JP2012081411A - Solvent dehydrator - Google Patents
Solvent dehydrator Download PDFInfo
- Publication number
- JP2012081411A JP2012081411A JP2010229346A JP2010229346A JP2012081411A JP 2012081411 A JP2012081411 A JP 2012081411A JP 2010229346 A JP2010229346 A JP 2010229346A JP 2010229346 A JP2010229346 A JP 2010229346A JP 2012081411 A JP2012081411 A JP 2012081411A
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- adsorbent
- adsorption tank
- organic solvent
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Liquids With Adsorbents In General (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
本発明は、有機溶剤から水分を除去して溶剤を脱水する装置に関し、特に各種工場や研究施設等から発生した使用済み有機溶剤、あるいは有機溶剤含有ガスから溶剤回収装置を用いて回収した溶剤の再利用のため、該溶剤の脱水処理に用いられる装置である。 The present invention relates to an apparatus for removing water by removing moisture from an organic solvent, in particular, a used organic solvent generated from various factories or research facilities, or a solvent recovered from an organic solvent-containing gas using a solvent recovery apparatus. It is an apparatus used for dehydration treatment of the solvent for reuse.
従来から、有機溶剤から水分を除去して溶剤を脱水する装置としては、蒸留脱水装置が広く用いられている。すなわち、溶剤を加熱蒸発させ、沸点の違いを利用して有機溶剤と不純物を分留することで、純度の高い有機溶剤を得ることができる装置である。 Conventionally, a distillation dehydration apparatus has been widely used as an apparatus for removing water from an organic solvent to dehydrate the solvent. That is, it is an apparatus that can obtain a high-purity organic solvent by evaporating the solvent by heating and fractionating the organic solvent and impurities using the difference in boiling point.
しかしながら、蒸留脱水装置は大型な装置であるために広い設置スペースが必要であり、かつイニシャルコスト、ランニングコスト共に高いことが問題となっている。また、水と沸点の近い有機溶剤は蒸留では分離することができない。 However, since the distillation dehydration apparatus is a large apparatus, a large installation space is required, and both initial cost and running cost are high. In addition, an organic solvent having a boiling point close to that of water cannot be separated by distillation.
かかる問題を解決するために、ゼオライト、イオン交換樹脂、モレキュラーシーブス、活性アルミナ等の吸着材を充填させた吸着塔に、有機溶剤を通液させて不純物を取り除く方法が知られているが(例えば、特許文献1参照)、多量の有機溶剤を脱水する場合は多量の吸着材が必要となる。また、吸着材が破過状態になると吸着材の交換が必要であることから、吸着材の交換労力とランニングコストが増大するため、研究室レベルでは有効な手段であるが、工場や研究施設等から回収される多量の有機溶剤の脱水を行うには満足できるものではなかった。 In order to solve such a problem, there is known a method of removing impurities by passing an organic solvent through an adsorption tower packed with an adsorbent such as zeolite, ion exchange resin, molecular sieves, and activated alumina (for example, , See Patent Document 1), when a large amount of organic solvent is dehydrated, a large amount of adsorbent is required. In addition, since the adsorbent must be replaced when the adsorbent is in a breakthrough state, the labor for replacing the adsorbent and the running cost increase, which is an effective means at the laboratory level. It was not satisfactory to dehydrate a large amount of organic solvent recovered from
更に、近年注目されている技術として膜分離装置が挙げられる(例えば、特許文献2参照)。この方法を用いれば分子サイズが水と異なれば分子ふるいにより分離することができるが、全ての有機溶剤に適用できるわけではなく、有機溶剤によっては膜の劣化が著しく脱水処理が困難である場合があった。 Furthermore, a membrane separation apparatus can be cited as a technique that has attracted attention in recent years (see, for example, Patent Document 2). If this method is used, it can be separated by molecular sieving if the molecular size is different from that of water. However, this method is not applicable to all organic solvents, and depending on the organic solvent, membrane degradation may be significant and dehydration may be difficult. there were.
本発明は、従来技術の課題を背景になされたもので、吸着材を用いた有機溶剤の連続脱水を実現し、基本的には吸着材の交換が必要なく、多量な有機溶剤中から水分を安定的に除去することができる装置を提供することを課題とするものである。 The present invention has been made against the background of the problems of the prior art, and realizes continuous dehydration of an organic solvent using an adsorbent. Basically, it is not necessary to replace the adsorbent, and moisture is removed from a large amount of organic solvent. It is an object of the present invention to provide an apparatus that can be removed stably.
