[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012078146A - Differential scanning calorimeter - Google Patents

Differential scanning calorimeter Download PDF

Info

Publication number
JP2012078146A
JP2012078146A JP2010222119A JP2010222119A JP2012078146A JP 2012078146 A JP2012078146 A JP 2012078146A JP 2010222119 A JP2010222119 A JP 2010222119A JP 2010222119 A JP2010222119 A JP 2010222119A JP 2012078146 A JP2012078146 A JP 2012078146A
Authority
JP
Japan
Prior art keywords
furnace body
measured
sample
differential scanning
scanning calorimeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010222119A
Other languages
Japanese (ja)
Inventor
Hiromichi Nakajima
弘道 中嶋
Yoshihito Yuasa
善仁 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2010222119A priority Critical patent/JP2012078146A/en
Publication of JP2012078146A publication Critical patent/JP2012078146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a differential scanning calorimeter capable of measuring a sample to be measured with high accuracy by accurately controlling a temperature of a furnace body.SOLUTION: A differential scanning calorimeter 1 comprises: a heat-sensitive plate 10 including a metal placement plate 11 having a measured sample placing part 11a for placing the sample to be measured thereon, a reference material placing part 11b for placing the reference material thereon, and outer peripheral edges 11c, 11d; a metal furnace body 20 in which a joint part 22 joining with the outer peripheral edges of the placement plate 11 is formed; a heater 30 wound around the outer periphery of the furnace body 20 for conducting heat to the placement plate 11; and a differential heat flow detector 40 for detecting a temperature difference between the sample to be measured and the reference material and for outputting the detected temperature difference as a heat flow difference signal. In the differential scanning calorimeter 1, a metal 60, which is the same kind of metal as that forming the furnace body 20, is arranged between the heater 30 and the furnace body 20.

Description

本発明は、被測定試料の物性が温度とともにどのように変化するかを測定する示差走査熱量計に関する。特に、温度を変化させたときに、被測定試料が基準物質に比べて余分に放出又は吸収する熱量を、被測定試料と基準物質との温度差(示差熱)に基づいて測定する示差走査熱量計に関する。   The present invention relates to a differential scanning calorimeter that measures how the physical properties of a sample to be measured change with temperature. In particular, the differential scanning calorific value is measured based on the temperature difference (differential heat) between the sample to be measured and the reference material, when the temperature is changed, and the amount of heat released or absorbed by the sample to be measured compared to the reference material. Regarding the total.

示差走査熱量計(以下、「DSC」と呼ぶ)には、熱補償形DSC(「入力補償形DSC」と呼ぶこともある)と、熱流束形DSC(「定量DTA」と呼ぶこともある)とがある。熱流束形DSCは、銀製の炉体に、厚さ0.2mm程度のコンスタンタン製の感熱板を接合してあり、その感熱板の上面に基準物質(熱的に安定な物質、例えばアルミナ等)と被測定試料とを離して載せている。そして、炉体を加熱しながら、基準物質と被測定試料とに感熱板を介して一定の昇温速度で熱を伝導している。このとき、被測定試料と基準物質との温度差を検出することによって、炉体と被測定試料との間の熱の流れと、炉体と基準物質との間の熱の流れとの差(熱量)を求めている。これにより、被測定試料の融解や転移の際の熱量を求めている。   A differential scanning calorimeter (hereinafter referred to as “DSC”) includes a thermal compensation type DSC (also referred to as “input compensation type DSC”) and a heat flux type DSC (also referred to as “quantitative DTA”). There is. The heat flux type DSC has a constant temperature plate of about 0.2 mm joined to a silver furnace body, and a reference material (a thermally stable material such as alumina) on the upper surface of the heat plate. And the sample to be measured are placed apart. Then, while heating the furnace body, heat is conducted to the reference material and the sample to be measured through the heat sensitive plate at a constant temperature increase rate. At this time, by detecting the temperature difference between the sample to be measured and the reference material, the difference between the heat flow between the furnace body and the sample to be measured and the heat flow between the furnace body and the reference material ( Calorie). Thus, the amount of heat at the time of melting or transition of the sample to be measured is obtained.

