[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2012057923A - Hot water supply system - Google Patents

Hot water supply system Download PDF

Info

Publication number
JP2012057923A
JP2012057923A JP2010216055A JP2010216055A JP2012057923A JP 2012057923 A JP2012057923 A JP 2012057923A JP 2010216055 A JP2010216055 A JP 2010216055A JP 2010216055 A JP2010216055 A JP 2010216055A JP 2012057923 A JP2012057923 A JP 2012057923A
Authority
JP
Japan
Prior art keywords
heat
working fluid
water supply
hot water
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010216055A
Other languages
Japanese (ja)
Inventor
Shoji Ueda
祥二 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010216055A priority Critical patent/JP2012057923A/en
Publication of JP2012057923A publication Critical patent/JP2012057923A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot water supply system that activates a power cycle by heat of a generated combustion gas to generate electricity by the taken-out power, secures a sufficient hot water supply capability using water for hot water supply as a low temperature heat source of the power cycle, and decreases both energy consumption and environmental load effectively using generated heat.SOLUTION: A hot water supply system converts heat into power to generate electricity by using heat energy containing latent heat generated in a heat source part 10 as a high temperature heat source of a power cycle. In addition, it allows a condenser 23 to exchange heat with a working fluid by using water for hot water supply as a low temperature heat source of the power cycle and collects waste heat in the form of heating water to achieve a cycle operation. As a result, part of electric power demand in home can be covered by the power supply, sufficient heat can be generated while generating electricity, and an electrothermal ratio becomes suitable in which power demand and thermal demand of a house are compatible. Power generation efficiency of the entire system can be enhanced while suppressing heat generation that is not involved in power generation. Accordingly, energy saving and reduction in environmental load can be secured.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、水を加熱して温水とした上でこれを必要とする給湯先に供給する給湯システムに関し、特に、作動流体を加熱、冷却させつつ循環させ、熱エネルギを保有する作動流体に仕事を行わせて動力を得る動力サイクルを併用して、水の加熱に用いる熱源と加熱前の水との温度差を利用して動力サイクルにて発電用動力を取出し、同時に作動流体との熱交換で水の加熱も行って、発生させた熱を無駄なく有効利用できる給湯システムに関する。  The present invention relates to a hot water supply system that heats water into hot water and supplies the hot water to a hot water supply destination that requires the hot water, and in particular, circulates the working fluid while heating and cooling it to work the working fluid that holds thermal energy. In combination with a power cycle that obtains power by performing power, the power generation power is taken out by the power cycle using the temperature difference between the heat source used to heat the water and the water before heating, and at the same time heat exchange with the working fluid The present invention also relates to a hot water supply system that can also effectively use the generated heat without waste by heating water.

天然ガス、プロパンガス等のガス燃料(以下、ガスと略す)は着火性、燃焼性に優れ、供給体制も整備されて極めて使用しやすい燃料として普及しており、このガスを燃焼させて水を加熱し、温水を供給する給湯システムは、瞬間湯沸し器や風呂給湯器等として一般家庭の住宅に広く普及している。近年では、ガスを燃焼させて水を加熱する点にとどまらずに、ガスの有するエネルギを有効利用して電力や熱を得るコージェネレーションシステムも住宅用として提案されている。  Gas fuels such as natural gas and propane gas (hereinafter abbreviated as gas) are widely used as fuels that are excellent in ignitability and flammability and have a well-prepared supply system. Hot water supply systems that heat and supply hot water are widely used in ordinary homes as instantaneous water heaters and bath water heaters. In recent years, a cogeneration system that obtains electric power and heat by effectively using the energy of a gas has been proposed for homes as well as heating gas by burning gas.

ガスを用いた住宅用のコージェネレーションシステムとしては、ガスエンジンで発電し、発電時のエンジン排熱で温水を得るシステムや、ガスを改質して燃料とする燃料電池で発電し、発電時の電池からの排熱で温水を得るシステムが一般的である。  As a cogeneration system for homes using gas, there is a system that generates electricity with a gas engine and obtains hot water using engine exhaust heat during power generation, or a fuel cell that uses gas reforming as fuel to generate power. A system that obtains hot water by exhaust heat from a battery is common.

このような従来のコージェネレーションシステムのうち、ガスエンジンを用いる例として、特開2002−304927号公報に記載されるものがあり、また、燃料電池を用いる例として、特開平11−223385号公報に記載されるものがある。また潜熱を利用する例として、特開2008−185248号広報がある。  Among such conventional cogeneration systems, an example using a gas engine is described in Japanese Patent Application Laid-Open No. 2002-304927, and an example using a fuel cell is disclosed in Japanese Patent Application Laid-Open No. 11-223385. Some are listed. An example of using latent heat is Japanese Patent Application Laid-Open No. 2008-185248.

これら従来のコージェネレーションシステムは、発電部分の排熱を給湯や暖房用等の水の加熱に利用することで、発電により得た電力を利用できるだけでなく、給湯や暖房を行うことができ、ガスから発生させた熱を有効に利用して住宅全体でのエネルギ消費を抑え、且つ環境負荷の抑制を図るものであった。  These conventional cogeneration systems can not only use the power obtained by power generation, but also supply hot water and heat by using the exhaust heat of the power generation part for heating water for hot water supply and heating. The heat generated from the house is effectively used to reduce the energy consumption in the entire house and to reduce the environmental load.

特開2002−304927号公報JP 2002-304927 A 特開平11−223385号公報JP-A-11-223385 特開2008−185248号公報JP 2008-185248 A

特許文献1と特許文献2に示される従来のコージェネレーションシステムは、住宅用として用いる場合、小型化と共に宅内での頻繁な熱利用に対応することが求められるが、特に、前記特許文献1に示されるガスエンジンを用いるシステムでは、電力負荷追従運転状態としたり、発生させた余剰電力を他へ転用したりすることが極めて難しいことから、宅内での電力需要が少ないときはエンジンによる発電を停止せざるを得ず、一日におけるシステムの作動期間が短くなる上、エンジン停止と同時に排熱も生じなくなることから、水加熱等に熱が必要な場合は補助ボイラ等の他熱源を併用せざるを得ず、エネルギ節減効果を大きくすることが難しいという課題を有していた。  The conventional cogeneration systems shown in Patent Document 1 and Patent Document 2 are required to cope with frequent use of heat in the house as well as downsizing when used for residential use. In a system using a gas engine, it is extremely difficult to enter a power load following operation state or to divert the generated surplus power to another. In addition, the system operation period in one day is shortened, and exhaust heat is not generated at the same time as the engine stops. Therefore, when heat is required for water heating, other heat sources such as an auxiliary boiler must be used in combination. However, it was difficult to increase the energy saving effect.

一方、前記特許文献2に示されるガス改質燃料タイプの燃料電池を用いたシステムは、電力負荷変動に応じて熱電比をある程度変えることができ、システムを長時間作動状態にできるものの、発電時の排熱が少ないため、ピーク時の熱需要に対応する補助ボイラ等の他熱源が必須となり、燃料電池自体や改質器と合わせて導入時のコストが極めて大きいという課題を有していた。  On the other hand, the system using the gas-reformed fuel type fuel cell disclosed in Patent Document 2 can change the thermoelectric ratio to some extent in accordance with power load fluctuations, and can keep the system in an operating state for a long time. Therefore, other heat sources such as an auxiliary boiler corresponding to the heat demand at the peak time are indispensable, and there is a problem that the cost when introduced together with the fuel cell itself and the reformer is extremely high.

これらのガスエンジンや燃料電池を用いる従来のシステムは、所定の発電出力を得る場合に同時に排熱として発生させられる熱出力の割合がそれほど大きくなく、宅内での各電力負荷のピーク時総電力要求量を基準としてシステムの発電出力を決定したとしても、宅内における給湯や暖房用等の各種熱負荷のピーク時総熱要求量に発電部の排熱のみでは対応できないため、熱出力を補う補助ボイラが必要となる。しかし、補助ボイラからの熱出力分を考慮したシステム全体の発電効率は、補助ボイラが発電に関わらないため、当然ながら低くなり、商用電力利用の場合に比べ際立った利点を有しているとは言い難いという課題を有していた。  In conventional systems using these gas engines and fuel cells, the ratio of the heat output generated as exhaust heat at the same time when obtaining a predetermined power generation output is not so large, and the total peak power demand of each power load in the house Even if the power generation output of the system is determined on the basis of the amount, the auxiliary boiler that supplements the heat output can not cope with the peak total heat demand of various heat loads such as for hot water supply or heating in the house only by exhaust heat of the power generation unit Is required. However, the power generation efficiency of the entire system considering the heat output from the auxiliary boiler is naturally low because the auxiliary boiler is not involved in power generation, and it has a remarkable advantage compared to the case of using commercial power It had the problem of being difficult to say.

さらに、ガスエンジンや燃料電池を用いる従来システムは、熱出力を効率よく得られるのは発電部の定常動作中のみであり、また発電部は余剰電力を発生させられない事情から、発電部の運転時間を十分に確保し、電力と共に熱出力を確実に且つ効率よく得るためには、発電部においては、住宅での最大電力消費時の電力要求量より低い最大発電出力とせざるを得ない。この場合、結果的にピーク時には電力要求量に対応できないため、商用電力の導入が欠かせないものとなり、エネルギ節減や環境負荷低減の効果が現実には大きくないという課題を有していた。  Furthermore, in the conventional system using a gas engine or a fuel cell, the heat output can be obtained efficiently only during the steady operation of the power generation unit, and since the power generation unit cannot generate surplus power, In order to ensure sufficient time and to reliably and efficiently obtain heat output together with electric power, the power generation unit must make the maximum power generation output lower than the power demand amount at the time of maximum power consumption in the house. In this case, as a result, it is impossible to meet the power requirement at the peak time, so the introduction of commercial power becomes indispensable, and there is a problem that the effects of energy saving and environmental load reduction are not actually great.

特許文献3に示される従来システムは、燃焼ガスに含まれる潜熱を回収して得られる熱量を、発電部分の排熱を利用する給湯や暖房用等の水の予熱に利用するので、潜熱回収した熱量の分、排熱出力のみが大きくなり、その結果、熱電比が大きくなるという課題を有していた。  In the conventional system shown in Patent Document 3, the amount of heat obtained by recovering the latent heat contained in the combustion gas is used for preheating water such as hot water or heating that uses the exhaust heat of the power generation part, so that the latent heat is recovered. Only the exhaust heat output is increased by the amount of heat, and as a result, the thermoelectric ratio is increased.

本発明は前記課題を解消するためになされたもので、発生させた燃焼ガスの熱と、燃焼ガスの保有する潜熱により、動力サイクルを作動させ、取出した動力で発電を行うと共に、動力サイクルの低温熱源として給湯用の水を用いて十分な給湯能力を確保し、燃料から発生させた熱を有効に利用してエネルギ消費と環境負荷を共に低減できる給湯システムを提供することを目的とする。  The present invention has been made to solve the above-mentioned problems. The power cycle is operated by the heat of the generated combustion gas and the latent heat of the combustion gas, and the power is taken out. An object of the present invention is to provide a hot water supply system that can secure sufficient hot water supply capacity by using water for hot water supply as a low-temperature heat source, and can effectively use heat generated from fuel to reduce both energy consumption and environmental load.

本発明に係る給湯システムは、所定燃料の燃焼ガスの保有する熱で水を加熱する熱源部と、前記熱源部で得られた温水を給湯先に供給すると共に水供給源から熱源部に水を導く管路とを少なくとも備える給湯システムにおいて、所定の作動流体を加熱する作動流体熱交換部と、前記作動流体を燃焼ガスの保有する潜熱の回収により加熱する潜熱回収用熱交換部と、前記作動流体の少なくとも一部を導入されて流体の保有する熱エネルギを動力に変換する膨張機と、当該膨張機を出た作動流体を冷却する冷却器と、当該冷却器を出た作動流体を潜熱回収用熱交換部へ送込む圧縮機とを少なくとも備える動力サイクル機構部と、前記膨張機で得られた動力で発電を行う発電機を備え、前記熱源部が、発生させた熱の少なくとも一部で前記作動流体を加熱する作動流体熱交換部と、発生させた燃焼ガスの保有する潜熱で前記作動流体を加熱する潜熱回収用熱交換部を有して、前記作動流体が作動流体熱交換部より先に潜熱回収用熱交換部に導入されて、加熱される動力サイクルを有してなり、前記熱源部における熱発生量や前記動力サイクル機構部の動作状態、並びに給湯状態を電力や給湯の要求状況に応じて制御する制御部を備え、前記制御部が、発電出力の要求があり、且つ、仮に前記動力サイクル機構部を作動させた状態での冷却器における放出熱量の最小値よりも熱負荷の熱要求量が上回ることが見込める場合、動力サイクル機構部を作動状態とし、前記動力サイクル機構部の冷却器が、前記管路を通じ前記水供給源から送給される水を、前記作動流体と熱交換する冷却用媒体の少なくとも一つとして流入出可能とするものである。  A hot water supply system according to the present invention includes a heat source unit that heats water with heat held by a combustion gas of a predetermined fuel, hot water obtained by the heat source unit is supplied to a hot water supply destination, and water is supplied from the water supply source to the heat source unit. In a hot water supply system comprising at least a conduit for guiding, a working fluid heat exchanging unit that heats a predetermined working fluid, a latent heat recovery heat exchanging unit that heats the working fluid by collecting latent heat held by combustion gas, and the operation An expander that introduces at least a part of the fluid to convert thermal energy held by the fluid into power, a cooler that cools the working fluid that exits the expander, and recovers latent heat from the working fluid that exits the cooler A power cycle mechanism unit including at least a compressor to be sent to the heat exchange unit, and a generator that generates electric power using the power obtained by the expander, wherein the heat source unit is at least part of the generated heat. The working fluid A working fluid heat exchange section for heating and a latent heat recovery heat exchange section for heating the working fluid with latent heat held by the generated combustion gas, wherein the working fluid recovers latent heat before the working fluid heat exchange section; It has a power cycle that is introduced into the heat exchanger for heating and is heated, and the amount of heat generated in the heat source unit, the operating state of the power cycle mechanism unit, and the hot water supply state according to the demand situation of electric power and hot water supply A control unit for controlling, and the control unit has a request for power generation output, and if the power cycle mechanism unit is operated, the heat request amount of the heat load is less than the minimum value of the released heat amount in the cooler If the power cycle mechanism unit is expected to exceed, the power cycle mechanism unit is in an operating state, and the cooler of the power cycle mechanism unit heat-exchanges water supplied from the water supply source through the pipe line with the working fluid. Media Even without and makes it possible output flows as one.

