JP2012058047A - Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device - Google Patents
Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device Download PDFInfo
- Publication number
- JP2012058047A JP2012058047A JP2010200547A JP2010200547A JP2012058047A JP 2012058047 A JP2012058047 A JP 2012058047A JP 2010200547 A JP2010200547 A JP 2010200547A JP 2010200547 A JP2010200547 A JP 2010200547A JP 2012058047 A JP2012058047 A JP 2012058047A
- Authority
- JP
- Japan
- Prior art keywords
- fluorescence
- sample
- cell
- optical path
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Optical Measuring Cells (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、分光蛍光光度計に係り、特に溶液試料の透過方向への蛍光スペクトルの測定、更には試料セルの切替え装置に関するものである。 The present invention relates to a spectrofluorometer, and more particularly to measurement of a fluorescence spectrum in the transmission direction of a solution sample, and further to a sample cell switching device.
分光蛍光光度計は、光度計部、データ処理部、操作・処理部から構成される。光源からの連続光を励起側分光器で分光された励起光として測定試料に照射する。試料から放出された蛍光は、蛍光側分光器にて単色光に分光され、検知器にて光を検出した電気信号をアナログデジタル変換機を経てコンピュータに信号強度として取り込まれ、ディスプレイに測定結果が表示される。 The spectrofluorometer is composed of a photometer unit, a data processing unit, and an operation / processing unit. A measurement sample is irradiated with continuous light from a light source as excitation light separated by an excitation-side spectroscope. The fluorescence emitted from the sample is split into monochromatic light by the fluorescence side spectrograph, and the electrical signal detected by the detector is captured as signal intensity by the computer via the analog-digital converter, and the measurement result is displayed on the display. Is displayed.
測定試料に対し、固定波長の励起光を照射し、蛍光波長を変化させた際の波長毎の蛍光強度を測定する蛍光スペクトルは、固定波長に設定された励起側分光器からの励起光を測定試料に照射し、その時の蛍光を蛍光側分光器にて、測定開始波長から測定終了波長まで変化させ波長毎の蛍光の変化を検知器で検出した電気信号をアナログデジタル変換機を経てコンピュータに信号強度として取り込まれ、ディスプレイに測定結果が蛍光波長と蛍光強度の2次元のスペクトルが表示される。 Measure the excitation light from the excitation-side spectrometer set to the fixed wavelength for the fluorescence spectrum that measures the fluorescence intensity for each wavelength when the measurement sample is irradiated with the excitation light of the fixed wavelength and the fluorescence wavelength is changed. The sample is irradiated, and the fluorescence at that time is changed from the measurement start wavelength to the measurement end wavelength by the fluorescence side spectrograph, and the electrical signal detected by the detector at each wavelength is signaled to the computer via the analog-digital converter. The intensity is taken in, and the measurement result is displayed on the display as a two-dimensional spectrum of fluorescence wavelength and fluorescence intensity.
ここで、蛍光は、励起光とは異なる波長として、励起波長より長波長側に出現するため、励起光に起因する透過光、反射光、散乱光は不要な光となる。そのため、例えば、非特許文献1にて示されるように、一般的な蛍光光度計の溶液試料測定においては、4面が透明のセルに試料を入れて、励起光に対して90度の方向に検出光学系を設置して、励起光の透過光、反射光、散乱光を最小にする位置で側方への蛍光を検出する。この試料設置方法は、励起波長における吸光度0.5以下の低濃度領域の試料であれば、試料の濃度と蛍光強度の関係を得ることができる。
Here, since fluorescence appears on a longer wavelength side than the excitation wavelength as a wavelength different from that of the excitation light, transmitted light, reflected light, and scattered light resulting from the excitation light become unnecessary light. Therefore, for example, as shown in
しかしながら、一般的な蛍光光度計は、試料セルの中央部から発光する蛍光を検出しているため、吸光度0.5以上の高濃度領域では、発光部分が試料セルの中央部よりも励起光照射表面近郊にて発光する内部遮へい効果が生じるため、試料の濃度と蛍光強度の関係には誤差が生まれる。 However, since a general fluorometer detects fluorescence emitted from the central portion of the sample cell, in a high concentration region where the absorbance is 0.5 or more, the light emitting portion is irradiated with excitation light more than the central portion of the sample cell. Since an internal shielding effect is generated near the surface, an error occurs in the relationship between the sample concentration and the fluorescence intensity.
そこで、試料セルを励起光に対して傾けて設置することで、反射方向への蛍光を検出することがなされている。この反射方向への蛍光検出は、励起光を透過しない高濃度試料の測定に有用な方法である。しかしながら、励起光を透過する低濃度試料の測定の際は、励起光に起因する反射光と散乱光の影響は側方蛍光の検出位置に比べて大きいため、あまり用いられない。 Therefore, the fluorescence in the reflection direction has been detected by installing the sample cell tilted with respect to the excitation light. This fluorescence detection in the reflection direction is a useful method for measuring a high concentration sample that does not transmit excitation light. However, when measuring a low-concentration sample that transmits excitation light, the influence of reflected light and scattered light due to the excitation light is greater than the detection position of the side fluorescence, and thus it is not often used.
