[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012079461A - Method for recovering manganese oxide from dry battery - Google Patents

Method for recovering manganese oxide from dry battery Download PDF

Info

Publication number
JP2012079461A
JP2012079461A JP2010221491A JP2010221491A JP2012079461A JP 2012079461 A JP2012079461 A JP 2012079461A JP 2010221491 A JP2010221491 A JP 2010221491A JP 2010221491 A JP2010221491 A JP 2010221491A JP 2012079461 A JP2012079461 A JP 2012079461A
Authority
JP
Japan
Prior art keywords
manganese oxide
oxide particles
dry
particles
crushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010221491A
Other languages
Japanese (ja)
Inventor
Tadahira Ishida
匡平 石田
Yoshiaki Nishina
慶晃 西名
Seiji Enoeda
成治 榎枝
Yoichi Yoshinaga
陽一 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010221491A priority Critical patent/JP2012079461A/en
Publication of JP2012079461A publication Critical patent/JP2012079461A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To recover manganese oxide from dry batteries using a low cost method.SOLUTION: The method for recovering manganese oxide from dry batteries according to the prevent invention includes a crushing and screening step of breaking dry batteries into pieces and then obtaining crushed pieces containing manganese oxide particles and zinc oxide particles as undersize product, a dry process disintegration step of dispersing the aggregate of particles containing manganese oxide particles and zinc oxide particles present in the undersize product derived from the crushing and screening step into individual particles, and a dry process weight difference separation step of separating the disintegrated product from the dry process disintegration step into manganese oxide particles and zinc oxide particles by a difference in weight.

Description

この発明は、乾電池からマンガン酸化物を回収する方法に関する。   The present invention relates to a method for recovering manganese oxide from a dry battery.

一次電池である乾電池は二次電池と異なり繰り返し使用ができないため、従来より、廃棄された乾電池(廃乾電池)を回収して、再利用可能な金属材料を回収することが提案されている。
下記の特許文献1には、廃乾電池を一軸せん断タイプの破砕機で破砕し、破砕物を篩い分け処理して篩上物を磁力選別処理し、鉄成分含有粒片と亜鉛成分および銅成分含有粒片とに分類することが記載されている。篩下物は、そのまま亜鉛および銅成分含有粒片に分類している。そして、得られた鉄成分含有粒片は鉄源原料とし、亜鉛成分および銅成分含有粒片は、非鉄精錬プロセス向けの亜鉛および銅源原料としている。この方法において、二酸化マンガンは、外装鉄缶、亜鉛缶、集電棒、合剤とともに、篩い分け処理によって篩上物とされるが、二酸化マンガンを単独で回収することについては記載されていない。
Since a dry battery, which is a primary battery, cannot be used repeatedly unlike a secondary battery, it has conventionally been proposed to collect a discarded dry battery (waste dry battery) and collect a reusable metal material.
In Patent Document 1 below, waste dry batteries are crushed with a uniaxial shear type crusher, the crushed material is sieved and the material on the sieve is magnetically sorted, and the iron component-containing particles, zinc component and copper component are contained. It is described that it is classified into particle pieces. The under-sieving material is classified as it is into pieces containing zinc and copper components. And the obtained iron component containing particle piece is made into an iron source raw material, and the zinc component and copper component containing particle piece are made into the zinc and copper source material for non-ferrous refining processes. In this method, manganese dioxide is made into a sieve top by a sieving process together with an outer iron can, a zinc can, a current collecting rod, and a mixture, but there is no description about recovering manganese dioxide alone.