このような熱流束形DSCでは、炉体と感熱板との間で熱伝導による熱移動が生じるので、基準物質と被測定試料とに一定の昇温速度で熱を伝導するために、感熱板の外周縁部と炉体の接合部とを均一に密着させて接合することが重要になる。そこで、感熱板の外周縁部と炉体の接合部とをスポット溶接で接合したものが開示されている(例えば、特許文献1参照)。
図2は、従来のDSCを示す概略図である。図2(a)は、DSCを示す平面図であり、図2(b)は、図2(a)に示すB−B線の断面図である。なお、図2(a)では、蓋24の図示を省略している。
DSC101は、コンスタンタン製の載置板11を有する感熱板10と、銀製の炉体20と、炉体20の外周に巻回されたシーズヒータ30と、被測定試料Sと基準物質Bとの温度差を検知するとともに、検知した温度差を熱流差信号として出力する示差熱流検出器40と、炉体20の温度を検知するとともに、検知した温度を温度信号として出力する温調用熱電対50と、制御部(図示せず)とを備える。
In such a heat flux type DSC, heat transfer occurs due to heat conduction between the furnace body and the heat sensitive plate. Therefore, in order to conduct heat to the reference material and the sample to be measured at a constant heating rate, the heat sensitive plate is used. It is important that the outer peripheral edge portion of the steel plate and the joint portion of the furnace body be bonded in a uniform manner. Then, what joined the outer peripheral part of the heat sensitive board and the junction part of the furnace body by spot welding is disclosed (for example, refer patent document 1).
FIG. 2 is a schematic diagram showing a conventional DSC. Fig.2 (a) is a top view which shows DSC, FIG.2 (b) is sectional drawing of the BB line shown to Fig.2 (a). In addition, illustration of the lid | cover 24 is abbreviate | omitted in Fig.2 (a).
The DSC 101 includes a thermal plate 10 having a constantan mounting plate 11, a silver furnace body 20, a sheathed heater 30 wound around the outer periphery of the furnace body 20, and the temperature of the sample S to be measured and the reference material B. A differential heat flow detector 40 that detects the difference and outputs the detected temperature difference as a heat flow difference signal; a temperature control thermocouple 50 that detects the temperature of the furnace body 20 and outputs the detected temperature as a temperature signal; A control unit (not shown).

コンスタンタン製の載置板11は、厚さ0.2mm程度の板状体であり、平面視すると2つの円(例えば、直径12mm)が隣接したような形状となっている。そして、一の円の円形中央部が、被測定試料Sが収納された試料ホルダが載置される被測定試料載置部11aとなるとともに、二の円の円形中央部が、基準物質Bが収納された基準物質ホルダが載置される基準物質載置部11bとなる。そして、被測定試料載置部11aの外周に外周縁部11cが形成されるとともに、基準物質載置部11bの外周に外周縁部11dが形成されている。   The mounting plate 11 made of constantan is a plate-like body having a thickness of about 0.2 mm, and has a shape in which two circles (for example, a diameter of 12 mm) are adjacent when viewed in plan. The circular central portion of one circle becomes the measured sample mounting portion 11a on which the sample holder storing the measured sample S is placed, and the circular central portion of the second circle is the reference substance B. The reference material holder 11b on which the stored reference material holder is placed is formed. An outer peripheral edge portion 11c is formed on the outer periphery of the measured sample mounting portion 11a, and an outer peripheral edge portion 11d is formed on the outer periphery of the reference material mounting portion 11b.

さらに、被測定試料載置部11aと外周縁部11cとの間には、複数の円弧状の第一溝11eがエッチング加工法で形成されている。これにより、シーズヒータ30の熱が、外周縁部11dから被測定試料載置部11aと伝導していくための熱流路が、第一溝11eを避けるため長くなっている。
また、基準物質載置部11bと外周縁部11dとの間には、複数の円弧状の第一溝11gがエッチング加工法で形成されている。これにより、シーズヒータ30の熱が、外周縁部11dから基準物質載置部11bと伝導していくための熱流路が、第一溝11gを避けるため長くなっている。
Further, a plurality of arc-shaped first grooves 11e are formed by an etching method between the measured sample mounting portion 11a and the outer peripheral edge portion 11c. Thereby, the heat flow path for conducting the heat of the sheathed heater 30 from the outer peripheral edge portion 11d to the measured sample mounting portion 11a is long to avoid the first groove 11e.
Further, a plurality of arc-shaped first grooves 11g are formed by an etching method between the reference material placing portion 11b and the outer peripheral edge portion 11d. Thereby, the heat flow path for conducting the heat of the sheathed heater 30 from the outer peripheral edge part 11d to the reference material placing part 11b is long to avoid the first groove 11g.