このように本発明によれば、熱源部で発生させた熱を動力サイクルの高温熱源として使用し、熱を動力に変換して発電を行う一方、動力サイクルの低温熱源として給湯用の水を使用して冷却器で作動流体と熱交換させ、水の加熱を行う形で動力サイクルの排熱を回収し、サイクル稼働を実現することにより、給湯に加えて電力供給を行うことができ、使用箇所での電力需要の一部を賄えると共に、発電を行いつつ十分な熱を発生させることができ、熱電比が一般的な電力需要と熱需要に見合った適切なものとなり、且つ燃焼ガスの保有する潜熱を動力サイクルの熱源の一部に利用することで、発電出力と熱出力の両方を高められ、システム全体のエネルギー利用の効率が高められ、エネルギ節減及び環境負荷低減を確実なものとすることができる。また、熱源部でも水加熱が行え、給湯用の水に十分な熱を与えることができ、高い給湯能力を確保して様々な給湯需要に確実に対応可能となる。  As described above, according to the present invention, heat generated in the heat source unit is used as a high-temperature heat source for a power cycle, and heat is converted into power to generate power, while water for hot water supply is used as a low-temperature heat source for the power cycle. Then, the heat fluid is exchanged with the working fluid in the cooler, the exhaust heat of the power cycle is recovered by heating the water, and by realizing the cycle operation, it is possible to supply power in addition to hot water supply. It can cover part of the power demand in the country, generate enough heat while generating electricity, and the thermoelectric ratio is appropriate for general power demand and heat demand, and possesses combustion gas By using latent heat as part of the heat source of the power cycle, both power generation output and heat output can be increased, the efficiency of energy utilization of the entire system can be improved, and energy saving and environmental load reduction can be ensured. In That. Moreover, water heating can also be performed in the heat source section, sufficient heat can be given to the water for hot water supply, and a high hot water supply capacity can be ensured to meet various hot water supply demands.

また、本発明に係る給湯システムは必要に応じて、前記熱源部と膨張機との間の作動流体流路所定位置から分岐され、膨張機と冷却器との間の作動流体流路所定位置に合流するバイパス流路と、前記熱源部と膨張機との間の作動流体流路における前記バイパス流路の分岐位置に配設され、熱源部寄り流路の膨張機寄り流路及びバイパス流路への各連通度合を調整して作動流体の膨張機側へ向う量とバイパス流路を経由して冷却器へ向う量との割合を変更可能とする流路切換弁とを備え、前記制御部が、電力負荷側からの電力要求量又は熱負荷側からの熱要求量に応じて、前記流路切換弁を調整制御するものである。  In addition, the hot water supply system according to the present invention is branched from a predetermined position of the working fluid flow path between the heat source unit and the expander, if necessary, to a predetermined position of the working fluid flow path between the expander and the cooler. A bypass flow path that merges and a branch position of the bypass flow path in the working fluid flow path between the heat source unit and the expander, to the expander close flow path and bypass flow path of the heat source close flow path A flow path switching valve capable of changing the ratio of the amount of the working fluid toward the expander side and the amount of the working fluid toward the cooler via the bypass flow path by adjusting the degree of communication The flow path switching valve is adjusted and controlled in accordance with the required power amount from the power load side or the required heat amount from the heat load side.

このように本発明によれば、動力サイクル機構部に膨張機を通らない作動流体流路となるバイパス流路を設けると共に、上流側流路の膨張機側とバイパス流路側への各連通状態を調整する流路切換弁並びにこれを操作制御する制御部を配設し、制御部で流路切換弁を調整して作動流体の膨張機へ向う量と前記バイパス流路を通って直接冷却器に向う量との割合を制御することにより、膨張機へ向う作動流体の量を変えて膨張機で得られる動力及びこの動力に基づく発電機の発電量を調整できることに加え、膨張機を経て仕事をした作動流体と膨張機を経由せず熱を維持した作動流体の冷却器における割合も変わることで、冷却器における作動流体からの放熱量が変化することとなり、電力負荷や熱負荷の状況に応じて流路切換弁を制御して、発電機の発電出力と冷却器での熱出力のバランスを最適な状態に調整できる。さらに、発電機を負荷追従運転状態とすることができ、発電部分の稼働率を大きく高められることに加え、発電機の最大発電出力を使用箇所におけるピーク時の電力要求量にほぼ一致させても、余剰電力を発生させず無理なくシステムを運用でき、システムの発電量を増やして商用電力への依存度を小さくでき、エネルギコスト及び環境負荷の有効な削減が図れる。  As described above, according to the present invention, the power cycle mechanism unit is provided with the bypass flow path serving as a working fluid flow path that does not pass through the expander, and each communication state between the expander side and the bypass flow path side of the upstream flow path is set. A flow path switching valve to be adjusted and a control section for operating and controlling the flow path switching valve are arranged. The flow path switching valve is adjusted by the control section, and the amount of the working fluid directed to the expander is directly passed to the cooler through the bypass flow path. By controlling the ratio with the amount of heading, the amount of working fluid toward the expander can be changed to adjust the power obtained by the expander and the power generation amount of the generator based on this power. The amount of heat released from the working fluid in the cooler changes by changing the ratio of the working fluid and the working fluid that has maintained heat without going through the expander. Control the flow path switching valve, The balance of the heat output at the generator output and the cooler of the electrical machine can be adjusted for optimum operation. Furthermore, the generator can be placed in a load following operation state, and in addition to greatly increasing the operating rate of the power generation part, even if the maximum power output of the generator is substantially matched to the peak power requirement at the point of use Therefore, it is possible to operate the system without generating surplus power, increase the amount of power generated by the system, reduce the dependence on commercial power, and effectively reduce the energy cost and environmental load.

また、本発明に係る給湯システムは必要に応じて、前記管路が、前記冷却器から熱源部を経由して給湯先に向う主管路と、当該主管路における冷却器と熱源部との間の所定位置から分岐されて熱源部より給湯先側の所定位置で主管路に合流する支管路とを有すると共に、前記主管路と支管路の分岐位置に配設されて主管路の冷却器寄り部分が主管路の熱源部寄り部分と支管路のいずれに連通するかを切換える給水切換弁を有してなり、前記制御部が、冷却器出口での水温が給湯に係る所定設定温度に達している場合には、前記給水切換弁を冷却器出口と支管路側との連通状態とし、前記温度に達していない場合には給水切換弁を冷却器出口と熱源部側との連通状態とする制御を行うものである。  Further, in the hot water supply system according to the present invention, if necessary, the pipe line is connected between the main pipe line from the cooler through the heat source part to the hot water supply destination, and the cooler and the heat source part in the main pipe line. A branch pipe that branches from a predetermined position and merges with the main pipe at a predetermined position on the hot water supply side from the heat source section, and is disposed at a branch position between the main pipe and the branch pipe so that a portion near the cooler of the main pipe is When there is a water supply switching valve for switching between the portion close to the heat source part of the main pipe line and the branch pipe, and the control part has a water temperature at the outlet of the cooler reaching a predetermined set temperature related to hot water supply The control is performed so that the water supply switching valve is in a communication state between the cooler outlet and the branch line side, and when the temperature is not reached, the water supply switching valve is in a communication state between the cooler outlet and the heat source side. It is.

このように本発明によれば、管路に熱源部を経由する主管路と経由しない支管路を設定し、冷却器出口での水温に応じて、給水切替弁で水を熱源部側と支管路側のいずれに流すかを切換えることにより、冷却器で水を十分な温水にする熱量を与えられれば、熱源部での熱発生状態に関わりなく冷却器から熱源部を通さず直接給湯先に向けて温水を送給できることとなり、冷却器から熱源部に向う管路と熱源部における熱損失及び流路損失を防いで効率よく給湯を行える。  As described above, according to the present invention, a main pipe that passes through the heat source section and a branch pipe that does not pass through the heat pipe are set in the pipe, and water is supplied by the water supply switching valve according to the water temperature at the cooler outlet. If the amount of heat that makes the water sufficiently warm with the cooler can be given by switching to which of the heat source, the direct from the cooler to the hot water supply destination without passing through the heat source regardless of the heat generation state in the heat source. Hot water can be fed, and hot water can be efficiently supplied while preventing heat loss and flow path loss in the pipe and heat source section from the cooler to the heat source section.

また、本発明に係る給湯システムは必要に応じて、前記作動流体が、水より低沸点となる非共沸混合媒体とされ、前記熱源部の作動流体熱交換部と前記動力サイクル機構部の膨張機との間の作動流体流路に、作動流体熱交換部で蒸発した気相作動流体と液相作動流体とを分離する気液分離器を配設すると共に、当該気液分離器で分離した液相作動流体を冷却器に向わせる支流路を配設するものである。  Further, in the hot water supply system according to the present invention, if necessary, the working fluid is a non-azeotropic mixed medium having a lower boiling point than water, and the working fluid heat exchange unit of the heat source unit and the expansion of the power cycle mechanism unit A gas-liquid separator for separating the vapor-phase working fluid and the liquid-phase working fluid evaporated in the working fluid heat exchange section is disposed in the working fluid flow path between the machine and the gas-liquid separator. A branch channel is provided for directing the liquid phase working fluid to the cooler.

このように本発明によれば、水より低い温度でも気液の相変化が生じる非共沸混合媒体を作動流体とすると共に、膨張機の上流側で気相分と液相分とを分離する気液分離器を設け、気液分離器で分離した気相作動流体をそのまま膨張機に、液相作動流体を膨張機に通さずに冷却器にそれぞれ流入させ、気相作動流体に膨張機で仕事を行わせ、また膨張機を出た気相の作動流体及び気液分離器を出た液相の作動流体の両方を冷却器で水と熱交換させることにより、高温熱源と低温熱源との温度差が小さくても動力サイクルを動作させられることとなり、熱源部における作動流体の加熱温度を低く抑えることができ、作動流体熱交換部に対し投入する熱量を小さくして発電に係るエネルギ消費を低減できる上、熱源部で発生する熱エネルギのうち熱として使用する分の割合を多くすることができ、熱電比を実際の使用状況に対応した適切なものにできる。  As described above, according to the present invention, a non-azeotropic mixed medium in which a gas-liquid phase change occurs even at a temperature lower than water is used as a working fluid, and the gas phase component and the liquid phase component are separated on the upstream side of the expander. A gas-liquid separator is provided, and the gas-phase working fluid separated by the gas-liquid separator is directly introduced into the expander and the liquid-phase working fluid is allowed to flow into the cooler without passing through the expander. Both the gas phase working fluid exiting the expander and the liquid phase working fluid exiting the gas-liquid separator are allowed to exchange heat with water in the cooler, so Even if the temperature difference is small, the power cycle can be operated, the heating temperature of the working fluid in the heat source part can be kept low, and the amount of heat input to the working fluid heat exchange part can be reduced to reduce the energy consumption related to power generation. In addition to reducing the heat energy generated in the heat source, You are possible to increase the ratio of amount to be used as can the appropriate corresponding to the actual usage of the thermoelectric ratio.

また、本発明に係る給湯システムは必要に応じて、前記熱源部が、高温の燃焼ガスの到達する部位に水加熱部分を位置させ、当該水加熱部分より低温の燃焼ガスが到達する部位に前記作動流体熱交換部を位置させるものである。  Further, in the hot water supply system according to the present invention, if necessary, the heat source unit positions the water heating part at a part where the high temperature combustion gas reaches, and the part where the low temperature combustion gas reaches from the water heating part. The working fluid heat exchanging part is located.

このように本発明によれば、熱源部における水加熱部分より低温の燃焼ガスの到達する部位に作動流体熱交換部を配設し、熱源部で高温の燃焼ガスと水とを熱交換させる一方、より低温の燃焼ガスと作動流体とを熱交換させることにより、水に対して十分な熱を与えられるようにして給湯能力を確保しつつ、低い温度でも相変化を生じさせられ、流量変化もほとんどない作動流体に対しては過度に熱を与えず必要十分な加熱状態として熱エネルギを有効に利用できると共に、動力サイクルの稼働を安定化できる。加えて、作動流体熱交換部の耐熱性を緩和でき、熱源部のコストダウンが図れる。  As described above, according to the present invention, the working fluid heat exchanging portion is disposed at a portion where the combustion gas having a temperature lower than the water heating portion in the heat source portion reaches, and the heat source portion exchanges heat between the high-temperature combustion gas and water. By exchanging heat between the lower-temperature combustion gas and the working fluid, sufficient heat can be given to the water to ensure hot water supply capacity, while causing a phase change even at a low temperature, and a change in flow rate. Thermal energy can be effectively used as a necessary and sufficient heating state without applying excessive heat to almost no working fluid, and the operation of the power cycle can be stabilized. In addition, the heat resistance of the working fluid heat exchange part can be relaxed, and the cost of the heat source part can be reduced.

また、本発明に係る給湯システムは必要に応じて、水供給源からの水が、動力サイクル機構部が作動状態の場合は、冷却器及び熱源部の水加熱部分に、又は冷却器のみに導入されて加熱され、動力サイクル機構部が作動していない場合は、冷却器をバイパスする支管路を通じて、冷却器には通されずに熱源部の水加熱部分に導入されて加熱できるよう、凝縮器バイパス弁を調整制御するものである。  In addition, the hot water supply system according to the present invention introduces water from the water supply source into the water heating part of the cooler and the heat source unit, or only to the cooler when the power cycle mechanism is in operation, as necessary. When the power cycle mechanism is not activated, the condenser is connected to the water heating part of the heat source part through the branch line bypassing the cooler and not passed through the cooler. The bypass valve is adjusted and controlled.

このように本発明によれば、熱源部に燃焼ガスの潜熱回収を行う熱交換部が配設され、動力サイクル機構における作動流体をこの潜熱回収用熱交換部で予熱して温めた上で熱源部等でさらに加熱することにより、燃焼ガスの保有する熱エネルギを最大限に利用でき、潜熱回収での温度上昇分、作動流体に加える熱量を大きくすることができる。
その結果、発電出力と排熱出力を大きくすることが可能となることから、無駄なエネルギ消費を抑えてエネルギコスト及び環境負荷をより一層削減できる。
As described above, according to the present invention, the heat source part is provided with the heat exchange part for recovering the latent heat of the combustion gas, and the working fluid in the power cycle mechanism is preheated and warmed by the latent heat recovery heat exchange part, and then the heat source By further heating at the part or the like, the thermal energy possessed by the combustion gas can be utilized to the maximum, and the amount of heat applied to the working fluid can be increased by the temperature rise in the latent heat recovery.
As a result, since it is possible to increase the power generation output and the exhaust heat output, it is possible to suppress unnecessary energy consumption and further reduce the energy cost and the environmental load.