下記の特許文献2には、廃乾電池から二酸化マンガン(MnO2 )と塩化亜鉛(ZnCl2 )を分離回収する方法が記載されている。この方法では、先ず、マンガン乾電池を破砕した後に篩い分け処理し、アンダーサイズ品(篩下物)を塩酸に溶解し、その溶液から不純物成分を除去した後に加熱濃縮する。次に、この濃縮物に過塩素酸を加えて加熱することで二酸化マンガンと塩化亜鉛の固形混合物を得、得られた固形混合物に水を加えて塩化亜鉛を溶解した後に濾過することで、固形の二酸化マンガンと水溶性の塩化亜鉛を分離している。 Patent Document 2 below describes a method for separating and recovering manganese dioxide (MnO 2 ) and zinc chloride (ZnCl 2 ) from waste dry batteries. In this method, first, a manganese dry battery is crushed and then subjected to a sieving treatment. An undersized product (undersieving material) is dissolved in hydrochloric acid, and after removing impurities from the solution, the solution is concentrated by heating. Next, by adding perchloric acid to this concentrate and heating, a solid mixture of manganese dioxide and zinc chloride is obtained, and water is added to the obtained solid mixture to dissolve zinc chloride, followed by filtration to obtain a solid mixture. Of manganese dioxide and water-soluble zinc chloride.

特開2004−871号公報JP 2004-871 A 特開平11−191439号公報Japanese Patent Laid-Open No. 11-191439

上述のように、特許文献1には、乾電池から二酸化マンガンを単独で回収する記載はなく、特許文献2の方法は、化学反応を伴う手法で二酸化マンガンと塩化亜鉛を分離回収しているため、溶媒コストや廃水コストが大きいという問題点がある。
この発明の課題は、コストの低い方法で乾電池から二酸化マンガン(MnO2 )などのマンガン酸化物を回収することである。
As described above, Patent Document 1 does not have a description of recovering manganese dioxide alone from a dry battery, and the method of Patent Document 2 separates and recovers manganese dioxide and zinc chloride by a method involving a chemical reaction. There is a problem that solvent cost and waste water cost are large.
An object of the present invention is to recover a manganese oxide such as manganese dioxide (MnO 2 ) from a dry battery by a low cost method.

上記課題を解決するために、この発明は、乾電池を破砕処理した後に篩い分け処理をして、マンガン酸化物粒子と亜鉛酸化物粒子を含む破砕物を篩下物として得る破砕・篩い分け処理工程と、破砕・篩い分け処理工程後の前記篩下物に存在するマンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を、各粒子に分散する乾式解砕処理工程と、乾式解砕処理工程による解砕物から、重さの違いによりマンガン酸化物粒子と亜鉛酸化物粒子を分離する乾式重量差分離処理工程と、を有する乾電池からのマンガン酸化物回収方法を提供する。   In order to solve the above-mentioned problems, the present invention provides a crushing / sieving treatment step of obtaining a crushed material containing manganese oxide particles and zinc oxide particles as a sieving material by sieving after crushing the dry battery. And a dry crushing treatment process in which agglomerates of particles containing manganese oxide particles and zinc oxide particles present in the under sieve after the crushing / sieving treatment step are dispersed in each particle, and a dry crushing treatment There is provided a method for recovering manganese oxide from a dry battery, comprising a dry weight difference separation treatment step of separating manganese oxide particles and zinc oxide particles from a pulverized product according to a step by a difference in weight.

この発明の方法で回収されたマンガン酸化物粒子に対して改質処理を行って得られた酸化マンガン(MnO)は、高炉製鉄方法で製鋼副原料として使用することができる。   Manganese oxide (MnO) obtained by modifying the manganese oxide particles recovered by the method of the present invention can be used as a steelmaking auxiliary material by the blast furnace ironmaking method.

この発明の乾電池からのマンガン酸化物回収方法は、化学反応を伴わない手法であり、しかも、乾式による解砕処理および重量差分離処理を行うため廃水処理が不要となることで、コストを低く抑えることができる。   The method for recovering manganese oxide from a dry battery according to the present invention is a technique that does not involve a chemical reaction, and further eliminates the need for waste water treatment because dry crushing and weight difference separation are performed, thereby reducing costs. be able to.

この発明の一実施形態に相当する、乾電池からのマンガン酸化物回収方法を示す工程図である。It is process drawing which shows the manganese oxide collection | recovery method from a dry cell corresponding to one Embodiment of this invention. 篩下物をEPMAで面分析した結果を示す図である。It is a figure which shows the result of having surface-analyzed the sieving thing by EPMA. 実施形態の方法を実施可能な装置構成を示す概略図である。It is the schematic which shows the apparatus structure which can implement the method of embodiment.