被測定試料載置部11aの下面には、厚さ0.2mm程度の円板状体(例えば、直径7mm)であるクロメル板12aが、例えば、スポット溶接等により固定されている。さらに、クロメル板12aの下面の中央部には、クロメル/アルメル製の熱電対13aがレーザ溶接されている。
一方、基準物質載置面11bの下面には、厚さ0.2mm程度の円板状体(例えば、直径7mm)であるクロメル板12bが、例えば、スポット溶接等により固定されている。さらに、クロメル板12bの下面の中央部には、クロメル/アルメル製の熱電対13bがレーザ溶接されている。すなわち、載置板11とクロメル板12aとクロメル板12bとで感熱板10が構成されている。
A chromel plate 12a, which is a disc-shaped body (for example, 7 mm in diameter) having a thickness of about 0.2 mm, is fixed to the lower surface of the measurement sample mounting portion 11a by, for example, spot welding. Further, a chromel / alumel thermocouple 13a is laser welded to the center of the lower surface of the chromel plate 12a.
On the other hand, a chromel plate 12b, which is a disk-like body (for example, 7 mm in diameter) having a thickness of about 0.2 mm, is fixed to the lower surface of the reference material placement surface 11b by, for example, spot welding. Further, a chromel / alumel thermocouple 13b is laser welded to the center of the lower surface of the chromel plate 12b. That is, the thermal plate 10 is composed of the mounting plate 11, the chromel plate 12a, and the chromel plate 12b.

なお、詳細は後述するが、熱電対13aは、炉体20に形成された貫通孔21aを通って炉体20の外部に引き出されるとともに、熱電対13bは、炉体20に形成された貫通孔21bを通って炉体20の外部に引き出されることになる。これにより、クロメル板12a及びクロメル板12bは、検知した被測定試料Sと基準物質Bとの温度差を、熱電対13a及び熱電対13bを介して熱流差信号として炉体20の外部に出力している。すなわち、載置板11とクロメル板12aとクロメル板12bと熱電対13aと熱電対13bとで示差熱流検出器40が構成されている。   Although details will be described later, the thermocouple 13a is drawn out of the furnace body 20 through the through hole 21a formed in the furnace body 20, and the thermocouple 13b is formed in the through hole formed in the furnace body 20. It will be pulled out of the furnace body 20 through 21b. Thereby, the chromel plate 12a and the chromel plate 12b output the detected temperature difference between the measured sample S and the reference material B to the outside of the furnace body 20 as a heat flow difference signal via the thermocouple 13a and the thermocouple 13b. ing. That is, the differential heat flow detector 40 is comprised by the mounting board 11, the chromel board 12a, the chromel board 12b, the thermocouple 13a, and the thermocouple 13b.

銀製の炉体20は、例えば、内径30mm、外径35mm、高さ20mmの円筒状を有し、内壁面の下部で内側に突き出すように、平面視で円環形状の接合部22が形成されており、さらに円筒状の下部には水平の四角形の底面23が形成されている。円筒状の上部には、着脱自在な円形状の蓋24によって内部を封止できるようになっている。底面23には、熱電対13aを通すための貫通孔21aと、熱電対13bを通すための貫通孔21bとが形成されている。
そして、接合部22の上面には、上述したように載置板111の下面の外周縁部がスポット溶接により接合されて、熱電対13aが貫通孔21aを通過し、熱電対13bが貫通孔21bを通過するように感熱板10が配置されている。
The silver furnace body 20 has, for example, a cylindrical shape having an inner diameter of 30 mm, an outer diameter of 35 mm, and a height of 20 mm, and an annular joint portion 22 is formed in plan view so as to protrude inward at the lower portion of the inner wall surface. Further, a horizontal rectangular bottom surface 23 is formed in the cylindrical lower portion. The inside of the cylindrical upper part can be sealed with a removable circular lid 24. A through hole 21a for passing the thermocouple 13a and a through hole 21b for passing the thermocouple 13b are formed on the bottom surface 23.
As described above, the outer peripheral edge of the lower surface of the mounting plate 111 is joined to the upper surface of the joint portion 22 by spot welding, the thermocouple 13a passes through the through hole 21a, and the thermocouple 13b passes through the through hole 21b. The heat sensitive plate 10 is arranged so as to pass through.

シーズヒータ30は、金属シース(例えば、ステンレスやNCF600等)の中に発熱体(例えば、ニクロム線)を保持し、その隙間に無機絶縁物(例えば、酸化マグネシウム等)の粉末を充填したものである。そして、シーズヒータ30は、直径6mm〜30mmの円管状をしており、炉体20の外周面に、炉体20の中心軸を中心軸として巻回されている。さらに、制御部に接続されており、制御部からの出力指示に基づいて、加熱するようになっている。これにより、シーズヒータ30の熱が、炉体20、感熱板10、被測定試料S或いは基準物質Bと伝導していくようになっている。   The sheathed heater 30 is configured by holding a heating element (for example, nichrome wire) in a metal sheath (for example, stainless steel or NCF600), and filling a gap with a powder of an inorganic insulator (for example, magnesium oxide). is there. The sheathed heater 30 has a circular tube shape with a diameter of 6 mm to 30 mm, and is wound around the outer peripheral surface of the furnace body 20 with the central axis of the furnace body 20 as the central axis. Further, it is connected to the control unit, and is heated based on an output instruction from the control unit. Thereby, the heat of the sheathed heater 30 is conducted with the furnace body 20, the heat sensitive plate 10, the sample S to be measured or the reference material B.