以下、本発明の一実施形態を図1ないし図7に基づいて説明する。本実施形態では燃料としていわゆる都市ガス(天然ガス)を用い、且つ作動流体として非共沸混合媒体を用いた住宅用給湯システムの例について説明する。図1は本実施形態に係る給湯システムの概略系統図、図2は本実施形態に係る給湯システムにおける熱源部の概略構成図、図3は本実施形態に係る給湯システムにおける給湯開始制御のフローチャート、図4は本実施形態に係る給湯システムにおける給湯継続可否及び給湯状態調整制御のフローチャート、図5は本実施形態に係る給湯システムにおける発電開始制御のフローチャート、図6は本実施形態に係る給湯システムにおける発電出力制御のフローチャート、図7は本実施形態に係る給湯システムにおける発電継続可否制御のフローチャートである。  Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the present embodiment, an example of a hot water supply system for a house using so-called city gas (natural gas) as a fuel and using a non-azeotropic mixed medium as a working fluid will be described. 1 is a schematic system diagram of a hot water supply system according to the present embodiment, FIG. 2 is a schematic configuration diagram of a heat source unit in the hot water supply system according to the present embodiment, and FIG. 3 is a flowchart of hot water supply start control in the hot water supply system according to the present embodiment. FIG. 4 is a flowchart of hot water supply continuation availability control and hot water supply state adjustment control in the hot water supply system according to this embodiment, FIG. 5 is a flowchart of power generation start control in the hot water supply system according to this embodiment, and FIG. 6 is in the hot water supply system according to this embodiment. FIG. 7 is a flowchart of power generation output control, and FIG. 7 is a flowchart of power generation continuity control in the hot water supply system according to this embodiment.

前記各図において本実施の形態に係る給湯システム1は、ガスを燃焼させて熱を発生させる熱源部10と、この熱源部10で加熱される作動流体の相変化で発電のための動力を得る動力サイクル機構部20と、この動力サイクル機構部20により発生させた動力で発電を行う発電機30と、水供給源から水を各部に導くと共に温水を給湯先に供給する管路40と、前記熱源部10における熱発生量や動力サイクル機構部20の動作状態、並びに給湯状態を電力や給湯の要求状況に応じて制御する制御部50と、燃焼ガスの潜熱回収を行い作動流体の予熱を行う熱交換部14を備える構成である。  In each of the drawings, the hot water supply system 1 according to the present embodiment obtains power for power generation by a heat source section 10 that generates heat by burning gas and a phase change of the working fluid heated by the heat source section 10. A power cycle mechanism section 20, a power generator 30 that generates power using the power generated by the power cycle mechanism section 20, a conduit 40 that guides water from a water supply source to each section and supplies hot water to a hot water supply destination, A control unit 50 that controls the amount of heat generated in the heat source unit 10, the operating state of the power cycle mechanism unit 20, and the hot water supply state in accordance with the required status of electric power and hot water supply, and recovers the latent heat of the combustion gas to preheat the working fluid. The heat exchange unit 14 is provided.

前記熱源部10は、水の通る配管群及び管周囲の受熱体からなる水加熱部11とは別に、バーナ13でガスを燃焼させて発生させた熱の一部又は全部で作動流体を加熱し蒸発させる作動流体熱交換部12を有する構成であり、動力サイクル機構部20の加熱器(蒸発器)を兼ねるものである。なお、前記水加熱部11は、一般的な給湯用の熱交換部として燃焼ガスで水を加熱可能な公知の構造であり、また、前記作動流体熱交換部12も、公知の熱交換器における一方の流路に燃焼ガス、他方の流路に作動流体をそれぞれ流通させて熱交換を行わせるものであり、各構成の詳細な説明を省略する。  The heat source unit 10 heats the working fluid with a part or all of the heat generated by burning the gas in the burner 13 separately from the water heating unit 11 composed of a pipe group through which water passes and a heat receiving body around the pipe. The working fluid heat exchanging section 12 is evaporated and serves also as a heater (evaporator) of the power cycle mechanism section 20. The water heating unit 11 is a known structure capable of heating water with combustion gas as a heat exchange unit for general hot water supply, and the working fluid heat exchange unit 12 is also a known heat exchanger. The combustion gas is circulated through one channel and the working fluid is circulated through the other channel to exchange heat, and detailed description of each component is omitted.

水加熱部11は、その水側流路が管路40に接続されており、この管路40を通じて水を導入されてこれを加熱し、温水として送出す仕組みとなっている。一方、作動流体熱交換部12は、その作動流体側流路を動力サイクル機構部20のポンプ24出口並びに気液分離器21入口とそれぞれ連通する状態とされる構成である。  The water heating unit 11 has a water-side flow path connected to the pipe line 40, and has a structure in which water is introduced through the pipe line 40 to heat it and send it as hot water. On the other hand, the working fluid heat exchange unit 12 is configured to communicate the working fluid side flow path with the outlet of the pump 24 of the power cycle mechanism unit 20 and the inlet of the gas-liquid separator 21.

この作動流体熱交換部12内で燃焼ガスとの熱交換で温められる作動流体は、非共沸混合媒体(例えば、水とアンモニアの混合流体)であり、温められその一部が蒸発することで低沸点成分が大部分を占める気相分と、高沸点成分が大部分を占める液相分との混相状態となる。  The working fluid heated by heat exchange with the combustion gas in the working fluid heat exchanging section 12 is a non-azeotropic mixed medium (for example, a mixed fluid of water and ammonia), and is heated and partially evaporated. A gas phase component in which the low-boiling component occupies most and a liquid phase component in which the high-boiling component occupies most are mixed.

そして、作動流体熱交換部12に対しては、熱源部10内の燃焼ガス流路設定やバーナ13との位置関係、バーナ13の燃焼状態(火力)設定により、水加熱部11表面における温度と比べて低い温度となった燃焼ガスが接触する構成となっており、小温度差でも十分に相変化を生じさせられる非共沸混合媒体の作動流体に対し適切な加熱能力を確保しつつ、作動流体に過度に熱を与えない仕組みとなっている。そして、熱源部10で水加熱部11に水を通さない場合は、バーナ稼働数や炎の大きさの調整でバーナ13の燃焼を抑えたり、熱源部10内における燃焼ガス流路を変化させて高温の燃焼ガスが直接バーナ13から作動流体熱交換部12に達しないようにするなどして、作動流体熱交換部12における作動流体の加熱に適切な温度状態を得る構成である。  And with respect to the working fluid heat exchange part 12, the temperature on the surface of the water heating part 11 is determined by the combustion gas flow path setting in the heat source part 10, the positional relationship with the burner 13, and the combustion state (thermal power) setting of the burner 13. Combustion gas at a lower temperature is in contact with it, and it operates while ensuring appropriate heating capacity for working fluids of non-azeotropic mixed media that can cause a phase change even with a small temperature difference. It is a mechanism that does not heat the fluid excessively. When water is not passed through the water heating unit 11 by the heat source unit 10, combustion of the burner 13 is suppressed by adjusting the number of burner operations and the size of the flame, or the combustion gas flow path in the heat source unit 10 is changed. The configuration is such that a high temperature combustion gas is prevented from directly reaching the working fluid heat exchanging section 12 from the burner 13 to obtain a temperature state suitable for heating the working fluid in the working fluid heat exchanging section 12.

前記動力サイクル機構部20は、前記熱源部10で加熱されて高温且つ気液混相状態となった作動流体を気相分と液相分とに分離する気液分離器21と、気相の作動流体により動作する膨張機としてのタービン22と、このタービン22を出た気相の作動流体を凝縮させて液相とする前記冷却器としての凝縮器23と、凝縮器23から出た作動流体を所定の送給圧力で熱源部10へ送出す前記圧縮機としてのポンプ24と、タービン22の手前側で気相作動流体をタービン22に向う分とバイパス流路25を通って凝縮器23に向う分の割合を決める流路切換弁26とを備える構成である。このうち、気液分離器21、タービン22、及びポンプ24については、一般的な非共沸混合媒体を作動流体とする動力サイクルで用いられるのと同様の公知の装置であり、説明を省略する。なお、この動力サイクル機構部20の膨張機としては、タービン22に限らず、スクリュー型膨張機や容積型膨張機等を用いることもできる。  The power cycle mechanism unit 20 includes a gas-liquid separator 21 that separates the working fluid heated by the heat source unit 10 into a gas-liquid and liquid-phase component at a high temperature and a gas-liquid mixed phase, and a gas-phase operation. A turbine 22 as an expander that operates by a fluid, a condenser 23 as the cooler that condenses the gas-phase working fluid exiting the turbine 22 to form a liquid phase, and the working fluid exited from the condenser 23 The pump 24 serving as the compressor is sent to the heat source unit 10 at a predetermined supply pressure, and the vapor phase working fluid is directed to the turbine 22 on the front side of the turbine 22 and to the condenser 23 through the bypass passage 25. It is a structure provided with the flow-path switching valve 26 which determines the ratio of minutes. Among these, the gas-liquid separator 21, the turbine 22, and the pump 24 are known devices similar to those used in a power cycle using a general non-azeotropic mixed medium as a working fluid, and description thereof is omitted. . In addition, as an expander of this power cycle mechanism part 20, not only the turbine 22 but a screw type expander, a positive displacement expander, etc. can also be used.

前記凝縮器23は、内部の伝熱部を介して隔てられた隙間の一方に作動流体が流通し、他方の隙間に冷却用媒体としての水が流通し、伝熱部を介して作動流体と水が熱交換を行う公知の熱交換器構成であり、詳細な説明を省略する。この凝縮器23では、タービン22及び/又はバイパス流路25を経た気相の作動流体と共に、気液分離器21で気相分と分離され支流路27を経た高温液相の作動流体も同時に導入される。このうち気相の作動流体は、タービン22を経る分とバイパス流路25を経た分との割合が発電や熱出力等の状況により変わるため、凝縮器での放熱量も変化することとなり、凝縮器出口での水温は大きく変化する。一方、液相の作動流体は、気液分離器21を出た後、支流路27中に配設された減圧弁28を経由して圧力を調整された後、凝縮器23に導入される仕組みである。  In the condenser 23, the working fluid circulates in one of the gaps separated through the internal heat transfer section, the water as the cooling medium circulates in the other gap, and the working fluid passes through the heat transfer section. It is a known heat exchanger configuration in which water performs heat exchange, and detailed description thereof is omitted. In the condenser 23, a high-temperature liquid-phase working fluid separated from the gas-phase component by the gas-liquid separator 21 and the branch flow path 27 is simultaneously introduced together with the gas-phase working fluid that has passed through the turbine 22 and / or the bypass passage 25. Is done. Among these, the ratio of the amount of gas working fluid passing through the turbine 22 and the amount passing through the bypass passage 25 varies depending on the conditions such as power generation and heat output, so that the amount of heat released from the condenser also changes. The water temperature at the vessel outlet varies greatly. On the other hand, the liquid-phase working fluid is introduced into the condenser 23 after leaving the gas-liquid separator 21, adjusted in pressure via a pressure reducing valve 28 disposed in the branch flow path 27. It is.

なお、凝縮器23で放出される動力サイクル機構部20の排熱は十分大きいことから、熱交換部分を複数設け、作動流体と熱交換する冷却用媒体を複数用いる構成とすることもでき、例えば、給湯用の水に加えて、暖房用のブライン等、他の熱媒体も作動流体と熱交換させることで、水加熱で使い切れない場合の排熱を有効に利用して動力サイクルの稼働率を向上させられる。逆に、動力サイクル機構部20の作動する状態における凝縮器23で作動流体から放出する熱量が、その調整可能範囲において取り得る最小値となっても、給湯等の熱負荷からの熱要求量の方がさらに少ない値となる場合には、凝縮器23からの放熱に支障を来して動力サイクル機構部20が正常に作動しなくなるため、凝縮器23とは別に作動流体を冷却する強制空冷タイプ等のシステム保護用放熱装置を用いたり、制御部50が熱源部10の作動流体熱交換部12における燃焼ガスと作動流体との熱交換を止め、動力サイクル機構部20を停止させる仕組みとする。  In addition, since the exhaust heat of the power cycle mechanism unit 20 released by the condenser 23 is sufficiently large, a configuration in which a plurality of heat exchange portions are provided and a plurality of cooling media that exchange heat with the working fluid can be used. In addition to water for hot water supply, other heat medium such as brine for heating also exchanges heat with the working fluid, effectively using exhaust heat when water heating cannot be used and increasing the power cycle operating rate. Can be improved. On the contrary, even if the amount of heat released from the working fluid by the condenser 23 in a state where the power cycle mechanism unit 20 operates becomes the minimum value that can be taken in the adjustable range, the amount of heat required from the heat load such as hot water supply is reduced. If the value is even smaller, the heat cycle mechanism 20 will not operate normally due to hindrance to heat dissipation from the condenser 23, so that the forced air cooling type that cools the working fluid separately from the condenser 23 The system 50 is configured to stop the power cycle mechanism unit 20 by stopping heat exchange between the combustion gas and the working fluid in the working fluid heat exchanging unit 12 of the heat source unit 10.

前記流路切換弁26は、動力サイクル機構部20における気液分離器21とタービン22との間の流路に配設され、流路切換弁26より上流側流路に対するタービン22へ向う流路とバイパス流路25の連通状態を調整し、タービン22側流路とバイパス流路25のそれぞれを通る作動流体の割合を変化させるものである。バイパス流路25は、この流路切換弁26の位置で気液分離器21からタービン22へ向う流路から分岐され、タービン22と凝縮器23との間の流路に合流する支流路である。
前記発電機30は、連結されたタービン22により回転駆動されて発電を行う公知の装置であり、説明を省略する。
The flow path switching valve 26 is disposed in a flow path between the gas-liquid separator 21 and the turbine 22 in the power cycle mechanism unit 20, and is a flow path toward the turbine 22 with respect to the upstream flow path from the flow path switching valve 26. And the communication state of the bypass flow path 25 are adjusted, and the ratio of the working fluid passing through each of the turbine 22 side flow path and the bypass flow path 25 is changed. The bypass flow path 25 is a branch flow path that branches from the flow path from the gas-liquid separator 21 to the turbine 22 at the position of the flow path switching valve 26 and joins the flow path between the turbine 22 and the condenser 23. .
The generator 30 is a known device that generates power by being rotationally driven by a connected turbine 22 and will not be described.