以下、この発明の実施の形態について説明する。
図1は、この発明の一実施形態に相当する、乾電池からのマンガン酸化物回収方法を示す工程図である。
[破砕・篩い分け処理工程]
先ず、回収された使用済み乾電池の中に二次電池が入っていないかを確認し、入っていた場合には二次電池を取り出した残りの使用済み乾電池に対して、破砕処理を行う。この破砕処理では、一軸せん断タイプの破砕機を用いて乾電池を一次破砕する。次に、一次破砕により生じた乾電池の破砕物を篩い分け処理する。この篩い分け処理は、例えば、篩い目が5mm以下のものを用いて行う。篩上物は磁力選別処理して鉄片と残渣に分離する。篩下物は、ほとんどが1mm以下の粒子となる。
Embodiments of the present invention will be described below.
FIG. 1 is a process diagram showing a method for recovering manganese oxide from a dry battery, corresponding to one embodiment of the present invention.
[Crushing / sieving process]
First, it is confirmed whether or not a secondary battery is contained in the collected used dry battery. If it is contained, a crushing process is performed on the remaining used dry battery from which the secondary battery has been taken out. In this crushing process, a dry cell is primarily crushed using a uniaxial shear type crusher. Next, the crushed material of the dry battery generated by the primary crushing is sieved. This sieving process is performed using, for example, a sieve having a sieve mesh of 5 mm or less. The sieve top is separated into iron pieces and residues by magnetic separation. Most of the sieving materials are particles of 1 mm or less.

図2は、この篩下物をEPMAで面分析した結果(どの場所にどの元素が分布しているか)を示す図である。図2から、マンガン(Mn)元素と亜鉛(Zn)元素は別々に存在しており、化学結合はしていないと推測される。また、マンガン(Mn)元素の分布が濃い部分と亜鉛(Zn)元素の分布が濃い部分とでは大きさが異なり、マンガン酸化物粒子は亜鉛酸化物粒子より大きいことが分かる。   FIG. 2 is a diagram showing the results of surface analysis of this under-sieving material by EPMA (which elements are distributed in which locations). From FIG. 2, it is estimated that the manganese (Mn) element and the zinc (Zn) element exist separately and are not chemically bonded. In addition, it can be seen that the manganese oxide particles are larger in size than the zinc oxide particles because the manganese (Mn) element distribution and the zinc (Zn) element distribution are different in size.

MnO2 の比重は5.0g/cm3 、MnOの比重は5.2g/cm3 、Mn2 3 の比重は4.8g/cm3 、ZnOの比重は5.6g/cm3 であり、マンガン酸化物(MnO2 、MnO、Mn2 3 など)と亜鉛酸化物(ZnO)の比重はほぼ同じである。そして、マンガン酸化物粒子は亜鉛酸化物粒子より大きいことから、マンガン酸化物粒子は亜鉛酸化物粒子より重いことが分かる。また、マンガン酸化物粒子の周囲に亜鉛酸化物粒子が凝集していることが分かる。
この篩下物に対して、さらに破砕する粉砕(二次破砕)処理を行う。この粉砕処理により、例えば、ほとんどが100μm以下の粒子となるようにする。
The specific gravity of MnO 2 is 5.0 g / cm 3 , the specific gravity of MnO is 5.2 g / cm 3 , the specific gravity of Mn 2 O 3 is 4.8 g / cm 3 , and the specific gravity of ZnO is 5.6 g / cm 3 , The specific gravity of manganese oxide (MnO 2 , MnO, Mn 2 O 3 etc.) and zinc oxide (ZnO) is almost the same. And since a manganese oxide particle is larger than a zinc oxide particle, it turns out that a manganese oxide particle is heavier than a zinc oxide particle. Moreover, it turns out that the zinc oxide particle has aggregated around the manganese oxide particle.
The sieving material is further crushed (secondary crushing). By this pulverization treatment, for example, most of the particles are 100 μm or less.