本発明は、従来技術の課題を解決するため、鋭意検討した結果、ついに本発明を完成するに到った。即ち本発明は以下の通りである。
1.有機溶剤を吸着材に導入させ接触させることにより、有機溶剤中に含有している水分を吸着除去する溶剤脱水装置であって、吸着材が充填されている吸着槽と、吸着槽内を減圧させる減圧機と、吸着槽を加熱させる加熱装置を有する溶剤脱水装置。
2.吸着槽と減圧機間に冷却凝縮装置を有する上記1記載の溶剤脱水装置。
3.不活性ガスを吸着槽に導入する不活性ガス導入経路を有する上記1または2に記載の溶剤脱水装置。
4.吸着材がイオン交換樹脂、活性アルミナ、モレキュラーシーブス、およびシリカゲルからなる群より選ばれた少なくとも1種以上の部材を含んでいる上記1〜3のいずれかに記載の溶剤脱水装置。
5.吸着材が水素イオン形、ナトリウム形、およびアルカノールアミン形の少なくとも1つを有する陽イオン交換樹脂である上記1〜4のいずれかに記載の溶剤脱水装置。
6.陽イオン交換樹脂の形態が粒状または繊維状である上記5に記載の溶剤脱水装置。
7.吸着槽を少なくとも2槽有し、1槽が被処理溶剤導入経路から水分を含有した有機溶剤を導入し吸着材に有機溶剤中の水分を吸着させ脱水する脱水工程、1槽が吸着材に吸着した水分を脱着させ吸着槽減圧経路より排出する脱着工程を実施し、各吸着槽がこれらの工程を順次移行しながら、連続的に有機溶剤の脱水をする上記1〜6のいずれかに記載の溶剤脱水装置。
In order to solve the problems of the prior art, the present invention has finally been completed as a result of intensive studies. That is, the present invention is as follows.
1. A solvent dehydration device that adsorbs and removes water contained in an organic solvent by introducing an organic solvent into the adsorbent and bringing it into contact with the adsorbent, and depressurizes the adsorption tank filled with the adsorbent and the inside of the adsorption tank. A solvent dehydrator having a decompressor and a heating device for heating the adsorption tank.
2. 2. The solvent dewatering apparatus according to 1 above, wherein a cooling condenser is provided between the adsorption tank and the decompressor.
3. 3. The solvent dehydration apparatus according to 1 or 2 above, which has an inert gas introduction path for introducing an inert gas into the adsorption tank.
4). 4. The solvent dehydrator according to any one of 1 to 3 above, wherein the adsorbent contains at least one member selected from the group consisting of ion exchange resin, activated alumina, molecular sieves, and silica gel.
5. 5. The solvent dehydrating apparatus according to any one of 1 to 4 above, wherein the adsorbent is a cation exchange resin having at least one of a hydrogen ion form, a sodium form, and an alkanolamine form.
6). 6. The solvent dehydrating apparatus according to 5 above, wherein the cation exchange resin is granular or fibrous.
7). There are at least two adsorption tanks. One tank introduces an organic solvent containing water from the treated solvent introduction path, and adsorbs the moisture in the organic solvent to the adsorbent. The desorption process which desorbs the water | moisture content which carried out and discharge | emits it from an adsorption tank decompression path | route is implemented, Each adsorption tank transfers these processes sequentially, Dehydrating an organic solvent in any one of said 1-6 Solvent dehydrator.
本発明による溶剤脱水装置は、多量の水分を高い効率で連続的に除去することができ、基本的に吸着材の交換の必要が無いため、低コストで、安定的に、高い能力で有機溶剤中の水分を除去することができる。また、吸着槽内を減圧および加温による高効率脱着とすることにより脱着時間が短縮され、経済的である。 The solvent dehydrating apparatus according to the present invention can remove a large amount of water continuously with high efficiency, and basically does not require replacement of the adsorbent, so that the organic solvent can be stably manufactured at high cost with low cost. Water inside can be removed. Moreover, the desorption time is shortened by making the inside of the adsorption tank highly efficient desorption by decompression and heating, which is economical.
以下、図面を参照して、本発明にかかる溶剤脱水装置について詳細に説明する。
図1は本発明の好ましい実施形態の例である。図1に例示した溶剤脱水装置は、被処理溶剤タンク12から溶剤送液ポンプ17によって、水分を含有する有機溶剤を被処理溶剤導入経路13を通じて吸着材11に導入させ、該吸着材11に水分を吸着させ脱水する脱水工程設備と、該吸着材11を加熱装置16にて加熱させると共に減圧機24により吸着槽15を減圧させ、吸着材11から吸着槽減圧経路22を通じて吸着材11に吸着されていた水分を排出する脱着工程設備を備えている。
Hereinafter, a solvent dehydrating apparatus according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is an example of a preferred embodiment of the present invention. In the solvent dehydrating apparatus illustrated in FIG. 1, an organic solvent containing moisture is introduced from the solvent tank 12 to be treated into the adsorbent 11 through the solvent introduction path 13 by the solvent feed pump 17. A dehydration process facility that adsorbs and dehydrates the adsorbent 11, and the adsorbent 11 is heated by the heating device 16, and the adsorber 15 is depressurized by the decompressor 24, and is adsorbed by the adsorbent 11 from the adsorbent 11 through the adsorber depressurization path 22 It is equipped with a desorption process facility that drains the water that was stored.
本発明の溶剤脱水装置は、かかる工程を交互に行う溶剤脱水装置であることが好ましい。かかる構造を採用することにより、脱水処理を連続的に行うことができるからである。 The solvent dehydrating apparatus of the present invention is preferably a solvent dehydrating apparatus that alternately performs such steps. It is because a dehydration process can be performed continuously by adopting such a structure.
脱着工程において、加熱装置16は吸着槽の外側から加熱できる装置であれば特に限定されるものではないが、できる限り早く加熱される装置であることが好ましい。例えば、潜熱の熱容量が大きいスチームを用いた加熱装置が好ましい。また、脱着温度も特に限定されるものではないが、そのときの減圧圧力下における水の沸点よりも高い方が好ましい。 In the desorption step, the heating device 16 is not particularly limited as long as it can be heated from the outside of the adsorption tank, but is preferably a device that is heated as soon as possible. For example, a heating device using steam having a large latent heat capacity is preferable. Further, the desorption temperature is not particularly limited, but is preferably higher than the boiling point of water under reduced pressure at that time.