前記管路40は、水供給源から凝縮器23へ通じる上流部分に対し、凝縮器23以降の下流部分が、凝縮器23から熱源部10を経由して給湯用カランや貯湯タンク等の給湯先に向う主管路41と、この主管路41における凝縮器23と熱源部10との間の所定位置から分岐されて熱源部10より給湯先側の所定位置で主管路41に合流する支管路42からなる構成である。主管路41と支管路42の分岐位置には、主管路41の凝縮器23寄り部分が主管路41の熱源部10寄り部分と支管路42のいずれに連通するかを切換える給水切換弁43が配設される。なお、前記水供給源としては、水道など所定の圧力で水を供給することのできるものを利用するが、これに限らず、一般的な給湯装置で用いられるのと同様のポンプを併用して送給圧力を付加するようにしてもよく、その場合供給圧力が無いか小さい給水源からの水を用いることもできる。  In the pipe 40, the downstream portion after the condenser 23 is connected to the upstream portion from the water supply source to the condenser 23, and the downstream portion after the condenser 23 passes through the heat source unit 10 to supply hot water such as a hot water supply curan or hot water storage tank. And a branch line 42 branched from a predetermined position between the condenser 23 and the heat source unit 10 in the main line 41 and joined to the main line 41 at a predetermined position on the hot water supply side from the heat source unit 10. It is the composition which becomes. At the branch position of the main pipeline 41 and the branch pipeline 42, a water supply switching valve 43 that switches between the portion near the condenser 23 of the main pipeline 41 and the portion near the heat source 10 of the main pipeline 41 and the branch pipeline 42 is arranged. Established. In addition, as the water supply source, a water supply source that can supply water at a predetermined pressure, such as a water supply, is used. However, the water supply source is not limited to this, and a pump similar to that used in a general hot water supply device is used in combination. Supply pressure may be applied, and in that case, water from a supply source having no supply pressure or a small supply pressure may be used.

前記制御部50は、負荷側からの電力要求量や給湯等に係る熱要求量に応じて、熱源部10や流路切換弁26、給水切換弁43、発電機30等を制御するものである。特に、動力サイクル機構部20の作動状態で流路切換弁26を動作させることで、動力サイクル機構部20における気相作動流体のタービン22へ向う流量とバイパス流路25を通って直接凝縮器23に向う流量との割合を調整制御でき、タービン22で駆動される発電機30の発電出力を制御可能となっている。また、給水切換弁43による凝縮器23出口の支管路42側連通状態と熱源部10側連通状態の切換え制御により、凝縮器23を出た水(温水)が熱源部10を通る状態と熱源部10を通らずに直接給湯先に向う状態を切換可能である。ただし、制御部50は、動力サイクル機構部20作動状態における凝縮器23で作動流体から放出する熱量の調整可能範囲における最小値より、給湯等の熱負荷からの熱要求量が少ない場合には、熱源部10の作動流体熱交換部12における燃焼ガスと作動流体との熱交換を行わせず、動力サイクル機構部20を停止状態にすると共に、給水切換弁43を凝縮器23出口と熱源部10側との連通状態にし、且つ熱源部10で前記熱要求量に対応する熱を発生させることとなる。  The control unit 50 controls the heat source unit 10, the flow path switching valve 26, the water supply switching valve 43, the generator 30, and the like according to the power request amount from the load side and the heat request amount related to hot water supply. . In particular, by operating the flow path switching valve 26 in the operating state of the power cycle mechanism section 20, the condenser 23 directly passes through the flow rate of the gas-phase working fluid toward the turbine 22 in the power cycle mechanism section 20 and the bypass flow path 25. Thus, the ratio of the flow rate toward the engine can be adjusted and controlled, and the power generation output of the generator 30 driven by the turbine 22 can be controlled. In addition, the state in which the water (warm water) exiting the condenser 23 passes through the heat source section 10 and the heat source section by switching control between the branch line 42 side communication state and the heat source section 10 side communication state at the outlet of the condenser 23 by the water supply switching valve 43. It is possible to switch the state directly toward the hot water supply destination without passing through 10. However, the control unit 50, when the heat demand from the heat load such as hot water supply is less than the minimum value in the adjustable range of the amount of heat released from the working fluid in the condenser 23 in the operating state of the power cycle mechanism unit 20, Heat exchange between the combustion gas and the working fluid in the working fluid heat exchange unit 12 of the heat source unit 10 is not performed, the power cycle mechanism unit 20 is stopped, and the feed water switching valve 43 is connected to the outlet of the condenser 23 and the heat source unit 10. The heat corresponding to the amount of heat required is generated in the heat source unit 10 while being in communication with the side.

制御部50の制御情報としては、流路切換弁26の各流路への開度、給水切換弁43の切換状態の他、従来の給湯装置や動力サイクルを用いた発電装置と同様、凝縮器23入口水温、出口水温、熱源部出口水温、タービン回転数(発電機出力周波数)、発電機出力電圧、熱源部10のガス流量調整弁開度(バーナ火力強弱の度合)、空気量調整部開度等が検知されて制御部50に入力される。  The control information of the control unit 50 includes the opening degree of the flow path switching valve 26 to each flow path and the switching state of the water supply switching valve 43, as well as a conventional hot water supply apparatus and a power generator using a power cycle. 23 inlet water temperature, outlet water temperature, heat source section outlet water temperature, turbine rotation speed (generator output frequency), generator output voltage, gas flow rate adjustment valve opening degree of heat source section 10 (degree of burner heating power level), air quantity adjustment section open The degree or the like is detected and input to the control unit 50.

また、制御部50では、凝縮器23における熱出力が熱要求量に対し不足する場合の制御において、電力供給優先と給湯優先の二つの制御モードを有しており、電力供給優先の場合は熱源部10での補助加熱により、逆に給湯優先の場合はタービン22へ向う作動流体の量を減らして凝縮器23での熱出力を高めることにより、それぞれ熱要求量に見合う熱出力をシステム全体で確保する仕組みである。  The control unit 50 has two control modes of power supply priority and hot water supply priority in the control when the heat output in the condenser 23 is insufficient with respect to the required heat amount. On the other hand, if the hot water supply is given priority by the auxiliary heating in the section 10, the amount of working fluid toward the turbine 22 is reduced and the heat output in the condenser 23 is increased, so that the heat output corresponding to the heat requirement amount can be obtained in the entire system. It is a mechanism to secure.

次に、本実施の形態に係る給湯システムの動作について説明する。前提として、水道などの十分な水供給圧力のある水供給源から、水が給湯要求に対し十分な流量で本システムに導入可能となっているものとする。この水供給源から導入された水は、動力サイクル機構部20の凝縮器23に導入される。  Next, the operation of the hot water supply system according to the present embodiment will be described. As a premise, it is assumed that water can be introduced into the system at a sufficient flow rate for a hot water supply request from a water supply source having sufficient water supply pressure such as water supply. The water introduced from this water supply source is introduced into the condenser 23 of the power cycle mechanism unit 20.

一方、熱源部10では燃料のガスを燃焼させ、高温の燃焼ガスを発生させている。この燃焼ガスは、熱要求量の関係で動力サイクル機構部20を作動させない場合は水加熱部11のみに送込まれ、また、動力サイクル機構部20を作動させ且つその凝縮器23における熱出力のみで熱要求量に対応できる場合には、潜熱回収用熱交換部14、および、作動流体熱交換部12に送込まれる。そして、動力サイクル機構部20を作動させると共に水を水加熱部11に通す場合には、水加熱部11と、潜熱回収用熱交換部14と、作動流体熱交換部12とに燃焼ガスが送込まれることとなる。  On the other hand, the heat source unit 10 burns fuel gas to generate high-temperature combustion gas. This combustion gas is sent only to the water heating unit 11 when the power cycle mechanism unit 20 is not operated due to the heat demand, and the power cycle mechanism unit 20 is operated and only the heat output in the condenser 23 is supplied. In the case where the required heat amount can be accommodated, the heat is exchanged into the latent heat recovery heat exchanging unit 14 and the working fluid heat exchanging unit 12. When the power cycle mechanism unit 20 is activated and water is passed through the water heating unit 11, combustion gas is sent to the water heating unit 11, the latent heat recovery heat exchange unit 14, and the working fluid heat exchange unit 12. Will be included.

熱源部10の潜熱回収用熱交換部14、および、作動流体熱交換部12に燃焼ガスが送込まれると、潜熱回収用熱交換部14、および、作動流体熱交換部12で燃焼ガスと作動流体とが熱交換して作動流体が加熱されると共に、凝縮器23には作動流体を冷す冷却用媒体として給湯用の水が導入されていることで、動力サイクル機構部20にサイクル動作を行わせることができる。  When combustion gas is sent to the heat exchange unit 14 for latent heat recovery and the working fluid heat exchange unit 12 of the heat source unit 10, it operates with the combustion gas in the heat exchange unit 14 for latent heat recovery and the working fluid heat exchange unit 12. The working fluid is heated by exchanging heat with the fluid, and water for hot water supply is introduced into the condenser 23 as a cooling medium for cooling the working fluid, so that the power cycle mechanism unit 20 can perform a cycle operation. Can be done.

詳細には、熱源部10において、潜熱回収用熱交換部14では、ガス燃焼に含まれる潜熱と作動流体の熱交換が行われ、作動流体熱交換部12では、高温熱源としてのガス燃焼により得られた燃焼ガスと作動流体とが熱交換する。潜熱回収用熱交換部14と作動流体熱交換部12で熱交換により、加熱された作動流体は、昇温に伴いその一部が蒸発して気液混相状態となる。この混相状態の高温作動流体は熱源部10の外へ出て、気液分離器21に達する。  Specifically, in the heat source unit 10, the latent heat recovery heat exchange unit 14 exchanges the latent heat included in the gas combustion with the working fluid, and the working fluid heat exchange unit 12 obtains the gas by combustion as a high-temperature heat source. The generated combustion gas and the working fluid exchange heat. Due to heat exchange between the latent heat recovery heat exchanging section 14 and the working fluid heat exchanging section 12, the heated working fluid partially evaporates as the temperature rises and enters a gas-liquid mixed phase state. This mixed phase high-temperature working fluid goes out of the heat source unit 10 and reaches the gas-liquid separator 21.

気液分離器21内で作動流体は気相分と液相分に分れ、気液分離器21を出た気相の作動流体は流路切換弁26に達し、流路切換弁26の調整度合に応じた割合で一部はタービン22へ向い、他はバイパス流路25を通って直接凝縮器23へ向う。また、液相の作動流体は気液分離器21から支流路27に入り、減圧弁28を経て凝縮器23に導入される。  The working fluid is divided into a gas phase component and a liquid phase component in the gas-liquid separator 21, and the gas-phase working fluid exiting the gas-liquid separator 21 reaches the flow path switching valve 26, and the flow path switching valve 26 is adjusted. A part is directed to the turbine 22 in proportion to the degree, and the other is directed directly to the condenser 23 through the bypass flow path 25. The liquid-phase working fluid enters the branch channel 27 from the gas-liquid separator 21 and is introduced into the condenser 23 via the pressure reducing valve 28.

気相の作動流体がタービン22に達するとこれを作動させることとなり、タービン22により発電機30が駆動され、熱エネルギが使用可能な電力に変換される。こうしてタービン22で仕事を行った気相作動流体は、圧力及び温度を低下させた状態となり、タービン22を出た後、凝縮器23に導入される。  When the gas-phase working fluid reaches the turbine 22, the turbine 22 is operated, and the generator 22 is driven by the turbine 22 to convert the heat energy into usable electric power. The gas-phase working fluid that has performed work in the turbine 22 in this manner is in a state where the pressure and temperature are lowered, and after exiting the turbine 22, is introduced into the condenser 23.

なお、制御部50により制御操作される流路切換弁26において、作動流体のバイパス流路25を通る流量を増やす一方、作動流体がタービン22へ到達する量を抑えた場合には、作動流体により生じさせられる動力が小さくなり発電量を抑えることができる。また、直接凝縮器23に達する作動流体の量が多くなるので、凝縮器23では作動流体と水との熱交換される熱量が多くなり、これに伴い水の加熱量が増加し、給湯量の増大や給湯温度上昇に対応できる。  In the flow path switching valve 26 controlled by the control unit 50, when the flow rate of the working fluid through the bypass flow path 25 is increased while the amount of the working fluid reaching the turbine 22 is suppressed, The generated power is reduced and the amount of power generation can be suppressed. Further, since the amount of the working fluid directly reaching the condenser 23 increases, the amount of heat exchanged between the working fluid and water in the condenser 23 increases, and accordingly, the heating amount of water increases, and the amount of hot water supply increases. It can cope with increase and hot water temperature rise.

他方、流路切換弁26の調整で作動流体のバイパス流路25を通る流量を減らし、タービン22へ到達する作動流体の量を増大させた場合には、作動流体により生じさせられる動力が大きくなり、発電量を増やすことができる。また、凝縮器23では、タービン22で仕事をしてから凝縮器23に達する作動流体の量が多くなるので、その分だけ作動流体と水との熱交換される熱量は減少する。以上のように流路切換弁26が調整されることで、タービン22で膨張する作動流体の量に基づく発電量や、凝縮器23における熱交換に伴う水の加熱量等の変化を生じさせることができる。  On the other hand, when the flow rate of the working fluid passing through the bypass passage 25 is decreased by adjusting the flow path switching valve 26 and the amount of the working fluid reaching the turbine 22 is increased, the power generated by the working fluid increases. The amount of power generation can be increased. Further, in the condenser 23, since the amount of the working fluid that reaches the condenser 23 after working in the turbine 22 increases, the amount of heat exchanged between the working fluid and water decreases accordingly. By adjusting the flow path switching valve 26 as described above, changes in the amount of power generation based on the amount of working fluid expanding in the turbine 22 and the amount of water heated due to heat exchange in the condenser 23 are caused. Can do.

凝縮器23では、内部に導入された気液分離器21からの液相作動流体、タービン22を出た気相の作動流体、及びバイパス流路25を通った気相の作動流体が混合状態となって、隔壁を隔てた隙間に導入された冷却用媒体としての水と熱交換し、作動流体全体が冷却される中、気相の作動流体が液相の作動流体への若干の吸収を伴いつつ、冷却に伴い凝縮して液相となる。この全て液相となった作動流体は、凝縮器23から外部に排出されて後段側のポンプ24に流入する。  In the condenser 23, the liquid phase working fluid introduced from the gas-liquid separator 21, the gas phase working fluid exiting the turbine 22, and the gas phase working fluid passing through the bypass channel 25 are mixed. As the whole working fluid is cooled by exchanging heat with water as a cooling medium introduced into the gap across the partition wall, the gas-phase working fluid is slightly absorbed by the liquid-phase working fluid. However, it condenses with cooling and becomes a liquid phase. The working fluid, which is in a liquid phase, is discharged from the condenser 23 to the outside and flows into the pump 24 on the rear stage side.