[乾式解砕処理工程]
次に、粉砕処理後の破砕物を乾式解砕処理装置(例えば、ジェットミル、ボールミル)にかけて、マンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を、各粒子に分散する。
[乾式重量差分離処理工程]
次に、解砕処理後の解砕物を乾式重量差分離処理装置(例えば、サイクロン選別機、重力沈降機、エアーテーブル)にかけて、重さの違いにより、重量物であるマンガン酸化物(MnO2 など)粒子と軽量物である亜鉛酸化物(ZnO)粒子を分離する。
[改質処理工程]
分離して取り出したマンガン酸化物粒子は、改質処理を行って酸化マンガン(MnO)とし、製鋼副原料として使用する。亜鉛酸化物(ZnO)粒子も回収して、亜鉛精錬メーカーなどに提供する。
なお、篩下物に鉄が含まれている場合、重量物である鉄(Fe)は、重量差分離処理工程でマンガン酸化物とともに重量物側に分離されるため、改質処理工程の前に低磁力(3000ガウス以下)選別処理を行って、マンガン酸化物から分離することが好ましい。
[Dry crushing process]
Next, the crushed material after the pulverization treatment is subjected to a dry pulverization treatment apparatus (for example, a jet mill or a ball mill) to disperse an aggregate of particles including manganese oxide particles and zinc oxide particles in each particle.
[Dry weight difference separation process]
Next, the crushed material after the pulverization treatment is subjected to a dry weight difference separation treatment device (for example, a cyclone sorter, a gravity settling machine, an air table), and a manganese oxide (MnO 2 or the like) that is a heavy material due to a difference in weight. ) Separate particles and zinc oxide (ZnO) particles, which are lightweight.
[Modification process]
The manganese oxide particles separated and taken out are subjected to a modification treatment to make manganese oxide (MnO), which is used as a steelmaking auxiliary material. Zinc oxide (ZnO) particles are also collected and provided to zinc refining manufacturers.
In addition, when iron is contained in the under sieve, iron (Fe), which is a heavy material, is separated to the heavy material side together with manganese oxide in the weight difference separation treatment step. It is preferable to separate from manganese oxide by performing a low magnetic force (3000 gauss or less) sorting process.

この実施形態の方法は、化学反応を伴わない手法で乾電池からマンガン酸化物(MnO2 など)を回収できる。また、乾式による解砕処理および重量差分離処理を行うため、廃水処理が不要となる。よって、コストを低く抑えることができる。
この実施形態の方法は、例えば図3に示すように、ホッパー1と、ジェットミル2と、サイクロン選別機3とを用いて構成した装置で実施できる。
In the method of this embodiment, manganese oxide (such as MnO 2 ) can be recovered from the dry battery by a technique that does not involve chemical reaction. Moreover, since the pulverization process and the weight difference separation process are performed by a dry process, waste water treatment is not necessary. Therefore, the cost can be kept low.
For example, as shown in FIG. 3, the method of this embodiment can be implemented by an apparatus configured using a hopper 1, a jet mill 2, and a cyclone sorter 3.

この装置では、粉砕処理後の篩下物6をホッパー1に投入すると、この篩下物が、ホッパー1の下部に配置された吹き出し装置11により、高圧エアでジェットミル2に導入される。篩下物6はマンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を含んでいるため、この凝集体がジェットミル2内でマンガン酸化物粒子と亜鉛酸化物粒子に解砕された後に、サイクロン選別機3に導入される。   In this apparatus, when the sieving material 6 after pulverization is put into the hopper 1, the sieving material is introduced into the jet mill 2 with high-pressure air by a blowing device 11 disposed at the lower part of the hopper 1. Since the under sieve 6 contains an aggregate of particles including manganese oxide particles and zinc oxide particles, the aggregate is crushed into manganese oxide particles and zinc oxide particles in the jet mill 2. The cyclone sorter 3 is introduced.

そして、サイクロン選別機3により、重さの違いでマンガン酸化物粒子と亜鉛酸化物粒子が分離され、重量物であるマンガン酸化物粒子は容器4に入り、軽量物である亜鉛酸化物粒子は容器5に入る。   Then, the cyclone sorter 3 separates the manganese oxide particles and the zinc oxide particles according to the difference in weight, and the heavy manganese oxide particles enter the container 4, and the lightweight zinc oxide particles are stored in the container. Enter 5.