温調用熱電対50は、クロメル/アルメル製の熱電対であり、炉体20に取り付けられている。そして、温調用熱電対50は、炉体20の温度を温度信号に変換して制御部に出力するようになっている。   The temperature control thermocouple 50 is a chromel / alumel thermocouple and is attached to the furnace body 20. And the thermocouple 50 for temperature control converts the temperature of the furnace body 20 into a temperature signal, and outputs it to a control part.

特開2005−83763号公報Japanese Patent Laying-Open No. 2005-83763

ところで、示差走査熱量計101は、シーズヒータ30の熱が、炉体20、感熱板10、被測定試料S或いは基準物質Bと伝導していくことになるが、円管状のシーズヒータ30は、炉体20の外周面に巻回されている。つまり、シーズヒータ30と炉体20との間には、空気が存在している。よって、シーズヒータ30の熱が、空気を介して炉体20に伝導するため時間がかかり、制御部で炉体20の温度を管理することが困難であった。その結果、被測定試料Sの分析を正確に行えないことがあった。
そこで、本発明は、炉体の温度を正確に管理することにより、被測定試料の測定を高精度に行うことができる示差走査熱量計を目的とするものである。
By the way, in the differential scanning calorimeter 101, the heat of the sheathed heater 30 is conducted to the furnace body 20, the heat sensitive plate 10, the sample S to be measured or the reference material B. It is wound around the outer peripheral surface of the furnace body 20. That is, air exists between the sheathed heater 30 and the furnace body 20. Therefore, it takes time because the heat of the sheathed heater 30 is conducted to the furnace body 20 through the air, and it is difficult to control the temperature of the furnace body 20 by the control unit. As a result, the sample S to be measured may not be accurately analyzed.
SUMMARY OF THE INVENTION The present invention is directed to a differential scanning calorimeter that can accurately measure a sample to be measured by accurately controlling the temperature of a furnace body.

上記課題を解決するためになされた本発明の示差走査熱量計は、被測定試料が載置される被測定試料載置部と、基準物質が載置される基準物質載置部と、外周縁部とを有する金属製の載置板を有する感熱板と、前記載置板の外周縁部が接合される接合部が形成された金属製の炉体と、前記載置板に熱を伝導するために、前記炉体の外周に巻回されたヒータと、前記被測定試料と基準物質との温度差を検知するとともに、検知した温度差を熱流差信号として出力する示差熱流検出器とを備える示差走査熱量計であって、前記ヒータと炉体との間には、前記炉体を形成する金属と同一の種類の金属が配置されるようにしている。   The differential scanning calorimeter of the present invention, which has been made to solve the above problems, includes a measured sample mounting portion on which a measured sample is mounted, a reference material mounting portion on which a reference material is mounted, and an outer periphery. A heat sensitive plate having a metal mounting plate having a portion, a metal furnace body formed with a joint portion to which the outer peripheral edge portion of the mounting plate is bonded, and conducting heat to the mounting plate. Therefore, a heater wound around the outer periphery of the furnace body and a differential heat flow detector for detecting a temperature difference between the sample to be measured and a reference material and outputting the detected temperature difference as a heat flow difference signal are provided. In the differential scanning calorimeter, a metal of the same type as the metal forming the furnace body is arranged between the heater and the furnace body.

以上のように、本発明の示差走査熱量計によれば、ヒータと炉体との間には、炉体を形成する金属と同一の種類の金属が配置されているため、炉体の温度を正確に管理することができ、被測定試料の測定を高精度に行うことができる。   As described above, according to the differential scanning calorimeter of the present invention, the same type of metal as the metal forming the furnace body is disposed between the heater and the furnace body. It can be managed accurately, and the sample to be measured can be measured with high accuracy.

(その他の課題を解決するための手段および効果)
また、本発明の示差走査熱量計においては、前記炉体を形成する金属は、銀であるようにしてもよい。
本発明の示差走査熱量計によれば、炉体は銀であるため、酸化による劣化を防止することができる。
さらに、本発明の示差走査熱量計においては、前記ヒータは、シーズヒータであるようにしてもよい。
(Means and effects for solving other problems)
In the differential scanning calorimeter of the present invention, the metal forming the furnace body may be silver.
According to the differential scanning calorimeter of the present invention, since the furnace body is silver, deterioration due to oxidation can be prevented.
Furthermore, in the differential scanning calorimeter of the present invention, the heater may be a sheathed heater.