一方、励起光をミラーなどの反射板で90度方向に折り返し、反射板と検出光学系の間に試料セルを設置することで、透過方向への蛍光を測定することもなされている。この透過方向への蛍光検出は、励起光に起因する透過光と散乱光の影響は、側方蛍光の検出位置に比べて大きく、また、励起光を透過しない高濃度試料の測定の際は、透過方向への蛍光は、透過の過程で試料自身に吸収されるので蛍光スペクトル形状が試料濃度と吸収スペクトルによって変化するため、あまり用いられていない。 On the other hand, the fluorescence in the transmission direction is also measured by folding the excitation light in a 90-degree direction with a reflecting plate such as a mirror and installing a sample cell between the reflecting plate and the detection optical system. In the fluorescence detection in this transmission direction, the influence of transmitted light and scattered light caused by excitation light is larger than the detection position of side fluorescence, and when measuring a high concentration sample that does not transmit excitation light, Since the fluorescence in the transmission direction is absorbed by the sample itself during the transmission process, the fluorescence spectrum shape changes depending on the sample concentration and the absorption spectrum, so that it is rarely used.
しかしながら、透過方向への蛍光は、試料が放射する蛍光の総量を把握する上で重要な測定データとなる。溶液試料の蛍光は、四方八方に放射状に現れるが、一般的な蛍光測定においては、4面が透明のセルにおいて、側方・反射・透過方向へのある法線方向のみの相対的な蛍光強度のスペクトル分布を測定されているためである。 However, the fluorescence in the transmission direction is important measurement data for grasping the total amount of fluorescence emitted by the sample. The fluorescence of the solution sample appears radially in all directions, but in a general fluorescence measurement, the relative fluorescence intensity in only a normal direction in the side, reflection, and transmission directions in a cell with four transparent surfaces This is because the spectral distribution is measured.
同一測定系内であれば、相対的な蛍光強度や蛍光スペクトル形状の把握という目的だけであれば、ある法線方向のみの測定にて、試料間の比較は可能である。しかしながら、四方八方に放射状に現れる蛍光の総量を測定することは、この測定系では不可である。 Within the same measurement system, it is possible to compare samples by measuring only in a certain normal direction for the purpose of grasping relative fluorescence intensity and fluorescence spectrum shape. However, it is impossible with this measurement system to measure the total amount of fluorescence that appears radially in all directions.
この場合、試料の設置には積分球を用いる。積分球は、内面に高反射率の白色材料が塗布されており、試料からの光は拡散反射され四方八方に生じる光を均一化させて検出光学系へと導く効果がある。例えば特許文献1に記載されているように、粉末や基板といった固体試料の蛍光を測定する際に、積分球の出射ポートの位置に試料を設置して、固体試料特有の試料表面の凹凸の影響によって生じる蛍光の方向依存性を均一化して検出光学系へ導くことが出来る。
In this case, an integrating sphere is used for setting the sample. The integrating sphere is coated with a white material having a high reflectivity on the inner surface, and the light from the sample is diffusely reflected and has the effect of making the light generated in all directions uniform and leading it to the detection optical system. For example, as described in
しかし、溶液試料の場合は、励起光を透過するため、透過方向への蛍光が生じるので、透過蛍光を正確に測定することが難しいという問題がある。 However, in the case of a solution sample, since excitation light is transmitted, fluorescence in the transmission direction is generated, and thus there is a problem that it is difficult to accurately measure transmitted fluorescence.
前述したように、透過方向への蛍光スペクトル測定において、励起光を透過しない高濃度試料の測定の際は、透過方向への蛍光は、透過の過程で試料自身が吸収する自己吸収によって蛍光スペクトル形状が試料濃度と吸収スペクトルによって変化する。これを解決するためには、試料を希釈して自己吸収の影響の少ない濃度に調製する方法があるが、希釈の手間がかかること、希釈することで蛍光強度が減少し測定精度が低下すること、目的の濃度における蛍光スペクトルの評価ができない等の課題がある。 As described above, in the measurement of the fluorescence spectrum in the transmission direction, when measuring a high-concentration sample that does not transmit excitation light, the fluorescence in the transmission direction is self-absorbed by the sample itself during the transmission process. Varies with sample concentration and absorption spectrum. In order to solve this, there is a method to dilute the sample and prepare a concentration with less influence of self-absorption. However, it takes time and effort to dilute, and by diluting, the fluorescence intensity decreases and the measurement accuracy decreases. There is a problem that the fluorescence spectrum at the target concentration cannot be evaluated.
本発明は、自己吸収の影響が問題となる高濃度試料の透過方向への蛍光測定において、その目的とするところは試料の希釈をせずに、自己吸収の影響を低減可能な透過方向への蛍光スペクトルを得る分光蛍光光度計、およびその測定方法を提供することにある。 In the fluorescence measurement in the transmission direction of a high-concentration sample in which the influence of self-absorption is a problem, the present invention aims at the transmission direction in which the influence of self-absorption can be reduced without diluting the sample. It is an object of the present invention to provide a spectrofluorometer that obtains a fluorescence spectrum and a measuring method thereof.
本発明の他の目的は、透過方向における3次元蛍光スペクトルを網羅的に把握する測定方法、更には簡単な機構で試料セルの切替えが可能となる試料セル切替え装置等を提供することにある。 Another object of the present invention is to provide a measurement method for comprehensively grasping a three-dimensional fluorescence spectrum in the transmission direction, and a sample cell switching device and the like that can switch a sample cell with a simple mechanism.
