figure 2012087386
Figure 2012087386

Claims (5)

ニッケル塩と、還元剤と、金属アンチモンまたはアンチモン化合物を含む安定剤と、リンゴ酸または乳酸とコハク酸とをキレートモル比で25:75〜75:25の範囲で含む錯化剤とを含む、無電解ニッケルめっき浴。   A nickel salt, a reducing agent, a stabilizer containing metal antimony or an antimony compound, and a complexing agent containing malic acid or lactic acid and succinic acid in a chelate molar ratio of 25:75 to 75:25. Electrolytic nickel plating bath. 錯化剤を1リットルあたり0.3〜1.3キレートモル含む、請求項1に記載の無電解ニッケルめっき浴。   The electroless nickel plating bath according to claim 1, comprising a complexing agent in an amount of 0.3 to 1.3 chelate moles per liter. 安定剤が金属アンチモン、塩化アンチモン、酢酸アンチモン、酸化アンチモン、酒石酸アンチモニルカリウム、またはそれらの混合物である、請求項1または2に記載の無電解ニッケルめっき浴。   The electroless nickel plating bath according to claim 1 or 2, wherein the stabilizer is metal antimony, antimony chloride, antimony acetate, antimony oxide, antimony potassium tartrate, or a mixture thereof. 還元剤が次亜リン酸または次亜リン酸ナトリウムである、請求項1〜3のいずれかに記載の無電解ニッケルめっき浴。   The electroless nickel plating bath according to any one of claims 1 to 3, wherein the reducing agent is hypophosphorous acid or sodium hypophosphite. 請求項1〜4のいずれかに記載の無電解ニッケルめっき浴を用いる、無電解ニッケルめっき法。   An electroless nickel plating method using the electroless nickel plating bath according to claim 1.
JP2010236378A 2010-10-21 2010-10-21 Electroless nickel plating bath and electroless nickel plating method using the same Pending JP2012087386A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010236378A JP2012087386A (en) 2010-10-21 2010-10-21 Electroless nickel plating bath and electroless nickel plating method using the same
PCT/IB2011/002514 WO2012052832A2 (en) 2010-10-21 2011-10-21 Electroless nickel plating bath and electroless nickel plating method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010236378A JP2012087386A (en) 2010-10-21 2010-10-21 Electroless nickel plating bath and electroless nickel plating method using the same

Publications (1)

Publication Number Publication Date
JP2012087386A true JP2012087386A (en) 2012-05-10

Family

ID=45422318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010236378A Pending JP2012087386A (en) 2010-10-21 2010-10-21 Electroless nickel plating bath and electroless nickel plating method using the same

Country Status (2)

Country Link
JP (1) JP2012087386A (en)
WO (1) WO2012052832A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155566A (en) * 2014-02-21 2015-08-27 三菱瓦斯化学株式会社 electroless plating solution

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104328395B (en) * 2014-10-17 2016-08-24 金川集团股份有限公司 Phosphorus chemistry nickel plating concentrated solution and plating technology in one
CN114059053B (en) * 2021-11-09 2023-10-10 苏州汉宜纳米新材料有限公司 Electroless Ni-W-P plating solution and preparation method thereof, ni-W-P plating layer and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179044A (en) * 1987-01-19 1988-07-23 Aisin Seiki Co Ltd Manufacture of sintered magnetic alloy by means of plating treatment
JPH05263259A (en) * 1992-03-19 1993-10-12 C Uyemura & Co Ltd Ni-p-mo electroless plating bath and plating method
JPH05295556A (en) * 1992-04-20 1993-11-09 Deitsupusoole Kk Electroless plating solution and plating method using the same
JP2004019004A (en) * 2002-06-18 2004-01-22 Atotech Deutschland Gmbh Electroless nickel plating solution
JP2004039995A (en) * 2002-07-05 2004-02-05 Kyocera Corp Wiring board
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2005264309A (en) * 2004-03-22 2005-09-29 Ebara Udylite Kk Electroless nickel plating bath and electroless nickel alloy plating bath
JP2008174774A (en) * 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd Reduction precipitation type electroless gold plating liquid for palladium film
JP2008274444A (en) * 2008-08-21 2008-11-13 C Uyemura & Co Ltd Electroless nickel plating bath, and plating method using the same
WO2010045559A1 (en) * 2008-10-16 2010-04-22 Atotech Deutschland Gmbh Metal plating additive, and method for plating substrates and products therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200707A (en) * 2004-01-16 2005-07-28 Noge Denki Kogyo:Kk Low stress electroless nickel plating
DE102004047423C5 (en) * 2004-09-28 2011-04-21 AHC-Oberflächentechnik GmbH & Co. OHG Externally applied Nickel alloy and its use
EP2177646B1 (en) * 2008-10-17 2011-03-23 ATOTECH Deutschland GmbH Stress-reduced Ni-P/Pd stacks for bondable wafer surfaces