本発明に係るDSCの概略図である。It is the schematic of DSC which concerns on this invention. 従来のDSCの概略図である。It is the schematic of conventional DSC. DSCにおける応答時間について説明するための図である。It is a figure for demonstrating the response time in DSC.

以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments described below, and it goes without saying that various aspects are included without departing from the spirit of the present invention.

図1は、本発明に係るDSCを示す概略図である。図1(a)は、DSCを示す平面図であり、図1(b)は、図1(a)に示すA−A線の断面図である。なお、図1(a)では、蓋24の図示を省略している。また、上述したDSC101と同様のものについては、同じ符号を付している。
DSC1は、銀製の載置板11を有する感熱板10と、銀製の炉体20と、炉体20の外周に巻回されたシーズヒータ30と、被測定試料Sと基準物質Bとの温度差を検知するとともに、検知した温度差を熱流差信号として出力する示差熱流検出器40と、炉体20の温度を検知するとともに、検知した温度を温度信号として出力する温調用熱電対50と、制御部(図示せず)とを備える。
FIG. 1 is a schematic diagram showing a DSC according to the present invention. Fig.1 (a) is a top view which shows DSC, FIG.1 (b) is sectional drawing of the AA line shown to Fig.1 (a). In addition, illustration of the lid | cover 24 is abbreviate | omitted in Fig.1 (a). In addition, the same reference numerals are given to the same components as the DSC 101 described above.
The DSC 1 includes a thermal plate 10 having a silver mounting plate 11, a silver furnace body 20, a sheathed heater 30 wound around the outer periphery of the furnace body 20, and a temperature difference between the sample S to be measured and the reference material B. And a differential heat flow detector 40 that outputs the detected temperature difference as a heat flow difference signal, a temperature control thermocouple 50 that detects the temperature of the furnace body 20 and outputs the detected temperature as a temperature signal, and control Part (not shown).

シーズヒータ30と炉体20との間の空間には、炉体20を形成する金属と同一の種類の金属60が配置されている。つまり、シーズヒータ30と炉体20との間の空間には、空気が存在しない。
ここで、シーズヒータ30と銀製の炉体20との間に、炉体20を形成する金属と同一の種類の金属60である銀を配置する製造方法の一例について説明する。
このような製造方法は、銀製の炉体20と銀粘土とを準備する準備工程(A)と、炉体20の外周面に銀粘土を塗布した後、炉体20の外周面にシーズヒータ30を巻き付ける巻付工程(B)と、銀粘土を焼き付ける焼付工程(C)とを含む。
In the space between the sheathed heater 30 and the furnace body 20, the same type of metal 60 as the metal forming the furnace body 20 is disposed. That is, there is no air in the space between the sheathed heater 30 and the furnace body 20.
Here, an example of the manufacturing method which arrange | positions the silver 60 which is the same kind of metal as the metal which forms the furnace body 20 between the sheathed heater 30 and the silver furnace body 20 is demonstrated.
Such a manufacturing method includes a preparation step (A) for preparing a silver furnace body 20 and silver clay, and after applying silver clay to the outer peripheral surface of the furnace body 20, a sheathed heater 30 is applied to the outer peripheral surface of the furnace body 20. The winding process (B) which winds and the baking process (C) which bakes silver clay are included.

(A)準備工程
銀製の炉体20と銀粘土とを準備する。
銀粘土は、銀粒子と水と結合材と含む。なお、銀粘土を用いて粘土の状態で造形をした後に、乾燥させることで水分を蒸発させ、高温で焼くことで結合材が焼失することで、最終的に純度約99.9重量%以上の銀だけが残ることになる。
(A) Preparation Step A silver furnace body 20 and silver clay are prepared.
Silver clay contains silver particles, water, and a binder. In addition, after modeling in the state of clay using silver clay, the moisture is evaporated by drying, and the binder is burned away by baking at a high temperature, so that the final purity is about 99.9% by weight or more. Only silver will remain.