脱着工程において、減圧機は特に限定されるものではないが、減圧条件は1〜80kPaであることが好ましい。80kPaを超えると減圧圧力が高いため脱着効率が低下し、1kPa未満では減圧圧力が低過ぎるために脱着効率は変わらず、減圧機が大きくなる。このため、減圧機の大きさを考慮した効率的な脱着のためには、減圧条件は10〜50kPaであることがより好ましい。 In the desorption process, the decompressor is not particularly limited, but the decompression condition is preferably 1 to 80 kPa. If it exceeds 80 kPa, the depressurization pressure is high, so that the desorption efficiency is lowered. For this reason, for efficient desorption considering the size of the decompressor, the decompression condition is more preferably 10 to 50 kPa.
図2は本発明のより好ましい実施形態の例である。図2に例示した溶剤脱水装置は、脱着工程において不活性ガス20を不活性ガス導入経路21より吸着槽15に導入し、さらに吸着槽と減圧機間の吸着槽減圧経路22および減圧機の下流に冷却凝縮装置25を備えることで脱着効率をより高めることができる。 FIG. 2 is an example of a more preferred embodiment of the present invention. The solvent dehydrator illustrated in FIG. 2 introduces the inert gas 20 into the adsorption tank 15 through the inert gas introduction path 21 in the desorption process, and further, the adsorption tank pressure reduction path 22 between the adsorption tank and the pressure reducer, and the downstream of the pressure reducer. The desorption efficiency can be further increased by providing the cooling and condensing device 25 in
脱着工程において、不活性ガス20を導入することは好ましい。これは、不活性ガス20を導入することで、吸着材11への熱伝導効率が飛躍的に向上するからである。ただし、不活性ガス20の流量があまり大き過ぎると減圧圧力が高くなり脱着効率が低下する可能性があるため、不活性ガス20の流量は吸着槽15の空間速度SV=100〜1000/hrが好ましい。不活性ガスの一例としては、窒素が挙げられる。 In the desorption process, it is preferable to introduce an inert gas 20. This is because the heat conduction efficiency to the adsorbent 11 is dramatically improved by introducing the inert gas 20. However, if the flow rate of the inert gas 20 is too large, the depressurization pressure is increased and the desorption efficiency may be lowered. Therefore, the flow rate of the inert gas 20 is determined by the space velocity SV of the adsorption tank 15 = 100 to 1000 / hr. preferable. An example of the inert gas is nitrogen.
脱着工程において、吸着材11から脱着された水蒸気を吸着槽と減圧機の間に設けた冷却凝縮装置25で水に凝縮して回収することが好ましい。減圧機24にガスが導入される前にガス中の有機溶剤と水を除去することができるため、減圧機で排出するガスの量を少なくすることができ、減圧機の容量を小さくすることができるためである。 In the desorption step, it is preferable that the water vapor desorbed from the adsorbent 11 is condensed and recovered into water by the cooling condenser 25 provided between the adsorption tank and the decompressor. Since the organic solvent and water in the gas can be removed before the gas is introduced into the decompressor 24, the amount of gas discharged by the decompressor can be reduced, and the capacity of the decompressor can be reduced. This is because it can.
脱着工程において、減圧機の排気ガスを系外に排出する場合、脱着ガス中に微量の溶剤が含まれるため、減圧機の下流に冷却凝縮装置25を設置しても良い。さらに、直接燃焼装置や触媒燃焼装置、蓄熱式燃焼装置等の燃焼装置、活性炭素繊維を使用した溶剤回収装置、スクラバー等の一般的に用いられるガス処理装置にて処理しても良い。 In the desorption process, when the exhaust gas of the decompressor is discharged out of the system, a small amount of solvent is contained in the desorbed gas, so the cooling condenser 25 may be installed downstream of the decompressor. Further, the treatment may be performed by a commonly used gas processing device such as a direct combustion device, a catalytic combustion device, a regenerative combustion device or the like, a solvent recovery device using activated carbon fiber, or a scrubber.
本発明にかかる吸着材は、ゼオライト、活性アルミナ、シリカゲル、イオン交換樹脂等が挙げられ、特に限定するものではないが、性能面から陽イオン交換樹脂であることが好ましい。陽イオン交換樹脂はゼオライト、シリカゲルや活性アルミナと吸着機構が異なり、樹脂内に水分を吸収してゲル膨潤するため、水分の吸着容量が非常に大きい特長を持つ有効な水分吸着材である。 The adsorbent according to the present invention includes zeolite, activated alumina, silica gel, ion exchange resin and the like, and is not particularly limited, but is preferably a cation exchange resin from the viewpoint of performance. Cation exchange resin has an adsorption mechanism different from that of zeolite, silica gel and activated alumina, and absorbs moisture in the resin and swells in the gel. Therefore, it is an effective moisture adsorbent with a very large moisture adsorption capacity.