凝縮器23を出た作動流体は、熱源部10に入る前の初期状態の作動流体、すなわち液相の作動流体としてはシステム内で最も低い温度及び圧力となっている。この全て液相の作動流体は、ポンプ24を経由して熱源部10の潜熱回収用熱交換部14へ向け進むこととなる。熱源部10内に戻ると、前記同様に熱源部10での熱交換以降の各過程を繰返すこととなる。  The working fluid exiting the condenser 23 has the lowest temperature and pressure in the system as the working fluid in the initial state before entering the heat source unit 10, that is, the liquid-phase working fluid. This all-liquid working fluid proceeds to the latent heat recovery heat exchanging section 14 of the heat source section 10 via the pump 24. When returning to the heat source unit 10, the processes after the heat exchange in the heat source unit 10 are repeated as described above.

作動流体に対し、凝縮器23での熱交換に使用された水は、作動流体からの熱を受けて所定温度まで昇温している。この水は、凝縮器23を出た段階で給湯に適した所定の設定温度に達した温水となっていれば、制御部50による給水切換弁43の切換により管路40の支管路42を経由して直接給湯先へ向うこととなる。逆に、凝縮器23での熱交換で得られる熱量が熱要求量に対し不足したり、動力サイクル機構部20が非作動状態で凝縮器23から熱が得られないなど、凝縮器23を出た水が前記設定温度に達していない場合には、給水切換弁43により凝縮器23出口は熱源部10側への連通状態とされ、水は給水切換弁43から管路40の主管路41を通じて熱源部10へ向い、熱源部10で燃焼ガスとの熱交換で加熱されて給湯用の設定温度に到達した上で、給湯先に送給され、使用に供される。  With respect to the working fluid, the water used for heat exchange in the condenser 23 is heated to a predetermined temperature by receiving heat from the working fluid. If this water is hot water that has reached a predetermined set temperature suitable for hot water supply after leaving the condenser 23, the water supply switching valve 43 is switched by the control unit 50 via the branch line 42 of the pipe 40. It will go directly to the hot water supply destination. Conversely, the amount of heat obtained by heat exchange in the condenser 23 is insufficient with respect to the required heat amount, or the power cycle mechanism unit 20 is not in operation and heat cannot be obtained from the condenser 23. When the water has not reached the set temperature, the outlet of the condenser 23 is brought into communication with the heat source unit 10 by the feed water switching valve 43, and the water passes through the main pipeline 41 of the pipeline 40 from the feed water switching valve 43. It goes to the heat source unit 10 and is heated by heat exchange with the combustion gas in the heat source unit 10 to reach a set temperature for hot water supply, and then supplied to a hot water supply destination for use.

続いて、本実施の形態に係る給湯システムの各制御動作について図3ないし図7のフローチャートを用いて説明する。
給湯開始に係る制御は、まず、給湯先としての給湯用カランが開となったり、貯湯タンクから温水が出て貯湯タンクの温水量が減少するなどによって、温水供給指令が制御部50に入力される(ステップ001)と、同時に、制御部50は電力負荷が存在して発電出力が要求されているか否かを判定する(ステップ002)。発電出力の要求がある場合、凝縮器23の入口水温や流量等から、仮に発電のために動力サイクル機構部20を作動させた状態での凝縮器23における放出熱量よりも、水の設定温度までの温度上昇分に相当する熱要求量が上回ることが見込めるか否かを判定する(ステップ003)。給湯に係る熱要求量が凝縮器23の放出熱量を上回ることが見込める場合、熱源部10のバーナ13の燃焼動作を開始させ、作動流体熱交換部12に燃焼ガスを導入し、動力サイクル機構部20を作動状態とすることで、凝縮器23で作動流体と水とが熱交換して水加熱が開始される(ステップ004)。この後、凝縮器23出口での水温を取得し(ステップ005)、給湯に適した設定温度に達しているか否かを判定し(ステップ006)。達していれば給水切換弁43を支管路側連通状態とし(ステップ007)、熱源部10を通さずに適温の温水を給湯先へ向け送給するようにした後、処理を終了する。
Subsequently, each control operation of the hot water supply system according to the present embodiment will be described with reference to the flowcharts of FIGS.
As for the control related to the start of hot water supply, first, a hot water supply command is input to the control unit 50, for example, when a hot water supply curan as a hot water supply destination is opened or when hot water is discharged from the hot water storage tank and the amount of hot water in the hot water storage tank decreases. At the same time (step 001), the control unit 50 determines whether or not a power load exists and a power generation output is requested (step 002). When there is a request for power generation output, from the inlet water temperature and flow rate of the condenser 23 to the set temperature of water rather than the amount of heat released in the condenser 23 in a state where the power cycle mechanism unit 20 is operated for power generation. It is determined whether or not it can be expected that the amount of heat required corresponding to the temperature rise will exceed (step 003). When it can be expected that the amount of heat required for hot water supply exceeds the amount of heat released from the condenser 23, the combustion operation of the burner 13 of the heat source unit 10 is started, the combustion gas is introduced into the working fluid heat exchange unit 12, and the power cycle mechanism unit By bringing 20 into an operating state, the working fluid and water exchange heat in the condenser 23 and water heating is started (step 004). Thereafter, the water temperature at the outlet of the condenser 23 is acquired (step 005), and it is determined whether or not a set temperature suitable for hot water supply has been reached (step 006). If it has reached, the water supply switching valve 43 is brought into the branch line side communication state (step 007), the hot water having an appropriate temperature is supplied to the hot water supply destination without passing through the heat source section 10, and the processing is ended.

前記ステップ006で凝縮器23出口水温が給湯に適した設定温度に達していない場合、給水切換弁43を熱源部10側に水を流通させる状態とする(ステップ008)。続いて、熱源部10の水加熱部11に対し燃焼ガスによる加熱が行われる状態とし(ステップ009)、水は水加熱部11を通過して高温の燃焼ガスと熱交換することで温水となる。得られた温水に対し、熱源部10出口での主管路41における温水温度を取得し(ステップ010)、給湯に適した設定温度に達しているか否かを判定する(ステップ011)。ここで設定温度に達していれば、そのまま適温の温水を給湯先へ向け送給する状態を維持しつつ処理を終了する。また、前記ステップ011で設定温度に達していなければ、バーナ13で燃焼させるガス量を増やし、燃焼ガス供給を増大させて温水温度を高める(ステップ012)。そして再びステップ010に戻って処理を繰返す。  If the outlet water temperature of the condenser 23 does not reach the set temperature suitable for hot water supply in Step 006, the water supply switching valve 43 is brought into a state in which water is circulated to the heat source unit 10 side (Step 008). Subsequently, the water heating unit 11 of the heat source unit 10 is heated by the combustion gas (step 009), and the water passes through the water heating unit 11 and exchanges heat with the high-temperature combustion gas to become hot water. . With respect to the obtained hot water, the hot water temperature in the main pipeline 41 at the outlet of the heat source unit 10 is acquired (step 010), and it is determined whether or not a set temperature suitable for hot water supply has been reached (step 011). If the temperature has reached the set temperature, the process is terminated while maintaining the state in which hot water having an appropriate temperature is supplied to the hot water supply destination. If the set temperature has not been reached in step 011, the amount of gas burned by the burner 13 is increased, the combustion gas supply is increased, and the hot water temperature is raised (step 012). And it returns to step 010 again and repeats a process.

前記ステップ002で発電出力が要求されない場合や、ステップ003で凝縮器23における放出熱量よりも水の熱要求量が上回ることが見込めない場合には、前記ステップ008へ移行する。  If no power generation output is required in step 002, or if it is not expected in step 003 that the amount of heat required for water exceeds the amount of heat released from the condenser 23, the process proceeds to step 008.

前記給湯開始制御に続く、給湯の継続可否並びに負荷変化に対する給湯状態調整に係る制御は、給湯に係る熱要求量の変化を考慮して、まず、凝縮器23出口の水温が給湯用の設定温度範囲上限を超えたか否かを判定し(ステップ101)、水温が設定温度範囲上限を超えている場合、凝縮器23からの放熱過剰であるため、熱源部10の作動流体熱交換部12への燃焼ガス供給を停止して作動流体の加熱を止め、動力サイクル機構部20の作動を停止させる(ステップ102)。そして制御部50は給水切換弁43の切換状態を判別し(ステップ103)、凝縮器23から温水が熱源部10に向っている場合には、熱源部10出口での主管路41における温水の温度が給湯用の設定温度範囲上限以下であるか否かを判定する(ステップ104)。ここで設定温度範囲上限以下の場合、さらに温水の温度が給湯用の設定温度範囲に含まれるか否かを判定する(ステップ105)。設定温度範囲内であれば、そのまま適温の温水を給湯先へ向け送給する状態を維持する中、給湯用カランが閉となったり、貯湯タンクの温水が満量となるなどによって、温水供給停止指令が制御部50に入力されたか否かを判定し(ステップ106)、温水供給停止指令が入力された場合、続いて熱源部10のバーナ13がガス燃焼を停止させているか否かを判定し(ステップ107)、バーナ13がガス燃焼を停止させている場合はそのまま給湯処理を終了する。前記ステップ107でガス燃焼状態にある場合は、バーナ13でのガス燃焼を停止させてから(ステップ108)、処理終了となる。また、前記ステップ106で温水供給停止指令が入力されていない場合には、再びステップ101に戻って以降の処理を繰返す。  Following the hot water supply start control, whether the hot water supply can be continued or not, and the control related to the hot water supply state adjustment with respect to the load change takes into account the change in the amount of heat required for hot water supply, It is determined whether or not the upper limit of the range has been exceeded (step 101). If the water temperature exceeds the upper limit of the set temperature range, heat is excessively dissipated from the condenser 23. The combustion gas supply is stopped, heating of the working fluid is stopped, and the operation of the power cycle mechanism unit 20 is stopped (step 102). And the control part 50 discriminate | determines the switching state of the water supply switching valve 43 (step 103), and the temperature of the hot water in the main pipe line 41 at the heat source part 10 outlet when the hot water is directed to the heat source part 10 from the condenser 23. Is less than or equal to the upper limit of the set temperature range for hot water supply (step 104). If the temperature is below the upper limit of the set temperature range, it is further determined whether or not the temperature of the hot water is included in the set temperature range for hot water supply (step 105). If the temperature is within the set temperature range, the hot water supply is stopped when the hot water supply curan is closed or the hot water in the hot water storage tank is full, while maintaining the state where the hot water of the appropriate temperature is supplied to the hot water supply destination. It is determined whether or not a command is input to the control unit 50 (step 106). If a hot water supply stop command is input, it is subsequently determined whether or not the burner 13 of the heat source unit 10 stops gas combustion. (Step 107) If the burner 13 has stopped gas combustion, the hot water supply process is terminated. If the gas combustion state is in step 107, the gas combustion in the burner 13 is stopped (step 108), and the process is terminated. On the other hand, if the hot water supply stop command is not input in step 106, the process returns to step 101 and the subsequent processing is repeated.

前記ステップ103で凝縮器23から直接給湯先に温水が向っている場合には、給水切換弁43を切換えた(ステップ109)後、ステップ104に移行する。
また、前記ステップ104で、水温が設定温度範囲上限を超えている場合、熱源部10の水加熱部11への燃焼ガス供給を所定量減少させ、加熱を弱める(ステップ110)。この後、前記ステップ104に戻り、処理を繰返す。前記ステップ105で熱源部10出口温度が設定温度範囲を下回る場合、バーナ13で燃焼させるガス量を増やし、燃焼ガス供給を増大させて温水温度を高める(ステップ111)。そして再びステップ105に戻って処理を繰返す。
If hot water is directed directly from the condenser 23 to the hot water supply destination in step 103, the water supply switching valve 43 is switched (step 109), and then the process proceeds to step 104.
If the water temperature exceeds the upper limit of the set temperature range in step 104, the combustion gas supply to the water heating unit 11 of the heat source unit 10 is reduced by a predetermined amount to weaken the heating (step 110). Thereafter, the process returns to step 104 and the process is repeated. If the outlet temperature of the heat source unit 10 falls below the set temperature range in step 105, the amount of gas burned by the burner 13 is increased, the supply of combustion gas is increased, and the hot water temperature is raised (step 111). And it returns to step 105 again and repeats a process.

前記ステップ101で水温が設定温度範囲上限を超えていない場合、制御部50は給水切換弁43の切換状態を判別し(ステップ112)、凝縮器23から温水が熱源部10に向っている場合には、前記ステップ104へ移行する。  When the water temperature does not exceed the set temperature range upper limit in step 101, the control unit 50 determines the switching state of the water supply switching valve 43 (step 112), and the hot water is directed from the condenser 23 toward the heat source unit 10. Proceeds to step 104.

ステップ112で凝縮器23から温水が直接給湯先に向っている場合には、凝縮器23出口の水温が給湯用の設定温度範囲内にあるか否かを判定し(ステップ113)、範囲内にある場合、前記ステップ106へ移行する。ステップ113で範囲内になく、範囲下限を下回っている場合、あらかじめ設定されている制御パターンが電力供給優先と給湯優先のいずれであるか判定し(ステップ114)、電力供給優先の場合は、前記ステップ109へ移行する。  If the hot water is directly directed from the condenser 23 to the hot water supply destination in step 112, it is determined whether or not the water temperature at the outlet of the condenser 23 is within the set temperature range for hot water supply (step 113). If there is, the process proceeds to step 106. If it is not within the range in step 113 and is below the lower limit of the range, it is determined whether the preset control pattern is power supply priority or hot water supply priority (step 114). Control goes to step 109.

ステップ114で給湯優先の場合、流路切換弁26を調整してタービン22に向う気相作動流体の流量を所定量減らす(ステップ115)。そしてあらためて凝縮器23出口の水温が前記設定温度範囲内であるか否かを判定し(ステップ116)、設定温度範囲内である場合は、前記ステップ106へ移行する。前記ステップ116で設定温度範囲を下回る場合は、前記ステップ115に戻り処理を繰返す。  When hot water supply is given priority in step 114, the flow rate switching valve 26 is adjusted to reduce the flow rate of the gas-phase working fluid toward the turbine 22 by a predetermined amount (step 115). Then, it is determined again whether or not the water temperature at the outlet of the condenser 23 is within the set temperature range (step 116). If it is within the set temperature range, the routine proceeds to step 106. If the temperature falls below the set temperature range in step 116, the process returns to step 115 and the process is repeated.