本発明の特徴は、試料設置部に積分球と光路長の異なる複数のセルを設置したセル切替え装置を搭載した分光蛍光光度計において、反射方向への蛍光スペクトルを測定する第1の処理と、第1の処理で得た反射方向への蛍光スペクトルデータを基にピーク波長の検出をする第1の判定と、第1の処理で得た反射方向への蛍光スペクトルデータからピークの波長に対して、任意の係数を掛け合わせた蛍光強度を有した蛍光ピークよりも短波長側の識別波長を算出する第2の処理と、セル切替え装置にて複数の光路長における透過スペクトルを測定する第3の処理と、第3の処理で得た透過スペクトルから、前記第2の処理で得た処理識別波長における透過率が該当する光路長のセルにて任意の値以上となるかどうかを判定する第2の判定と、判定2で合格した光路長を有するセルにおいて透過方向への蛍光スペクトルを測定する第4の処理を行う機構、更にはその操作の手順にある。 A feature of the present invention is that, in a spectrofluorometer equipped with a cell switching device in which a plurality of cells having different optical path lengths from an integrating sphere are installed in a sample installation portion, a first process for measuring a fluorescence spectrum in the reflection direction; First determination to detect the peak wavelength based on the fluorescence spectrum data in the reflection direction obtained in the first process, and the peak wavelength from the fluorescence spectrum data in the reflection direction obtained in the first process A second process for calculating an identification wavelength shorter than a fluorescence peak having a fluorescence intensity multiplied by an arbitrary coefficient, and a third process for measuring a transmission spectrum in a plurality of optical path lengths by a cell switching device. A second determination is made as to whether or not the transmittance at the processing identification wavelength obtained in the second process is equal to or greater than an arbitrary value in the cell having the corresponding optical path length from the transmission spectrum obtained in the process and the third process. Judgment and judgment In the fourth processing mechanism for measuring the fluorescence spectrum of the transmission direction in a cell having an optical path length that pass, further, the procedure of the operation.
本発明の他の特徴は、光路長の異なる複数のセルにおける透過方向への蛍光スペクトルを測定して、X軸に蛍光波長、Y軸に光路長、Z軸に蛍光強度を表示する3次元蛍光スペクトルを測定すること、更には試料セルを切替えるための機構等にあるが、その詳細は以下に述べる発明の実施の形態で明らかにする。 Another feature of the present invention is that three-dimensional fluorescence is obtained by measuring fluorescence spectra in the transmission direction in a plurality of cells having different optical path lengths and displaying the fluorescence wavelength on the X axis, the optical path length on the Y axis, and the fluorescence intensity on the Z axis. The spectrum measurement and the mechanism for switching the sample cell, etc., are described in detail in the embodiments of the invention described below.
本発明によれば、自己吸収の影響が生じる高濃度試料の透過方向への蛍光測定において、試料の希釈をせずに、自己吸収の影響を低減した蛍光スペクトルの測定が可能となり、また、その為に好適な試料セル切替え装置等を簡単な機構で実現することができる。 According to the present invention, in the fluorescence measurement in the transmission direction of a high-concentration sample in which the influence of self-absorption occurs, it is possible to measure the fluorescence spectrum with reduced influence of self-absorption without diluting the sample. Therefore, a suitable sample cell switching device or the like can be realized with a simple mechanism.
以下、本発明の実施形態について、図を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図1に本発明の第1の実施例に係る分光蛍光光度計の構成図を示す。
先ず分光蛍光光度計の基本構成部分について説明する。図1に示すように、分光蛍光光度計100は、光度計部110、データ処理部120、操作・表示部130から構成される。更に、光度計部110は、励起側光学系111、試料室112、蛍光側光学系113及び駆動部114に大別される。ここで、矢印は光の受け渡しの流れを示し、実線は電気信号のつながりを示す。光源1から生じた連続光を励起側分光器2で励起光として分光し、ビームスプリッタ3を経て透過蛍光用試料セル16内に入れた測定試料6に照射される。
FIG. 1 shows a configuration diagram of a spectrofluorometer according to a first embodiment of the present invention.
First, basic components of the spectrofluorometer will be described. As shown in FIG. 1, the
この時、ビームスプリッタ3で一部の分光された励起光は、モニタ検知器4にて光量を測定し光源の変動の補正がなされている。試料から放出された蛍光は、蛍光側分光器7にて単色光に分光され、検知器8にて光を検出し、アナログデジタル変換器9を経てコンピュータ10に信号強度として取り込まれ、表示ディスプレイ13にて測定結果が表示される。
At this time, a part of the excitation light split by the
次に、波長駆動系について説明する。コンピュータ10の指令によって、励起側パルスモータ12が駆動することで、目的の波長位置に励起側分光器2がセットされる。また、蛍光側分光器7は、コンピュータ10の指令によって蛍光側パルスモータ11が駆動することで、目的の波長位置にセットされる。励起側分光器2や蛍光側分光器7については、回折格子やプリズムなどの光学素子が用いられており、励起側パルスモータ12や蛍光側パルスモータ11を動力とし、ギヤとカムによって、それらを回転運動させることでスペクトルスキャンされる。
Next, the wavelength driving system will be described. The excitation-
このような基本構成において、本実施例の特徴は、透過蛍光を検出するための構成にある。透過蛍光用透過蛍光について、背面に生じる蛍光は背面方向に対してあらゆる方向に生じることから、試料室112に積分球15を用いている。試料6は、背面に透過する蛍光を効率よく積分球に入射させるために、積分球15の開口部よりも大きな面積を有する透過蛍光用試料セル16に入れる。透過蛍光用試料セル16は、円板上に光路長が異なる複数の試料セルが設置される試料セル切替え装置18に設置している。