また、陽イオン交換樹脂は水素イオン形、ナトリウム形、及びアルカノールアミン形等が挙げられ、特に限定するものではないが、スルホン酸基が配位した水素イオン形またはナトリウム形の陽イオン交換樹脂が好ましい。該陽イオン交換樹脂は、スルホン酸基等のイオン交換基を樹脂表面に有するため、有機溶剤は吸着されずに水分のみを吸着可能である特長を持つ有効な水分吸着材である。 The cation exchange resin includes a hydrogen ion form, a sodium form, and an alkanolamine form, and is not particularly limited. However, a cation exchange resin in which a sulfonic acid group is coordinated is used. preferable. Since the cation exchange resin has an ion exchange group such as a sulfonic acid group on the resin surface, the cation exchange resin is an effective water adsorbent having the feature that only the water can be adsorbed without adsorbing the organic solvent.
本発明にかかる吸着材の構造は、粒状、粉体状、ポーラス状、ハニカム状、繊維状等が挙げられ、特に限定されるものではないが、粒状または繊維状が好ましい。水分を含有した有機溶剤が吸着材を通液する際、吸着材の表面面積が広いほど、吸着材と水分の接触効率が高くなり水分吸着能が高くなる構造であり、取扱性が良い形状が、粒状または繊維状である。 Examples of the structure of the adsorbent according to the present invention include granular, powdery, porous, honeycomb, and fibrous forms, and are not particularly limited, but are preferably granular or fibrous. When the organic solvent containing water passes through the adsorbent, the larger the surface area of the adsorbent, the higher the contact efficiency between the adsorbent and moisture and the higher the water adsorption capacity. , Granular or fibrous.
本発明の溶剤脱水装置において、吸着槽を少なくとも2槽有することが好ましい。1槽の吸着槽が被処理溶剤導入経路から水分を含有した有機溶剤を導入し吸着材に有機溶剤中の水分を吸着させ脱水する脱水工程にある時、残りの吸着槽の少なくとも1槽が吸着材に吸着した水分を脱着させ吸着槽減圧経路より排出する脱着工程とし、各吸着槽がこれらの工程を順次連続的に移行することで、連続的に有機溶剤の脱水処理が出来るからである。なお、吸着槽が3槽以上の場合は、2槽以上の吸着槽を吸着工程とし、残り1槽の吸着槽を脱着工程とすることが脱水効率の点から好ましい。 In the solvent dehydrating apparatus of the present invention, it is preferable to have at least two adsorption tanks. When one adsorption tank is in a dehydration process in which an organic solvent containing moisture is introduced from the treated solvent introduction path and the adsorbent adsorbs moisture in the organic solvent to dehydrate, at least one of the remaining adsorption tanks is adsorbed. This is because the desorption process in which moisture adsorbed on the material is desorbed and discharged from the adsorption tank depressurization path, and each adsorption tank sequentially moves through these processes, so that the organic solvent can be dehydrated continuously. When there are three or more adsorption tanks, it is preferable from the viewpoint of dehydration efficiency that two or more adsorption tanks are used as the adsorption process and the remaining one adsorption tank is used as the desorption process.
本発明において脱水可能な有機溶剤は、酢酸エチル、酢酸メチル、酢酸プロピル、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、塩化メチレン、クロロホルム、トリクロロエタン、プロパノール、ブタノール、酢酸、プロピオン酸、またはその混合物と特に限定されるものではなく、多種の有機溶剤において適応可能である。 The organic solvent that can be dehydrated in the present invention is ethyl acetate, methyl acetate, propyl acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methylene chloride, chloroform, trichloroethane, propanol, butanol, acetic acid, propionic acid, or a mixture thereof. It is not limited and can be applied in various organic solvents.
本発明において脱水可能な有機溶剤としては、フィルムを積層させるドライラミネート工程等、多分野における工場等から排出される有機溶剤を含有したガスを、溶剤回収処理装置を用いて回収される有機溶剤等が挙げられる。 The organic solvent that can be dehydrated in the present invention includes a gas containing an organic solvent discharged from factories in various fields, such as a dry laminating process for laminating films, and an organic solvent that is recovered using a solvent recovery processing device. Is mentioned.
例えば、図3に示すような溶剤回収処理装置は、溶剤含有被処理ガス31が吸着ファン32により吸着槽33に導入され、吸着槽33に充填されている活性炭素繊維エレメント34で有機溶剤が吸着され、清浄ガス36として外気に排出される吸着工程と、活性炭素繊維エレメント34にスチーム35を導入することで有機溶剤が脱着され、コンデンサー38で冷却凝縮してセパレーター39で溶剤と水を分離し、回収溶剤40を回収する脱着工程があり、吸着工程と脱着工程を交互に行うことで連続的に処理可能なシステムである。このタイプの溶剤回収処理装置は、脱着にスチームを用いることや、冷却凝縮をすることから回収溶剤中に水分が混入するため、本発明における装置を適用することで、回収溶剤から水分を効果的に除去することが可能である。 For example, in the solvent recovery processing apparatus as shown in FIG. 3, the solvent-containing gas 31 is introduced into the adsorption tank 33 by the adsorption fan 32 and the organic solvent is adsorbed by the activated carbon fiber element 34 filled in the adsorption tank 33. The organic solvent is desorbed by introducing the steam 35 into the activated carbon fiber element 34 and the adsorption step that is exhausted to the outside air as the clean gas 36. The condenser 39 cools and condenses, and the separator 39 separates the solvent and water. There is a desorption process for recovering the recovered solvent 40, and the system can be continuously processed by alternately performing the adsorption process and the desorption process. Since this type of solvent recovery processing equipment uses steam for desorption and cools and condenses, moisture is mixed into the recovered solvent. Therefore, by applying the apparatus of the present invention, moisture is effectively removed from the recovered solvent. Can be removed.