発電に係る制御は、発電機30を動作させる動力サイクル機構部20の作動を負荷の変化に対応させるものとなり、大きく分けて発電を開始させるための制御処理と、電力負荷の電力要求量に発電出力を一致させる制御処理と、電力負荷や熱負荷の変化への対応を含む発電の継続可否に係る制御処理からなる。発電部分と電力負荷との関係については、前提として、発電機30が宅内電力供給路へ接続がなされると商用電力と並行して発電機30で発生させた電力を負荷側に出力できる系統連系型の電力供給システムとなっているものとする。  The control related to power generation is to make the operation of the power cycle mechanism unit 20 that operates the power generator 30 correspond to the change in load, and can be roughly divided into control processing for starting power generation and power demand amount of the power load. It consists of a control process for matching the outputs and a control process related to whether or not to continue power generation, including the response to changes in power load and heat load. Regarding the relationship between the power generation part and the power load, as a premise, when the power generator 30 is connected to the residential power supply path, the power generated by the power generator 30 can be output to the load side in parallel with the commercial power. It is assumed that the system is a power supply system.

発電開始に係る制御は、まず、発電に係る各部動作を許容する指令が制御部50に入力された(ステップ201)後、電力負荷が存在して発電出力が要求されているか否かを判定し(ステップ202)、発電出力の要求がある場合、その時点での熱負荷の熱要求量が、仮に発電のために動力サイクル機構部20を作動させた状態での凝縮器23における放出熱量(排熱量)の最小値以上となることが見込めるか否かを判定する(ステップ203)。熱要求量が凝縮器23の放出熱量を上回ることが見込める場合、熱源部10の作動流体熱交換部12に燃焼ガスを導入し、動力サイクル機構部20を作動状態とすることで、発電機を動作させて発電が開始する(ステップ204)。初期状態では、タービン22で駆動される発電機30の電力出力がポンプ24等の自家消費電力分をまかなう程度の最小出力となるよう、タービン22への作動流体流入量は流路切換弁26で必要最小限の量に抑えられている。この後、タービン22が安定した回転状態となり、発電機30の電力出力が前記最小出力に達したら、電力供給路に発電機30を接続して電力負荷側へ発電機30からの電力供給が行える状態として(ステップ205)、処理を終了する。  In the control relating to the start of power generation, first, after a command permitting the operation of each part related to power generation is input to the control unit 50 (step 201), it is determined whether or not a power load exists and a power generation output is requested. (Step 202) When there is a request for the power generation output, the heat demand of the heat load at that time is the amount of heat released (exhaust in the condenser 23 when the power cycle mechanism unit 20 is operated for power generation). It is determined whether or not it is expected to be equal to or greater than the minimum value of (heat amount) (step 203). When the heat demand can be expected to exceed the amount of heat released from the condenser 23, the combustion gas is introduced into the working fluid heat exchanging unit 12 of the heat source unit 10, and the power cycle mechanism unit 20 is put into an operating state. Power generation is started by operating (step 204). In the initial state, the flow rate of the working fluid into the turbine 22 is adjusted by the flow path switching valve 26 so that the power output of the generator 30 driven by the turbine 22 becomes a minimum output that can cover the power consumption of the pump 24 and the like. It is kept to the minimum necessary amount. Thereafter, when the turbine 22 is in a stable rotating state and the power output of the generator 30 reaches the minimum output, the power generator 30 is connected to the power supply path, and power can be supplied from the generator 30 to the power load side. As a state (step 205), the process is terminated.

前記発電開始制御に続く、発電機30の発電出力を電力要求量に一致させる制御については、まず、電力負荷における電力要求量を検出し(ステップ301)、発電機30の電力出力がこの負荷側での電力要求量に一致しているか否か判定する(ステップ302)。ここで発電機30の電力出力が電力要求量に一致している場合、そのまま処理終了となり、次の電力負荷及び熱負荷変化の監視下における発電の継続可否制御状態に移行することとなる。なお、本制御処理が実行されるのは、電力供給開始直後や、後述する発電の継続可否制御を経て発電停止が選択されない状況で本制御処理に移行する場合のみであり、制御開始時点で発電機30の発電出力が負荷からの電力要求量を上回ることはない。  For the control to match the power generation output of the generator 30 with the power demand amount following the power generation start control, first, the power demand amount in the power load is detected (step 301), and the power output of the generator 30 is the load side. In step 302, it is determined whether or not the power request amount is the same. Here, when the power output of the generator 30 matches the required power amount, the processing is ended as it is, and the state is shifted to the power generation continuation enable / disable control state under the monitoring of the next power load and thermal load change. This control process is executed only when the process is shifted to this control process immediately after the start of power supply or when power generation stop is not selected through the power generation continuation enable / disable control described later. The power generation output of the machine 30 does not exceed the power demand from the load.

前記ステップ302で発電出力が電力要求量に一致しておらず下回っている場合は、さらに発電出力が発電機30の最大出力未満であるか否か判定する(ステップ303)。発電出力が最大出力未満の場合、流路切換弁26を調整してタービン22に向う気相作動流体の流量を所定量増やす(ステップ304)。ここで、タービン22に流入させる作動流体が増えた分、凝縮器23における放出熱量は低下する。  If the power generation output does not match the power demand amount in step 302 and is below it, it is further determined whether or not the power generation output is less than the maximum output of the generator 30 (step 303). When the power generation output is less than the maximum output, the flow path switching valve 26 is adjusted to increase the flow rate of the gas phase working fluid toward the turbine 22 by a predetermined amount (step 304). Here, the amount of heat released from the condenser 23 decreases as the working fluid flowing into the turbine 22 increases.

制御部50は給水切換弁43の切換状態を判別し(ステップ305)、凝縮器23から温水が熱源部10に向っている場合には、熱源部10出口での温水の温度を取得し(ステップ306)、これが給湯用の設定温度範囲を下回るか否かを判定する(ステップ307)。ここで設定温度範囲を下回る場合、熱源部10のバーナ13で燃焼させるガス量を増やし、燃焼ガス供給を増大させて温水温度を高める(ステップ308)。そして再びステップ306に戻って処理を繰返す。前記ステップ307で、水温が設定温度範囲を下回らず範囲に含まれる場合、ステップ301に戻って以降の処理を繰返す。  The control unit 50 determines the switching state of the water supply switching valve 43 (step 305), and acquires the temperature of the hot water at the outlet of the heat source unit 10 when the hot water is directed from the condenser 23 to the heat source unit 10 (step 305). 306), it is determined whether or not this is below the set temperature range for hot water supply (step 307). If the temperature falls below the set temperature range, the amount of gas burned by the burner 13 of the heat source unit 10 is increased, the combustion gas supply is increased, and the hot water temperature is increased (step 308). Then, the process returns to step 306 and the process is repeated. If the water temperature falls within the set temperature range in step 307, the process returns to step 301 and the subsequent processing is repeated.

前記ステップ305で凝縮器23から直接給湯先に温水が向っている場合には、凝縮器23出口の水温を取得し(ステップ309)、これが給湯用の設定温度範囲を下回るか否かを判定する(ステップ310)。ここで下回る場合、給水切換弁43を切換えた(ステップ311)後、ステップ306に移行する。前記ステップ310で設定温度範囲を下回らない場合、ステップ301に戻って以降の処理を繰返す。
なお、前記ステップ303で発電出力が発電機30の最大出力に達している場合、処理終了となる。
If hot water is directed directly from the condenser 23 to the hot water supply destination in step 305, the water temperature at the outlet of the condenser 23 is acquired (step 309), and it is determined whether or not this is below the set temperature range for hot water supply. (Step 310). When it falls below, after switching the water supply switching valve 43 (step 311), it transfers to step 306. If the temperature does not fall below the set temperature range in step 310, the process returns to step 301 and the subsequent processing is repeated.
If the power generation output reaches the maximum output of the generator 30 in step 303, the process ends.

負荷変化への対応を含む発電の継続可否に係る制御は、制御部50により電力負荷及び熱負荷の変化を監視する状態で、熱負荷の状態変化を考慮して、まず、熱負荷からの熱要求量が、凝縮器23における放出熱量の最小値以上となっているかを判定し(ステップ401)、熱要求量が最小値を上回っている場合は、次に、電力負荷からの電力要求量が変化したか否かを判定する(ステップ402)。電力要求量が変化している場合、さらにこの電力要求量を発電機30の電力出力が超えているか否か判定し(ステップ403)、超えている場合は流路切換弁26を調整して、タービン23に向う気相作動流体の流量を、所定量減らす(ステップ404)。  The control relating to whether or not to continue power generation including the response to the load change is performed in a state where the control unit 50 monitors the change in the power load and the heat load, and the heat load from the heat load is first taken into consideration. It is determined whether the required amount is equal to or greater than the minimum value of the heat released from the condenser 23 (step 401). If the required heat amount exceeds the minimum value, then the required power amount from the power load is It is determined whether it has changed (step 402). If the power demand has changed, it is further determined whether or not the power output of the generator 30 exceeds this power demand (step 403), and if so, the flow path switching valve 26 is adjusted, The flow rate of the gas-phase working fluid toward the turbine 23 is reduced by a predetermined amount (step 404).

ここで、タービン22に流入させる作動流体が減った分、凝縮器23における放出熱量は増加する。制御部50は、凝縮器23出口の水温が給湯用の設定温度範囲上限を上回ったか否かを判定する(ステップ405)。水温が設定温度範囲上限を上回った場合、熱源部10の作動流体熱交換部12への燃焼ガス供給を停止して作動流体の加熱を止め、動力サイクル機構部20の作動並びに発電を停止し(ステップ406)、且つ流路切換弁26をタービン側への最小流量状態に復帰させる(ステップ407)。  Here, the amount of heat released from the condenser 23 increases as the working fluid flowing into the turbine 22 decreases. The controller 50 determines whether or not the water temperature at the outlet of the condenser 23 has exceeded the upper limit temperature range for hot water supply (step 405). When the water temperature exceeds the upper limit of the set temperature range, the combustion gas supply to the working fluid heat exchange unit 12 of the heat source unit 10 is stopped to stop the heating of the working fluid, and the operation of the power cycle mechanism unit 20 and the power generation are stopped ( Step 406), and the flow path switching valve 26 is returned to the minimum flow rate state to the turbine side (Step 407).

さらに、制御部50は給水切換弁43の切換状態を判別し(ステップ408)、凝縮器23から温水が熱源部10に向っている場合には、熱源部10出口での主管路41における温水の温度が給湯用の設定温度範囲上限以下であるか否かを判定する(ステップ409)。ここで設定温度範囲上限以下の場合、さらに温水の温度が給湯用の設定温度範囲に含まれるか否かを判定する(ステップ410)。設定温度範囲内であれば、そのまま適温の温水を給湯先へ向け送給する状態を維持して発電に係る処理を終了する。  Further, the control unit 50 determines the switching state of the water supply switching valve 43 (step 408), and when the hot water is directed from the condenser 23 toward the heat source unit 10, the hot water in the main pipeline 41 at the outlet of the heat source unit 10 is determined. It is determined whether the temperature is equal to or lower than the upper limit temperature range for hot water supply (step 409). If the temperature is below the upper limit of the set temperature range, it is further determined whether or not the temperature of the hot water is included in the set temperature range for hot water supply (step 410). If the temperature is within the set temperature range, the state of supplying hot water having an appropriate temperature to the hot water supply destination is maintained, and the process related to power generation is terminated.

前記ステップ408で凝縮器23から直接給湯先に温水が向っている場合には、給水切換弁43を切換えた(ステップ411)後、ステップ409に移行する。
また、前記ステップ409で、水温が設定温度範囲上限を超えている場合、熱源部10の水加熱部11への燃焼ガス供給を所定量減少させ、加熱を弱める(ステップ412)。この後、前記ステップ409に戻り、処理を繰返す。さらに、前記ステップ410で熱源部10出口温度が設定温度範囲を下回る場合、バーナ13で燃焼させるガス量を増やし、燃焼ガス供給を増大させて温水温度を高める(ステップ413)。そして再びステップ410に戻って処理を繰返す。
If hot water is directed directly from the condenser 23 to the hot water supply destination in step 408, the water supply switching valve 43 is switched (step 411), and then the process proceeds to step 409.
If the water temperature exceeds the upper limit of the set temperature range in step 409, the combustion gas supply to the water heating unit 11 of the heat source unit 10 is decreased by a predetermined amount to weaken the heating (step 412). Thereafter, the process returns to step 409 and the process is repeated. Furthermore, when the outlet temperature of the heat source unit 10 falls below the set temperature range in step 410, the amount of gas burned by the burner 13 is increased, the combustion gas supply is increased, and the hot water temperature is raised (step 413). Then, the process returns to step 410 and the process is repeated.

また、前記ステップ405で水温が適正温度範囲上限に達していない場合、ステップ403に戻って以降の処理を繰返す。
前記ステップ403で発電機30の電力出力が負荷側での電力要求量を超えていない場合は、前記電力要求量に発電出力を一致させる制御(ステップ301〜311)を実行した上で、前記ステップ401に戻り、以降の処理を繰返すこととなる。
If the water temperature has not reached the upper limit of the appropriate temperature range in step 405, the process returns to step 403 and the subsequent processing is repeated.
When the power output of the generator 30 does not exceed the power demand amount on the load side in the step 403, after executing the control (steps 301 to 311) to match the power generation output with the power demand amount, the step Returning to 401, the subsequent processing is repeated.

前記ステップ402で電力負荷が変化していない場合、さらに途中で電力供給停止指令が制御部50に入力されているか否か判定し(ステップ414)、停止指令が入力されている場合、前記ステップ406に移行する。前記ステップ414で供給停止指令の入力がない場合には、前記ステップ401に戻り監視状態を繰返す。また、前記ステップ401で熱要求量が凝縮器放出熱量の最小値を下回る場合、前記ステップ406に移行する。  If the power load has not changed in step 402, it is further determined whether a power supply stop command is input to the control unit 50 in the middle (step 414). If a stop command is input, step 406 is performed. Migrate to If there is no supply stop command input in step 414, the process returns to step 401 and the monitoring state is repeated. On the other hand, if the required heat amount is less than the minimum value of the condenser discharge heat amount in step 401, the process proceeds to step 406.