In such a basic configuration, a feature of the present embodiment is a configuration for detecting transmitted fluorescence. Regarding the transmitted fluorescence for transmitted fluorescence, since the fluorescence generated on the back surface is generated in all directions with respect to the back surface direction, the
図2はセル切替え装置18の構成を示した構成図であり、図2(A)に正面図、図2(B)に側面図を示す。本実施例における試料セル切替え装置18は、コンピュータ10を通じて試料セル切替えパルスモータ19によって、セル切替え装置を回転させることで、任意のセルを選択可能な機能を有する。
FIG. 2 is a configuration diagram showing the configuration of the
図2の試料セル切替え装置は、セル台51から56まで6つのセル設置台を有している。セル台の個数は試料室112の大きさによって決められる。今回はセル台を6つ搭載した例を示す。ここでは、予め透過蛍光用試料セル16の光路長をコンピュータ10に登録する。
The sample cell switching device of FIG. 2 has six cell installation bases from
透過蛍光用試料セル16は、蛍光を効率よく積分球15に入射させるために、積分球15の開口部に密着する必要がある。そのため、試料セル切替え装置18は、コンピュータ10を通じて位置調整パルスモータ20と位置調整タレット回転軸21によって、セル切替え装置18を移動し、透過蛍光用試料セル16を積分球の開口部に密着する機能を有する。透過蛍光用試料セル16を密着させるために調整する距離を距離L(mm)する。
The transmitted
また、セル切替え装置18の図2に示す原点位置として距離O(mm)を予めコンピュータに登録する。この時、透過蛍光用試料セル16の光路長をD(mm)とした場合、距離L(mm)は、原点位置の距離O(mm)から光路長D(mm)を差し引いた値となる。
Further, the distance O (mm) is registered in advance in the computer as the origin position of the
例えば、積分球15の開口部と原点位置の距離Oを20mmとし、透過蛍光用試料セル16の光路長Dを5mmとした場合、調整すべき距離Lは15mmとなる。この距離Lを得ることで透過蛍光用試料セル16への過剰の負荷からの破損を避けることができる。
For example, when the distance O between the opening of the integrating
また、透過蛍光用試料セル16とセル切替え装置18の距離が十分でない場合、セル切替え装置18の回転により、積分球15と透過蛍光用試料セル16が物理的に接触し透過蛍光用試料セル16の脱落や破損の恐れがあるので、セル切替え装置18が回転する際には、一旦、セル切替え装置18は原点位置に戻してから回転することとする。
Further, when the distance between the transmission
図3は、励起光が入射する開口部に対して対の位置となる開口部にセル切替え装置18を設置した際の構成図であり、図3(A)に正面図、図3(B)に側面図を示す。反射方向への蛍光スペクトルを測定する際、セル切替え装置18にて、試料6を入れた反射蛍光用試料セル17とブランク溶媒を入れた反射蛍光用試料セル17をそれぞれ設置し、任意に切り替えて測定するために用いる。
FIG. 3 is a configuration diagram when the
図4は、本実施例に係る透過方向への蛍光スペクトル測定におけるフローチャートである。蛍光は、ストークスの法則より励起波長よりも必ず長波長に出現する。このことは、蛍光波長よりも短い波長に試料の吸収波長が存在し、長波長側の透過スペクトルは夾雑物の影響が無い限り透過率100%に近い結果が得られる。つまり、光路長を変化させて吸収が開始される波長を見出せば、それよりも長波長側における吸収の影響は無く、透過方向の蛍光スペクトルを正確に測定することにつながる。 FIG. 4 is a flowchart in the fluorescence spectrum measurement in the transmission direction according to the present embodiment. Fluorescence always appears longer than the excitation wavelength due to Stokes' law. This indicates that the absorption wavelength of the sample is present at a wavelength shorter than the fluorescence wavelength, and the transmission spectrum on the long wavelength side is close to 100% transmittance as long as there is no influence of impurities. That is, if the wavelength at which absorption is started is found by changing the optical path length, there will be no influence of absorption on the longer wavelength side, leading to accurate measurement of the fluorescence spectrum in the transmission direction.
これを実現するためのフローチャートが図4であり、それぞれの処理と判定内容は次の通りである。処理1は、反射方向への蛍光スペクトルの測定である。判定1は、処理1で得た反射方向への蛍光スペクトルからのピーク波長の検出である。ピーク波長があった場合、試料は蛍光を有するものとして、処理2へ進む。ピーク波長が無かった場合、試料は蛍光を有していないとして、シーケンスは終了する。処理2は処理1で得た反射方向への蛍光スペクトルから識別波長λrfを算出する処理である。
FIG. 4 is a flowchart for realizing this, and each process and determination contents are as follows.
処理3は、光路長を変化させた際の透過スペクトルの測定である。判定2は、透過方向への蛍光スペクトルを測定するために適した光路長を有したセルの判定である。処理4は、判定2で合格した光路長を有するセルにおける透過方向への蛍光スペクトルの測定である。
以下、それぞれの処理と判定内容の詳細について、図面を用いて説明する。
先ず、処理1について詳細説明する。処理1は、反射方向への蛍光スペクトルの測定である。処理1においては、試料6の測定および試料6のブランク溶媒の測定を実施する。
図5は本実施例に係る反射方向への蛍光スペクトルの構成を示した構成図である。処理1の反射方向への蛍光スペクトルを測定する際には、試料室112に設置した積分球15において、励起光が入射する開口部に対して対の位置となる開口部に、セル切替え装置18に試料6もしくはブランク溶媒を入れた反射蛍光用試料セル17を設置する。
Hereinafter, details of each process and determination contents will be described with reference to the drawings.
First, processing 1 will be described in detail.
FIG. 5 is a configuration diagram showing the configuration of the fluorescence spectrum in the reflection direction according to the present embodiment. When measuring the fluorescence spectrum in the reflection direction of the
図6は反射方向への蛍光スペクトルの一例を示したグラフである。縦軸は相対蛍光強度、横軸は波長(nm)で表される。 FIG. 6 is a graph showing an example of the fluorescence spectrum in the reflection direction. The vertical axis represents relative fluorescence intensity, and the horizontal axis represents wavelength (nm).