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179044A (en) * 1987-01-19 1988-07-23 Aisin Seiki Co Ltd Manufacture of sintered magnetic alloy by means of plating treatment
JPH05263259A (en) * 1992-03-19 1993-10-12 C Uyemura & Co Ltd Ni-p-mo electroless plating bath and plating method
JPH05295556A (en) * 1992-04-20 1993-11-09 Deitsupusoole Kk Electroless plating solution and plating method using the same
JP2004019004A (en) * 2002-06-18 2004-01-22 Atotech Deutschland Gmbh Electroless nickel plating solution
JP2004039995A (en) * 2002-07-05 2004-02-05 Kyocera Corp Wiring board
JP2004362838A (en) * 2003-06-02 2004-12-24 Sekisui Chem Co Ltd Conductive particulate and anisotropic conductive material
JP2005264309A (en) * 2004-03-22 2005-09-29 Ebara Udylite Kk Electroless nickel plating bath and electroless nickel alloy plating bath
JP2008174774A (en) * 2007-01-17 2008-07-31 Okuno Chem Ind Co Ltd Reduction precipitation type electroless gold plating liquid for palladium film
JP2008274444A (en) * 2008-08-21 2008-11-13 C Uyemura & Co Ltd Electroless nickel plating bath, and plating method using the same
WO2010045559A1 (en) * 2008-10-16 2010-04-22 Atotech Deutschland Gmbh Metal plating additive, and method for plating substrates and products therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013018879; 神戸徳蔵: NPシリーズ無電解めっき 1版4刷, 19900930, 第14頁, 槇書店 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155566A (en) * 2014-02-21 2015-08-27 三菱瓦斯化学株式会社 electroless plating solution

Also Published As

Publication number Publication date
WO2012052832A2 (en) 2012-04-26
WO2012052832A8 (en) 2012-06-21
WO2012052832A3 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
JP6161691B2 (en) Plating bath for electroless deposition of nickel layers
Schlesinger Electroless deposition of nickel
EP2494094B1 (en) Immersion tin silver plating in electronics manufacture
TWI668330B (en) Electroless plating process
EP3480339B1 (en) Electroless platinum plating bath
JP2012087386A (en) Electroless nickel plating bath and electroless nickel plating method using the same
JP2017516920A (en) Aqueous electroless nickel plating bath and method of using the same
EP4086368A1 (en) Electroless nickel strike plating solution and method for forming nickel film
EP3224388B1 (en) Plating bath and method for electroless deposition of nickel layers
JP4831710B1 (en) Electroless gold plating solution and electroless gold plating method
JP2008063644A (en) Electroless nickel alloy plating liquid
JP7012982B2 (en) Electroless nickel-phosphorus plating bath
JP6594694B2 (en) Electroless nickel plating bath
JP7144048B2 (en) Electroless nickel-phosphorus plating bath
KR101507452B1 (en) ENEPIG method for PCB
JP6950051B1 (en) An electroless Ni-P plating catalyst solution and a method for forming an electroless Ni-P plating film using the catalyst solution.
JP4508724B2 (en) Hard gold thin film
JP2013177654A (en) Electrolytic hard gold plating liquid, plating method, and manufacturing method of gold-iron alloy film
TWI765877B (en) Cyanide-free liquid composition for immersion gold plating
JP2023008204A (en) Ni CATALYST SOLUTION FOR ELECTROLESS Ni-P PLATING AND METHOD OF FORMING ELECTROLESS Ni-P PLATING FILM USING THE SAME
JP4129629B2 (en) Electroless gold plating bath
US20220389588A1 (en) Electroless nickel alloy plating baths, a method for deposition of nickel alloys, nickel alloy deposits and uses of such formed nickel alloy deposits
JP2000178755A (en) Substitutional electroless gold plating liquid
JP2021188109A (en) Electroless nickel-phosphorus plating bath
JPH0913175A (en) Electroless nickel plating bath using diamine type biodegradable chelating agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008