このように、本実施の形態に係る給湯システムにおいては、熱源部10で発生させた熱を動力サイクルの高温熱源として使用し、熱を動力に変換して発電を行う一方、動力サイクルの低温熱源として給湯用の水を使用して凝縮器23で作動流体と熱交換させ、水の加熱を行う形で動力サイクルの排熱を回収し、サイクル稼働を実現することから、給湯に加えて電力供給を行うことができ、宅内電力需要の一部を賄えると共に、発電を行いつつ十分な熱を発生させることができ、熱電比が住宅の電力需要と熱需要に見合った適切なものとなり、且つ発生させる熱出力の最大値も十分大きく、電力発生に関わる熱発生で十分宅内の熱需要に対応でき、電力発生に関わらない熱発生を抑えてシステム全体の発電効率を高められる。また、制御部50で流路切換弁26を調整して作動流体のタービン22へ向う量とバイパス流路25を通って直接凝縮器23に向う量との割合を制御することから、電力負荷や熱負荷の状況に応じた流路切換弁26の制御で、発電機30の発電出力と凝縮器23での熱出力のバランスを最適な状態に調整できることに加え、発電機30を負荷追従運転状態とすることができ、発電部分の稼働率を大きく高められ、システムの発電量を増やして商用電力への依存度を小さくでき、エネルギコスト及び環境負荷の有効な削減が図れる。  As described above, in the hot water supply system according to the present embodiment, heat generated in the heat source unit 10 is used as a high-temperature heat source for a power cycle, and heat is converted into power to generate power, while a low-temperature heat source for the power cycle. In order to realize the cycle operation by using the water for hot water supply to exchange heat with the working fluid in the condenser 23 and recovering the exhaust heat of the power cycle by heating the water, power is supplied in addition to the hot water supply. Can cover part of residential power demand, generate enough heat while generating power, and the thermoelectric ratio is appropriate for the electricity demand and heat demand of the house. The maximum value of the heat output to be generated is sufficiently large, heat generation related to power generation can sufficiently meet the heat demand in the house, and heat generation regardless of power generation can be suppressed to increase the power generation efficiency of the entire system. In addition, since the control unit 50 adjusts the flow path switching valve 26 to control the ratio of the amount of working fluid to the turbine 22 and the amount to the condenser 23 directly through the bypass flow path 25, In addition to being able to adjust the balance between the power generation output of the generator 30 and the heat output of the condenser 23 to the optimum state by controlling the flow path switching valve 26 according to the state of the heat load, the generator 30 is in a load following operation state. The operating rate of the power generation part can be greatly increased, the amount of power generation of the system can be increased and the dependence on commercial power can be reduced, and the energy cost and environmental load can be effectively reduced.

なお、前記実施の形態に係る給湯システムは、一般の住宅一軒分の電力需要に対応して、電力出力が約3kW以下となる住宅用システムを例示しているが、これに限らず、同様の構成で、単機あるいは複数連結による電力出力が30kWまでの各種システムを構築でき、より大きな電力需要に対応可能として、集合住宅用や事業所用のシステムとして適用できる。  In addition, although the hot-water supply system which concerns on the said embodiment has illustrated the system for housing | casing which an electric power output becomes about 3 kW or less corresponding to the electric power demand for one common house, it is not restricted to this, The same With this configuration, it is possible to construct various systems with a power output of up to 30 kW by connecting a single machine or a plurality of units, and it can be applied as a system for collective housing and business establishments so as to be able to respond to a larger power demand.

また、前記実施の形態に係る給湯システムにおいて、発電機30の電力出力は、ポンプ24等の自家電力消費機構部分や、電力供給路を介して接続される電力負荷で消費されるのみであり、発電機30からの電力出力が電力負荷からの電力要求量を超えないよう動力サイクル機構部20を制御する構成としているが、これに限らず、発電機に対し電気的に接続可能とされる蓄電池を配設し、必要に応じて発電機から蓄電池に充電する制御を行う構成とすることもでき、発電機からの電力出力が負荷からの電力要求量より多くなった場合でも、電力要求量を超えた余剰電力分を蓄電池に充電して発電出力をそのまま維持できることから、前記実施形態で、余剰電力発生時に発電機30の発電出力を作動流体のタービン22流入量調整制御で単純に抑えようとすると、凝縮器23での熱出力が過剰になるためにこれが行えず、最終的に動力サイクル機構部20の作動及び発電を停止せざるを得ないような状況でも、発電出力の一部を蓄電池に充電して負荷側への出力を相対的に減少させられることで発電停止に至る制御を行わずに済み、発電をより長い時間にわたって継続できることとなり、システムの発電量を増やして商用電力への依存度を小さくでき、エネルギコスト及び環境負荷を確実に低減できる。  Moreover, in the hot water supply system according to the above-described embodiment, the power output of the generator 30 is only consumed by the private power consumption mechanism part such as the pump 24 or the power load connected via the power supply path. The power cycle mechanism unit 20 is controlled so that the power output from the power generator 30 does not exceed the power demand from the power load. However, the present invention is not limited to this, and a storage battery that can be electrically connected to the power generator. Can be configured to charge the storage battery from the generator as required, even if the power output from the generator exceeds the power demand from the load, Since the surplus power can be charged to the storage battery and the power generation output can be maintained as it is, in the above embodiment, the power generation output of the generator 30 is simply controlled by adjusting the flow rate of the turbine 22 in the working fluid when surplus power is generated. If it is attempted to suppress, the heat output in the condenser 23 becomes excessive, so this cannot be done, and even in a situation where the operation of the power cycle mechanism unit 20 and the power generation must be stopped finally, the power output is reduced. The battery can be charged to the storage battery and the output to the load side can be relatively reduced, so that it is not necessary to perform control to stop power generation, and power generation can be continued for a longer time. The dependence on electric power can be reduced, and the energy cost and environmental load can be reliably reduced.

また、前記実施の形態に係る給湯システムにおいて、冷却器としての凝縮器23は水供給源からの水のみを冷却用媒体として作動流体と熱交換させる構成としているが、これに限らず、冷却器に暖房用等に用いる他の熱媒体用の流路を設けて、冷却器で水と共に他の熱媒体を作動流体と熱交換させる構成とすることもできる。他の熱媒体については、水同様、さらに熱源部に通して燃焼ガスと熱交換させるようにしてもかまわない。そして、他の熱媒体も熱交換させる場合、加熱に必要な温度に応じて冷却器や熱源部における熱交換位置を水のそれとずらして適切な温度が得られるようにするのが望ましい。この他、作動流体の保有熱量や、供給したい水及び/又は熱媒体の温度レベルに応じて、作動流体と水及び/又は他の熱媒体とを熱交換させる別の一又は複数の冷却器を作動流体流路中で水用の冷却器と直列又は並列に接続配置する構成としたり、他の熱媒体加熱用の熱源部を別途設け、水とは独立させて燃焼ガスと熱交換させる構成としたりすることもできる。  In the hot water supply system according to the above embodiment, the condenser 23 as a cooler is configured to exchange heat with the working fluid using only water from a water supply source as a cooling medium, but is not limited thereto. A flow path for other heat medium used for heating or the like may be provided, and the other heat medium may be exchanged with the working fluid together with water by a cooler. Other heat mediums may be made to exchange heat with the combustion gas by passing through the heat source part as well as water. When other heat medium is also subjected to heat exchange, it is desirable to shift the heat exchange position in the cooler or heat source unit from that of water according to the temperature required for heating so that an appropriate temperature can be obtained. In addition, one or more coolers that exchange heat between the working fluid and water and / or other heat medium according to the amount of heat retained by the working fluid and the temperature level of the water and / or heat medium to be supplied. In the working fluid flow path, it is configured to be connected in series or in parallel with the water cooler, or a heat source part for heating other heat medium is provided separately, and heat is exchanged with the combustion gas independently of water. You can also.

また、前記実施の形態に係る給湯システムにおいて、熱源部10は水加熱部11と作動流体熱交換部12と潜熱回収用熱交換部を内蔵し、それぞれバーナ13で生じさせた燃焼ガスを流通させる構成としているが、これに限らず、水加熱部分と作動流体加熱部分が専用のバーナと共に別個に収容される二つの熱源部を備える構成とすることもでき、一方で熱交換を行わない状況における熱源部制御が容易となる。さらに、熱源部10で用いる燃料としては、天然ガスに限らず、燃焼により高温の燃焼ガスを生じさせられるものであれば、石油ガスや水素等の他の気体燃料、また、ガソリンや灯油等の液体燃料を用いるようにしてもかまわない。  Further, in the hot water supply system according to the embodiment, the heat source unit 10 includes a water heating unit 11, a working fluid heat exchange unit 12, and a latent heat recovery heat exchange unit, and each distributes the combustion gas generated by the burner 13. Although it is configured, the present invention is not limited to this, and the water heating part and the working fluid heating part can also be configured to include two heat source parts separately accommodated together with a dedicated burner, while in the situation where heat exchange is not performed Heat source control becomes easy. Furthermore, the fuel used in the heat source unit 10 is not limited to natural gas, and may be other gaseous fuel such as petroleum gas or hydrogen, gasoline, kerosene, etc., as long as it can generate high-temperature combustion gas by combustion. You may use liquid fuel.

また、前記実施の形態に係る給湯システムにおいて、熱源部10の作動流体熱交換部12は、バーナ13でガス燃料を燃焼させて発生させた燃焼ガスと作動流体とを伝熱部分を介して直に熱交換させる構成としているが、これに限らず、燃焼ガスを一旦所定の熱媒体と熱交換させ、作動流体をこの熱媒体と熱交換させて加熱する構成とすることもでき、作動流体が熱媒体を介して間接的に加熱されることで、燃焼ガス側の急激な温度変化による作動流体側への影響を緩和できる。さらに、前記熱媒体を用いる場合、熱媒体と作動流体との熱交換部分を熱源部10の外部に設ける構成とすることもでき、作動流体流路とバーナ火炎を離隔させて特殊な作動流体を用いる場合等の安全性を高められると共に、作動流体流路部分のメンテナンス性も向上させられる。  In the hot water supply system according to the embodiment, the working fluid heat exchange unit 12 of the heat source unit 10 directly converts the combustion gas generated by burning the gas fuel with the burner 13 and the working fluid directly through the heat transfer portion. However, the present invention is not limited to this, and it may be configured such that the combustion gas is once heat exchanged with a predetermined heat medium, and the working fluid is heat exchanged with the heat medium and heated. By being indirectly heated through the heat medium, the influence on the working fluid side due to a rapid temperature change on the combustion gas side can be mitigated. Further, when the heat medium is used, a heat exchanging portion between the heat medium and the working fluid may be provided outside the heat source unit 10, and a special working fluid is separated by separating the working fluid flow path from the burner flame. In addition to improving the safety when used, etc., the maintainability of the working fluid flow path portion is also improved.

また、前記実施の形態に係る給湯システムにおいては、気液分離器21を出た液相の作動流体を凝縮器23に流入させ、水と熱交換させる構成としているが、これに限らず、気液分離器を出た液相作動流体を高温側の熱交換用流体とする熱交換器を別途配設し、凝縮器を出た水(温水)、又は凝縮器もしくはポンプを出た温度の低い液相作動流体と、気液分離器を出た高温の液相作動流体とを熱交換させて熱回収を行う構成とすることもできる。さらに、気液分離器からの支流路をポンプと作動流体熱交換部との間の作動流体流路に接続し、気液分離器で気相分と分離した高温の液相作動流体を凝縮器に向わせるのではなく、ポンプを出て作動流体熱交換部に向う低温の液相作動流体に合流させて熱回収を行う構成とすることもでき、単純な構造ながら適切に熱回収が行え、装置コストの低減が図れる。  In the hot water supply system according to the embodiment, the liquid-phase working fluid exiting the gas-liquid separator 21 is allowed to flow into the condenser 23 to exchange heat with water. A heat exchanger that uses the liquid phase working fluid that exits the liquid separator as a heat exchange fluid on the high temperature side is separately installed, and the water that exits the condenser (hot water) or the temperature that exits the condenser or pump is low. A heat recovery may be performed by exchanging heat between the liquid phase working fluid and the high temperature liquid phase working fluid exiting the gas-liquid separator. Furthermore, the branch flow path from the gas-liquid separator is connected to the working fluid flow path between the pump and the working fluid heat exchanger, and the high-temperature liquid-phase working fluid separated from the gas phase by the gas-liquid separator is a condenser. It is also possible to recover the heat by joining the low-temperature liquid-phase working fluid that goes out of the pump to the working fluid heat exchanger, and can recover the heat appropriately with a simple structure. Therefore, the apparatus cost can be reduced.

また、前記実施の形態に係る給湯システムにおいては、動力サイクル機構部20の作動流体として、水とアンモニアの混合流体等の非共沸混合媒体を用いる構成としているが、これに限らず、フロンやアンモニア、炭化水素、水、CO等についても作動流体として用いる構成とすることもできる。特に、熱源部で作動流体が約130℃未満の燃焼ガスと熱交換する場合は、作動流体として水より低沸点の非共沸混合媒体や単一媒体を用いるのが好ましく、作動流体が約130℃以上の燃焼ガスと熱交換する場合は、作動流体として水を用いるのが好ましい。なお、CO等を作動流体とする場合、膨張機の前で作動流体を気相分と液相分とに分離する必要がないため、図8に示すように、給湯システム3における動力サイクル機構部20で気液分離器を省略した機構とすることができる。
水を作動流体とする場合は、作動流体熱交換部12で作動流体を給湯用の水と比べて高温にする必要があることから、前記実施形態とは異なり、水加熱部11表面における温度より高い温度の燃焼ガスが作動流体熱交換部12に接触可能となるよう熱源部10を構成するのが好ましい。
Further, in the hot water supply system according to the embodiment, the working fluid of the power cycle mechanism unit 20 is configured to use a non-azeotropic mixed medium such as a mixed fluid of water and ammonia. Ammonia, hydrocarbon, water, CO 2 and the like can also be used as a working fluid. In particular, when the working fluid exchanges heat with the combustion gas of less than about 130 ° C. in the heat source section, it is preferable to use a non-azeotropic mixed medium or a single medium having a boiling point lower than that of water as the working fluid. In the case of exchanging heat with a combustion gas at or above ° C, water is preferably used as the working fluid. When CO 2 or the like is used as the working fluid, there is no need to separate the working fluid into a gas phase component and a liquid phase component in front of the expander. Therefore, as shown in FIG. 8, a power cycle mechanism in the hot water supply system 3 is used. It can be set as the mechanism which abbreviate | omitted the gas-liquid separator in the part 20. FIG.
When water is used as the working fluid, the working fluid heat exchanger 12 needs to have a higher working fluid temperature than water for hot water supply. It is preferable to configure the heat source unit 10 so that combustion gas at a high temperature can come into contact with the working fluid heat exchange unit 12.