(B)巻付工程
炉体20の外周に銀粘土を厚さ0.5mm〜1mmで塗布した後、炉体20の外周面にシーズヒータ30を巻き付ける。このとき、シーズヒータ30と炉体20との間に、空間が形成されないように銀粘土を配置する。
(C)焼付工程
銀粘土を乾燥させた後、高温(例えば、650℃〜750℃)で焼き付ける。その結果、シーズヒータ30と炉体20との間に、銀が配置されたものが得られる。
(B) Winding process After applying silver clay to the outer periphery of the furnace body 20 with a thickness of 0.5 mm to 1 mm, the sheathed heater 30 is wound around the outer peripheral surface of the furnace body 20. At this time, silver clay is disposed so that no space is formed between the sheathed heater 30 and the furnace body 20.
(C) Baking process After the silver clay is dried, it is baked at a high temperature (for example, 650 ° C. to 750 ° C.). As a result, a structure in which silver is disposed between the sheathed heater 30 and the furnace body 20 is obtained.

以上のように、DSC1によれば、シーズヒータ30と炉体20との間には、炉体20を形成する金属と同一の種類の金属60である銀が配置されているため、炉体20の温度を正確に管理することにより、被測定試料Sの測定を高精度に行うことができる。   As described above, according to DSC 1, since silver, which is the same type of metal 60 as the metal forming the furnace body 20, is disposed between the sheathed heater 30 and the furnace body 20, the furnace body 20. By accurately controlling the temperature, the sample S to be measured can be measured with high accuracy.

以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらによりなんら制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

<実施例1> 銀粘土
(A)準備工程
内径30mm、外径35mm、高さ20mmの銀製の円筒状を有する炉体20を準備するとともに、銀粒子と水と結合材と含む銀粘土(相田化学工業株式会社製、商品名「アートクレイシルバー650」)を準備した。
(B)巻付工程
炉体20の外周面に銀粘土を厚さ5mmで塗布した後、炉体20の外周面に、直径1mmの円管状のシーズヒータ30を巻き付けた。
(C)焼付工程
銀粘土を乾燥させた後、700℃で焼き付けることにより、実施例1に係るDSCを得た。
<Example 1> Silver clay (A) preparation step A furnace 20 having a silver cylindrical shape with an inner diameter of 30 mm, an outer diameter of 35 mm, and a height of 20 mm is prepared, and silver clay containing silver particles, water, and a binder (Aida A product name “Art Clay Silver 650” manufactured by Chemical Industry Co., Ltd.) was prepared.
(B) Winding process After applying silver clay to the outer peripheral surface of the furnace body 20 with a thickness of 5 mm, a tubular sheathed heater 30 having a diameter of 1 mm was wound around the outer peripheral surface of the furnace body 20.
(C) Baking process After the silver clay was dried, the DSC according to Example 1 was obtained by baking at 700 ° C.

<比較例1> グラファイトシート
(A)準備工程
内径30mm、外径35mm、高さ20mmの銀製の円筒状を有する炉体20を準備するとともに、厚さ0.4mmのグラファイトシートを準備した。
(B)巻付工程
炉体20の外周面にグラファイトシートを巻き付けた後、炉体20の外周面に、直径1mmの円管状のシーズヒータ30を巻き付けることにより、比較例1に係るDSCを得た。
Comparative Example 1 Graphite Sheet (A) Preparation Step A furnace body 20 having a silver cylindrical shape with an inner diameter of 30 mm, an outer diameter of 35 mm, and a height of 20 mm was prepared, and a graphite sheet having a thickness of 0.4 mm was prepared.
(B) Winding Step After winding a graphite sheet around the outer peripheral surface of the furnace body 20, a DSC according to Comparative Example 1 is obtained by winding a tubular sheathed heater 30 having a diameter of 1 mm around the outer peripheral surface of the furnace body 20. It was.

<比較例2> 窒化ホウ素(BN)粉末
実施例1における銀粘土の代わりに、窒化ホウ素(BN)粉末を使用したこと以外は実施例1と同様にして、比較例2に係るDSCを得た。
<Comparative Example 2> Boron nitride (BN) powder A DSC according to Comparative Example 2 was obtained in the same manner as in Example 1 except that boron nitride (BN) powder was used instead of silver clay in Example 1. .

<比較例3> 金属パテ(SUS配合)
実施例1における銀粘土の代わりに、金属パテを使用したこと以外は実施例1と同様にして、比較例3に係るDSCを得た。
<Comparative example 3> Metal putty (SUS blend)
A DSC according to Comparative Example 3 was obtained in the same manner as in Example 1 except that metal putty was used instead of silver clay in Example 1.

<比較例4> 伝熱セメント
実施例1における銀粘土の代わりに、伝熱セメントを使用したこと以外は実施例1と同様にして、比較例4に係るDSCを得た。
<Comparative example 4> Heat transfer cement DSC which concerns on the comparative example 4 was obtained like Example 1 except having used the heat transfer cement instead of the silver clay in Example 1. FIG.