判定1について詳細説明をする。判定1は、処理1で得た反射方向への蛍光スペクトルからのピーク検出である。ここで、試料6の反射方向への蛍光スペクトルのピークトップの蛍光強度Frfとし、ブランク溶媒の同じ波長の蛍光強度Fbkgとした場合、蛍光強度Frfは、この蛍光強度Fbkgに対して、十分に大きい必要条件がある。一般的には、蛍光強度Fbkgの複数回測定の標準偏差σbkgに対して、試料6の蛍光強度が3倍以上得られている場合をピークとみなすとされている。理想的には10倍以上の蛍光強度が得られていることが望ましい。
The
ここで、ピーク判定のための係数をkとすると、蛍光強度Fbkg×kよりも蛍光強度Frfが大きい波長をピーク波長とみなし、複数ある場合は、最も蛍光強度が大きい波長を反射方向への蛍光スペクトルのピークを蛍光波長波長λftとする。この蛍光波長λftが存在する場合、判定合格となり、次の処理2へと進む。一方、この蛍光波長λftが存在しない場合、試料からの蛍光は確認されないということなので判定は不合格となり、シーケンスは終了する。
Here, assuming that the coefficient for peak determination is k, the wavelength having the fluorescence intensity Frf larger than the fluorescence intensity Fbkg × k is regarded as the peak wavelength, and when there is a plurality, the wavelength with the highest fluorescence intensity is the fluorescence in the reflection direction. The peak of the spectrum is the fluorescence wavelength wavelength λft. If this fluorescence wavelength λft exists, the determination is passed and the process proceeds to the
処理2について説明する。判定1にて確認された反射方向への蛍光スペクトルのピーク蛍光波長λftにおける蛍光強度Frfに対して、感度係数となるαを掛け合わせたFrf×αとなる蛍光強度を有する蛍光波長を識別波長λrfとする。ここで、感度係数αは、1よりも小さい正数とする。識別波長λrfは、ピークトップの蛍光波長λftから短波長側にサーチし、蛍光スペクトルデータと最初にFrf×αの値が一致した波長とする。これは、測定を開始した短波長側からサーチしていくと、蛍光強度が微弱でノイズが大きいスペクトルの場合、蛍光が生じていない領域を識別波長λrfとして誤った結果を防ぐためである。
ピークトップの蛍光波長λftから短波長側にサーチすれば、上記のような誤認の影響が少なく高い精度で反射方向への蛍光スペクトルの立ち上がりの波長を認識することができる。感度係数αについては、反射方向への蛍光スペクトルの立ち上がりの波長を認識するという目的から、0.1〜0.01程度の範囲で設定することが望ましい。例えば、感度係数α=0.1とすると、ピークトップの蛍光強度Frfの0.1倍となる蛍光強度の波長が識別波長λrfが得られる。 By searching from the peak top fluorescence wavelength λft to the short wavelength side, it is possible to recognize the rising wavelength of the fluorescence spectrum in the reflection direction with high accuracy and less influence of the above-mentioned misidentification. The sensitivity coefficient α is preferably set in the range of about 0.1 to 0.01 for the purpose of recognizing the rising wavelength of the fluorescence spectrum in the reflection direction. For example, if the sensitivity coefficient α = 0.1, the wavelength of the fluorescence intensity that is 0.1 times the peak-top fluorescence intensity Frf is obtained as the identification wavelength λrf.
処理3について説明する。処理3は、光路長の異なる複数のセルにて透過スペクトルを測定する処理である。透過スペクトルは、励起側分光器2と蛍光側分光器7を同一波長にてスキャンする同期スペクトルから得る。まず、セル切替え装置18に試料6のブランク溶媒を入れたそれぞれの光路長のセルを設置し、波長毎の光量を透過率100%としたベースラインをそれぞれの光路長のセルに対して装置に記憶させておく。セルは、例えば光路長は、50mm程度の長光路セルも適用可能だが、一般的な光路長10mm以下を用い、試料セル切替え装置18を用いる場合には、6つのセルを設置可能であるから、0.5mm, 1mm, 3mm, 5mm, 7mm, 10mm程度の間隔でセルの光路長を選択することが望ましい。次に、セル切替え装置に試料6を入れたそれぞれの光路長のセルを設置し、波長毎の光量をベースラインの光量で割り算することで、透過スペクトルを得る。
図7は、透過スペクトルの一例を示したグラフである。縦軸は透過率(%)、横軸は波長(nm)である。それぞれの光路長にて得たスペクトルは、(1)〜(6)として重ねて表示している。 FIG. 7 is a graph showing an example of a transmission spectrum. The vertical axis represents transmittance (%), and the horizontal axis represents wavelength (nm). The spectra obtained at the respective optical path lengths are overlaid and displayed as (1) to (6).