本発明の一実施形態に係る給湯システムの概略系統図である。  1 is a schematic system diagram of a hot water supply system according to an embodiment of the present invention. 本発明の一実施形態に係る給湯システムにおける熱源部の概略構成図である。  It is a schematic block diagram of the heat-source part in the hot water supply system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る給湯システムにおける給湯開始制御のフローチャートである。  It is a flowchart of the hot water supply start control in the hot water supply system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る給湯システムにおける給湯継続可否及び給湯状態調整制御のフローチャートである。  It is a flowchart of hot water supply continuation propriety and hot water supply state adjustment control in the hot water supply system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る給湯システムにおける発電開始制御のフローチャートである。  It is a flowchart of the electric power generation start control in the hot water supply system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る給湯システムにおける発電出力制御のフローチャートである。  It is a flowchart of the electric power generation output control in the hot water supply system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る給湯システムにおける発電継続可否制御のフローチャートである。  It is a flowchart of the electric power generation continuation permission control in the hot water supply system which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る給湯システムの概略系統図である。  It is a schematic systematic diagram of the hot water supply system which concerns on other embodiment of this invention.

1、2 給湯システム
10 熱源部
11 水加熱部
12 作動流体熱交換部
13 バーナ
14 潜熱回収用熱交換部
20 動力サイクル機構部
21 気液分離器
22 タービン
23 凝縮器
24 ポンプ
25 バイパス流路
26 流路切換弁
27 支流路
28 減圧弁
30 発電機
40 管路
41 主管路
42 支管路
43 給水切換弁
44 凝縮器バイパス弁
50 制御部
DESCRIPTION OF SYMBOLS 1, 2 Hot-water supply system 10 Heat source part 11 Water heating part 12 Working fluid heat exchange part 13 Burner 14 Latent heat recovery heat exchange part 20 Power cycle mechanism part 21 Gas-liquid separator 22 Turbine 23 Condenser 24 Pump 25 Bypass flow path 26 Flow Road switching valve 27 Branch flow path 28 Pressure reducing valve 30 Generator 40 Pipe line 41 Main pipe line 42 Branch line 43 Water supply switching valve 44 Condenser bypass valve 50 Controller

Claims (4)

所定燃料の燃焼ガスの保有する熱で水を加熱する熱源部と、前記熱源部で得られた温水を給湯先に供給すると共に水供給源から熱源部に水を導く管路とを少なくとも備える給湯システムにおいて、
所定の作動流体を加熱する作動流体熱交換部と、前記作動流体を燃焼ガスの保有する潜熱の回収により加熱する潜熱回収用熱交換部と、前記作動流体の少なくとも一部を導入されて流体の保有する熱エネルギを動力に変換する膨張機と、当該膨張機を出た作動流体を冷却する冷却器と、当該冷却器を出た作動流体を潜熱回収用熱交換部へ送込む圧縮機とを少なくとも備える動力サイクル機構部と、前記膨張機で得られた動力で発電を行う発電機を備え、
前記熱源部が、発生させた熱の少なくとも一部で前記作動流体を加熱する作動流体熱交換部と、発生させた燃焼ガスの保有する潜熱で前記作動流体を加熱する潜熱回収用熱交換部を有して、前記作動流体が作動流体熱交換部より先に潜熱回収用熱交換部に導入されて、加熱される動力サイクルを有してなり、
前記熱源部における熱発生量や前記動力サイクル機構部の動作状態、並びに給湯状態を電力や給湯の要求状況に応じて制御する制御部を備え、
前記制御部が、発電出力の要求があり、且つ、仮に前記動力サイクル機構部を作動させた状態での冷却器における放出熱量の最小値よりも熱負荷の熱要求量が上回ることが見込める場合、動力サイクル機構部を作動状態とし、
前記動力サイクル機構部の冷却器が、前記管路を通じ前記水供給源から送給される水を、前記作動流体と熱交換する冷却用媒体の少なくとも一つとして流入出可能とすることを
特徴とする給湯システム。
A hot water supply comprising at least a heat source part that heats water with heat held by combustion gas of a predetermined fuel, and a pipe that supplies hot water obtained by the heat source part to a hot water supply destination and guides water from the water supply source to the heat source part In the system,
A working fluid heat exchanging section that heats a predetermined working fluid; a latent heat recovery heat exchanging section that heats the working fluid by collecting latent heat held by combustion gas; and at least a part of the working fluid is introduced to An expander that converts the stored thermal energy into power, a cooler that cools the working fluid that exits the expander, and a compressor that sends the working fluid that exits the cooler to the heat exchange unit for recovering latent heat A power cycle mechanism unit comprising at least a generator that generates power with the power obtained by the expander;
The heat source section includes a working fluid heat exchange section that heats the working fluid with at least part of the generated heat, and a latent heat recovery heat exchange section that heats the working fluid with latent heat held by the generated combustion gas. The working fluid has a power cycle that is introduced into the latent heat recovery heat exchanger before the working fluid heat exchanger and heated.
A control unit that controls the amount of heat generation in the heat source unit and the operation state of the power cycle mechanism unit, as well as the hot water supply state, according to the request status of electric power and hot water,
When the control unit has a request for power generation output, and it is expected that the heat demand of the heat load exceeds the minimum value of the heat released in the cooler in a state where the power cycle mechanism unit is operated, Set the power cycle mechanism to the operating state,
The cooler of the power cycle mechanism section allows water supplied from the water supply source through the pipe line to flow in and out as at least one of cooling media for exchanging heat with the working fluid. Hot water supply system.
前記請求項1に記載の給湯システムにおいて、
前記熱源部と膨張機との間の作動流体流路所定位置から分岐され、膨張機と冷却器との間の作動流体流路所定位置に合流するバイパス流路と、
前記熱源部と膨張機との間の作動流体流路における前記バイパス流路の分岐位置に配設され、熱源部寄り流路の膨張機寄り流路及びバイパス流路への各連通度合を調整して作動流体の膨張機側へ向う量とバイパス流路を経由して冷却器へ向う量との割合を変更可能とする流路切換弁とを備え、
前記制御部が、電力負荷側からの電力要求量又は熱負荷側からの熱要求量に応じて、前記流路切換弁を調整制御することを
特徴とする給湯システム。
In the hot water supply system according to claim 1,
A bypass flow path branched from a predetermined position of the working fluid flow path between the heat source unit and the expander, and joined to a predetermined position of the working fluid flow path between the expander and the cooler;
It is arranged at the branch position of the bypass flow path in the working fluid flow path between the heat source section and the expander, and adjusts the degree of communication between the heat source section flow path and the expander close flow path and the bypass flow path. And a flow path switching valve that can change the ratio of the amount of working fluid to the expander side and the amount to the cooler via the bypass flow path,
The hot water supply system, wherein the control unit adjusts and controls the flow path switching valve according to a power demand amount from a power load side or a heat demand amount from a heat load side.
前記請求項2に記載の給湯システムにおいて、
前記管路が、前記冷却器から熱源部を経由して給湯先に向う主管路と、当該主管路における冷却器と熱源部との間の所定位置から分岐されて熱源部より給湯先側の所定位置で主管路に合流する支管路とを有すると共に、前記主管路と支管路の分岐位置に配設されて主管路の冷却器寄り部分が主管路の熱源部寄り部分と支管路のいずれに連通するかを切換える給水切換弁を有してなり、
前記制御部が、冷却器出口での水温が給湯に係る所定設定温度に達している場合には、前記給水切換弁を冷却器出口と支管路側との連通状態とし、前記温度に達していない場合には給水切換弁を冷却器出口と熱源部側との連通状態とする制御を行うことを
特徴とする給湯システム。
In the hot water supply system according to claim 2,
The pipe is branched from a predetermined position between the cooler and the heat source part in the main pipe from the cooler to the hot water supply destination via the heat source part, and a predetermined point on the hot water supply side from the heat source part. And a branch pipe that merges with the main pipe at a position, and is disposed at a branch position between the main pipe and the branch pipe, so that the cooler portion of the main pipe communicates with either the heat source portion of the main pipe or the branch pipe A water supply switching valve that switches between
When the controller is in a state where the water temperature at the outlet of the cooler reaches a predetermined set temperature related to hot water supply, the water supply switching valve is in communication between the outlet of the cooler and the branch line side, and the temperature is not reached In the hot water supply system, the water supply switching valve is controlled to communicate with the outlet of the cooler and the heat source side.
前記請求項1ないし3のいずれかに記載の給湯システムにおいて、
前記作動流体が、水より低沸点となる非共沸混合媒体とされ、
前記熱源部の作動流体熱交換部と前記動力サイクル機構部の膨張機との間の作動流体流路に、作動流体熱交換部で蒸発した気相作動流体と液相作動流体とを分離する気液分離器
In the hot water supply system according to any one of claims 1 to 3,
The working fluid is a non-azeotropic mixture medium having a lower boiling point than water;
A gas that separates the vapor-phase working fluid and the liquid-phase working fluid evaporated in the working fluid heat exchange unit into a working fluid flow path between the working fluid heat exchange unit of the heat source unit and the expander of the power cycle mechanism unit. Liquid separator
JP2010216055A 2010-09-08 2010-09-08 Hot water supply system Pending JP2012057923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010216055A JP2012057923A (en) 2010-09-08 2010-09-08 Hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010216055A JP2012057923A (en) 2010-09-08 2010-09-08 Hot water supply system

Publications (1)

Publication Number Publication Date
JP2012057923A true JP2012057923A (en) 2012-03-22

Family

ID=46055230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010216055A Pending JP2012057923A (en) 2010-09-08 2010-09-08 Hot water supply system

Country Status (1)

Country Link
JP (1) JP2012057923A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098508A1 (en) * 2012-12-19 2014-06-26 Shin Gil Hyun System powered by combination of heat engine and heat pump
JP6059398B1 (en) * 2016-09-28 2017-01-11 株式会社Ihi Binary power generation system
JP6097897B1 (en) * 2017-01-10 2017-03-15 株式会社Ihi Binary power generation system
CN107060928A (en) * 2017-05-15 2017-08-18 华电电力科学研究院 A kind of system and method for utilization process waste supply electric energy and heat energy
KR102210866B1 (en) * 2019-09-18 2021-02-04 한국에너지기술연구원 Generating cycle system using flash tank
CN113701360A (en) * 2021-08-31 2021-11-26 广东万和新电气股份有限公司 Control method of water heater system, water heater and water heater system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318207A (en) * 1991-04-18 1992-11-09 Mitsubishi Heavy Ind Ltd Steam turbine exhaust heat power generation equipment
JPH0758043B2 (en) * 1989-06-01 1995-06-21 ウエスチングハウス・エレクトリック・コーポレーション Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
JP2007064500A (en) * 2005-08-29 2007-03-15 Noritz Corp Heating device
JP2008185248A (en) * 2007-01-29 2008-08-14 Ootaki Gas Kk Hot water supply system
JP2009264708A (en) * 2008-04-30 2009-11-12 Osaka Gas Co Ltd Water heater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758043B2 (en) * 1989-06-01 1995-06-21 ウエスチングハウス・エレクトリック・コーポレーション Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
JPH04318207A (en) * 1991-04-18 1992-11-09 Mitsubishi Heavy Ind Ltd Steam turbine exhaust heat power generation equipment
JP2007064500A (en) * 2005-08-29 2007-03-15 Noritz Corp Heating device
JP2008185248A (en) * 2007-01-29 2008-08-14 Ootaki Gas Kk Hot water supply system
JP2009264708A (en) * 2008-04-30 2009-11-12 Osaka Gas Co Ltd Water heater

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098508A1 (en) * 2012-12-19 2014-06-26 Shin Gil Hyun System powered by combination of heat engine and heat pump
JP6059398B1 (en) * 2016-09-28 2017-01-11 株式会社Ihi Binary power generation system
JP6097897B1 (en) * 2017-01-10 2017-03-15 株式会社Ihi Binary power generation system
JP2018112081A (en) * 2017-01-10 2018-07-19 株式会社Ihi Binary power generation system
CN107060928A (en) * 2017-05-15 2017-08-18 华电电力科学研究院 A kind of system and method for utilization process waste supply electric energy and heat energy
CN107060928B (en) * 2017-05-15 2023-10-27 华电电力科学研究院有限公司 System and method for supplying electric energy and heat energy by utilizing process waste heat
KR102210866B1 (en) * 2019-09-18 2021-02-04 한국에너지기술연구원 Generating cycle system using flash tank
WO2021054586A1 (en) * 2019-09-18 2021-03-25 한국에너지기술연구원 Power generation cycle system using flash tank and control method therefor
CN113701360A (en) * 2021-08-31 2021-11-26 广东万和新电气股份有限公司 Control method of water heater system, water heater and water heater system

Similar Documents

Publication Publication Date Title
JP4296200B2 (en) Hot water system
JP6431908B2 (en) Improved fuel cell system and method
JPH04349357A (en) Simultaneously heat supplying fuel cell
JP5300717B2 (en) Cogeneration system
JP2012057923A (en) Hot water supply system
JP2005061711A (en) Exhaust heat recovering water heater
JP2002083624A (en) Fuel cell system having thermally integrated isothermal cleaning subsystem of co
WO2006057223A9 (en) Fuel cell system
KR20160032172A (en) System for generating power from fuel cell waste heat
CN101629735A (en) Hot water supply system
JP5328661B2 (en) Fuel cell system with a device for preheating the cathode charge
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
JPH084586A (en) Cogeneration system
JP4195974B2 (en) Fuel cell cogeneration system
JP2001065976A (en) Cogeneration system
JP2001248906A (en) Exhaust heat recovering hot water supply system
JP2004111208A (en) Fuel cell power generation system
WO2020255692A1 (en) Power generation plant and method for storing excess energy in power generation plant
JP2014182923A (en) Fuel cell system and operation method thereof
JP2018527699A (en) Fuel cell system
JP2008045843A (en) Hot water supply heating system
JP4578787B2 (en) Hybrid fuel cell system
JP4685553B2 (en) Cogeneration system
JP5375119B2 (en) Cogeneration system
JP5498552B2 (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141202