<評価>応答時間の測定
実施例1及び比較例1〜4に係るDSCにおいて、シーズヒータ30を10℃/minで昇温して、150℃になった時点でOFFとするように制御した。そして、シーズヒータ30をOFFにしてから温調用熱電対50が150℃になるまでの時間を応答時間として、それぞれの応答時間を測定した。その結果を表1に示す。なお、図3は、DSCにおける応答時間について説明するための図である。
<Evaluation> Measurement of response time In the DSCs according to Example 1 and Comparative Examples 1 to 4, the sheathed heater 30 was heated at 10 ° C./min and controlled to be turned off when the temperature reached 150 ° C. Then, each response time was measured with the time from when the sheathed heater 30 was turned off to when the temperature adjusting thermocouple 50 reached 150 ° C. as the response time. The results are shown in Table 1. In addition, FIG. 3 is a figure for demonstrating the response time in DSC.

<評価>耐久性
実施例1及び比較例1〜4に係るDSCにおいて、シーズヒータ30を10℃/minで昇温して、700℃になった時点でOFFとするように制御することを50回繰り返した。そして、それぞれの外観において、「酸化しているか否か」と、「剥離しているか否か」とを観察した。その結果を表1に示す。なお、問題がなければ「○」とし、問題があれば「×」とした。
<Evaluation> Durability In the DSCs according to Example 1 and Comparative Examples 1 to 4, the sheathed heater 30 is heated at 10 ° C./min and controlled to be turned off when the temperature reaches 700 ° C. Repeated times. Then, in each appearance, “whether it was oxidized” or “whether it was peeled off” was observed. The results are shown in Table 1. If there is no problem, “◯” is indicated. If there is a problem, “X” is indicated.

Figure 2012078146
Figure 2012078146

表1に示すように、実施例1に係るDSCの応答時間は、一番短かった。さらに、実施例1に係るDSCは、酸化も剥離もしなかった。   As shown in Table 1, the response time of the DSC according to Example 1 was the shortest. Furthermore, the DSC according to Example 1 did not oxidize or peel off.

本発明は、被測定試料の物性が温度とともにどのように変化するかを測定する示差走査熱量計に利用することができる。   The present invention can be used in a differential scanning calorimeter that measures how the physical properties of a sample to be measured change with temperature.

1: 示差走査熱量計
10: 感熱板
11: 載置板
11a: 被測定試料載置部
11b: 基準物質載置部
11c、11d: 外周縁部
20: 炉体
22: 接合部
30: シーズヒータ
40: 示差熱流検出器
60: 金属
1: Differential scanning calorimeter 10: Thermal plate 11: Placement plate 11a: Measurement sample placement portion 11b: Reference material placement portion 11c, 11d: Outer peripheral edge portion 20: Furnace body 22: Joint portion 30: Seed heater 40 : Differential heat flow detector 60: Metal

Claims (3)

被測定試料が載置される被測定試料載置部と、基準物質が載置される基準物質載置部と、外周縁部とを有する金属製の載置板を有する感熱板と、
前記載置板の外周縁部が接合される接合部が形成された金属製の炉体と、
前記載置板に熱を伝導するために、前記炉体の外周に巻回されたヒータと、
前記被測定試料と基準物質との温度差を検知するとともに、検知した温度差を熱流差信号として出力する示差熱流検出器とを備える示差走査熱量計であって、
前記ヒータと炉体との間には、前記炉体を形成する金属と同一の種類の金属が配置されることを特徴とする示差走査熱量計。
A thermosensitive plate having a metal mounting plate having a measured sample mounting portion on which the measured sample is mounted, a reference material mounting portion on which the reference material is mounted, and an outer peripheral edge;
A metal furnace body formed with a joint portion to which the outer peripheral edge portion of the mounting plate is joined;
In order to conduct heat to the mounting plate, the heater wound around the outer periphery of the furnace body,
A differential scanning calorimeter comprising a differential heat flow detector for detecting a temperature difference between the sample to be measured and a reference material and outputting the detected temperature difference as a heat flow difference signal,
A differential scanning calorimeter, wherein the same type of metal as the metal forming the furnace body is disposed between the heater and the furnace body.
前記炉体を形成する金属は、銀であることを特徴とする請求項1に記載の示差走査熱量計。   The differential scanning calorimeter according to claim 1, wherein the metal forming the furnace body is silver. 前記ヒータは、シーズヒータであることを特徴とする請求項1又は請求項2に記載の示差走査熱量計。   The differential scanning calorimeter according to claim 1, wherein the heater is a sheathed heater.
JP2010222119A 2010-09-30 2010-09-30 Differential scanning calorimeter Pending JP2012078146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010222119A JP2012078146A (en) 2010-09-30 2010-09-30 Differential scanning calorimeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222119A JP2012078146A (en) 2010-09-30 2010-09-30 Differential scanning calorimeter