1 ホッパー
2 ジェットミル(乾式解砕処理装置)
3 サイクロン選別機(乾式重量差分離処理装置)
4 容器
5 容器
6 粉砕処理後の篩下物
1 Hopper 2 Jet mill (dry crusher)
3 Cyclone sorter (dry weight difference separation processing device)
4 Container 5 Container 6 Sieve after pulverization

Claims (1)

乾電池を破砕処理した後に篩い分け処理をして、マンガン酸化物粒子と亜鉛酸化物粒子を含む破砕物を篩下物として得る破砕・篩い分け処理工程と、
破砕・篩い分け処理工程後の前記篩下物に存在するマンガン酸化物粒子と亜鉛酸化物粒子を含む粒子の凝集体を、各粒子に分散する乾式解砕処理工程と、
乾式解砕処理工程による解砕物から、重さの違いによりマンガン酸化物粒子と亜鉛酸化物粒子を分離する乾式重量差分離処理工程と、
を有する乾電池からのマンガン酸化物回収方法。
Crushing treatment after crushing the dry battery to obtain a crushed material containing manganese oxide particles and zinc oxide particles as an under-sieving material;
A dry pulverization treatment step of dispersing an aggregate of particles containing manganese oxide particles and zinc oxide particles present in the sieving material after the crushing and sieving treatment step;
A dry weight difference separation treatment step for separating manganese oxide particles and zinc oxide particles by a difference in weight from a pulverized product by a dry pulverization treatment step,
Method for recovering manganese oxide from a dry battery having
JP2010221491A 2010-09-30 2010-09-30 Method for recovering manganese oxide from dry battery Pending JP2012079461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010221491A JP2012079461A (en) 2010-09-30 2010-09-30 Method for recovering manganese oxide from dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010221491A JP2012079461A (en) 2010-09-30 2010-09-30 Method for recovering manganese oxide from dry battery

Publications (1)

Publication Number Publication Date
JP2012079461A true JP2012079461A (en) 2012-04-19

Family

ID=46239489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010221491A Pending JP2012079461A (en) 2010-09-30 2010-09-30 Method for recovering manganese oxide from dry battery

Country Status (1)

Country Link
JP (1) JP2012079461A (en)

Similar Documents

Publication Publication Date Title
KR102473000B1 (en) Method for recovering valuables from used lithium ion batteries
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP6238070B2 (en) Disposal of used lithium ion batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
US9539581B2 (en) Method for recycling ash
WO2022142067A1 (en) Wet separation process for waste lithium batteries and use thereof
Hu et al. High-intensity magnetic separation for recovery of LiFePO4 and graphite from spent lithium-ion batteries
CN105671316A (en) Method for recovering valuable metals from waste lithium-ion power batteries
JP5206662B2 (en) Method for recovering manganese oxide from dry cells
CN108514949B (en) Recovery method of fine-grain ilmenite
JP3443446B2 (en) Method for recovering cobalt from used lithium secondary battery
CN109378542B (en) Method for recycling copper, aluminum and rubber in waste power lithium batteries
JP2010277987A (en) Method of recovering manganese oxide from dry battery
JP3664586B2 (en) Method and apparatus for metal recovery from solid waste
JP2004000871A (en) System for treating waste and method for treating waste dry cell
JP7268382B2 (en) How to dispose of used lithium-ion batteries
TWI790740B (en) Method for recovering valuable materials from lithium ion secondary cell
JP3448392B2 (en) Method for recovering cobalt, copper and lithium from used lithium secondary batteries
JP2019153561A (en) Method for processing lithium ion battery waste
JP5444821B2 (en) Method for recovering manganese oxide from dry cells
US11549155B2 (en) Reduced iron production method and production apparatus
KR101380806B1 (en) Method for processing sludge
JP2018079459A (en) Processing method of electronic/electrical equipment component scrap
JP2012079461A (en) Method for recovering manganese oxide from dry battery
JP5163387B2 (en) Method for nickel concentration of saprolite ore