判定2について説明をする。判定2は、透過方向への蛍光スペクトルを測定するために適した光路長γの判定である。光路長γは、処理2で得た識別波長λrfにおける透過率で決定される。この透過率を識別透過率βする。それぞれの光路長で得た透過スペクトルが判定対象となり、識別波長λrfにおける識別透過率がβ%以上となる場合、判定は合格となり、次の処理4へと進む。一方、識別透過率がβ%以下の場合、蛍光が生じる領域にて光が透過しないということであり、透過方向への蛍光が試料自身によって吸収される可能性があるので、判定は不合格となり、該当する光路長のセルにおけるシーケンスは終了する。この時の光路長γは透過方向の蛍光スペクトルを測定する際に適した光路長となる。例えば、図7であれば、(1)と(2)の光路長が該当する。識別透過率βは、百分率(%)で表され、0〜100の数値とする。試料の吸収される割合を把握することから、βは、80〜100の数値であることが望ましい。
The
図8は、3次元透過スペクトルの一例を示したグラフである。3次元透過スペクトルは等高線図や鳥瞰図にて描く。ここで、得られた透過スペクトルは、透過率(%)、波長(nm)、光路長(mm)という3つの事象で得られており、3次元表示することが可能である。X軸に波長(nm)、Y軸に光路長(mm)、Z軸に透過率(%)を示す。ここで、図6は、X軸とY軸に対して、同一の透過率となる測定値をZ軸として等高線にて描画している。3次元表示することで、識別波長λrfと識別波長β%の交点から、最適な光路長γを得ることができ、その情報を視覚的にも捕らえることが可能である。この時、3次元表示の際、例えば0.5mm, 1mm, 3mm, 5mm, 7mm, 10mm程度の間隔でセルの光路長を変化させた場合、それぞれの光路長間のデータを補間することで、実際に取得していない光路長の透過スペクトルを演算にて把握できる。このような点から、光路長を変化させた際の3次元透過スペクトルは、最適な光路長γを詳細に得るために有用である。 FIG. 8 is a graph showing an example of a three-dimensional transmission spectrum. The three-dimensional transmission spectrum is drawn with a contour map or a bird's eye view. Here, the obtained transmission spectrum is obtained by three events of transmittance (%), wavelength (nm), and optical path length (mm), and can be displayed three-dimensionally. The X axis indicates the wavelength (nm), the Y axis indicates the optical path length (mm), and the Z axis indicates the transmittance (%). Here, in FIG. 6, the measurement value having the same transmittance is drawn with contour lines on the X axis and the Y axis as the Z axis. By displaying in three dimensions, the optimum optical path length γ can be obtained from the intersection of the identification wavelength λrf and the identification wavelength β%, and the information can be captured visually. At this time, when the optical path length of the cell is changed at intervals of about 0.5 mm, 1 mm, 3 mm, 5 mm, 7 mm, and 10 mm, for example, by interpolating the data between the optical path lengths, The transmission spectrum of the optical path length not actually acquired can be grasped by calculation. From these points, the three-dimensional transmission spectrum when the optical path length is changed is useful for obtaining the optimum optical path length γ in detail.
処理4について説明する。処理4は、判定2で合格した光路長γのセルにおける透過方向の蛍光スペクトルの測定である。
図9は、透過方向への蛍光スペクトルを測定した一例を示したグラフである。図7に示すように光路長γのセルを用いることでで、自己吸収の影響を受けずに透過方向の蛍光スペクトルを得ることが可能となる。なお、光路長γを極端に小さくすると、試料からの蛍光量が不足し、ノイズが大きいスペクトルとなることが懸念されるので、やみくもに光路長が小さいセルを用いれば良いという訳ではない。 FIG. 9 is a graph showing an example of measuring the fluorescence spectrum in the transmission direction. As shown in FIG. 7, by using a cell having an optical path length γ, it is possible to obtain a fluorescence spectrum in the transmission direction without being affected by self-absorption. If the optical path length γ is extremely small, there is a concern that the amount of fluorescence from the sample will be insufficient and the spectrum will have a large noise. Therefore, it is not necessary to use a cell with a short optical path length.
図10は、透過方向への蛍光スペクトルを測定した一例を示したグラフである。判定2で合格と不合格となった光路長のセルを用いた際の一例である。図10に示すように、光路長がγよりも大きいセルを用いた場合、蛍光ピークの短波長側が自己吸収されるので、長波長側にシフトしたようなスペクトル形状となる。
FIG. 10 is a graph showing an example of measuring the fluorescence spectrum in the transmission direction. It is an example at the time of using the cell of the optical path length which became the pass and failure in the
以上のように、本実施例によれば、これらの処理と判定を実行することで、透過方向への蛍光スペクトルを測定する際に試料を希釈せずに測定することが可能となる。 As described above, according to the present embodiment, by performing these processes and determinations, it is possible to measure without diluting the sample when measuring the fluorescence spectrum in the transmission direction.
本発明の第2の実施例として、処理3と判定2の間に処理5を追加した例を示す。
処理5について説明する。処理5は、透過方向への蛍光スペクトルを試料セル切替え装置18にてそれぞれ光路長を変化させて測定し、X軸に蛍光波長(nm)、Y軸に光路長(mm)、Z軸に蛍光強度(任意単位)を示す透過方向における3次元蛍光スペクトル測定である。
As a second embodiment of the present invention, an example in which a
図11は、光路長を変化させた際の3次元蛍光スペクトルの一例を示したグラフである。3次元蛍光スペクトルは等高線図や鳥瞰図にて描く。光路長毎にて蛍光強度が異なる場合には、ピークトップを規格化すると異なる強度においても比較しやすくなる。 FIG. 11 is a graph showing an example of a three-dimensional fluorescence spectrum when the optical path length is changed. The three-dimensional fluorescence spectrum is drawn with a contour map or a bird's eye view. When the fluorescence intensity differs for each optical path length, standardization of the peak top facilitates comparison even at different intensities.