Publications (1)

Publication Number Publication Date
JP2012078146A true JP2012078146A (en) 2012-04-19

Family

ID=46238575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222119A Pending JP2012078146A (en) 2010-09-30 2010-09-30 Differential scanning calorimeter

Country Status (1)

Country Link
JP (1) JP2012078146A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164128A (en) * 2018-10-29 2019-01-08 中国科学院上海硅酸盐研究所 A kind of furnace body for thermal-analysis instrumentation
CN113406137A (en) * 2021-05-26 2021-09-17 江苏省沙钢钢铁研究院有限公司 Method for testing solid-liquid phase line temperature of steel sample

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103393U (en) * 1982-12-28 1984-07-11 古河電気工業株式会社 sheet heating element
JPH10132770A (en) * 1996-10-31 1998-05-22 Shimadzu Corp Thermal analysis apparatus
JPH1183770A (en) * 1997-09-08 1999-03-26 Shinku Riko Kk Method and apparatus for measuring specific heat capacity
JP2008051588A (en) * 2006-08-23 2008-03-06 Fuji Electric Holdings Co Ltd Heat transfer performance measuring instrument
JP2008530560A (en) * 2005-02-10 2008-08-07 パーキンエルマー・エルエーエス・インコーポレーテッド Differential scanning calorimeter (DSC) with temperature controlled furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103393U (en) * 1982-12-28 1984-07-11 古河電気工業株式会社 sheet heating element
JPH10132770A (en) * 1996-10-31 1998-05-22 Shimadzu Corp Thermal analysis apparatus
JPH1183770A (en) * 1997-09-08 1999-03-26 Shinku Riko Kk Method and apparatus for measuring specific heat capacity
JP2008530560A (en) * 2005-02-10 2008-08-07 パーキンエルマー・エルエーエス・インコーポレーテッド Differential scanning calorimeter (DSC) with temperature controlled furnace
JP2008051588A (en) * 2006-08-23 2008-03-06 Fuji Electric Holdings Co Ltd Heat transfer performance measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164128A (en) * 2018-10-29 2019-01-08 中国科学院上海硅酸盐研究所 A kind of furnace body for thermal-analysis instrumentation
CN113406137A (en) * 2021-05-26 2021-09-17 江苏省沙钢钢铁研究院有限公司 Method for testing solid-liquid phase line temperature of steel sample
CN113406137B (en) * 2021-05-26 2022-04-19 江苏省沙钢钢铁研究院有限公司 Method for testing solid-liquid phase line temperature of steel sample

Similar Documents

Publication Publication Date Title
JP6061836B2 (en) Thermogravimetry equipment
JP6729882B2 (en) Cooking container with heat sensor
JP4831487B2 (en) Differential scanning calorimeter
EP2988119B1 (en) Device and method of differential thermogravimetric analysis with sample and reference material holder each having its own associated heat sink
JP2011180123A (en) Differential scanning calorimeter
WO2014153438A1 (en) Thermopile differential scanning calorimeter sensor
US10088441B2 (en) Method and device for material analysis
CN105509921B (en) Using metal or alloy as the temperature sensor of temperature-sensing probe and production and school temperature method
JP2008089474A (en) Sensor unit for thermal analysis equipment and method for manufacturing the same
US6431747B1 (en) Heat flux differential scanning calorimeter sensor
JP2012078146A (en) Differential scanning calorimeter
JP2006119139A (en) Combustion kiln
JP2010032344A (en) High-temperature surface tension measuring device
EP3223003B1 (en) Sample container and thermal analyzer
JP2013528292A (en) Thermal analysis sample holder
Yuan et al. T 90 Measurement of Co-C, Pt-C, and Re-C High-Temperature Fixed Points at the NIM
JP3163711U (en) Differential scanning calorimeter
JPH05223764A (en) Furnace unit of differential scanning calorimeter
JPS6156457B2 (en)
CN112557234B (en) Thermal analysis apparatus, sample holder assembly, and thermal analysis method
JP3147015U (en) Differential scanning calorimeter
Todd et al. Copper fixed-point measurements for radiation thermometry at National Research Council
JPH11166909A (en) Differential scanning calorimeter
JPS62231148A (en) Thermal analysis instrument
TWI290222B (en) Method and device for measuring the temperature of hot steel blanks during conveyance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140722