以下、実施例から本発明の詳細をさらに説明するが、本発明はこれら実施例に限定されるものではない。なお、評価は下記の方法により行った。 EXAMPLES Hereinafter, although the detail of this invention is further demonstrated from an Example, this invention is not limited to these Examples. The evaluation was performed by the following method.
(有機溶剤中からの水分除去の評価方法)
3重量%濃度の水分を含有する各種有機溶剤を一定流量で流し、サンプリングした脱水処理後の有機溶剤中の水分濃度を測定した。
(Evaluation method for removing water from organic solvents)
Various organic solvents containing water having a concentration of 3% by weight were flowed at a constant flow rate, and the moisture concentration in the sampled organic solvent after the dehydration treatment was measured.
(水分濃度評価方法)
吸着材入口・出口の水分濃度をカールフィッシャー水分測定法により測定した。
(Water concentration evaluation method)
The moisture concentration at the inlet and outlet of the adsorbent was measured by the Karl Fischer moisture measurement method.
[実施例1]
図1の溶剤脱水装置において、吸着材11として平均粒形1mmの陽イオン交換樹脂(Na型、スルホン酸基、MuromacDW2−1、ムロマチテクノス株式会社製)を、22kg吸着槽15に充填させ、水分3重量%、酢酸エチル94重量%、エタノール3%の混合液を200L/hrで被処理溶剤導入経路13より吸着槽15に導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.03重量%であり、出口水分濃度が2重量%に達するまでの時間が120分間であり、脱水処理溶剤の初期平均水分濃度は0.5重量%であった。また、水分吸着量(q*)は0.6(g/g−resin)と良好な水分吸着量を示した。
[Example 1]
In the solvent dehydrating apparatus of FIG. 1, a cation exchange resin (Na type, sulfonic acid group, Muromac DW2-1, manufactured by Muromachi Technos Co., Ltd.) having an average particle size of 1 mm as an adsorbent 11 is filled in a 22 kg adsorption tank 15 and moisture is contained. A mixed solution of 3% by weight, 94% by weight of ethyl acetate, and 3% of ethanol was introduced into the adsorption tank 15 through the solvent introduction path 13 at 200 L / hr. The adsorption temperature was 30 ° C. As a result of confirming the time-dependent change in the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.03% by weight, and the time until the outlet moisture concentration reached 2% by weight was 120 minutes. The initial average moisture concentration was 0.5% by weight. Further, the moisture adsorption amount (q *) was 0.6 (g / g-resin), indicating a good moisture adsorption amount.
次に、脱着工程における加熱装置16を100℃に設定し、減圧圧力を10kPaに調整したところ、q*が0g/g−resinまで脱着される100%脱着時間は300分であり、q*が0.24g/g−resinまで脱着される60%脱着時間は120分であったことから、サイクルは脱水工程120分、脱着工程120分の切替による各槽交互運転とした。 Next, when the heating device 16 in the desorption process is set to 100 ° C. and the reduced pressure is adjusted to 10 kPa, the 100% desorption time for desorbing q * to 0 g / g-resin is 300 minutes, and q * is Since the 60% desorption time for desorption up to 0.24 g / g-resin was 120 minutes, the cycle was alternated between the tanks by switching between the dehydration process 120 minutes and the desorption process 120 minutes.
本実施例の溶剤脱水装置により脱水処理された混合溶剤は、脱水工程→脱着工程の脱水脱着サイクルの10サイクル以降30サイクルまで繰り返しても混合溶剤中の出口平均水分濃度は1.0重量%以下を維持することが可能であった。脱水と脱着を連続して処理するため、性能低下がなく、安定して高効率で溶剤の脱水処理が可能であった。 The mixed solvent dehydrated by the solvent dehydrating apparatus of the present example has an average water concentration of 1.0% by weight or less at the outlet in the mixed solvent even if it is repeated from 10 cycles to 30 cycles of the dehydration / desorption cycle of the dehydration step → desorption step It was possible to maintain Since the dehydration and desorption were continuously performed, the performance was not deteriorated, and the solvent dehydration process could be stably performed with high efficiency.
[実施例2]
図2の溶剤脱水装置において、吸着材11として平均粒形1mmの陽イオン交換樹脂(Na型、スルホン酸基、MuromacDW2−1、ムロマチテクノス株式会社製)を、22kg吸着槽15に充填させ、水分3重量%、酢酸エチル94重量%、エタノール3%の混合液を200L/hrで被処理溶剤導入経路13より吸着槽15に導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.03重量%であり、出口水分濃度が2重量%に達するまでの時間が120分間であり、脱水処理溶剤の初期平均水分濃度は0.5重量%であった。また、水分吸着量(q*)は0.6(g/g−resin)と良好な水分吸着量を示した。
[Example 2]
In the solvent dehydrating apparatus of FIG. 2, a cation exchange resin (Na type, sulfonic acid group, Muromac DW2-1, manufactured by Muromachi Technos Co., Ltd.) having an average particle size of 1 mm as an adsorbent 11 is filled in a 22 kg adsorption tank 15 and moisture is contained. A mixed solution of 3% by weight, 94% by weight of ethyl acetate, and 3% of ethanol was introduced into the adsorption tank 15 through the solvent introduction path 13 at 200 L / hr. The adsorption temperature was 30 ° C. As a result of confirming the time-dependent change in the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.03% by weight, and the time until the outlet moisture concentration reached 2% by weight was 120 minutes. The initial average moisture concentration was 0.5% by weight. Further, the moisture adsorption amount (q *) was 0.6 (g / g-resin), indicating a good moisture adsorption amount.