図12は、光路長を変化させた際の3次元蛍光スペクトルを実施する際のフローチャートである。処理3と判定2の間に処理5が追加されている。処理5の後に判定2を実行するが、この時、3次元蛍光スペクトル上における判定2にて導き出す光路長γmmに着目する。例えば、3次元蛍光スペクトルにおいて光路長γmm以下であれば識別波長λrfnmからスペクトルが立ち上がる一定間隔の等高線が得られる。一方、光路長γmmよりも光路長が大きくなるとスペクトルは短波長の蛍光が吸収されるので、識別波長λrf nmよりも長波長にスペクトルの立ち上がりがシフトした等高線となる。
FIG. 12 is a flowchart for implementing a three-dimensional fluorescence spectrum when the optical path length is changed. A
なお、光路長γ以下であれば該当する光路長を有するセルは複数存在することがあるが、これについては、透過方向への蛍光スペクトル測定においてスペクトル形状は変化しないので、測定上の問題は無い。また、光路長γmmを極端に小さくすると、試料からの蛍光量が不足し、ノイズが大きいスペクトルとなることがあるので、3次元蛍光スペクトルからそのノイズを評価し、更に最適な光路長を見出すこともできる。 Note that there may be a plurality of cells having the corresponding optical path length if the optical path length is γ or less. However, there is no measurement problem because the spectrum shape does not change in the fluorescence spectrum measurement in the transmission direction. . In addition, if the optical path length γmm is extremely small, the amount of fluorescence from the sample may be insufficient, resulting in a spectrum with a large noise. Therefore, evaluate the noise from the three-dimensional fluorescence spectrum and find the optimum optical path length. You can also.
この透過方向における3次元蛍光スペクトルは、識別波長λrf nmおよび光路長γmmの妥当性の確認に対しても有用であり、光路長毎の蛍光スペクトルの変化を網羅的に把握することが可能となる。 This three-dimensional fluorescence spectrum in the transmission direction is also useful for confirming the validity of the identification wavelength λrf nm and the optical path length γmm, and it is possible to comprehensively grasp changes in the fluorescence spectrum for each optical path length. .
本発明の第3の実施例として、セル切替え装置18の他の例を示す。
図13は、ペンタ配置試料セル切替え装置22の構成を示した構成図であり、図13(A)に正面図、図13(B)に側面図を示す。積分球15の開口部は、励起光入射口とその対極、および蛍光出射口とその対極として合計4箇所ある。このうち、励起光入射口は、透過スペクトル測定及び透過方向への蛍光スペクトル測定のための試料設置に用いる。また、励起光入射光の対極の開口部は反射方向への蛍光スペクトル測定のための試料設置に用いる。蛍光出射口については、蛍光を蛍光側分光器および検知器に導くため、常に空けた状態となっている。また、蛍光側出射口の対極の開口部は、本測定では使用しないので、酸化アルミニウムの白板などで覆われている。
Another example of the
FIG. 13 is a configuration diagram showing the configuration of the penta-arranged sample
ここで、ペンタ配置試料セル切替え装置22の構成について説明する。ペンタ配置試料セル切替え装置22は、積分球15の底面に回転軸を有する。また、試料設置台は、セル台51からセル台55までの5つ搭載しており、積分球15を内接円とする正五角形の各辺の中央に位置する。それぞれのセル台は積分球15に透過蛍光用試料セル16もしくは
反射蛍光用試料セル17が密着する位置に設置されている。積分球15の開口部は、積分球15を内接円とする正方形の各辺の中央部に位置している。
Here, the configuration of the penta-arranged sample
励起光入射口に試料設置する際には、他の4つのセル台は、積分球15の他の3つの開口部とは重複しない位置となり、測定の妨害とならない。同様に、励起光入射口の対極の開口部にセル台が移動した際にも、他の4つのセル台は、積分球15の他の3つの開口部とは重複しない位置となり、測定の妨害とならない。ペンタ配置試料セル切替え装置22は、セルを設置できる数は5つと限られるが、積分球15の底面を回転軸としており、試料セルは定められた半径で回転するので、どんな光路長のセルを用いても積分球の開口部と試料セルを密着した状態で設置される利点がある。また、試料セル切替え装置18で用いている位置調整パルスモータ20および位置調整タレット回転軸21が不要である利点もある。
When the sample is placed at the excitation light entrance, the other four cell bases are positioned so as not to overlap with the other three openings of the integrating
図14は、ベルト式試料セル切替え装置23の構成を示した構成図である。ベルト式試料セル切替え装置23は、試料セル切替えパルスモータ19を動力として、例えばセル台51から57の7つの試料台が設置されたベルトが動く。励起光入射口に試料設置する場合には、図14に記載の励起光入射の積分球開口部における原点1の位置まで例えばセル台52をベルト式試料セル切替え装置23が運び、次いで透過蛍光用試料セルローディング用パルスモータ24を動力としてベルトが動き、セル台52を励起光入射の積分球開口部に運ぶ。
FIG. 14 is a configuration diagram showing the configuration of the belt type sample
同様に、励起光入射口の対極の開口部にセル台を運ぶ際には、反射蛍光用試料セルローディング用パルスモータ25を動力としてベルトが動き、セル台52を励起光入射口の対極の積分球開口部に運ぶ。このベルト式試料セル切替え装置23は、部品点数は多いが、ベルトの長さを調節することでセル台の個数は増減させることができる特徴がある。
Similarly, when carrying the cell base to the opening of the counter electrode of the excitation light entrance, the belt moves using the reflected fluorescence sample cell
1・・・光源
2・・・励起側分光器
3・・・ビームスプリッタ
4・・・モニタ検知器
5・・・試料セル
6・・・測定試料
7・・・蛍光側分光器
8・・・検知器
9・・・A/D変換器
10・・・コンピュータ
11・・・蛍光側パルスモータ
12・・・励起側パルスモータ
13・・・表示ディスプレイ
14・・・操作パネル
15・・・積分球
16・・・透過蛍光用試料セル
17・・・反射蛍光用試料セル
18・・・タレット式試料セル切替え装置
19・・・試料セル切替えパルスモータ
20・・・位置調整パルスモータ
21・・・位置調整タレット回転軸
22・・・ペンタ配置試料セル切替え装置
23・・・ベルト式試料セル切替え装置
24・・・透過蛍光用試料セルローディング用パルスモータ
25・・・反射蛍光用試料セルローディング用パルスモータ
51〜57・・・セル台
100・・・分光蛍光光度計
110・・・光度計部
111・・・励起側光学系
112・・・試料室
113・・・蛍光側光学系
114・・・駆動部
120・・・データ処理部
130・・・操作・表示部
DESCRIPTION OF
Claims (6)
反射蛍光用試料セルが積分球に密着して設置される5つのセル台と、セル台を回転するための動力となる試料セル切替えパルスモータと、これらを制御するコンピュータを搭載したことを特徴とする試料セル切替え装置。 Five cell bases in which a transmission fluorescence sample cell or a reflection fluorescence sample cell located in the center of each side of a regular pentagon having an integrating sphere as an inscribed circle is placed in close contact with the integration sphere, and the cell base is rotated. A sample cell switching device comprising a sample cell switching pulse motor which is a motive power for power supply and a computer for controlling them.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010200547A JP2012058047A (en) | 2010-09-08 | 2010-09-08 | Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010200547A JP2012058047A (en) | 2010-09-08 | 2010-09-08 | Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012058047A true JP2012058047A (en) | 2012-03-22 |
Family
ID=46055328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010200547A Abandoned JP2012058047A (en) | 2010-09-08 | 2010-09-08 | Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012058047A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018163006A (en) * | 2017-03-24 | 2018-10-18 | 株式会社日立ハイテクサイエンス | Spectrophotofluorometer |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129154U (en) * | 1985-01-30 | 1986-08-13 | ||
JPH0243644U (en) * | 1988-09-19 | 1990-03-26 | ||
JPH07243968A (en) * | 1994-01-14 | 1995-09-19 | Toyo Ink Mfg Co Ltd | Evaluating method for dispersibility and device therefor |
JPH0961355A (en) * | 1995-08-30 | 1997-03-07 | Mitsubishi Heavy Ind Ltd | Optical axis moving type fluorometer and measuring method |
JP2010008362A (en) * | 2008-06-30 | 2010-01-14 | Hamamatsu Photonics Kk | Spectrometer, spectrometry, and spectrometry program |
-
2010
- 2010-09-08 JP JP2010200547A patent/JP2012058047A/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61129154U (en) * | 1985-01-30 | 1986-08-13 | ||
JPH0243644U (en) * | 1988-09-19 | 1990-03-26 | ||
JPH07243968A (en) * | 1994-01-14 | 1995-09-19 | Toyo Ink Mfg Co Ltd | Evaluating method for dispersibility and device therefor |
JPH0961355A (en) * | 1995-08-30 | 1997-03-07 | Mitsubishi Heavy Ind Ltd | Optical axis moving type fluorometer and measuring method |
JP2010008362A (en) * | 2008-06-30 | 2010-01-14 | Hamamatsu Photonics Kk | Spectrometer, spectrometry, and spectrometry program |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018163006A (en) * | 2017-03-24 | 2018-10-18 | 株式会社日立ハイテクサイエンス | Spectrophotofluorometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9052232B2 (en) | Spheroid sample cell for spectrometer | |
US20130258341A1 (en) | Sample Accessory for Handheld Spectrometers | |
EP2726849B1 (en) | Measurement of critical dimension | |
AU2012350656B2 (en) | Apparatus for testing samples using Raman radiation | |
KR20120012391A (en) | Sample inspection device and sample inspection method | |
JP2012198059A (en) | Measuring apparatus and measuring method | |
TW201702582A (en) | Optical measurement apparatus and optical measurement method | |
US9546903B2 (en) | Data knitting tandem dispersive range monochromator | |
JP2012058047A (en) | Fluorospectro-photometer, measuring method for fluorospectro-photometer, and sample cell switch device | |
WO2014183468A1 (en) | Serial dual-optical path laser-induced fluorescence spectrometer | |
US7209237B2 (en) | Optical system for analyzing multi-channel samples and multi-channel sample analyzer employing the same | |
JP2015007548A (en) | Spectrophotofluorometer | |
JP6061031B2 (en) | Spectroscopic analysis system and method | |
JP2006194812A (en) | Spectrofluorometer | |
JPS58143254A (en) | Substance identifying device | |
JP2013246161A (en) | Spectrophotometer and spectrometry | |
JP2022157966A (en) | Metal corrosion inspection device, method and program | |
CN111965152A (en) | A identification appearance that is used for on-spot biological spot of criminal investigation to detect | |
JP6829466B2 (en) | Spectral fluorometer | |
US20130188182A1 (en) | Raman Apparatus and Method for Real Time Calibration Thereof | |
WO2018198364A1 (en) | Fluorescence spectrophotometer, spectrometry method, and control software for fluorescence spectrophotometer | |
JP5397352B2 (en) | Fluorescence spectrophotometer | |
TWI724202B (en) | Light measuring device | |
JP2005164375A (en) | Attachment for validation for infrared spectrophotometer and infrared spectrophotometer using the same | |
JP2014163741A (en) | Spectrum measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131119 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20131206 |