次に、脱着工程における加熱装置16を100℃に設定し、冷却凝縮装置25を冷却水を用いて出口温度37℃とし、減圧圧力を10kPaに調整した。また、不活性ガス21として窒素を不活性ガス導入経路21にSV=1000/hrで導入したところ、q*が0g/g−resinまで脱着される100%脱着時間は160分であり、q*が0.18g/g−resinまで脱着される70%脱着時間は120分であったことから、サイクルは脱水工程120分、脱着工程120分の切替による各槽交互運転とした。 Next, the heating device 16 in the desorption process was set to 100 ° C., the cooling condenser 25 was adjusted to an outlet temperature of 37 ° C. using cooling water, and the reduced pressure was adjusted to 10 kPa. Further, when nitrogen was introduced into the inert gas introduction path 21 at SV = 1000 / hr as the inert gas 21, the 100% desorption time for q * to be desorbed to 0 g / g-resin was 160 minutes, and q * Since the 70% desorption time for desorbing up to 0.18 g / g-resin was 120 minutes, the cycle was alternated between the tanks by switching between the dehydration process 120 minutes and the desorption process 120 minutes.
本実施例の溶剤脱水装置により脱水処理された混合溶剤は、脱水工程→脱着工程の脱水脱着サイクルの10サイクル以降30サイクルまで繰り返しても混合溶剤中の出口平均水分濃度は0.9重量%以下を維持することが可能であった。脱水と脱着を連続して処理するため、性能低下がなく、安定して高効率で溶剤の脱水処理が可能であった。 The mixed solvent dehydrated by the solvent dehydrating apparatus of this example has an outlet average water concentration of 0.9% by weight or less even if it is repeated from 10 cycles of the dehydration step to the desorption cycle of the desorption step up to 30 cycles. It was possible to maintain Since the dehydration and desorption were continuously performed, the performance was not deteriorated, and the solvent dehydration process could be stably performed with high efficiency.
[実施例3]
図1の溶剤脱水装置において、吸着材11として平均粒形1mmの陽イオン交換樹脂(Na型、スルホン酸基、MuromacDW2−1、ムロマチテクノス株式会社製)を、22kg吸着槽15に充填させ、水分0.2重量%、塩化メチレン97重量%、メタノール2.8重量%の混合液を50L/hrで被処理溶剤導入経路13より吸着槽15に導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.001重量%であり、出口水分濃度が0.05重量%に達するまでの時間が120分間であり、脱水処理溶剤の初期平均水分濃度は0.01重量%であった。また、水分吸着量(q*)は0.08(g/g−resin)と良好な水分吸着量を示した。
[Example 3]
In the solvent dehydrating apparatus of FIG. 1, a cation exchange resin (Na type, sulfonic acid group, Muromac DW2-1, manufactured by Muromachi Technos Co., Ltd.) having an average particle size of 1 mm as an adsorbent 11 is filled in a 22 kg adsorption tank 15 and moisture is contained. A mixed solution of 0.2% by weight, 97% by weight of methylene chloride and 2.8% by weight of methanol was introduced into the adsorption tank 15 through the solvent introduction path 13 at 50 L / hr. The adsorption temperature was 30 ° C. As a result of confirming the change with time in the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.001% by weight, and the time until the outlet moisture concentration reached 0.05% by weight was 120 minutes. The initial average water concentration of the solvent was 0.01% by weight. Further, the moisture adsorption amount (q *) was 0.08 (g / g-resin), indicating a good moisture adsorption amount.
次に、脱着工程における加熱装置16を100℃に設定し、減圧圧力を10kPaに調整したところ、q*が0g/g−resinまで脱着される100%脱着時間は130分であり、q*が0.008g/g−resinとなる90%脱着時間は120分であったことから、サイクルは脱水工程120分、脱着工程120分の切替による各槽交互運転とした。 Next, when the heating device 16 in the desorption process is set to 100 ° C. and the reduced pressure is adjusted to 10 kPa, the 100% desorption time for q * to be desorbed to 0 g / g-resin is 130 minutes, and q * is Since the 90% desorption time for 0.008 g / g-resin was 120 minutes, the cycle was alternated between the tanks by switching between the dehydration process 120 minutes and the desorption process 120 minutes.
本実施例の溶剤脱水装置により脱水処理された混合溶剤は、脱水工程→脱着工程の脱水脱着サイクルの10サイクル以降30サイクルまで繰り返しても混合溶剤中の出口平均水分濃度は0.02重量%以下を維持することが可能であった。脱水と脱着を連続して処理するため、性能低下がなく、安定して高効率で溶剤の脱水処理が可能であった。 In the mixed solvent dehydrated by the solvent dehydrating apparatus of this example, the average moisture concentration at the outlet in the mixed solvent is 0.02% by weight or less even if the dehydration / desorption cycle of the dehydration process → desorption process is repeated from 10 cycles to 30 cycles. It was possible to maintain Since the dehydration and desorption were continuously performed, the performance was not deteriorated, and the solvent dehydration process could be stably performed with high efficiency.
[比較例1]
図2の溶剤脱水装置にて、吸着材11として平均粒形1mmの陽イオン交換樹脂(Na型、スルホン酸基、MuromacDW2−1、ムロマチテクノス株式会社製)を、22kg吸着槽15に充填させ、水分3重量%、酢酸エチル94重量%、エタノール3%の混合液を200L/hrで被処理溶剤導入経路13より吸着槽15に導入した。吸着温度は30℃であった。その際の出口水分濃度の経時変化を確認した結果、初期の出口水分濃度は0.03重量%であり、出口水分濃度が2重量%に達するまでの時間が120分間であり、脱水処理溶剤の初期平均水分濃度は0.5重量%であった。また、水分吸着量(q*)は0.6(g/g−resin)と良好な水分吸着量を示した。
[Comparative Example 1]
In the solvent dehydrating apparatus of FIG. 2, a cation exchange resin (Na type, sulfonic acid group, Muromac DW2-1, manufactured by Muromachi Technos Co., Ltd.) having an average particle size of 1 mm as an adsorbent 11 is filled in a 22 kg adsorption tank 15; A mixed solution of 3% by weight of water, 94% by weight of ethyl acetate, and 3% of ethanol was introduced into the adsorption tank 15 through the solvent introduction path 13 at 200 L / hr. The adsorption temperature was 30 ° C. As a result of confirming the time-dependent change in the outlet moisture concentration at that time, the initial outlet moisture concentration was 0.03% by weight, and the time until the outlet moisture concentration reached 2% by weight was 120 minutes. The initial average moisture concentration was 0.5% by weight. Further, the moisture adsorption amount (q *) was 0.6 (g / g-resin), indicating a good moisture adsorption amount.
次に、脱着工程における加熱装置16をなくし、冷却凝縮装置25を冷却水を用いて出口温度37℃とし、減圧圧力を20kPaに調整した。また、不活性ガス21として窒素を不活性ガス導入経路21にSV=1000/hrで導入したところ、脱着することはできず、吸着材が凍結した。脱着時に気化熱として吸熱するためである。また、その減圧圧力下における水の沸点より低い温度設定としたときも、同様の結果になると予想される。 Next, the heating device 16 in the desorption process was eliminated, the cooling condenser 25 was adjusted to an outlet temperature of 37 ° C. using cooling water, and the reduced pressure was adjusted to 20 kPa. Moreover, when nitrogen was introduced into the inert gas introduction path 21 at SV = 1000 / hr as the inert gas 21, it was not possible to desorb and the adsorbent was frozen. This is because heat is absorbed as heat of vaporization at the time of desorption. The same result is expected when the temperature is set lower than the boiling point of water under the reduced pressure.
本発明の溶剤脱水装置は、溶剤の連続脱水を実現し、基本的に吸着材の交換が必要なく、多量の水分を高効率、かつ安定的に除去することができる脱水装置であるため、吸着材交換作業を省略でき、コストを低減でき、水分の安定的除去が可能となる。さらに脱着工程を工夫したことにより、ランニングコストを大幅に低減させることができ経済的である。そのため、特に研究所や工場等の幅広い分野から発生する排ガスから溶剤回収処理装置を用いて回収される溶剤の脱水に利用することができ、産業界に寄与することが大である。 The solvent dehydrating apparatus of the present invention realizes continuous dehydration of the solvent, basically does not require replacement of the adsorbent, and is a dehydrating apparatus that can remove a large amount of water with high efficiency and stability. Material replacement work can be omitted, costs can be reduced, and moisture can be removed stably. Furthermore, by devising the desorption process, the running cost can be greatly reduced, which is economical. For this reason, it can be used for dehydration of the solvent recovered from exhaust gas generated from a wide range of fields such as laboratories and factories using a solvent recovery processing apparatus, and contributes greatly to the industry.
11 吸着材
12 被処理溶剤タンク
13 被処理溶剤導入経路
14 処理溶剤タンク
15 吸着槽
16 加熱装置
17 溶剤送液ポンプ
20 不活性ガス
21 不活性ガス導入経路
22 吸着槽減圧経路
23 戻り溶剤経路
24 減圧機
25 冷却凝縮装置
26 凝縮液タンク
31 溶剤含有被処理ガス
32 吸着ファン
33 吸着槽
34 活性炭素繊維エレメント
35 スチーム
36 清浄ガス
37 ダンパー
38 コンデンサー
39 セパレーター
40 回収溶剤
DESCRIPTION OF SYMBOLS 11 Adsorbent 12 Solvent solvent tank 13 Solvent solvent introduction path 14 Process solvent tank 15 Adsorption tank 16 Heating device 17 Solvent feed pump 20 Inert gas 21 Inert gas introduction path 22 Adsorption tank decompression path 23 Return solvent path 24 Decompression Machine 25 Cooling condenser 26 Condensate tank 31 Solvent-containing gas 32 Adsorption fan 33 Adsorption tank 34 Activated carbon fiber element 35 Steam 36 Clean gas 37 Damper 38 Condenser 39 Separator 40 Recovery solvent
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010229346A JP2012081411A (en) | 2010-10-12 | 2010-10-12 | Solvent dehydrator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010229346A JP2012081411A (en) | 2010-10-12 | 2010-10-12 | Solvent dehydrator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012081411A true JP2012081411A (en) | 2012-04-26 |
Family
ID=46240857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010229346A Pending JP2012081411A (en) | 2010-10-12 | 2010-10-12 | Solvent dehydrator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012081411A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102827634A (en) * | 2012-09-05 | 2012-12-19 | 新疆现代石油化工股份有限公司 | adsorption separation device and method for improving base oil viscosity index |
JP2013188700A (en) * | 2012-03-14 | 2013-09-26 | Toyobo Co Ltd | Organic solvent dehydration device |
CN110357199A (en) * | 2019-07-23 | 2019-10-22 | 潍坊科技学院 | A kind of wastewater treatment equipment containing organic solvent |
WO2022209233A1 (en) * | 2021-03-31 | 2022-10-06 | オルガノ株式会社 | Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378980A (en) * | 1976-12-23 | 1978-07-12 | Haibiruka Kk | Method of absorption and separation of mixed fluid components |
US4351732A (en) * | 1980-12-12 | 1982-09-28 | The C. M. Kemp Manufacturing Co. | Dehydration of ethanol |
WO2009087059A1 (en) * | 2008-01-04 | 2009-07-16 | Airbus Operations Gmbh | Prcess and device for dewatering a hydraulic fluid |
JP2009291676A (en) * | 2008-06-03 | 2009-12-17 | Toyobo Co Ltd | Solvent refining apparatus |
-
2010
- 2010-10-12 JP JP2010229346A patent/JP2012081411A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5378980A (en) * | 1976-12-23 | 1978-07-12 | Haibiruka Kk | Method of absorption and separation of mixed fluid components |
US4351732A (en) * | 1980-12-12 | 1982-09-28 | The C. M. Kemp Manufacturing Co. | Dehydration of ethanol |
WO2009087059A1 (en) * | 2008-01-04 | 2009-07-16 | Airbus Operations Gmbh | Prcess and device for dewatering a hydraulic fluid |
JP2009291676A (en) * | 2008-06-03 | 2009-12-17 | Toyobo Co Ltd | Solvent refining apparatus |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013188700A (en) * | 2012-03-14 | 2013-09-26 | Toyobo Co Ltd | Organic solvent dehydration device |
CN102827634A (en) * | 2012-09-05 | 2012-12-19 | 新疆现代石油化工股份有限公司 | adsorption separation device and method for improving base oil viscosity index |
CN102827634B (en) * | 2012-09-05 | 2015-07-22 | 新疆现代石油化工股份有限公司 | Adsorption separation device and method for improving base oil viscosity index |
CN110357199A (en) * | 2019-07-23 | 2019-10-22 | 潍坊科技学院 | A kind of wastewater treatment equipment containing organic solvent |
WO2022209233A1 (en) * | 2021-03-31 | 2022-10-06 | オルガノ株式会社 | Dry ion exchange resin manufacturing method and manufacturing device, and treated liquid purifying method and purifying device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0742041B1 (en) | Method for collecting volatile organic substances | |
CN104107621A (en) | Nitrogen purging-assisted organic exhaust gas recycling method through pressure swing adsorption of adsorbent resin | |
JP5990722B2 (en) | Volatile organic compound recovery equipment | |
JP2010149040A (en) | Organic solvent-containing gas treating system | |
KR101715826B1 (en) | Method for removing organic solvent, and removal device | |
CN103463928A (en) | Method and device for adsorbing and recovering organic waste gas | |
RU2602908C9 (en) | Method of natural gas cleaning from impurities during its preparation for production of liquefied methane, ethane and hydrocarbons wide fraction | |
JP2012081411A (en) | Solvent dehydrator | |
RU2717052C1 (en) | Method and installation of natural gas adsorption drying and purification | |
JP2009291676A (en) | Solvent refining apparatus | |
JP6318580B2 (en) | Organic solvent recovery system | |
JP2012091096A (en) | Solvent dehydration device | |
JP2013188701A (en) | Organic solvent dehydration device | |
JP2010221075A (en) | System for treating organic solvent-containing gas | |
JP2012081412A (en) | Solvent dehydrator | |
JP2012081443A (en) | Solvent dehydrator | |
JP2010029739A (en) | Organic solvent-containing gas treatment system | |
JP6024131B2 (en) | Organic solvent dehydrator | |
JP5207014B2 (en) | Organic solvent dehydrator | |
CN110935281A (en) | Adsorption and regeneration device and method for solid adsorbent for adsorbing volatile organic compounds | |
JP3363986B2 (en) | Solvent recovery method | |
JP2011092871A (en) | Organic solvent recovery system | |
CN111569615A (en) | Method for green energy-saving treatment of VOCs gas of synthetic rubber drying unit and purification system | |
JP2012081410A (en) | Apparatus and method for refining organic solvent | |
JP2010221074A (en) | System for treating organic solvent-containing gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130909 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140416 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140507 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141014 |